
Hugo Pedro Martins Carriço Proença

Towards Non-Cooperative Biometric
Iris Recognition

University of Beira Interior
Department of Computer Science

October 2006



Hugo Pedro Martins Carriço Proença

Towards Non-Cooperative Biometric
Iris Recognition

Thesis submitted to the Department of Computer Science for the fulfillment

of the requirements for the degree of Doctor of Philosophy made under the

supervision of Doctor Luı́s A. Alexandre, Assistant Professor at the Department

of Computer Science of University of Beira Interior, Covilhã, Portugal
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Abstract

Reliable personal recognition is critical to many processes. Nowadays, modern societies

give higher relevance to systems that contribute to the increase of security and reliability,

essentially due to terrorism and other extremism or illegal acts. In this context, the use of

biometric systems has been increasingly encouraged by public and private entities in order

to replace or improve traditional security systems. Basically, the aim is to establish an

identity based on who the person is, rather than on what the person possesses or what the

person remembers (e.g., an ID card or a password).

Within this context, iris is commonly accepted as one of the most accurate biometric

traits and has been successfully applied in such distinct domains as airport check-in [107]

or refugee control [13]. However, for the sake of accuracy, present iris recognition systems

require that subjects stand close (less than two meters) to the imaging camera and look for

a period of about three seconds until the data is captured [45]. This cooperative behavior is

required in order to capture images with enough quality for the recognition task. However,

it strongly restricts the range of domains where iris recognition can be applied, specially

those where the subjects’ cooperation is not expectable (e.g., criminal/terrorist seek, missing

children).

The overcome of this requirement - users’ cooperation - is the main focus of this thesis,

i.e., the analysis and proposal of methods for the automatic recognition of individuals, using

images of their iris and without requiring them any active participation, in order to achieve

accurate covert human recognition.

Our main objective is to overcome the users’ cooperation constraints in the biometric

iris recognition. Profiting from the extremely low probability of false matches observed in

the current iris-based biometric proposals, the external iris visibility and the fact that its

capture is minimally intrusive, our aim consists in taking a step ahead in the development

of a non-cooperative iris biometric recognition system.
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However, it is highly probable that images captured at-a-distance, without users coopera-

tion and within highly dynamic capturing environments lead to the appearance of extremely

heterogenous images, with several other types of information in the captured iris regions

(e.g., iris obstructions by eyelids or eyelashes and reflections). For the terms of our work

and of this thesis, all these factors are considered as noise.

After analyzing the actual iris recognition methods and finding that they have small

robustness to noise factors, our work was oriented to the proposal of more robust iris

recognition methods, that must be able to deal with noise and achieve accurate recognition,

based in images captured within non-cooperative environments. Essentially, this thesis

is related with the purpose of robust noise detection and handling in the iris biometrics,

maintaining minimal recognition error rates.

Along this thesis several proposals to increase the iris recognition robustness to noise are

described, among which we enhance, first, a method to perform the segmentation of noisy

iris images, a method to detect and localize the noise regions that result of non-cooperative

imaging settings. Second, using the information about the localized noisy iris regions, we

propose methods that deal with those noise regions. A method to compute the quality of

each extracted feature is described. This method avoids that the features extracted from

typically noisy regions can corrupt the biometric signature. Finally, a feature selection

and a new iris classification strategy increase the adaptability of the recognition system to

the dynamics of non-cooperative environments whereas localized noise regions that could

corrupt the whole biometric signature are avoided.

Our experiments show a significant increase in the recognition accuracy. Moreover, the

fact that our proposals can be used together with most of the iris recognition proposals is

regarded as a strong point.
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Resumo

O reconhecimento automático da identidade de um indivı́duo é um processo crı́tico para um

elevado número de acções quotidianas. Presentemente, as sociedades atribuem relevância

crescente a sistemas que contribuam para aumentar os nı́veis de segurança e fiabilidade,

essencialmente devido a preocupações com o terrorismo ou outros actos extremistas. Neste

contexto, o uso de sistemas biométricos tem sido crescentemente encorajado, quer por

entidades públicas ou privadas, com vista a substituir ou aumentar os nı́veis de segurança

tradicionais. Basicamente, o objectivo é estabelecer uma identidade para um individuo,

baseado no que ele é em vez de o que ele possui ou o que ele sabe (por exemplo, um cartão

de identificação ou uma palavra-passe).

Neste sentido, a ı́ris é comummente aceite como um dos sinais biométricos mais exactos

e tem sido utilizada com sucesso em domı́nios tão distintos como o controlo de entradas em

aeroportos [107] ou o registo de refugiados e eleições [13]. No entanto, de forma a atingir

os nı́veis de exactidão pretendidos, os sistemas actuais de reconhecimento de ı́ris exigem

que os indivı́duos a reconhecer se posicionem perto do dispositivo de captura de imagem

(menos de dois metros) e olhem para ele por um perı́odo de cerca de três segundos, até que

os dados necessários sejam registados [45]. Este comportamento cooperativo é necessário

por forma a adquirir imagens com suficiente qualidade, mas restringe a gama de domı́nios

onde a utilização de sistemas biométricos baseados em ı́ris pode ser efectuada (por exemplo,

procura de terroristas ou crianças desaparecidas).

Tornar desnecessário o procedimento cooperativo por parte dos indivı́duos a reconhecer é

o assunto principal desta tese. Nela são descritos e experimentalmente comparados métodos

de efectuar o reconhecimento automático de indivı́duos, utilizando imagens da sua ı́ris e

sem lhes requerer qualquer acto de participação no processo, por forma efectuar o recon-

hecimento de forma encoberta, sem que os utilizadores sequer se apercebam.

Após a análise dos métodos actuais de reconhecimento biométrico baseado em imagens

da ı́ris e tendo observado a sua pouca tolerância a factores de ruı́do, o nosso trabalho foi
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orientado para a proposta de métodos de reconhecimento mais robustos, capazes de lidar

com imagens ruidosas e alcançar reconhecimento fiável nessa circunstancias. Essencial-

mente, esta tese aborda a detecção e tratamento robusto de ruı́do em imagens de ı́ris para

propósitos biométricos, mantendo taxas de erro reduzidas.

Nesta tese estão descritos métodos para aumentar a robustez ao ruı́do dos algoritmos

de reconhecimento de ı́ris, entre os quais realçamos primeiro os métodos para efectuar

a segmentação de imagens de ı́ris ruidosas e o método para detectar e localizar regiões

ruidosas em imagens de ı́ris segmentadas e normalizadas. De seguida, usando a informação

acerca da localização de cada região com ruı́do, são descritos métodos que lidam com

esse tipo de informação. É descrito um método para calcular a qualidade de cada uma

das caracterı́sticas extraı́das para a assinatura biométrica e evitar que as caracterı́sticas

mais ruidosas possam corromper a assinatura biométrica. Descrevemos ainda métodos de

selecção de caracterı́sticas e uma nova estratégia de classificação de ı́ris que aumentam a

adaptabilidade dos sistemas de reconhecimento aos ambientes onde estão a funcionar, evi-

tando simultaneamente que as regiões ruidosas possam corromper a totalidade da assinatura

biométrica.

As experiência feitas mostram um decréscimo substancial nas taxas de erro. O facto

das nossas propostas poderem ser utilizadas conjuntamente com a maioria dos algoritmos

actuais de reconhecimento de ı́ris é visto como uma vantagem.
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Chapter 1

Introduction

Reliable personal recognition is critical to many processes. Nowadays, modern societies

give higher relevance to systems that contribute to the increase of security and reliability,

essentially due to terrorism and other extremism or illegal acts. In this context, the use of

biometric systems has been increasingly encouraged by public and private entities in order

to replace or improve traditional security systems. Basically, the aim is to establish an

identity based on who the person is, rather than on what the person possesses or what the

person remembers (e.g., an ID card or a password).

Pattern recognition - the act of taking in raw data and making an action based on the

category of the pattern [30] - has been performed by humans for the last thousands of years

in order to assure survival. In the computer science compass, it constitutes a field within the

machine learning area and contributed in the last decades for the solution of many of our

daily problems (e.g., character and speech recognition, medical diagnosis, DNA sequence

identification, computer virus and spyware detection).

Biometrics can be seen from a pattern recognition perspective, where some physiological

or physical subjects’ data is captured in order to output their respective identity. Consider-

ing the recent mandates of several governments for the nationwide use of biometrics, it

constitutes a grand challenge for the field itself. Pattern recognition systems have never

been tried at such large scales nor have dealt with such a wide use of sensitive personal

information [52].

Figure 1.1 illustrates the typical structure of a pattern recognition system in its most

simplified form. Initially, a sensor gathers the raw data that will be used as source for all

subsequent processing. This is usually known as the data capture. Common data formats

1
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Data capture

Preprocessing

Feature extraction

Classification
Class ”A”

Class ”B”

Figure 1.1: Typical stages of a pattern recognition system (adapted from [30]).

are images and sounds recordings, respectively 2-D and 1-D signals.

Next, the data is preprocessed in order to simplify further operations and eliminate

eventual undesired data (noise). Due to its complexity, this stage is commonly subdivided in

several modules, among which the segmentation is found. It consists on the isolation of the

sections or regions of the captured data and in the localization of each data component. As it

is the first stage of any pattern recognition system, it directly deals with the high dynamism

of the data capturing devices and conditions and is clearly the one where robustness plays a

more important role. Also, the concept of data normalization, which makes the data more

propitious for further processing, should be referred too.

The feature extraction yields a statistical representation of the data. Its goal consists

in the characterization of the data by several measures (features) that ideally should be

invariant to the input transformations resultant of the dynamic data capture conditions. It

is usual to identify irrelevant input transformations, such as translation, scale or rotation

changes, projective distortions or deformations in portions of the data. This stage usually

demands valuable advices from human experts in the specific knowledge domain and it

strongly determines the accuracy of the system itself.

Finally, classification takes the features generated in the prior stage and makes use of

their information to output a decision, or class. Roughly, it can be made following three

distinct approaches: the first is the simplest and is based in the intuitive concept of similarity.

Template matching is an example. The second is the statistical and assumes that the data

and its patterns were generated by a probabilistic system. This approach includes methods
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based in the Bayes decision rule, K-nearest neighbors and Parzen windows. Finally, the

third approach constructs the decision boundaries through the optimization of some error

criterium. Examples are the Fisher linear discriminant, multi-layer perceptrons, decision

trees and support vector machines.

Sometimes, the classification stage is followed by a post-processing module, which

makes use of the classification output to decide the final action of the system. The concepts

of risk and of cost measurement associated with the wrong classification are evolved in this

stage.

As knowledge domain, pattern recognition has made considerable achievements in the

biometrics field and the results must be considered satisfactory. Under constrained data

capturing conditions, systems based in several biometric traits (e.g., fingerprint, iris, retina)

achieve minimal error rates.

Within this context, iris is commonly accepted as one of the most accurate biometric

traits and has been successfully applied in such distinct domains as airport check-in [107]

or refugee control [13]. However, for the sake of accuracy, present iris recognition systems

require that subjects stand close (less than two meters) to the imaging camera and look for

a period of about three seconds until the data is captured [45]. This cooperative behavior is

required in order to capture images with enough quality for the recognition task. However,

it strongly restricts the range of domains where iris recognition can be applied, specially

those where the subjects’ cooperation is not expectable (e.g., criminal/terrorist seek, missing

children).

The overcome of this requirement - users’ cooperation - is the main focus of this thesis,

i.e., the analysis and proposal of methods for the automatic recognition of individuals, using

images of their iris and without requiring them any active participation, in order to achieve

accurate covert human recognition.

1.1 Motivation and Objectives

As illustrated by figure 1.2, the complexity of designing a biometric system can be seen

as a function of three variables. Many application domains require that the biometric

system operates on the extreme of one of the three axes and such systems have already

been deployed with satisfactory results. Considering that the main premise of the ideal

biometric system is to maximize the probability of outputting a correct decision, the grand
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Figure 1.2: Biometric systems characterization [52].

challenge1 consists in the planning and implementation of a system that could operate on the

extremes of all the three axes simultaneously, which contribute for the widespread adoption

of biometrics. The fundamental obstacles that must be overcome were the main motivation

of our research work and of this thesis.

As stated before, iris recognition is presently used for several purposes with very satis-

factory results. Under rigid image capture conditions it is possible to obtain good quality

images and achieve impressing accuracy, with very low error rates. However, these error

rates substantially increase, specially the false rejections, when the images do not have

enough quality and the captured irises contain several other types of information. This is

a problem commonly identified by several authors (e.g., [120], [67] and [116]). Therefore,

for the sake of accuracy, present iris recognition systems require the subjects’ cooperation,

which can be regarded as a weak point concerning users comfort and the range of domains

where iris recognition could be applied.

Our main objective is to overcome the users’ cooperation constraints in the biometric iris

recognition. Profiting from the extremely low probability of false matches observed in the

current iris-based biometric proposals, the external iris visibility and the fact that its capture

is minimally intrusive, our aim consists in taking a step ahead in the development of a

biometric system that operates simultaneously in the extremes of the three axes represented

in figure 1.2 .

1A fundamental problem in science and engineering with broad economic and scientific impact [52].
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This type of system will significantly broaden the range of domains where biometrics

can be applied, specially to those where the subjects cooperation is not expectable or those

where the probability of counterfeit measures by malicious users demands strong attention.

It is highly probable that images captured at-a-distance, without users cooperation and

within highly dynamic capturing environments lead to the appearance of extremely het-

erogenous images, with several other types of information in the captured irises regions

(e.g., iris obstructions by eyelids or eyelashes and reflections). For the terms of our work

and of this thesis, all these factors are considered as noise.

After analyzing the actual iris recognition methods and finding that they have small

robustness to noise factors, our work was oriented to the proposal of more robust iris

recognition methods, that must be able to deal with noise and achieve accurate recognition,

based in images captured within non-cooperative environments. Essentially, this thesis

is related with the purpose of robust noise detection and handling in the iris biometrics,

maintaining minimal recognition error rates.

1.2 Contributions

Figure 1.3 gives a block diagram that overviews the main contributions of our research work

and of this thesis. Our proposals are represented and the publications that resulted from each

stage of our work identified. They include:

- the discussion and comparison between the most common biometric traits, as well the

revision of the state-of the art of iris recognition, contained in chapter 2.

- the construction of a new iris image database [89], freely available through the web

for research purposes. As described in chapter 3, this database has characteristics that

clearly distinguish it from the remaining public and free ones and was remarkably

well accepted within the academic and research environments.

- the proposal of a more robust iris segmentation method [93], able to deal with highly

heterogeneous and noisy iris images. This method is suitable for its application in the

non-cooperative image capturing setting.

- the study of the influence that small iris segmentation errors have in the final recogni-

tion accuracy and the proposal of a method able to identify these inaccuracies [94].
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Figure 1.3: Overview of the main contributions of our research work.

- the analysis of the probability of aliasing in the iris normalization stage and the

identification of the maximum and minimum sampling rates that must be used in

the process to avoid this problem [91].

- the proposal of a method for the identification of noise regions in normalized iris

images [95]. This method produces a binary map that can be used in further stages,

namely in the feature extraction, comparison and selection.

- the proposal of an iris classification method [96] based on the iris partition, in the

independent feature extraction on each partition and in the further iris classification

through a fusion rule. This strategy avoids that localized noise regions in the iris

images corrupt the whole biometric signature and degrade the recognition accuracy.

- the proposal of a feature quality measure, used in the feature comparison [92] stage,
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which avoids that features extracted from predominantly noisy iris regions can be

taken into account in the feature comparison.

- the proposal of a supervised feature selection method [90] that operates after the

physical installation of the image capturing framework and contributes for the adapt-

ability of the recognition system to the specific characteristics of the image capturing

environment where it will operate in.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: chapter 2 introduces the main con-

cepts associated with biometrics, the most common biometric traits, their classification

and measures of effectiveness. Further, a review of the iris recognition state-of-the-art is

given and some discussion about the non-cooperative biometric recognition is presented. A

detailed description of the existent public and freely available iris image databases is given

in chapter 3, with particular emphasis on the UBIRIS database. Chapter 4 summarizes the

most common iris segmentation methods and reports their small robustness when dealing

with noisy images. Based on this, an iris segmentation method for non-cooperative image

capturing environments is proposed.

An overview of the most common strategies for noise detection is given in chapter 5, and

a detailed description of our proposal is further presented. Chapter 6 describes the problems

associated with feature extraction, comparison and selection in the classification of noisy iris

images. In order to overcome these problems, three methods that contribute for the recog-

nition robustness and accuracy within noisy environments are presented. Finally, chapter 7

presents the conclusions, summarizes our achievements and points possible directions for

further work.

In the appendixes we describe the implemented framework used in the experiments

(appendix A) and overview the main characteristics of each data set used in the experiments

(appendix B).
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Chapter 2

State-Of-The-Art

In this chapter we introduce the basic concepts related with biometrics, namely its main

modes of functioning and a possible classification. We compare the most common biometric

traits and some measures of the biometrics effectiveness are given.

Regarding iris recognition, we overview the anatomy of the human eye and review the

biometric iris recognition state-of-the-art, with particular emphasis to three iris recognition

methods, considered relevant and representative of the majority of the proposals. Further,

we discuss the non-cooperative iris recognition and describe some of the tasks required to

its achievement. Finally, we identify the most common types of noise contained in the

iris images captured in non-cooperative imaging setting, that constitute the main obstacle

towards the non-cooperative iris recognition.

2.1 Biometrics

This section provides an introduction to biometrics and its history, emphasizing the charac-

teristics that motivated its growing relevance.

Searching for a definition of biometrics in both specialized and general information

sources, leads to several variants, among which are:

- The study of automated methods for uniquely recognizing humans based upon one or

more intrinsic physical or behavioral traits [119].

- A method of verifying an individual’s identity based on measurements of the individ-

ual’s physical features or repeatable actions where those features and/or actions are

9
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both unique to that individual and measurable [111].

- Biometrics is the science and technology of measuring and analyzing biological data.

In information technology, biometrics refers to technologies that measure and analyze

human body characteristics, such as fingerprints, eye retinas and irises, voice patterns,

facial patterns and hand measurements, for authentication purposes [24].

- Biometrics is the science of measuring physical properties of living beings using

suitable body characteristics [10].

- Any automatically measurable, robust and distinctive physical characteristic or per-

sonal trait that can be used to identify an individual or verify the claimed identity of

an individual [121]

As can be seen, notions of biological, measuring and recognition are common to

any definition, and point to the most relevant characteristics behind the term. From our

viewpoint, biometrics can be regarded as the automated measurement and enumeration of

biological characteristics, in order to obtain a plausible quantitative value that, with high

confidence, can distinguish between individuals.

Although less automatized, biometrics has been used - at least - for centuries. In the

14th century, the Portuguese writer João de Barros reported its first known application. He

wrote that Chinese merchants stamped children’s palm print and footprints on paper with

identification purposes [119]. Also, it is believed that the ancient civilizations of Egypt and

China performed some type of biometric recognition.

In the western world, until the late 1800s the automatic recognition of individuals was

largely done using ”photographic memory”. In 1883, the French police and anthropologist

Alphonse Bertillon developed an anthropometric system, known as Bertillonage [25], to fix

the problem of identification of convicted criminals. As illustrated by figure 2.1, this was

a quite complex procedure that could take up to twenty minutes and is considered the first

scientific system widely used to identify criminals [119]. Its basis was the measurement of

certain lengths and widths of the head and body and the recording of individual markings,

such as tattoos and scars. However this system’s faded when it was discovered that some

people share the same measures and several people could be treated as one.

The failure of Bertillonage motivated the use of fingerprinting, which is presently almost

standardized worldwide. In 1880, the British scientific journal Nature published an article
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Figure 2.1: Anthropometric system by Alphonse Bertillon [25].

by Henry Faulds and William James describing the uniqueness and permanence of finger-

prints. This motivated the design of the first elementary fingerprint recognition system by

Sir Francis Galton and improved by Sir Edward R. Henry. Having quickly disseminated, the

first fingerprint system in the United States was inaugurated by the New York State Prison

Department in 1903 and the first known convicted due to fingerprint evidences was reported

in 1911 [3].

Presently, due to increasing concerns associated with security and the war on terrorism,

biometrics has considerably increased its relevance. It has moved from a single and almost

standardized trait (fingerprint) to the use of more than ten distinct traits. An increasing

number of companies, either private or governmental, either with military or civil purposes,

invest an enormous amount of human and financial resources into the development of bio-

metric systems. New methods are constantly being proposed and the prices for the hardware

and the software technology are continuously falling, making the application of biometrics

systems more feasible to low and mid-level budgets. Furthermore, biometrics technology

can be seen as a return to the ways of nature, since from centuries humans perform its

distinction based in physical and physiological features, such as the facial structure or voice.
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2.1.1 Modes of Functioning

Independently of the used trait, the biometric applications follow the procedure illustrated

in figure 2.2. The process begins by the data capturing, where the biometric sample is

acquired. Next, through the feature extraction a biometric signature is created, that is further

compared with a specific or several biometric signatures registered in the database. These

are commonly designated as biometric templates and were collected during the enrollment

process and correspond to a verified subject identity. If the comparison between biometric

signatures has enough similarity, it is assumed that both of these were extracted from the

same person, otherwise, they must have been extracted from different persons.

Data capturing

Signature

extraction
Biometric sample

Biometric

templates

Signatures

comparison
Database Subject Identity

Figure 2.2: Typical stages of a biometric recognition process (adapted from [118]).

The number of comparisons between the biometric sample and templates determines a

basic distinctions among the two modes of performing biometric recognition: verification

and identification.

In the verification mode, also named as positive recognition, the system verifies the

authenticity of a claimed enrolled identity, trying to answer the question: is this person who

he/she claims to be? This requires that, together with the biometric sample, the subject’s id

must be given to the recognition algorithm. Further, the comparison between the biometric

template correspondent to that identity and the sample is performed. If the similarity is

high enough, the claimed identity is accepted, meaning that both biometric signatures were

extracted from the same person. Otherwise, the identity is denied, meaning that the enrolled

and the sample signatures were extracted from different subjects.

The identification mode, often named as negative recognition, tries to answer the ques-

tion: who is this person?, or sometimes: is this person in the database? After acquiring

the required data and extracting the biometric sample, a comparison is made with the N
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enrolled identities, in order to find the identity from which the sample was collected. In this

mode, it is usual to output a list of the k most probable identities of a biometric sample.

2.1.2 A Classification of Biometric Systems

Biometric systems can be classified according to six perspectives [23], as a function of the

characteristics of the recognition procedure itself:

Overt / covert If the user is aware about the acquisition of his biometric data, the applica-

tion is defined as overt; otherwise, is defined as covert. This is clearly one of the most

concerning characteristics of a biometric system, regarding the privacy issue.

Habituated / non-habituated When the majority of the people that interacts with the bio-

metric system are every-day users, the recognition is performed in the habituated

mode. If the average frequency of use from each user is low, the recognition is

performed in the non-habituated mode. This is relevant to the degree of cooperation

and training demanded from the users.

Attended / non-attended If the user is observed and guided by supervisors during the

process, the biometric recognition is performed attended; if not, the use is considered

non-attended. Obviously, the easy-of-use of the recognition system is much more

relevant in the non-attended mode.

Standard / non-standard environment When all the conditions can be controlled and the

recognition takes place indoors within constrained conditions, it is considered that the

recognition is performed within a standard environment; if not, the use is called in

non-standard environment.

Public / private If the users are not employees of the organization that owns the recognition

system, the application is public; if the users are employees, the application is called

private.

Open / closed If the system uses completely proprietary formats, the application is consid-

ered closed. Otherwise, when the system is able to exchange data with others, it is

called open and, once again, privacy and legal issues should be addressed.

Based on the above description and on the purposes mentioned in the introductory chap-

ter, this thesis is about the covert, non-habituated, non-attended, non-standard, public and
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open iris biometric recognition, which is highly dynamic and propitiates the highest levels

of heterogeneity of the data that the system will have to deal with. Obviously, some of these

characteristics condition others. For instance, if the recognition is performed covertly, the

characteristic habituated/non-habituated is meaningless.

2.1.3 Biometric Traits

This section is devoted to the description of the most common traits that are presently

used for biometric purposes. Although there is some discussion about the potential use

of other traits as biometric basis, the presented traits are those with higher acceptability by

the research community and have commercial applications based in it, which increases its

credibility in the biometric compass.

DNA

The deoxyribonucleic acid (DNA) is represented through a one-dimensional code, unique

for each person. The only exception are identical twins, which can represent a serious

problem, regarding security and forensic applications [21].

DNA identification is based on techniques that use the non-coding tandemly repetitive

DNA regions. Humans have 23 pairs of chromosomes containing their DNA blueprint. One

member of each chromosomal pair comes from the mother, the other comes from the father.

Every cell in a human body contains a copy of this DNA. The large majority of DNA does

not differ from person to person, but 0.10 percent of a person’s entire genome would be

unique to each individual, which represents 3 million base pairs of DNA.

This method is considered to have some drawbacks, as the easy contamination and

sensitivity, the impossibility to perform real-time recognition and severe privacy issues, due

to the fact of the DNA can reveal susceptibility to some diseases.

Due to many distinguishable characteristics between the DNA and the remaining bio-

metric traits, the discussion about its inclusion as a biometric trait subsists.

Ear

Using ears for the recognition of individuals has been interesting for the research commu-

nity for, at least, 100 years [58]. During crime scene investigation, ear marks are often used

for identification in the absence of valid fingerprints [97]. Although in 1989 Iannarelli [41]

analyzed over 10000 ears and concluded about the existence of enough dissimilarities to be

used for biometric purposes, the ear uniqueness is questioned.
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Commonly, there are at least three methods for ear recognition: taking a photo of an ear,

taking earmarks by pushing ear against a flat surface and taking thermogram pictures of the

ear.

However, just as a face maybe covered with a scarf, the ears maybe partially or com-

pletely covered by hair or ear muffles. This implies the requirement of users cooperation,

in order to acquire acceptable ear images. Apart from this, rotation, even small, is another

common problem.

Despite these problems, there are some advantages that propitiate its use: the requirement

of images with smaller dimensions and resolution, its uniform color distribution and less

variability with expressions.

Face

The importance of facial features for human recognition cannot be overstated. Facial

images are the most common biometric characteristic used by humans to perform personal

recognition.

This is a non intrusive and suitable trait to perform covert recognition. Three types of

feature extraction methods can be distinguished: generic methods based on edges, lines, and

curves; feature-template-based methods that are used to detect facial features such as eyes

and structural matching methods that take into consideration geometrical constraints on the

features [126].

Although performance of commercially available systems is reasonable, there is still

significant room for improvement, since false rejection rate is about 10% and the false

accept rate is about 1% [86]. These systems face strong difficulties when the faces are

captured under different angles and uncontrolled ambient illumination. Moreover, it is still

questioned if a face itself is sufficient basis for reliably recognition of a subject, as, for

instance, twins have very similar faces. Another problem could be with counterfeit, as users

can dramatically change the appearance of their face, through decorative objects or even

through plastic surgeries.

As main advantages, it must be enhanced the high acceptability and universality of

face recognition. Users perceive the recognition system as an automated mechanism that

exclusively performs a trivial task. Another strong point is the existence of widely used

databases, as, for instance, FERET [87], that are used for algorithm benchmarking and

facilitate the research and development of new proposals.
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Facial Thermogram

It is possible to capture the pattern of heat radiated by the human body with an infrared

camera. That pattern is considered to be unique for each person, enabling its potential use

for biometric purposes.

It was observed that the capturing of face images through an infra-red camera produces

a unique facial signature when heat passes through the facial tissue and is emitted from

the skin. These facial signatures are often called facial thermograms. It is claimed that

a face thermogram is unique to each individual and is less vulnerable to disguises. Face

thermograms may depend heavily on a number of factors such as the emotional state of the

subjects, or body temperature, and like face recognition, face thermogram recognition is

view-dependent [51].

It is a noninvasive method, although image acquisition is rather difficult when other heat

emanating surfaces are near the body.

Another advantage could be the potential use to perform covert recognition, as well its

difficult counterfeit. Even plastic surgery, which does not reroute the flow of blood through

the veins, is believed to have no effect on the formation of the face thermogram. Face

thermogram is a non intrusive biometric technique. Comparing to the visual face recognition

several advantages must be enhanced: it can perform the image capturing within very low

ambient light, the vascular structure may have more distinguishable information between

subjects and less temporal variability within per subject.

In short, this relatively recent technology has an enormous potential for recognition with

high security constraints. Although discussion subsists about the uniqueness of a face

thermogram, it is believed that this technology will have high impact in the near future,

essentially in the covert recognition compass.

Finger Geometry

Although people’s hands and fingers are unique, they are not as easily distinguished as

other traits, like fingerprints or irises.

Systems that measure hand and finger geometry use a digital camera and light. The

aligning of the fingers against several pegs is required to ensure an accurate reading. Then,

a camera takes one or more pictures and uses this information to typically determine the

length, width, thickness and curvature of the fingers.

As it is considered a simple technique with high user acceptability and minimal intru-

sion degree, commercial hand geometry-based verification systems have been installed in
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hundreds of locations around the world.

Its relatively low level of uniqueness leads that businesses and schools, rather than high-

security facilities, typically use hand and finger geometry readers to authenticate users, not

to identify them. Disney theme parks, for example, use finger geometry readers to grant

ticket holders admittance to different parts of the park.

Finger-based biometric systems have a few strengths and weaknesses. Since fingers are

less distinctive than fingerprints or irises, some people are less likely to feel that the system

invades their privacy. However, the geometry of many fingers changes over time due to

injury, changes in weight or arthritis and can be affected by several other factors (e.g.,

jewelry).

Fingerprint

A fingerprint is a pattern of ridges and furrows located on the tip of each finger. Finger-

prints were used for personal identification for many centuries and the matching accuracy

is acceptable. In the past, patterns were extracted by creating an inked impression of the

fingertip on paper. Today, compact sensors provide digital images of these patterns.

The recognition process starts by capturing the finger image by direct contact with a

reader device, that can also perform some validation procedures to avoid counterfeit mea-

sures (check of temperature and pulse). The uniqueness of a fingerprint can be determined

by the pattern of ridges and furrows as well as by the minutiae points. These are local

ridge characteristics that occur at either a ridge bifurcation or a ridge ending. The feature

values typically correspond to the position and orientation of certain critical points, known

as minutiae points. The matching process involves comparing the two-dimensional minutiae

sample and template patterns.

Among the main advantages for the use of fingerprints are the higher levels of accept-

ability and their easy of use, as well the fact that it is a matured technology with several

years of proven effectiveness. Also, the fact that its technology is legally accepted and that

millions of enrolled fingerprints exist, are important.

As disadvantages, it is considered vulnerable to noise and distortion brought on by

dirt and twists. Also, since physical contact between the finger and the scanning device

is required, the surface can become oily and cloudy after repeated use and reduce the

sensitivity. Hygienic considerations must be considered too.

Gait

Although it was originally performed through the use of physical devices attached to the
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subjects’ legs, the vision-based gait biometrics has recently received a lot of attention, and

the first known effort towards recognition was made by Niyogi and Adelson in the early

1990s [84].

The human gait is a periodic activity with each gait cycle covering two strides: the left

foot forward and right foot forward strides. Each stride spans the double-support stance to

the legs-together stance as the legs swing past each other and back to the double-support

stance. Potential information in the basis of gait biometrics can derive from two aspects:

shape and dynamics. Based on these two types of information, gait recognition is commonly

performed through three distinct approaches: temporal-aligned based (analysis of the time-

series features as, for instance, of the whole subject silhouette), static-parameter based

(analysis of parameters that characterize gait dynamics, such as stride length, cadence and

speed) and silhouette shape-based (emphasizes the silhouette shape similarity and disregards

any temporal information) [62].

However, gait vulnerability to changes in the walking surface, walking speed or in the

carrying conditions were reported. Due to these, gait-based biometric systems tend to

present high false rejection rates. Also, since video-sequence is used to capture the required

data, it is considered as one of the most computationally expensive methods [21]. The

fact that it can be easily and conscientiously modified by the users, contributes to a higher

probability of circumvention.

Hand Geometry

Hand geometry for biometric purposes is used since the early 1980s. Since hand geom-

etry is not thought to be as unique as other biometric traits, its use is often related with low

security applications and, sometimes, associated with other security procedures.

A variety of measurements of the human hand, including its shape and lengths and widths

of the fingers, can be used as biometric characteristics. Feature extraction computes the

widths and lengths of the fingers at various locations of the captured image. These metrics

define the feature vector of the user’s hand. Current research work seeks for new features

that could increment the discriminant capacity between different hands, as well the design

of a deformable model for the hand, in order to increase robustness.

As main advantages, it can be referred that the hand geometry-based biometric systems

are easy to use and inexpensive. Additionally, operational environmental factors such as

dry weather, or individual anomalies such as dry skin, generally have no negative effects on

identification accuracy.
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However, it should be stressed that its main disadvantage is its relative low discriminating

capacity. Also, the hand geometry may not be invariant over the lifespan of an individual,

especially during childhood. In addition, an individual’s jewelry or limitations in dexterity

(e.g., arthritis), may pose further challenges in extracting the correct hand geometry infor-

mation. Finally, the relative large dimensions of the subjects hands and the requirement of

contact to perform recognition makes it unappropriate for certain applications (e.g., laptop

computers access) [51].

Hand Vein

It is believed that the pattern of blood veins is unique to every individual, even among

identical twins. Moreover, palms have a broad and complicated vascular pattern that has

minor variations over lifetime and is not considered intrusive.

An individual’s vein pattern image is captured by radiating his/her hand with near-

infrared light. The reflection method illuminates the palm and captures the light given off

by the region after diffusion through the palm. The deoxidized hemoglobin in the vein

vessels absorbs the infrared ray, thereby reducing the reflection rate and causing the veins

to appear as a black pattern. This vein pattern is then verified against a preregistered pattern

to authenticate the individual.

As veins are internal and have a wealth of differentiating features, attempts to forge an

identity are extremely difficult, thereby enabling a high level of security. In addition, the

sensor of the palm vein device can only recognize the pattern if the deoxidized hemoglobin

is actively flowing within the individual’s veins, which increases the counterfeit difficulty [7].

Among the disadvantages, we found the high level of cooperation required and the fact

that it demands physical contact between the subject and some part of the system. Apart

from the deterioration in the accuracy, this fact is considered an hygienic concern.

Iris

The iris begins to form in the third month of gestation and the structures creating its

pattern are largely complete by the eighth month. It is the annular region of the eye bounded

by the pupil and the sclera (white part of the eye) on either side. Its complex pattern can

contain many distinctive features such as arching ligaments, furrows, ridges, crypts, rings,

corona, freckles and a zigzag collarette [21].

Each iris is unique and even irises of identical twins are different. Furthermore, the

iris is more easily imaged than retina; it is extremely difficult to surgically tamper iris

texture information and it is possible to detect artificial irises. Although the early iris-
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based identification systems required considerable user participation and were expensive,

efforts are underway to build more user-friendly and cost-effective versions. To obtain a

good image of the iris, identification systems typically illuminate the iris with near-infrared

light, which can be observed by most cameras yet is not detectable by humans.

Among potential disadvantages for its use remains the weak public acceptance of the iris

imaging for biometric purposes, due to old-fashioned thoughts about iridology [51].

The available results of both accuracy and speed of iris-based identification are highly

encouraging and point to the feasibility of large-scale recognition using iris information.

Due to this and to the above described characteristics, it is common to consider iris as one

of the best biometric traits, although this evaluation is dependent of the specific purpose.

Keystroke

It is believed that each person types on a keyboard in a distinguishable way, such that

the analysis of the different rhythms that a subject types in the keyboard can be used for its

recognition.

This technology examines either dynamics as speed and pressure, the length of time each

key is held down, the time elapsed between hitting certain keys and the tendencies to switch

between a numeric keypad and keyboard numbers. The extracted features are statistical in

nature and specifically designed to characterize the keystroke dynamics over writing sam-

ples of 200 or more characters. Most of these are averages and standard deviations of key

press duration times and of transition times between keystroke pairs, such as digraphs [117].

The main advantage of the use of keystroke-based biometrics is its potential for contin-

uous monitoring [121]. Oppositely to other traits, the keystroke information can be contin-

uously analyzed by the recognition system, decreasing the probability of active counterfeit

measures. Moreover, since users are accustomed to authenticating themselves through

usernames and password, most keystroke biometric methods are completely transparent and

are well accepted by users.

Among potential disadvantages, privacy concerns must be considered, as the way a

subject strokes can be used to infer information about its potential rentability and work

effectiveness, for instance [21].

Odor

Olfaction has an extremely high importance in the human being. Since it is one of the

five main senses, many philosophers and scientists have tried to comprehend the sense of

smell. It is a difficult task, because people often have problems with finding words even to
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describe their smell sensations. The main problem, associated with odor perception is that

there is no physical continuum as sound frequency in hearing or Newton’s circle in color

vision [57].

The odor biometrics is based on the fact that, virtually, each human smell is unique.

Common sensorial systems are composed by three main stages: calibration, recording and

restoration. The first is continuously performed in order to establish a baseline response,

denoted as ”response to fresh air”. Later, when the signal suffers significant changes, the

recording of the subject’s data is performed and the final stage corresponds to the time

required to restore the sensor to the initial stage [2].

Apart from being potentially affected by deodorants or perfumes, it is claimed that

the human odor is strongly affected by seasonal habits, diets or medication treatments.

Moreover, the use of body odor sensors brings up the privacy issue as the body odor carries

a signifiable amount of sensitive personal information and it is possible to diagnose diseases

or activities of the last hours [99].

Palmprint

Similarly to the widely used fingerprints, the palms of the human hands contain unique

patterns of ridges and valleys. Since a palm is larger then a finger, a palmprint is expected

to be even more distinguishable than a fingerprint.

Palmprint scanners need to capture a larger area with similar quality as fingerprint scan-

ners, which makes them more expensive. Typically, the analysis of the palm’s principal

lines, wrinkles, and textures is performed. These line structures are stable over the human

lifetime and normally people do not feel uneasy to have their palmprint images captured.

Therefore, palmprint recognition offers promising future for medium-security access

control system. Although this is not as stabilized and matured as the fingerprint technology,

several research studies have been made with the purpose of extracting higher discriminating

features from the palmprint information. Presently, there are two popular approaches to

palmprint recognition. One transforms palmprint images into specific transformation do-

mains and apply texture-based analysis methods (Gabor filters, wavelets decompositions).

The other approach applies a technology close to the one used for fingerprint: extract the

main lines and creases from the palm and further perform the comparison between the

minutia information (e.g., through graph matching).

Compared to other biometric traits, the facts that a higher level of cooperation is de-

manded to users and the required physical contact between the users and the capturing
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device, should be regarded as disadvantages. Also, the fact that the human hand is a funda-

mental tool for the majority of the people increases the probability of physical damages or

diseases.

Retina

Retinal scan measures the blood vessel patterns in the back of the eye. The pattern

formed by veins beneath the retinal surface in an eye is stable and unique and is, therefore,

feasible for recognition. Digital images of retinal patterns can be acquired by projecting

a low intensity beam of visual or infrared light into the eye and capturing an image of

the retina using optics similar to a retinoscope. The fact that the retina is small, internal,

and difficult to measure makes the capturing of its image more difficult and with higher

demanded efforts to users than most of the other traits

Retina matching is accomplished either through 2D or 3D image processing techniques.

Retina information procedures usually apply edge enhancing techniques and vessel cross-

ings localization. Other techniques rely on the identification of vessels using adaptive

thresholding techniques, followed by graph-matching techniques that find the best match

between the vessels localization [71] [39].

Since it is protected in the eye itself, and is not easy to change or replicate the retinal

vasculature, this is considered as one of the most secure biometric traits. Retina based

systems are used for high security applications, as the access to prisons [51].

Oppositely, because users perceive the technology as intrusive, unfriendly and with high

cooperative demands, this type of biometric trait has not gained high popularity. [121]. Also,

it is accepted that retinal vasculature can reveal some medical conditions (e.g., hypertension

or diabetes), which is another factor deterring the public acceptance of retinal scan-based

biometrics. The high cost should be referred too.

Signature

Signature can be regarded as unique and results from both behavioral and hand geometry

variations associated to each subject. The way a person signs his or her name is known to

be characteristic of that individual since centuries, although the analysis of the signature

dynamics is recent.

There are two major strategies to perform signature recognition: image-based and dy-

namics analysis. The first approach is the most classical and is based on the visual appear-

ance of the signature. The latter analyzes both speed, direction and pressure of writing,

stroke order and its major weak point results of the specific hardware dependence [121].
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There are, at least, three advantages over other biometric techniques: it is a socially

accepted identification method already in use in bank and credit card transactions, most of

the new generation of portable computers and personal digital assistants use handwriting

as main input channel and, oppositely to finger, iris or retina patterns, a signature may be

changed by the user, similarly to a password [76].

However, the use of signature-based biometrics has several weaknesses. Individuals with

muscular illnesses and people who sometimes sign with only their initials might result in

high false rejection rates. Often, signatures dramatically change over a period of time and

are influenced by physical and emotional conditions of the subjects. Additionally, since

many users are unaccustomed to signing on a tablet, some subjects’ signatures may differ

from their signatures on ink and paper, increasing the potential for false rejection [76].

Voice

Oppositely to the majority of the biometric traits, that are image-based, voice possesses

the singularity of dealing with acoustic information. The most relevant features of a sub-

ject’s vocal pattern are determined by physical characteristics as the vocal tracts, mouth,

nasal cavities and lips shape. These are low varying features over adult lifetime, although

the individual behavior and social environments can highly influence the subject’s voice.

As described by Delak and Grgic [21], feature extraction techniques typically measure

formants or sound characteristics unique to each person’s vocal tract and the pattern match-

ing algorithms are similar to those used in the face recognition.

Speech-based authentication is currently restricted to low-security applications because

of the high variability in an individual’s voice and poor accuracy performance of typical

speech-based authentication systems [51].

As advantages, the fact that most existing voice-based systems are designed for use with

standard telephone networks, makes it possible to support a broad range of deployments

for voice based biometric applications [68]. This turned the technology as the focus of

considerable efforts by the telecommunication industry and by the United States government

intelligence community, which continues to work on improving its reliability [121].

2.1.3.1 Factors that Influence the Biometric Traits

According to Matyas Jr. and Riha [53], every biometric system depends on the features,

whether genotypic or phenotypic it is based on. Similarly to Daugman [19], authors divide

the biometric traits into two types. Genotypic refers to the traits that are defined by the
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genetic makeup of the individual and do not change over time. Phenotypic refers to the

actual expression of a feature, through the interaction of genotype, its development and

surrounding environment.

According to these, all biometric traits can be placed somewhere along the continuous

line with genotypic and phenotypic endpoints, with some traits placed firmly at either

extreme (e.g., signature dynamics at the phenotypic extreme) and others somewhere in the

middle (e.g., face). The origin of the biometric traits is relevant due to its influence on

the systems’ error rates. For instance, the dynamics of the phenotypic features over time

strongly increases the false rejection rates, while the fact that identical twins share their

genetic code sets limits upon the false acceptances.

Fried [33] and A. Bromba [10] classified the origin of the biometric traits into three

different types: genotypic are traits that are defined by the genetic individual constitution,

randotypic are those formed early in the development of the embryo, and claimed that the

shape of these are distributed randomly through the entire population. Usually the latter

are considered the most valuable features for biometric purposes due to the necessity of

absolute uniqueness feature sets per subject. Finally, behavioral traits are those aspects that

a subject develops through training or repeated learning.

The analysis of these variants enabled us to establish a parallelism between the pheno-

typic and randotypic-behavioral trait types. The latter can be seen as two sub classes of

the former and specify the type of interaction between subject and environment. If it was

formed with subject conscientiousness, it is behavioral, otherwise is randotypic.

Further, we analyzed the classification of the above described proposals and established

our own classification for the origin of the biometric traits, following the schema proposed

by Fried and Bomba. The first column of table 2.1 identifies the biometric trait and the

others contain the influence of the respective type on the trait. Values are percentile and

”100%” and ”0%” denote, respectively, maximum and minimum influence, according to

the above described information sources.

2.1.3.2 Comparison Between the Most Common Biometrics Traits

Following the proposal of Jain et al. [50], biometric systems can be evaluated regarding

seven parameters: uniqueness, universality, permanence, collectability, performance, ac-

ceptability and circumvention.
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Trait Genotypic Randotypic Behavioral

DNA
48% 48% 4%

Ear
40% 40% 20%

Face
40% 40% 20%

Facial Thermogram
20% 50% 30%

Finger Geometry
25% 62.5% 12.5%

Fingerprint
25% 62.5% 12.5%

Gait
30% 10% 60%

Hand Geometry
25% 62.5% 12.5%

Hand Vein
45% 45% 10%

Iris
1% 98% 1%

Keystroke
1% 1% 98%

Odor
37.5% 25% 37.5%

Palmprint
25% 62.5% 12.5%

Retina
1% 98% 1%

Signature
1% 1% 98%

Voice
42% 29% 29%

Table 2.1: Factors of influence of the biometric traits.

The uniqueness, often designated as accuracy, distinctiveness or singleness, is probably

the most relevant characteristic of a biometric trait. It measures the degree of dissimilarity

of the trait between individuals and its capacity of being separable. This feature strongly

determines the probability of false acceptances by the system. Universality measures the

scope of the trait, the number of people where it occurs. Obviously, the optimal biometric

trait should occur in as many people as possible. Permanence is the quality of being

immutable over time, measuring the probability of the biometric trait suffering significant

changes over lifetime. This parameter has strong impact in the false rejection rates of the

system. Collectability or measurability, is the characteristic that expresses the technical

and humane easiness in the capture of the relevant trait information. This value plays a

role in the users’ comfort, which can easily dictate between the biometric system adoption

or rejection. The performance as to do with the time required to perform the biometric
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recognition, once the data is captured. It is relevant in order to distinguish between the

computational requirements of the recognition process. Acceptability or intrusiveness, is

a measure related with socio-cultural users’ concerns, as well as with privacy concerns

associated with the data capturing. Finally, the circumvention measures how easy it is to

counterfeit the system, which has high relevance in the security compass.
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DNA
87% 95% 94% 19% 19% 15% 55%

Ear
46% 58% 85% 50% 53% 100% 50%

Face
44% 92% 50% 84% 25% 99% 37%

Facial Thermogram
95% 100% 25% 100% 69% 85% 100%

Finger Geometry
23% 58% 70% 75% 47% 70% 50%

Fingerprint
78% 47% 91% 62% 98% 49% 71%

Gait
25% 50% 25% 100% 21% 100% 50%

Hand Geometry
54% 57% 54% 78% 50% 67% 59%

Hand Vein
57% 52% 53% 52% 50% 56% 97%

Iris
96% 93% 97% 62% 98% 50% 95%

Keystroke
17% 23% 28% 56% 25% 67% 50%

Odor
70% 89% 85% 25% 21% 50% 37%

Palmprint
96% 50% 100% 50% 97% 50% 50%

Retina
94% 86% 66% 29% 98% 23% 100%

Signature
35% 39% 34% 83% 23% 97% 33%

Voice
39% 49% 31% 59% 23% 99% 33%

Table 2.2: Comparison between the most common biometric traits (adapted and averaged

from [49], [125], [61], [10], [80], [42], [40], [46], [122] and [110]).

Table 2.2 contains a comparison between the most common biometric traits. The classifi-
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cation of each item is denoted in percentage and ”100%” and ”0%” correspond respectively

to the best and worst values in any of the items. Each value was obtained through averaging

and weighting of the classifications proposed in [49], [125], [61], [10], [80], [42], [40], [46],

[122] and [110]. Obviously, the attributed weight to each of the classifications is subjective.

We considered the authors reputation, the type of publication and the justifications presented

for each classification. Nevertheless, the analysis of this table enables an overall perspective

about the main strong and weak points of each trait. Although this discussion depends of

the analyzed sources of classification, there are observations that can be taken with minimal

subjectivity. First, the division between soft and hard biometrics, based in the uniqueness

of the biometric trait. Signature and voice can be classified as soft biometric traits, as

their uniqueness is strongly discussed in the research community. However, similarly to the

analysis of the gender, weight and eye color, these biometric traits are easily collected,

making them propitious for the use in systems with low security requirements or with

minimal probability of counterfeit measures. At the other extreme are those traits with

guaranteed uniqueness, as iris, retina and facial thermogram. Since these are usually more

difficult to collect, the capture of these traits has often low acceptability, due to cultural,

political or religious concerns.

For the purposes of our work, one of the most important features is the ability to perform

covert recognition, which can be performed by the ear, face, facial thermogram, gait, iris

and odor traits. Among these, iris and facial thermogram must be enhanced, as they provide

higher uniqueness and circumvention values. However, the thermal data is often considered

low permanent, with the correspondent impact in the false rejection rates.

Apart from being the biometric trait with highest average value between the seven ana-

lyzed parameters (84.42%), its simultaneous high levels for uniqueness, permanence, uni-

versality and circumvention turned the iris into the most appropriate for our work and a

natural choice towards the non-cooperative biometric iris recognition.

2.1.4 Effectiveness Measures

The objective evaluation and comparison between biometric systems can be a hard task.

Apart from being impossible to give a single value that reflects the accuracy of a recognition

system, to get comparable results it is required that the same measures of accuracy are used,

under the same data sets and following the same protocol. For different biometric traits, this

is obviously an unsurmountable task, although several measures provide information about
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the accuracy of a single biometric recognition system.

Let NRAI and NSRI be, respectively, the total and well succeeded recognition processes

performed by impostors. The proportion between these two value produces the False

Acceptance Rate (FAR), which measures the probability of confusing two identities.

Obviously this is the most important measure, regarding security.

FAR =
NSRI

NRAI
(2.1)

Simultaneously, a system may be evaluated by the probability that the identity of the valid

users is denied. Let NRRV and NRAV be, respectively, the total and failed recognition

attempts performed by registered users. The proportion between these values produces the

False Rejection Rate (FRR), which has great relevance in the comfort that the biometric

system affords to its users.

FRR =
NRRV

NRAV
(2.2)

FAR and FRR are dual measures and meaningful exclusively when presented together.

Its values are determined by the level of similarity T required to accept a comparison

between biometric signatures. As this value decreases, there is respectively a direct and

inverse correspondence in the FRR and FAR. According to the requirements and priorities

of the biometric application, it is an obligation of its administrators to adjust the value of T

and, simultaneously, approximating the expectable values of the FAR and FRR.

Figure 2.3 illustrates two typical ways of measuring the accuracy of a biometric system.

Figure 2.3a denotes the values for the FAR (dashed line) and FRR (continuous line) as

function of the value of T (demanded dissimilarity to match a comparison). The point

where the two lines intersect is a very common measure of the biometric systems accuracy:

the Equal Error Rate (ERR). This value gives the average error rate when the FAR and

FRR are approximately equal and is probably the only value with individual significance.

Figure 2.3b illustrates a Receiver Operating Curve (ROC), which reflects the variability

of both the FAR and FRR according to each other. The area under the curve is also

regarded as an accuracy measure.

The described measures are the most common in the evaluation of the recognition accu-

racy and are meaningful in the verification mode. The following measure is suitable for the

identification mode and is based on the number of wrong identification attempts (NWIA)

and on the total identification attempts (NIA). The False Identification Rate (FIR) is
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(a) Typical FAR (dashed line) and FRR (continuous line) curves, as functions

of the maximum dissimilarity T to match a comparison between iris signatures.

(b) Typical ROC curve, reflecting the relation between the FAR and FRR.

Figure 2.3: Illustration of two curves that typically measure the accuracy of a biometric

system.

given by:

FIR =
NWIA

NIA
(2.3)

In a somewhat distinct perspective, the following two measures represent the probability

of the failure of the recognition process even before its start, due to inappropriate data

capturing. The Failure to Enroll (FTE) and Failure to Acquire (FTA) are respectively

the measures for probability of failure in the data capturing in the enrollment and in the

recognition stages. This distinction gains higher relevance in the non-cooperative setting,

due to the less constrained data capturing conditions. Let NEA and NFEA denote respec-

tively the total and failed enrollment attempts. The FTE is given by:

FTE =
NFEA

NEA
(2.4)

Similarly, let NCA and NFCA denote respectively the total and failed recognition

processes due to inappropriate data capturing. The FTA is given by:

FTA =
NFCA

NCA
(2.5)
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2.2 Iris Recognition

This section is totally related with the utilization of the iris for biometric purposes. We start

by an overall description of the eye’s anatomy followed by the identification of the most

important regions of the human iris. Further, we identify the most typical stages of common

iris recognition proposals and describe the most relevant approaches to each of these stages.

2.2.1 Eye and Iris Anatomy

In this sub-section we start with the description of the human eye anatomy, followed by

a highly detailed description of the iris, which is the most relevant part of the eye for the

purposes of our work.

2.2.1.1 Eye Anatomy

Figure 2.4 schematizes the most relevant parts of the human eye [108]. As with the majority

of the mammals, the eye is roughly globular in shape and hollow and can be divided

into two main segments - anterior and posterior - which are surrounded by a leathery

envelope that acts as a protection: the sclera. This is a tough and fibrous tissue consisting

of highly compacted and interweaved fibers and bands. When seen from the front, sclera is

commonly, and incorrectly, referred to as the white of the eye [9].

Regarding the anterior eye segment, it extends internally from the anterior hyaloid face

forward and is externally demarcated by the limbus. It includes the structures in front of the

vitreous humor: the cornea, iris, ciliary body and lens. The cornea acts as a window at the

front of the eye and provides about 85% of the focusing power of the eye. It is made up

of a tissue similar to that of sclera, with the relevant exception of having no blood vessels.

Just beneath the cornea is a fluid-filled space called the anterior chamber, which bathes the

whole of the anterior segment providing nourishment and removal products to the lens and

cornea. The ciliary body is the source of the above mentioned fluid and houses the muscular

fibers that enable the eye to focus. Overlying the lens, there is a structure with an opening

in the whole: the iris. It is made of an elastic tissue and its function is to control the amount

of light that enters the iris whole: the pupil. Behind the iris is the lens, which role consists

in assuring that the light rays some to a sharp focus on the retina.

The posterior eye segment comprises the back two-thirds of the eye and includes the

vitreous humor, retina, choroid and optic nerve. The first is the the clear aqueous solution



2.2. IRIS RECOGNITION 31

that fills the space between the lens and the retina, which is a thin layer of nervous tissue -

supplied with oxygen and cleaned by the choroid - that is responsible for gathering the light

and perform its conversion to the electrical signals that are sent through the optic nerve to

the brain. This process gives us the sense of light and the ability to see and interpret shapes,

colors and dimensions.

Iris

Pupil

Cornea

Lens

Conjuntiva Optic NerveBlood Vessels

Sclera
Retina

Eye Muscles

Figure 2.4: Anatomy of the human eye (adapted from [115]).

2.2.1.2 Iris Anatomy

Pupillary Zone Ciliary Zone

Collarete

Figure 2.5: Morphology of the human iris (adapted from [102] and [77], picture from [17]).
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Illustrated by figure 2.5, the iris consists of a pigmented fibrovascular tissue, known as

stroma. The stroma connects a sphincter muscle (with the purpose of contract the pupil) and

a set of dilator muscles to open it. It is divided into two major regions: the pupillary and the

ciliary zone.

The pupillary zone is the inner portion of the iris whose edges form the pupillary iris

border. The ciliary zone is the outer portion of the iris, which extends itself into the iris

origin in the ciliary body. The region that separates the pupillary and scleric portions is

designated as the collarette. This is typically the region where the sphincter and dilator

muscles overlap.

The iris begins to form during the third month of gestation and the structure is complete

by the eight month, although pigmentation continues into the first year after birth [77]. The

visible features of the iris arise in the trabeculum, which is a meshwork of connective tissues

with arching ligaments, crypts, contraction furrows, a corona and pupillary frill, coloration

and freckles. Although the anterior layer covering the trabecular framework creates the

predominant iris texture seen with visible light, additional discriminating information can

be given by the location of all of these sources of radial and angular variation. Together, as

mentioned by Daugman [17], they provide a distinguishable and unique signal.

The texture and minutia of the iris is believed to have high random morphogenesis and no

genetic penetrance in its expression. Since the appearance of each iris depends of the initial

conditions in the embryonic mesoderm from which it develops, the phenotypic of two iris

with the same genetic genotype (e.g., identical twins or the both eyes of a subject) have

distinguishable minutia. Past studies about the iris texture concluded that the inter-subject

variability of its pattern spans about 250 degrees-of-freedom and have an entropy of about

3.2 bits per square-millimeter [17].

These biological characteristics and the chaotic appearance of the iris patterns turned it

as one of the most suitable traits for biometric purposes. As discussed in the comparison

between the most common traits, iris is generally accepted as one of the most promising

biometric traits and is the subject for the development and proposal of many biometric

recognition algorithms. In the following section, we detail the typical iris recognition stages

and present its state-of-the-art, with emphasis to the almost standard Daugman’s recognition

method that, apart from being the first proposed, is the basis for the large majority of the

deployed and commercial iris recognition systems.
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2.2.2 Typical Stages of Iris Recognition

Figure 2.6 illustrates the typical stages of iris recognition systems. In spite of the specifici-

ties of the different proposals, they share the given structure. The initial stage deals with iris

segmentation. This process consists in localizing the iris inner (pupillary) and outer (scleric)

borders, assuming either circular or elliptical shapes for both of the borders.

In order to compensate the variations in the pupil size and in the image capturing dis-

tances, it is common to translate the segmented iris region into a fixed length and dimen-

sionless polar coordinate system. This stage is usually accomplished through the method

proposed by Daugman [18].

Regarding feature extraction, iris recognition approaches can be divided into three major

categories: phase-based methods (e.g., [18]), zero-crossing methods (e.g., [8]) and texture

analysis based methods (e.g., [120]).

Finally, the comparison between iris signatures is made, producing a numeric dissim-

ilarity value. If this value is higher than a threshold, the system outputs a non-match,

meaning that each signature belongs to different irises. Otherwise, the system outputs a

match, meaning that both signatures were extracted from the same iris.

Captured Image

Iris Segmentation

Segmented Image

Iris Normalization

Normalized Image

Feature Extraction
00100101001010

00100101001010

Biometric Signature

Enrolled Signatures

Feature Comparison Similarity Value

Figure 2.6: Typical stages of the iris recognition.

Having overview the main stages of iris recognition and mentioned some of the most

relevant approaches, in the next sub-sections, we describe some usual approaches to perform
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each of the above identified stages.

2.2.2.1 Iris Segmentation

In 1993, J. Daugman [18] presented one of the most relevant methods, constituting the basis

of the majority of the functioning systems. Regarding the segmentation stage, this author

introduced an integro-differential operator to find both the iris inner and outer borders. This

operator remains actual and was proposed in 2004 with minor differences by Nishino and

Nayar [83].

Similarly, Camus and Wildes [11] and Martin-Roche et al. [70] proposed integro-differential

operators that search the N3 space, with the objective of maximizing the equations that

identify the iris borders.

Wildes [120] proposed iris segmentation through a gradient based binary edge-map con-

struction followed by circular Hough transform. This is the most common method, that has

been proposed with minor variants by Cui et al. [16], Huang et al.[37], Kong and Zhang[55],

Ma et al.[66], [63] and [67].

Liam et al. [59] proposed one interesting method essentially due to its simplicity. This

method is based in thresholds and in the maximization of a simple function, in order to

obtain two ring parameters that correspond to iris inner and outer borders.

Du et al. [29] proposed the iris detection method based on the prior pupil segmentation.

The image is further transformed into polar coordinates and the iris outer border is detected

as the largest horizontal edge resultant from Sobel filtering. However, this approach may

fail in case of non-concentric iris and pupil, as well as for very dark iris textures.

Morphologic operators were applied by Mira and Mayer [74] to obtain iris borders. They

detected the pupillary and scleric borders by applying thresholding, image opening and

closing.

Based on the assumption that the pixels’ intensity of the captured image can be well

represented by a mixture of three Gaussian distributions, Kim et al. [54] proposed the

use of Expectation Maximization [22] algorithm to estimate the respective distribution

parameters. They expected that ‘Dark’, ‘Intermediate’ and ‘Bright’ distributions contain

the pixels corresponding to the pupil, iris and reflections areas.
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2.2.2.2 Iris Normalization

Due to the varying size of the pupil and of the distance and angle of the image capturing

framework, the size of the captured irises can have high variations, increasing the complex-

ity of the recognition task. Robust representations for pattern recognition must be invariant

to changes in the size, position, and orientation of the patterns. In the iris recognition

compass, this requires a representation of the iris data invariant to the dimension of the

captured image. This is influenced by the distance between the eye and the capturing device,

by the camera optical magnification factor and by the iris orientation, caused by torsional

eye rotation and camera angles. As described in [20], the invariance to all of these factors

can be achieved through the translation of the captured data into a double dimensionless

polar coordinate system. As figure 2.7 illustrates, this translation process is based both in

polar (θ) and radial (r) variables.

Figure 2.7: Normalization of the iris image through the Daugman rubber sheet.

The rubber sheet model assigns to each point on the iris, regardless of its size and

pupillary dilation, a pair of real coordinates (r, θ), where r is on the unit interval [0, 1]

and θ is an angle in [0, 2π]. The remapping of the iris image I(x, y) from raw cartesian

coordinates (x, y) to the dimensionless non concentric polar coordinate system (r, θ) can be

represented as:

I(x(r, θ), y(r, θ))→ I(r, θ) (2.6)

where x(r, θ) and y(r, θ) are defined as linear combinations of both the set of pupillary

boundary points (xp(θ), yp(θ)) and the set of limbus boundary points along the outer perime-
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ter of the iris (xs(θ), ys(θ)) bordering the sclera, which are detected in the iris segmentation

stage, as:

{
x(r, θ) = (1− r) ∗ xp(θ) + r ∗ xs(θ)

y(r, θ) = (1− r) ∗ yp(θ) + r ∗ ys(θ)
(2.7)

2.2.2.3 Feature Extraction

As stated above, from the viewpoint of feature extraction, recognition approaches can be di-

vided into three major categories: phase-based methods (e.g., Daugman [18]), zero-crossing

methods (e.g., Boles and Boashash [8] and Roche et al.[70]) and texture analysis based

methods (e.g., Wildes [120], Kim et al.[54] and Ma et al.[66]).

Daugman [18] uses multiscale quadrature wavelets to extract texture phase information

and obtain an iris signature with 2048 binary components. Once again, this proposal acted

as basis for others with minor differences, as Ma et al. [65].

To characterize the iris texture, Boles and Boashash [8] computed the zero-crossing

representation of a 1D wavelet at different resolutions of concentric circles. Wildes [120]

proposed the characterization of the iris texture through a Laplacian pyramid with 4 different

levels (scales).

One of the most common approaches consist in the dyadic wavelet decomposition either

using Haar, Mallat or other mother wavelets. This can be found in several proposals, among

which are Ali and Hassanien [1], Ma et al. [63] and Lim et al. [60],

Other creative approaches can be found in Huang et al. [38], that used the values resultant

of the independent coefficient analysis to characterize the iris texture. Muron et al. [78] pro-

posed the codification of the whole information through the power of the Fourrier spectrum.

Du et al. [29] proposed feature extraction through the computation of invariant local texture

patterns. Nam et al. [79] proposed the study of the directional properties of the image in

order to create a binary signature, through the analysis of the image’s second derivatives.

2.2.2.4 Feature Comparison

Although the method chosen to compare between iris signature is highly conditioned by the

feature extraction strategy, the feature comparison is generally performed through the use of

distance metrics: Hamming (e.g., Daugman [18], Tisse et al. [112]), Euclidean (e.g., Huang

et al. [38]), Weighted Euclidean (e.g., Zhu et al. [127] and Ma et al. [66]) or methods based
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on signal correlation (Wildes [120]).

More specific proposals were given by Lim et al. [60], through the utilization of a

competitive learning neural network to achieve classification and by Ma et al. [63], through

a modified nearest neighbor to compare the acquired and the enrolled samples and assign

the proper entity.

2.2.3 Some Relevant Iris Recognition Methods

In the following sub-sections we describe with detail some of the most relevant iris recogni-

tion methods. Apart from the Daugman’s method, that acts as the basis and main comparison

term for other proposals, we describe the methods proposed by Wildes [120] and Tan et

al. [64]. The choice of these methods was motivated by the analysis of the iris recognition

literature and by the description of the algorithms with commercial applications [31].

2.2.3.1 Daugman’s Method

As described in [18], the Daugman’s recognition method is composed by the following

stages:

- Iris segmentation. The author describes an integro-differential operator that searches

for the maximal difference between the average intensity of circumferences with

consecutive radius values. This operator is described in section 4.2.1.

- Normalization. After the segmentation of both iris borders, to compensate the vari-

ations in the size of the pupil, we translated the images to dimensionless polar coor-

dinate system through a process known as the Daugman Rubber Sheet [18], which is

described in section 2.2.2.2.

- Feature Extraction. The iris data encoding was accomplished through the use of two

dimensional Gabor filters. These spatial filters have the form:

G(x, y) = e−π[(x−x0)2/α2+(y−y0)2β2].e−2πi[u0(x−x0)+v0(y−y0)] (2.8)

where (x0, y0) defines the position in the image, (α, β) is the filter width and length

and (u0, v0) specify the modulation, with spatial frequency w0 =
√

u2
0 + v2

0 and

direction θ0=arctan(v0/u0).
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The real parts of the 2-D Gabor filters are truncated to be zero volume and achieve

illumination invariance. For each resulting bit the sign of the real and imaginary parts

from quadrature image projections is analyzed and, through quantization, assigned

binary values: 1 and 0 respectively for positive and negative projection values.

- Feature Comparison. The feature extraction binarization process allows the utilization

of the Hamming distance as the similarity measure for two iris signatures. Given

two binary sets with N bits: A = {a1, ..., aN} and B = {b1, ..., bN}, the Hamming

distance is:

HD(A, B) =
1

N
∗

N∑
i=1

ai ⊗ bi (2.9)

being a⊗ b the logical XOR operation. Thus, for two completely equal and different

signatures, the value of the Hamming distance will be respectively 0 and 1.

2.2.3.2 Wildes’ Method

In [120], Wildes describes a machine vision system for noninvasive biometric assessment.

It is divided into three parts: image acquisition, image segmentation and image matching.

- Image Acquisition. Due to its relatively small dimensions, the author considered the

image acquisition as one of the major challenges for automated iris recognition. First,

it is stressed the importance of acquiring iris images with sufficient resolution and

sharpness to support recognition. Second, the requirement of good contrast in the

iris pattern, without resorting to a level of illumination that annoys the subject. The

captured images must be centered and the artifact (e.g. specular reflections and optical

aberrations) should be eliminated as much as possible. Based in these concerns, the

author describes an optical framework for the iris capturing from a distance of 20 cm.

using a 80 mm. lens.

- Iris Localization. Image acquisition will capture the iris as part of a larger image

that also contains data corresponding to the region surrounding the eye. Therefore,

it is important to localize that portion of the acquired image that corresponds to the

iris. The author performs its contour fitting in two steps. First, the image intensity

information is converted into a binary edge-map. Second, the edge points vote to

instantiate particular contour parameter values. The edge-map is recovered through a
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gradient-based edge detection, that consists of thresholding the magnitude of the im-

age intensity gradient convolved with a two-dimensional Gaussian Kernel G defined

by:

G(x, y) =
1

2πσ2
e−

(x−x0)2+(y−y0)2

2σ2 (2.10)

where (x0, y0) is the center of the kernel and σ its standard deviation. In order to

incorporate directional tuning, the image intensity derivatives are weighted to favor

certain ranges of orientation prior to taking the magnitude. Figure 2.8 illustrates edge-

maps with (figure 2.8a) and without (figure 2.8b) orientation favors.

(a) Edge-map with vertical orientation favor. (b) Edge-map without orientation favors.

Figure 2.8: Morphology of the human eye.

Regarding the detection of the limbic boundary, the derivatives are weighted to be

selective for vertical edges, as the probability for the detection of edges correspon-

dent to eyelids is minor. The voting procedure is realized via the circular Hough

transform [43], defined as:

H(xc, yc, r) =
n∑

j=1

h(xj, yj, xc, yc, r) (2.11)

where

h(xj, yj, xc, yc, r) =

{
1 if g(xj, yj, xc, yc, r) = 0

0 otherwise
(2.12)

and
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g(xj, yj, xc, yc, r) = (xj − xc)
2 + (yj − yc)

2 − r2 (2.13)

The triple parameter that maximizes H is a reasonably choice to represent the contours

of interest, the iris inner and outer borders. Regarding the upper and lower eyelids,

they are fitted in a similar fashion using parameterized parabolic arcs in place of the

circle parametrization g(xj, yj, xc, yc, r).

- Pattern Matching. After the identification of the region correspondent to the iris,

the final task is to decide if the captured pattern matches a previously enrolled. The

author decomposes this task in four parts: alignment, representation, comparison and

decision.

1. Alignment. The author uses an image registration technique to compensate scal-

ing and rotation. It warps the newly acquired image Ia(x, y) into alignment with

a database image Id(x, y) according to a mapping function (u(x, y), v(x, y))

such that for all (x, y), the image intensity at (x, y) - (u(x, y), v(x, y)) in Ia - is

close to that at (x, y) in Id. The mapping function (u, v) is taken to minimize

∫
x

∫
y

(
Id(x, y)− Ia(x− u, y − v)

)2

dxdy (2.14)

while constrained to capture a similarity transformation of image coordinates

(x, y) to (x′, y′):

(
x′

y′

)
=

(
x

y

)
− sR(φ)

(
x

y

)
(2.15)

where s is a scaling factor and R(φ) a matrix representing rotation by φ.

2. Representation. An isotropic band-pass decomposition is proposed, derived

from application of Laplacian of Gaussian filters to the image data. These filters

can be defined as:

− 1

πσ4

(
1− ρ2

2σ2

)
e−

ρ2

2σ2 (2.16)

where σ is the standard deviation of the Gaussian and ρ is the radial distance

of the point to the filter center. This procedure can be implemented through a

Laplacian pyramid. Given an image I , it is iteratively convolved with a low pass
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filter and down sampled by a factor of two in each dimension. This multi scale

representation of the image is used as the biometric iris signature. Oppositely to

the Daugman’s system, this representation is derived directly from the filtered

image for size on the order of the dimension of the captured iris image.

3. Comparison. In this stage a procedure based on the normalized correlation

between both iris signatures is used. Let A1 and A2 be two arrays of size n×m.

Also, let µ1 and µ2 be respectively the mean of A1 and A2 and σ1 and σ2 be the

standard deviation of A1 and A2. The normalized correlation can be defined as:

1

nmσ1σ2

n∑
i=1

∑
j=1

n(A1(i, j)− µ1)(A2(i, j)− µ2) (2.17)

The author applies the correlations over small 8 × 8 blocks in each of the four

spatial frequency bands resultant from the Laplacian pyramid representation.

Further, these values are combined into a single value via the median statistic,

yielding four goodness-of-match values.

4. Decision. This stage combines the previously obtained four values into a single

accept/reject judgement, through the Fisher linear discriminant. Let n be the

number of samples qi (four comparisons between multi scale measurements),

nA of which are authentics and nI from impostors. Fisher’s linear discrim-

inant defines a weight vector w such that the ratio of intra- and inter-class

variance is maximized for the transformed samples wT q. Let µA and µI be

the d-dimensional mean values respectively for q ∈ A and q ∈ I . A measure of

variance within a class C can be given by a scatter matrix with form:

SC =
∑
q∈C

(q − µC)(q − µC)T (2.18)

In this case, the total within class scatter is given by Sintra = SA + SI . A corre-

sponding measure of the variance between classes can be defined in terms of the

scatter matrix Sinter = (µA − µI)(µA − µI)
T . Thus, the following expression

describes the ratio of intra- and inter-class variance of the transformed samples

wq:

wT Sinterw

wT Sintraw
(2.19)

Finally, the w that maximizes this ratio is given by:
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w = S−1
intra(µA − µI) (2.20)

In order to apply this discriminant to the classification task a separation point

must be defined. Values above this point will be taken as derived from class A

and values below this point will be taken as derived from class I . The author

takes the separation point as the midpoint between the transformed means of the

samples from A and I , which can be proven to be optimal if the probabilities

of the measurements given either class have normal distributions and equal

variance.

2.2.3.3 Ma et al. Method

Ma et al. [64] described an iris recognition algorithm based in the characterization of key

local variations. It is composed of five main stages:

- Iris Localization. The authors approximate both the pupillary and scleric borders as

circles. The procedure starts by roughly iris region finding followed by the exact

computation of the parameters correspondent to both iris borders, according to a

procedure similar to that of Wildes’ [120] proposal.

- Iris Normalization. In order to compensate the variations in pupil size and in image

capturing distance, authors apply the normalization process to the segmented iris

image described by Daugman [18].

- Image Enhancement. Since there is a non-uniform brightness and low contrast of

the normalized iris images, the authors perform image enhancement based in the

subtraction of the estimated background illumination of small blocks (32 × 32) of

the image. Such processing compensates for the non-uniform illumination.

- Feature Extraction. Considering the characteristics of the iris as a sort of transient

signals, authors construct a set of 1-D intensity signals, according to the following

equation:

Si =
1

M

M∑
j=1

I(i−1)∗M+j, i = 1, . . . , N (2.21)



2.2. IRIS RECOGNITION 43

where I is the normalized image of K×L and Ix denotes the xth row of the image. M

is the total number of rows used to form Si and N is the total number of 1-D signals.

Each signal is a combination of M successive horizontal scan lines of the image,

reflecting its local variations along the horizontal direction. Further, authors used the

dyadic wavelet decomposition and the Mallat as mother-wavelet. Analyzing the local

minimums and maximums of the resultant signal at the analyzed scales, the authors

observed that each pair of local extremum points corresponds to faint characteristics

variations in the original iris image. For each signal Si, the position of those points at

two scales are concatenated to form the corresponding features:

fi = {d1, . . . , dm, dm+1, . . . , dm+n, p1, p2} (2.22)

where m and n are respectively the number of components from both scales and di

denote the position of the local variations in the 1-D signal. pi represents the type of

the first extremum point at each scale. Further, the features correspondent to different

scales (intensity signals) are concatenated in the feature vector f :

f = {f1, f2, . . . , fN} (2.23)

where N is the total number of 1-D intensity signals.

- Matching. This stage is accomplished through a two-step approach:

1. The original feature vector is expanded into binary form. At each position, the

components pi are set to 1 or −1 according to the type of extremum point.

Authors set the maximums to 1 in the binary sequence and the minimums to

-1, building a binary feature vector given by:

Ef = {Ef1, Ef2, . . . , EfN} (2.24)

where Efi denotes the binary expansion of feature component fi.

2. The similarity between two binary sequences is computed through the XOR

function, given by:

D =
1

N

N∑
i=1

1

2L

∑
j = 12

(
Ef 1

(i,j) ⊗ Ef 1
(i,j)

)
(2.25)
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where Ef 1 and Ef 2 denote two different binary feature vectors,⊗ is the ”XOR”

operator, L is the length of the binary sequence and N is the total number of 1-D

intensity signals.

2.2.4 Non-Cooperative Iris Recognition

In this thesis, we use the non-cooperative iris recognition term as the process of automatic

recognize individuals using images of their iris captured at a distance and without requiring

any active participation. As it is illustrated by figure 2.9, it is, in theory, possible to apply

real-time face and eye detection algorithms that provide information about the localization

of the subjects’ irises and enable its automatic capturing through high resolution imaging

systems.

Face Detection

Eyes Detection Iris Capturing

Face

Localization

Eyes Localization

Noisy Iris

Image

Figure 2.9: Main stages of the non-cooperative iris recognition.

This type of use has motivated increasing interests and was the subject of several recent

studies. Following the recognition process proposed by Du et al. [29], in [28] the authors

investigated the performance of the use of a partial iris part for recognition. They analyzed

3 different kinds of partial iris images: ”left-to-right” (left middle part of the iris), ”outside-

to-inside” and ”inside-to-outside” (respectively the outer and inner parts of the iris). In

their experiments, the authors observed a distinguishable and unique signal when analyzing

the inner parts of the iris and concluded that it is possible to use only portions of the

iris for human identification. From our viewpoint, the utilization of the CASIA database

constituted a weak point, regarding the desired simulation of non-cooperative environments.

Dorairaj et al. [27] described an iris recognition system that deals with off-angle images.

They started by the estimation of the gaze direction, through the Hamming distance between

the Independent Component Analysis of a frontal view image and the captured one. Further,
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they applied a projective transformation that brings the captured iris image to frontal view.

This enables the execution of the recognition process as if the captured image were a frontal

view. Apart from images of the CASIA database, the authors used others captured in

their institute to experimentally confirm their conjectures and achieve high accuracy in the

recognition of off-angle images.

In a paper that addresses the challenges on non-cooperative iris recognition, Sung et

al. [109] roughly identified the potential problems that must be overcome. They considered

the problem of lighting conditions as being insurmountable, unless special lighting methods

are introduced. The problem of off-angle images, when the gaze of the subjects is not

directed to the camera, motivated the proposal of a slightly uncommon segmentation method

composed by the initial inner eye corner detection followed by a least square elliptical fit

to the limbic edge pixels. In order to identify the information degradation resultant from

the non-cooperative image capturing, specially on the acquisition of defocused images, the

authors propose a method based on wavelet packet maximum Shannon entropy reconstruc-

tion for measuring the image information. The feature extraction was made through the

classical convolution with a bank of complex-valued 2D Gabor filters. They concluded

that the feature comparison by means of correlation and classification through the nearest

neighbor produce better results than Hamming distance and thresholding in less quality

images, although they used a small database for the experiments.

Fancourt et al. [32] claim the feasibility of human iris recognition at up to 10 meters

distance. Through an imaging framework composed by a telescope and a infrared camera,

they varied distance, capture angle, environmental lighting, and eyewear and analyzed the

recognition accuracy. Based in a local correlation matcher, the authors reported a minor

performance degradation with distance, off-angle images and eyewear. However, similarly

to [28], their results where obtained when the captured images do not contain significant

portions of noise, specifically due to lighting heterogeneity.

The above described proposals claim the possibility to capture images with enough qual-

ity in less cooperative modes and achieve accurate human recognition in these situations.

This enables the covert biometric recognition, which has considerable privacy concerns. In

the following section we briefly discuss some of these concerns.
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2.2.4.1 Privacy Concerns

It is accepted that biometrics is a technology that will either great benefit or burden modern

societies in a near future. With the increasing number of infrastructures for performing

reliable automatic recognition and the ability to associate one identity with a personal

behavior or characteristic, concerns are growing over whether this information might be

abused and violate individuals’ rights to anonymity. It is questioned that the accountable

and responsible use of biometric systems can it fact protect the individual privacy, while

others argue the prevalence of the privacy issues [88].

Privacy is the ability to lead a life free of intrusions, remaining autonomous and able to

control the access to its personal information. The use of biometrics can, specially in the

covert mode, lead to circumstances when the user is not aware of the amount of information

collected, as well of its uses. The problem is enhanced by the fact that biometrics don’t use

information about the person, but rather information of the person, intrinsic to each one.

Biometrics create an environment in which organizations have enormous power over

individuals [100]. This can be regarded as contrary to the patterns that have been associated

with the rise of personal freedoms and free societies. It could be argued that this kind of

technology undermines democracy, since it potentiates people to be marginalized.

On the other hand, modern societies have increasing security requirements, motivated

essentially by terrorist acts. Biometrics constitute a crucial tool against this type of phe-

nomenons and considerably increase the security levels in a broad range of applications

(e.g., air travels, sports events or weapons access).

Schneier [103] observed that biometric traits are unique identifiers but are not secret and,

at specific circumstances, are easy to steal (e.g., to get a non-licensed picture of a person’s

face in order to counterfeit a face recognition system). He concluded about a weakness,

concerning privacy. In other perspective, the requiring of automated mechanisms to access

a resource leads that system administrators can easily track all accesses to the resource, as

well infer information about users’ behavior.

Some of the individual biometric traits could be considered undignified to be captured.

In addition, some are heavily connected with the forensic sciences and can carry negative

connotations because of their prevalent use in such domains (e.g., fingerprint). The hygiene

of the biometric sensors might as well be a concern.

Prabhakar et al. [88] identified three systematic privacy concerns:
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- Unintended functional scope. Because biometric traits are biological in origin, the

collectors might glean statistical information about the captured signal and correlate

this information with certain type of genetic disorders or other deceases. Such derived

medical information could be used to discriminate segments of the population.

- Unintended application scope. The link between different biometric signals of an

individual could be used to infer information and accumulate power over individuals

and their autonomy.

- Covert recognition. As some of the biometric characteristics are easily visible, it is

often possible to obtain a biometric sample without a person’s knowledge, enabling

the covert recognition of previously enrolled people. In this situation, people who

desire to remain anonymous in any particular situation could be denied their right.

In short, we observed the existence of several cultural, social and legal issues for the

massive adoption of biometrics. Although the technology has potential to increase the secu-

rity and reliability of many of the modern societies trivial activities, it is also propitious for

privacy privacy abuses, essentially due to the unappropriate use of the captured information.

2.2.4.2 Face Localization Methods

Face detection is the first step for non-cooperative iris recognition. Numerous techniques

have been developed to detect faces in images [123]. Given a single image, the goal is to

identify all image regions that contain a face, regardless of its three-dimensional position,

orientation and lighting conditions.

Based in a cellular neural-network / non-linear algorithm, the authors of [73] propose a

system for real-time face detection in uncontrolled environments. In [36], through the use

of the multilevel Ising model, a dynamic attention map is built, assigning each Ising spin to

face or non-face and further using the multilevel Ising search to reduce the number of spin

candidates and achieve computational efficiency.

2.2.4.3 Eye Detection Methods

Eye detection and tracking in images has been the subject of several proposals. These

usually operate in images containing the region correspondent to the subjects’ head and can

be regarded as the preceding stage to the high definition iris capturing.
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The authors of [34] describe an integrated framework to capture images of the human

eyes at a distance. It is composed by a video-camera with wide field of view and a high

resolution digital still camera with narrow field of view. The video-camera first localizes

the human face and provides this information to the digital camera to focus the region

corresponding to the subject’s eyes.

In [128], an integrated eye tracker for robust eye detection under variable lighting condi-

tions is described. The method starts with a preprocessing stage that minimizes the interfer-

ence from different illumination sources and further detects the potential eye localizations

through the use of support vector machines.

In [35], the authors propose a method to both localize and track human eyes in non-

controlled lighting conditions. They combine particle filtering with the Expectation-Maxi-

mization algorithm.

2.2.4.4 Types of Noise in the Captured Iris Images

This section is specially relevant in the context of our work. Here we identify and describe

the most common noise factors that result of non-cooperative image capturing processes, ei-

ther at-a-distance, without users’ cooperation and within heterogeneous lighting conditions.

Based in observations of the available iris image databases and in our experimental imag-

ing processes, we identified eleven factors that we considered as noise: the iris obstruction

by eyelids (NEO) or eyelashes (NLO), specular (NSR) or lighting reflections (NLR), poor

focused images (NPF), partial (NPI) or out-of iris images (NOI), off-angle iris (NOA),

motion blurred irises (NMB) and pupil (NPS) or sclera (NSS) portions wrongly considered

as belonging to the iris.

Iris obstructions by eyelids (NEO) The biological function and natural eyelid movement

can obstruct relevant portions of the iris, specially in its vertical extremes (figure 2.10).

Commonly, NEO noise regions are one of the largest and appear in the lower regions

of the segmented and normalized iris images.

Iris obstructions by eyelashes (NLO) Eyelashes can obstruct portions of the iris in two

distinct forms as they appear isolated or grouped. If an eyelash is isolated (upper

eyelid of figure 2.11), it appears as a very thin and darker line in the iris region. The

existence of multiple eyelashes in the iris regions generates a uniform darker region

(near the upper eyelid of figure 2.10).
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Figure 2.10: Noisy iris image due to eyelids and eyelashes obstructions.

Figure 2.11: Noisy iris image due to isolated eyelashes obstructions.

Lighting reflections (NLR) These type of noise regions usually correspond to reflections

from artificial light sources near to the subject, although they can appear in the image

capturing within natural lighting environments. These reflections have high hetero-

geneity, as they can appear with a broad range of dimensions and localized in distinct

regions of the iris. These areas have intensity values close to the maximum and are

exemplified by the region on the upper and left portion of the iris of figure 2.12.

Figure 2.12: Noisy iris image due lighting reflections.

Specular reflections (NSR) This type of reflections corresponds to reflected information

from the environment where the user is located or is looking at. As illustrated by the

highest intensity region in the upper portion of the iris of figure 2.13, these reflections

can obstruct large regions, or even the majority, of the iris. Commonly, they have

lower intensity values than the lighting reflections and can correspond to a wide range

of objects that the user is surrounded by.

Poor focused images (NPF) Due to the moving elements that interact in the non-cooperative

capturing and to the limited depth-of-field of any imaging system, the image focus is
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Figure 2.13: Noisy iris image due specular reflections.

one of the biggest concerns. Sometimes, small deviations (centimeters) in the image

capturing distance can propitiate the existence of images with severe focus problems,

that, almost invariably, lead to the increment of the false rejection rates. A poor

focused image is illustrated by figure 2.14.

Figure 2.14: Noisy iris image due to poor focus.

Partial captured irises (NPI) The image capturing at a distance and with subjects head

and body movements propitiates that the close-up eye images could contain exclu-

sively portions of the iris. Depending of the amount of information missing, this

can be obviously a relevant obstacle to biometric recognition, which is illustrated by

figure 2.15.

Figure 2.15: Partial captured iris.

Out-of-iris images (NOI) This is an extreme noisy factor and, obviously, obstructs any

attempt of biometric recognition. However, it must be considered, in order to avoid

false acceptances motivated by the execution of the recognition algorithms based in

non-iris areas. An example of a capture without any portion of the iris visible is shown

in figure 2.16.
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Figure 2.16: Out-of-iris image.

Off-angle iris (NOA) Due to rotation of the subjects head and eyes, it is possible to capture

iris images with the iris not aligned with the imaging direction, as exemplified by

figure 2.17. These off-angle images have elliptical shape for the region corresponding

to the iris. They demand the use of projection techniques, in order to deal with the iris

data as if it was not off-angle.

Figure 2.17: Off-angle iris image.

Motion blurred images (NMB) Once again due to several moving parts that interact in

the iris image capturing, the iris image can be blurred by motion. Since it is the

most frequent and quickest type of interacting movement, we observed that the eye-

lids movement has an significant contribute to this type of noise, as illustrated by

figure 2.18.

Figure 2.18: Motion blurred iris image.

Pupil wrongly considered as belonging to the iris (NPS) When the segmentation of the

pupillary iris border is not accurate, some portions of the iris will be wrongly consid-

ered as belonging to the iris. Those areas appear at the upper part of the normalized
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and segmented iris image and have usually lower intensity values than those that

correspond to the iris, as exemplified by figure 4.8.

Sclera wrongly considered as belonging to the iris (NSS) Similarly to the above described

type of noise, when the segmentation of the scleric iris border is not accurate, portions

of the sclera are wrongly considered as belonging to the iris and appear in the lower

part of the segmented and normalized iris images.

The analysis of the above described noise factors allowed us to divide them into two

major classes: local and global. The first correspond to noise that corrupts localized regions

of the image, whereas the remaining regions remain noise-free and possibly enable the

execution of the recognition task. As described in the following chapters, the detection,

localization and robust handling of local noise factors can significantly improve the robust-

ness of iris recognition and represent an achievement towards non-cooperative recognition.

Oppositely, the global noise factors affect the image as a whole and, depending of its

intensity, can constitute a definitive obstacle to the recognition process.

2.3 Summary

This chapter introduced the main biometric concepts. First, a definition was given , based on

the synthesis of several others. We compared the two main modes of biometrics functioning

and presented a possible classification and respective comparison between the most common

biometric traits, according to six different perspectives.

After having briefly justified the choice for the use of iris for the purposes of our work,

we focused in the anatomy of the human eye, with obvious emphasis to the iris. Later we

overview the main stages of typical iris recognition and presented some of the most common

methods for each of these stages.

Finally, in the non-cooperative recognition compass, we described some of the pri-

vacy concerns and focused on the description of the noise factors that result of the non-

cooperative image capturing.



Chapter 3

Iris Image Databases

In this chapter we describe the main characteristics of the public and freely available iris

image databases for biometrics purposes. Through examples, we illustrate the types of

noise that images from each database contain. Based on the analysis of these noise factors,

we present the main motivations that led us to the construction of UBIRIS database

and highlight the main distinguishable factors in the comparison with the remaining ones.

Further, we detail the optical framework used in both image capturing sessions of the

UBIRIS database and briefly present some statistics about its images.

3.1 Public and Free Databases

The biometrics research and development demands the analysis of human data. Obviously,

it is unrealistic to perform the test of algorithms in data captured on-the-fly, due to the enor-

mous uneasiness that this would imply. Moreover, the fair comparison between recognition

methods demands similar input data to valorize and contextualize their results. Therefore,

when it comes to the test of recognition methods, standard biometric databases assume high

relevance and become indispensable to the development process.

Regarding the iris biometrics compass, there are presently, apart from the UBIRIS, five

public and freely available iris image databases. In the following subsections we describe

the main characteristics of their images and turn our attention to the analysis of the noise

factors - defined in section 2.2.4.4 - that each database contains. We considered the analysis

of these noise factors and the images heterogeneity as the most important parameters,

concerning the terms and purposes of our work. Through illustration, we exemplify some

53
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of the most common types of noise that each database contains.

3.1.1 BATH Database

The University of Bath (BATH) iris image database is constantly growing and at present

contains over 16000 iris images taken from 800 eyes of 400 subjects. It results of a project

which aims to build an ”high quality iris image resource” [114]. The majority of the

database comprises images taken from students and staff of the University of Bath 1.

The images are of very high quality, taken with a professional machine vision camera,

mounted on a height-adjustable camera-stand. The illumination was provided through an

array of infrared LEDs, positioned below the camera and set at an angle such that reflections

were restricted to the pupil. Further, an infrared pass filter was used in order to cut out the

daylight and other environmental light reflections on the irises region.

The above described framework increased the images quality, while turned it less appro-

priate for the terms of our work. Images from the BATH database contain almost exclusively

noise factors related with iris obstructions (due to eyelids and eyelashes), as exemplified by

figure 3.1. Furthermore, the main characteristics of its images are quite homogeneous,

clearly resultant from a cooperative imaging setting.

Figure 3.1: Examples of iris images from the BATH database.

3.1.2 CASIA Database

Iris recognition has been an active research topic of the Institute of Automation from the

Chinese Academy of Sciences 2. Having concluded about a lack of iris data for algorithm

testing, they developed the CASIA image database. Apart from being the oldest, this

database is clearly the most known and widely used by the majority of the researchers.

1http://www.bath.ac.uk/
2http://www.cas.cn/
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CASIA iris image database [44] (version 1.0, the only one that we had access to)

includes 756 iris images from 108 eyes, hence 108 classes. For each eye, 7 images are

captured in two sessions, where three samples are collected in the first and four in the

second session. Similarly to the above described database, its images were captured within

an highly constrained capturing environment, which conditioned the characteristics of the

resultant images. They present very close and homogeneous characteristics and their noise

factors are exclusively related with iris obstructions by eyelids and eyelashes. Moreover,

the postprocess of the images filled the pupil regions with black pixels, which some authors

used to facilitate the segmentation task. From our viewpoint, this significantly decreased

the utility of the database in the evaluation of robust iris recognition methods.

Figure 3.2: Examples of iris images from the CASIA database.

3.1.3 ICE Database

The Iris Challenge Evaluation (ICE) is a contest designed to measure the accuracy of the

underlying technology that makes iris recognition possible. Its goals are to promote the

development and advancement of iris recognition and assess the technology’s current level

of performance. It is divided into two stages: first, it was asked to researchers and developers

to participate in ”iris recognition challenge problems” that might improve their recognition

algorithms. Later, an opportunity to participate in a large-scale and independent evaluation

will be given, through a new iris data set and a proper evaluation framework.

Regarding the first stage of ICE, to facilitate the evaluation of different iris recognition

proposals, an iris image database has been released for the researchers and entities that

manifest the desire to participate in this competition.

The ICE [82] database is comprised of 2954 images, with a variable number of images

per subject. Similarly to the remaining public iris databases, its images were captured

having quality as the main concern and clearly simulate the users’ cooperation in the image

capturing. Therefore, the noise factors that the ICE database contains are almost exclu-
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sively related with iris obstructions and poor focused images. Interestingly, there are some

images that were deliberately rotated, as exemplified by figure 3.3. Also, some iris were

partially captured.

Figure 3.3: Examples of iris images from the ICE database.

3.1.4 MMU Database

The Multimedia University3 has developed a small data set of 450 iris images (MMU ) [75].

They were captured through one of the most common iris recognition cameras presently

functioning (LG IrisAccess R©2200). This is a semi-automated camera that operates at the

range of 7-25 cm. Further, a new data set (MMU2) comprised of 995 iris images has been

released and another common iris recognition camera (Panasonic BM-ET100US Authenti-

cam) was used. The iris images are from 100 volunteers with different ages and nationalities.

They come from Asia, Middle East, Africa and Europe and each of them contributed with

five iris images from each eye. Obviously, the images are highly homogeneous and their

noise factors are exclusively related with small iris obstructions by eyelids and eyelashes.

Figure 3.4: Examples of iris images from the MMU database.

3http://www.mmu.edu.my
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3.1.5 UPOL Database

The UPOL [26] iris image database was built within the University of Palackého and Olo-

mouc 4. Its images have the singularity of being captured through an optometric framework

(TOPCON TRC50IA) and, due to this, are of extremely high quality and suitable for the

evaluation of iris recognition in completely noise-free environments.

The database contains 384 images extracted from both eyes of 64 subjects (three images

per eye). As can be seen in figure 3.5, its images have maximum homogeneity and in-

clusively the iris segmentation is facilitated by the dark circle that surrounds the region

corresponding to the iris. Obviously, these characteristics make this database the less

appropriate for the non-cooperative iris recognition research.

Figure 3.5: Examples of iris images from the UPOL database.

3.1.6 WVU Database

The West Virginia University 5 developed an iris image database (WV U ) [101] comprised

of 1852 images from 380 different eyes. The number of acquisitions from each eye ranges

between three and six and an OKI IrisPass-H hand-held device was used. Images of the

WVU database were captured with less constraining imaging conditions and, due to this,

incorporate several types of noise, such as iris obstructions, poor focused and off-angle iris

images. However, there are few iris images with significant regions affected by specular

and lighting reflections, which we believe to be the most common type of noise resultant of

natural light imaging environments. We stress that this was one of the major motivations

that led us to decide about the need of a new and noisier iris image database, that later

originated the UBIRIS database.

4http://www.upol.cz
5http://www.wvu.edu
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Figure 3.6: Examples of iris images from the WV U database.

3.2 UBIRIS Database

After studying the above described iris databases, we concluded that none of them was

suitable for the evaluation of robust iris recognition methods, those where noise iden-

tification and handling assumes higher relevance. Apart from the WV U database, that

contains some noise factors but significantly lacks iris specular and lighting reflections, all

the remaining databases were constructed within cooperative environments. This makes

them more suitable for the preliminary evaluation of iris segmentation, feature extraction

or comparison strategies, when the noise factors constitute an a priori obstacle to conclude

about their merits.

Based on this, we decided to build a new public and freely available iris images database

- UBIRIS [89] - with a fundamental characteristic that distinguished it from the remaining

ones: it is a ”noisy iris image database” and the noise factors are not only avoided but rather

induced, in order to simulate the non-cooperative image capturing.

UBIRIS database is comprised of 1877 images collected from 241 subjects within the

University of Beira Interior 6 in two distinct sessions and constituted, at its release date, the

world’s largest public and free iris database for biometric purposes.

3.2.1 Image Capturing

We used a Nikon E5700 camera with software version E5700v1.0, 71mm focal length, 4.2

F-Number, 1/30 sec. exposure time, RGB color representation and ISO-200 ISO speed.

Images dimensions were 2560 × 1704 pixels (width × height) with 300 dpi horizontal and

vertical resolution and 24 bit depth. They were saved in TIFF format. For the first image

capture session, where the enrollment was simulated, we tried to minimize all possible noise

factors, specially those related with reflections, obstructions, focus, motion, luminosity and

6http://www.ubi.pt
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contrast. The used image capturing framework is given in figure 3.7a and was installed

inside a dark room.

(a) Image capturing framework of the first session. (b) Image capturing framework of the second session.

Figure 3.7: Image capturing frameworks of the two sessions of the UBIRIS database.

Further, two weeks later, we make the second session and changed the location and setup

of the image capturing framework, as given in figure 3.7b. The introduction of natural

luminosity significantly increased the dynamics of the imaging conditions and enabled

the appearance of highly heterogeneous images regarding iris reflections and obstructions,

poor focused, and with highly heterogeneous characteristics (e.g. in terms of contrast or

brightness). At this stage, our aim was to simulate the image capturing without or with

minimal subjects’ cooperation.

Figure 3.8 illustrates some of the noise factors that images of the UBIRIS database

contain. Within non-cooperative image capturing environments, it is highly expectable to

capture poor focused images (figure 3.8b), iris obstructed by eyelids and eyelashes (fig-

ures 3.8c and 3.8d), specular (figure 3.8f) and lighting (figure 3.8e) reflections in the iris

regions, motion blurred images (figure 3.8h) or even images without any visible portion of

the iris (figure 3.8g).

3.2.2 Preprocessing

In the setup of the optic devices used in the capturing of UBIRIS images, we maximized

the amount of collectable information, saving images in the TIFF format with average size

of 15 MBytes. Therefore, due to constraints in the information diffusion over internet,

preprocessing became a requirement. We made three different versions of the database:

800 × 600 pixels (width × height) with 24 bit color images and 200 × 150 pixels (width
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(a) Good quality iris image. (b) Poor focused iris image. (c) Iris with eyelids and eyelashes

obstruction.

(d) Iris with extreme eyelids obstruc-

tion.

(e) Iris with lighting reflections corre-

spondent to light sources (natural light)

next to the user.

(f) Iris with specular reflections corre-

spondent to information of the environ-

ment that surrounds the user.

(g) Out-of-iris image. (h) Motion blurred iris.

Figure 3.8: Examples of images from the UBIRIS database.

× height) with 24 bit color and grayscale images. This process allowed us to compress the

UBIRIS data respectively to 436, 96 and 65 MBytes, and made acceptable its diffusion

over internet.

3.2.3 Image Classification

Figure 3.9 contains two histograms with the gender (figure 3.9b) and age (figure 3.9a) of the

people from where the images were collected. The fact of the capturing sessions were made

inside the computer science department of University of Beira Interior explains the majority

of young males (below 30 years).

All the images from both sessions were manually classified with respect to three parame-

ters (‘Focus’, ‘Reflections’ and ‘Visible Iris’) in a three values scale (‘Good’, ‘Average’ and

‘Bad’). This classification is given in table 3.1 and confirms without doubt the variability of

the images quality according to the capturing session.
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(a) Histogram of the age of the UBIRIS participants. (b) Histogram of the gender of the UBIRIS participants.

Figure 3.9: Age and gender histograms of the volunteers that participated in the construction

of UBIRIS database.

Parameter Good, % Average, % Bad, %
First Session
Focus 76.10 16.51 7.39

Reflections 78.52 19.09 1.99

Visible Iris 43.65 52.86 3.49

Second Session
Focus 69.70 19.39 10.91

Reflections 22.27 69.09 8.64

Visible Iris 24.09 38.64 37.27

Table 3.1: Classification of UBIRIS images quality, regarding focus, reflections and

proportion of visible iris, according to the image capturing session.

3.2.4 Web Site

After the capturing, preprocessing and classification of UBIRIS images, we built a web

site7 to enable the worldwide data diffusion. For each above described version of the

database, we compacted the data inside a password protected file. Any person who desires

a copy of the database has to email one of the authors ({hugomcp,lfbaa}@di.ubi.pt) with

”UBIRIS password” as subject of the message and with the body containing the name,

institution and country of the user. Thus, we had feedback about the acceptability of this

database by the academic and research institutions.

7http://iris.di.ubi.pt
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Figure 3.10: Histogram of the countries from where the users of UBIRIS database were

registered (5th August, 2006).

As figure 3.10 illustrates, at August 2006, 340 users from 60 countries, essentially inte-

grated within universities, forensic schools and research laboratories, required the access to

the UBIRIS database. Moreover, at this date we had knowledge of at least one MSc. thesis

and one BEng. final project whose experiments were exclusively made with UBIRIS

images, essentially due to the reasons that motivated its construction: the research and devel-

opment of robust iris recognition methods able to deal with noisy and highly heterogeneous

iris images. Obviously, this can be considered an achievement.

3.3 Analysis of Databases’ Noise Factors

3.3.1 Types of Noise

In order to provide an overview of the main characteristics of each iris image database,

table 3.2 summarizes the noise factors that images from the above described databases con-

tain. Each column identifies a noise factor, which meaning is described in section 2.2.4.4.

”X” denotes that the database contains images with the correspondent noise factor and ”-”

denotes the opposite.

The analysis of this table allowed us to conclude that the noisiest database is the UBIRIS

database, which confirms our purposes’ success. In fact, apart from not containing off-angle
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iris images, all the remaining noise factors that are expectable in the non-cooperative cap-

turing setting are present in images of the UBIRIS database. Oppositely, all the remaining

databases contain less number of noisy images and its images have more homogeneous

characteristics.

Iris Database NEO NLO NLR NMB NOA NOI NPF NPI NSR
BATH X X - - X - - - -

CASIA X X - - - - - - -

ICE X X - - - - X X -

MMU X X - - - - - - -

UPOL - - - - - - - - -

UBIRIS X X X X - X X X X

WVU X X - X X - X X -

Table 3.2: Overview of the noise factors that public and free iris image databases contain.

3.3.2 Noise Measurements

After the identification of the types of noise that each available database contains, it consti-

tuted our goal to have an objective measure about the average quantity of noisy pixels per

iris image on each database. In the following experiments, we considered as noise those

pixels inside the segmented iris region that correspond to any other type of information, as

described in section 2.2.4.4.

Iris Database Image Size, pix. Iris Radius, pix. Pupil radius, pix Noise, %
BATH 1280× 960 232 101 6.29

CASIA 320× 280 102 37 12.72

ICE 640× 480 119 54 6.70

MMU 320× 240 57 21 7.83

UPOL 768× 576 286 74 1.03

UBIRIS 800× 600 206 45 27.62

WVU 800× 600 204 54 16.10

Table 3.3: Average quantity of noise pixels within the iris regions of the public and free iris

image databases.
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We randomly selected 100 images from each of the above described iris databases,

hoping that they were representative of the respective database images. Further we manually

classified each iris pixel as noisy or noise-free and obtained a binary map correspondent

to the noisy iris regions. The relation between the noisy and noise-free data is given in

table 3.3. The first column identifies the database, the second gives the dimensions of the

images (width × height), the third and forth contain the average radius of the iris and pupil

radius. All of these values are expressed in pixels. Finally, the column noise identifies the

proportion between the number of noise pixels and the number of pixels belonging to the

iris region. This value is expressed in percentage.

3.3.3 Conclusion

As expected, through the analysis of both tables 3.2 and 3.3, we obtained a more objec-

tive idea about the degree and type of noise characteristics of each image database. We

concluded that the majority of these databases were build having the images’ quality as

main concern, inducing its use in the cooperative setting. Apart from UBIRIS, WV U iris

image database is the one that contains a relatively larger number of noisy pixels within the

captured iris regions. However, as stated before, the lack of pixels corrupted by reflections

(specular and lighting) is from our viewpoint regarded as a weak point, and made UBIRIS

the main database for our experiments.

3.4 Summary

In this chapter we identified, through description and illustration, the types of noise that

the public and free iris image databases for biometrics purposes contain. Furthermore, we

justified the requirements for the construction of a new public and free iris database image

- UBIRIS - that simulates the non-cooperative image capturing. We described the noise

factors that its images contain and distinguish the database from the remaining ones. We

stress that UBIRIS database has been well accepted by researchers of the academic and

commercial domains, having at August, 2006 more than 340 registered users originated

from 60 different countries.



Chapter 4

Iris Segmentation

This chapter concerns to the iris segmentation stage, which, as in any other image processing

task, plays a crucial role in the overall recognition success. Moreover, the noise regions

resultant of the non-cooperative image capturing increase the demands of segmentation

robustness and adaptability. After describing the most common iris segmentation proposals,

in section 4.3.4 we show that their accuracy significantly decreases when dealing with noisy

iris images, such as those of the UBIRIS database. To overcome of this lack of robustness

was the main motivation behind our iris segmentation proposal, which is based on feature

extraction and clustering stages that produce an intermediate image, more homogeneous

than the captured one. Later, in section 4.4 we analyze the influence that small segmentation

inaccuracies have in the recognition accuracy. We experimentally found that small errors in

the segmentation of the pupillary border have strong impact in the error rates and describe

a method that is able to identify this type of inaccuracies.

4.1 Image and Iris Segmentation

Image segmentation can be defined as the partitioning of an image into several components.

It is an important stage of any automated image processing system, essentially because it

is the basis for any further operations, such as description or recognition. In the pattern

recognition domain, segmentation is the assignment of each pixel to an image region, which

can be regarded as a typical classification problem.

Regarding the iris biometrics compass, the segmentation stage receives a close-up eye

image and localizes the pupillary and scleric iris borders in the image. We stress the

65
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assumption about the existence of image capturing frameworks, supported by face and eye

detection algorithms, which must be able to capture images similar to the illustrated by

figure 4.1. This is an image of the UBIRIS database that contains the eye’s region and

represents those that typically are processed by the segmentation algorithm.

Figure 4.1: Segmented iris image with the inner (pupillary) and outer (scleric) borders

respectively signalled by the brighter and darker circles.

Segmentation is usually accepted as one of the most challenging stages of iris recognition

and the one where robustness plays a more important role. Apart from the iris small dimen-

sions, the natural eye and human body movements increase the segmentation’s difficulty.

The non-cooperative image capturing setting makes it more probable that the captured irises

contain several other types of information (section 2.2.4.4) that increase the segmentation

complexity. In the following section we overview the typical iris segmentation methods

and detail four of these, that we believe to represent the majority of the proposals. These

proposals were later tested against noisy iris images, in order to show their small robustness.

4.2 Most Common Iris Segmentation Methods

The analysis of the iris segmentation literature allowed us to identify two major strategies

to perform the iris segmentation: use a rigid or deformable iris template or use its boundary.

In most cases, the boundary approach is very similar to that of Wildes [120]: it begins by

the construction of an edge-map followed by the application of some geometric form fitting

algorithm. The template-based strategies are in general more specific, although sharing the

maximization of some equation that identifies the iris borders. Here, we emphasize four of

these methods: the classical boundary-based Wildes’ approach and three of the template-

based approaches (Daugman [18], Camus and Wildes [11] and Martin-Roche et al. [70]).

These were chosen due to their relevance in the literature, the presented results and by our
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belief that they are representative of the majority of iris segmentation proposals, which were

summarized in section 2.2.2.1.

4.2.1 Daugman’s Method

This is by far the most cited method [18] in the iris recognition literature. It is licensed to

Iridian Technologies1 who turned it into the basis of 99.5% of the commercial iris recogni-

tion systems. It was proposed in 1993 and was the first method effectively implemented in

a working biometric system. The author assumes both pupil and iris with circular form and

applies the following integro-differential operator:

maxr,x0,y0

∣∣∣∣Gσ(r) ∗ δ

δr

∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣ (4.1)

This operator searches over the image domain (x, y) for the maximum in the blurred

(by a Gaussian Kernel Gσ(r)) partial derivative with respect to increasing radius r, of the

normalized contour integral of I(x, y) along a circular arc ds of radius r and center coordi-

nates (x0, y0). In another words, this method searches in the N3 space for the circumference

center and radius with highest derivative values comparing to circumferences of neighbor

radius. As showed in section 4.3.4.2, this process proved to be very effective on images

with enough separability between iris, pupil and sclera intensity values.

However, we observed that it frequently fails when the images do not have sufficient

intensity separability, specially between the iris and the sclera regions. We implemented

two preprocess operations with the purpose of image contrast enhancement, hoping that

they could contribute to the improvement of the results:

- Histogram Equalization. This operation improves the contrast between each eye’s

region, which potentially will facilitate the segmentation task. It is described in

section 4.3.3.3.

- Binarization. The image binarization - based on a threshold - is a very common

operation that maximizes the separability between the iris regions and the remaining

ones. This process has, however, one major disadvantage: it is highly dependent of

the chosen threshold, and as image characteristics change, the results may seriously

deteriorate. Moreover, the binarization compromises one of the Daugman’s method

1http://www.iridiantech.com
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biggest advantages: the non-requirement of user-defined parameters for the achieve-

ment of segmentation.

4.2.2 Camus and Wildes’ Method

These authors described an algorithm [11] for finding the subjects’ iris in close-up images.

Similarly to Daugman’s method, their algorithm searches in the N3 space for the three

circumference parameters (center (x, y) and radius r) that maximize the following function:

C =
n∑

θ=1

(
(n− 1)||gθ,r|| −

n∑
φ=θ+1

(||gθ,r − gφ,r||)−
Iθ,r

n

)
(4.2)

where n is the total number of directions and Iθ,r and gθ,r are, respectively, the image

intensity and derivatives with respect to the radius in the polar coordinate system. As

shown in section 4.3.4.2, this method is highly accurate with images whose pupil and iris

intensities are well separated from the sclera ones and with images that contain no significant

noise regions, such as reflections. Otherwise, when dealing with noisy data, the algorithm’s

accuracy significantly deteriorates.

4.2.3 Roche and Avilla’s method

According to the template-based strategy, this method [70] operates similarly to Daugman’s.

It receives a grayscale image, applies the histogram stretch and maximizes the average

intensity differences of five circumferences with consecutive radius values:

D =
∑
m

( 5∑
k=1

(In,m − In−k,m)
)

(4.3)

where Ii,j = I(x0 + i∆rcos(j∆Θ), y0 + i∆rsin(j∆Θ)). ∆r and ∆Θ are the increments

of radius and angle and I(x, y) is the image intensity.

In practice, this method searches in the N3 space for three circumference parameters

(center (x, y) and radius r) where the difference between the average intensity of five

successive circumferences is maximal.
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4.2.4 ’ Method

Proposed in 1997, this method [120] performs its contour fitting in two steps. First, the

image intensity information is converted into a binary edge-map. Second, the edge points

vote to instantiate particular contour parameter values.

The edge-map is constructed through the gradient-based Canny edge detector. In order to

incorporate directional tuning, the image intensity derivatives are weighted to favor ranges

of orientation. For example, in the localization of the scleric iris border, the image deriva-

tives are weighted to be selective for vertical edges, due to common obstructions in the iris

upper and lower extremes, which are the ones with highest horizontal derivatives. Further,

the form fitting is made through the well known circular Hough transform, where each edge

point votes for particular contour parameter values.

This is clearly the most common method in the iris segmentation literature, having

as main disadvantage its dependence of thresholds in the edge-map construction. This

constitutes one weak point regarding robustness, required by the non-cooperative image

capturing setting. In the experiments we observed that the used edge detector algorithm

and their required parameters are critical factors for accuracy. As possible optimizations,

we tested two distinct edge detectors: Shen and Castan [104] and Zero-Crossing [69]. The

obtained results are described in section 4.3.4.2.

4.3 Proposed Iris Segmentation Method

As above described, common iris segmentation methods either apply an edge detector

operator to construct the edge-map or analyze some derivatives of the image intensities,

usually with respect to the radius of consecutive circumferences. Both situations are highly

sensitive to the specific characteristics of each image, its brightness and contrast, as well as

of the existence of noisy iris regions. This high sensitivity was the main motivation behind

our purpose of develop of a more robust iris segmentation method.

First, the extraction of information less susceptible to such noise regions and hetero-

geneous images characteristics is a requirement. The extracted feature set should contain

enough information to discriminate between the pixels belonging to the iris and the remain-

ing ones, maintaining small sensitivity to noise.

Moment functions are widely used in various realms of computer vision and image

processing. Numerous algorithms and techniques have been developed using image mo-
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ments in the pattern recognition area. Tuceryan [113] found that the image moments could

capture important textural properties. In addition, we observed that some of the tested

images were very similar in terms of the texture to those that we have to deal with. For

these reasons, we started by the experimental evaluation of this method on images of the

UBIRIS database and later used it as basis for the development of a more robust iris image

segmentation method.

4.3.1 Tuceryan’s Segmentation

Tuceryan proposed a moment-based texture segmentation algorithm [113], using the mo-

ments computed in small image windows as texture features, and further applyed a cluster-

ing algorithm to segment the image. The second order regular geometric moments for each

image pixel are defined as:

Mpq =

W/2∑
−W/2

(

W/2∑
−W/2

(I(m, n)xp
myq

n)) (4.4)

where Mpq is the regular geometric moment of order pq, I(m, n) is the pixel image

intensity, x, y and W are respectively the neighborhood window coordinates and width.

After finding that these regular moments do not have sufficient discriminant capacity, the

author proposed the application of the hyperbolic tangent as nonlinear transducer, followed

by an averaging step:

Fpq(i, j) =
1

L2

∑
(a,b)∈Wij

(tanh(σ(Mpq(a, b)− M̄)) (4.5)

where Fpq is the feature image of the Mpq moments with mean M̄ and Wij is an W ×W

average window centered at location (i, j). σ is a parameter that controls the shape of the

logistic function and was determined, by trial and error, as 0.01 for most cases.

The classification stage was accomplished through the well known clustering k-means

algorithm, producing as output the n-clusters labeled image.

4.3.2 Our Method

The proposed segmentation algorithm is given in the block diagram of figure 4.2. Its ratio-

nale consists in make the edge-map less susceptible to the specific image characteristics. We
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achieve this by producing a normalized (clustered) intermediate image, that is later used by

the edge detector. As this image is more homogeneous and has smaller number of intensities

than the original, it facilitates the tuning of the required edge detector parameters, allowing

the construction of more accurate edge-maps. Obviously, this facilitates the task of the form

fitting algorithm and potentiates the accuracy of the segmentation task.

Captured image

Feature

extraction

(x, y, I(x, y)) Fuzzy

clustering

Clustered image

Canny edge

detector

Edge-map

Circ. Hough

transform

Segmented image

Figure 4.2: Block diagram of the proposed iris segmentation method.

The process begins by the image feature extraction, where three discrete values (column,

row and intensity) are extracted from each pixel. Further, the clustering algorithm labels

(classifies) each pixel, producing the intermediate image. This image is used by the edge

detector to produce edge-maps less susceptible to noise image factors. More accurate edge-

maps propitiate higher accuracy of the circular Hough transform and, as the experiments

described in section 4.3.4 report, significantly improves the robustness of the segmentation

process, even on highly heterogeneous images and with large noisy iris regions.

4.3.2.1 Feature Extraction

We performed several tests (figure 4.3) to select the best feature set by evaluating the ca-

pacity of simultaneously localize the iris regions and minimize the noise, related essentially

with obstructions (due to eyelids and eyelashes) and reflections (specular and lighting).

We concluded that three discrete components {x, y, I(x, y)}, where (x, y) are the coor-

dinates of the pixel position and I(x, y) the correspondent pixel intensity, can characterize

each pixel and propitiate a correct segmentation. This feature set, hereinafter named ”Pixel
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position + intensity”, preserves information about the spacial relations in the image (pixel

position), as well as about the individual properties of each pixel (intensity).

(a) Pixel position + pixel inten-

sity.

(b) 6 Moments. (c) Pixel position + 6 Moments.

(d) Moments F20 + F02 . (e) Pixels position + Moment

F20 .

(f) Pixels position + Moment

F10 .

Figure 4.3: Clustered images produced using different feature sets.

The moments F20 and F02 proved to correctly identify the iris borders but also tend

to produce considerable noise in the eyelid regions. We found that this can be a relevant

obstacle to the posterior circumference fitting stage.

4.3.2.2 Clustering Algorithm

Regarding the clustering (classification) algorithm, the most important thing is its capacity

to discriminate, based on the available information, between the pixels that belong to the

iris and the remaining ones. With this purpose in mind, we evaluated the following four

unsupervised clustering and classification algorithms:

Kohonen’s Self Organizing Maps Also called topological ordered maps, the goal in this

algorithm is to represent all points in the source space by points in the target space,

such that distance and proximity relationships are preserved as much as possible.

The task is this: having an input space φ and a sequence of input points, to create a

mapping from φ to the target space y such that points neighboring in the source space

are mapped to points that are neighboring in y. The map is usually learned by a feed
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forward neural network, where each cell represents a point in the target space. When

a pattern from φ is presented, each cell in the target space computes its net activation

and one of them is activated. Further, all weights from this cell and its neighbors are

adjusted regarding the input pattern.

K-Means With a predefined number of k clusters and n data points, each one with di-

mension d, the algorithm begins by randomly initializing each coordinate of the k

clusters. The distance between data points and clusters is computed and one cluster

is activated for each input point. The weights of the clusters are adjusted regarding

the inputs, so that, at the end of each iteration, the distance between data points and

clusters is minimal. This process iterates until the cluster weights are not adjusted or

have minimal adjustments. At this point, the k clusters are returned as the algorithm

output.

Fuzzy K-Means In every iteration of the classical k-means procedure, each data point is

assumed to belong exactly and completely to one cluster. Relaxing this condition, we

can think that each sample has a fuzzy membership to each of the k clusters. These

memberships are equivalent to the probabilities P̂ (wi|xj, θ̂), where θ̂ is the parameter

vector for the membership functions, xj is the input vector and wi are the cluster

weights. The fuzzy k-means clustering algorithm seeks a minimum of a heuristic

global cost function Jfuz [5]:

Jfuz =
c∑

i=1

( n∑
j=1

(P̂ (wi|xj, θ̂)
b||xj − µi||2)

)
(4.6)

where b is a free parameter chosen to adjust the blending of different clusters and µi

are the clusters values. In practical terms, for each input presented, all the clusters will

have to adjust their weights, regarding the distance between the input and the cluster

weights, which are the probabilities that the input belongs to each cluster.

Expectation-Maximization The basic idea of this algorithm is to iteratively estimate the

likelihood given the data that is present. Suppose xi is the ith observation of the

random variable X . Let fj(x|θj), 1 ≤ j ≤ L be a set of L density functions, each

having its parameter set θj . The density function of the random variable X can be

modeled as a weighted sum of the L density functions as:
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Algorithm Feature Set Session 1, % Session 2, % Degr., %
K-means Pixel position + intensity 97.69 96.83 0.86

K-means Moments F20 + F02 92.33 89.14 3.19

SOM Pixel position + intensity 97.69 96.68 1.01

SOM Moments F20 + F02 95.14 90.95 4.19

Fuzzy k-means Pixel position + intensity 98.02 97.88 0.14

Fuzzy k-means Moments F20 + F02 93.90 90.04 3.86

Expectation-maximization Pixel position + intensity 96.86 95.17 1.69

Expectation-maximization Moments F20 + F02 92.17 89.14 3.03

Table 4.1: Accuracy of the experimented variants of the proposed iris segmentation method.

f(x|θ) =
L∑

j=1

(wjfj(x|θj)) (4.7)

where wj, 1 ≤ j ≤ L are the weights. The aim of the maximum likelihood (ML)

estimation is to find the set of θ and w that maximizes the likelihood function P (x)

with respect to the given data xi.

P (x) =
N∏

i=1

( L∑
j=1

(wjfj(x|θj))
)

(4.8)

The observed data is supposed to be a subset of the complete data y. The Ex-

pectation Maximization algorithm starts by using an initial estimate θ̂0 before per-

forming the following two steps at each iteration: expectation step: Q(θ, θ̂|θp) =

E(logf(y|θ)|x, θ̂p); and maximization step : θ̂p+1 = arg maxθ Q(θ|θ̂p).

Table 4.1 contains the obtained results by the combination between feature sets and

clustering (classification) algorithms. The information about the used iris images data set

and the way the results were obtained is detailed in section 4.3.4. These results led us to

select the fuzzy k-means algorithm and a feature set with three discrete features: (x, y) that

correspond to the pixel position and I(x, y) to its intensity. As can be seen, considering all

the evaluated algorithms, this configuration obtained the smallest degradation between the

first and the second capture-session images, thus presenting a more robust behavior when

dealing with noisy data.
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4.3.3 Optimizations to the Segmentation Method

After the decision about the feature set and classification algorithm of our proposal, we

tested several algorithm optimizations: the application of morphological, blur and histogram

operations in the preprocessing stage and several variants of the edge detector. These

optimizations are described in the following subsections and were respectively applied

before the feature extraction stage illustrated in figure 4.2 (morphologic and blur operations)

and in replacement of the Canny edge detector.

4.3.3.1 Morphologic Operations

The term morphological processing refers to certain operations where an object hits a struc-

turing element and is reduced to a more revealing shape [48]. The aim is to transform

the signal into a simpler one by removing irrelevant information and can be applied to

binary and gray level signals. Similarly, in the iris segmentation compass the aim is to

eliminate eventual noisy data and smooth the information with the purpose of facilitating

the segmentation.

Most morphological operations can be defined in terms of two basic operations: erosion

and dilation. The eroded image of an image I with respect to a structuring element S, is the

set of all reference points x for which S is completely contained in I:

I 	 S :=
⋃
{x : S + x ⊂ I} (4.9)

In short, starting from images with darker foreground than background, this operation is

achieved trough the replacing of every pixel in the original image by the maximum intensity

within a window centered at the analyzed pixel.

The dilated image of an object I with respect to a structuring element S, is the set of all

reference points for which I and S have at least one common point:

I ⊕ S :=
⋃
{x : S + x ∈ I} (4.10)

Similarly to the above operation, this is achieved through the replacing of every pixel

of the original image by the minimum intensity value of those located within a window

centered at the analyzed pixel.

Based on the dilation and erosion operations, we implemented the image opening and

closing and evaluated the improvements in the segmentation accuracy. Opening and closing
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are dual: the first corresponds to the image erosion followed by image dilation and the latter

to the opposite (image dilation followed by image erosion).

4.3.3.2 Blur Operations

It is expectable that the iris images captured within non-cooperative environments contain

high frequency information correspondent to noise and irrelevant information, such as some

of the factors presented in section 2.2.4.4. Blur operations, that basically consist of low-

pass filters that remove the higher frequency components of the images, are a very common

technique typically applied in the preprocessing stage to facilitate the segmentation task.

In this context, we implemented and tested the following blur operators: Gaussian [48],

Median [48] and ISEF [104] low-pass filters.

4.3.3.3 Histogram Operations

Histogram Equalization

This operation is widely used in image processing, in order to get some normalization

of the images characteristics. It reassigns the intensity value of the pixels based on the

image histogram. Individual pixels retain their intensity order, that is, they remain brighter

or darker than other pixels, but the values are shifted, so that an equal number of pixels have

each possible brightness value. Let j be the intensity value of a pixel in the original image.

The new value k is given by:

k =

j∑
i=0

Ni

T
(4.11)

where Ni is the number of pixels with intensity value i and T is the number of pixels that

the image contains.

Histogram Stretch

This is a contrast enhancement technique that spreads the pixels’ intensity to the upper

and lower limits of the scale (usually 0 and 255 in grayscale images). It attempts to improve

the contrast of an image by spreading the range of intensity values to span a desired range

of values - e.g. the the full range of pixel values that the image type allows. Let m and M

be respectively the minimum and maximum intensity values of the original image and j be

the intensity value of a pixel in the original image. The new intensity value k is given by:
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k = S ∗ (j −m)

(M −m)
(4.12)

where S is the maximum allowable value according to the image representation, usually

255 in grayscale images as the ones that we have to deal with.

4.3.3.4 Edge Detection Algorithms

Canny Edge Detector

The Canny [12] edge detector is commonly considered the optimal edge detector opera-

tor. It receives a grayscale image and outputs a binary map correspondent to the identified

edges. It starts by a blur operation followed by the construction of a gradient map for

each image pixel. A non-maximal suppression stage sets the value of 0 to all the pixels of

the gradient map that have neighbors with higher gradient values. Further, the hysteresis

process uses two predefined values to classify some pixels as edge or non-edge. Finally,

edges are recursively extended to those pixels that are neighbors of other edges and with

gradient amplitude higher than a lower threshold.

In the iris segmentation literature it is common to weight differentially some edge di-

rections. This operation is accomplished through the multiplication of the horizontal and

vertical derivatives by values in the [0,1] interval. As an example, in the detection of the

scleric iris border, which usually is obstructed by eyelids and eyelashes in the regions with

higher horizontal gradient values, the vertical directions are usually privileged with weight

values close to 1.

In the experiments, the implemented algorithm receives the following arguments:

Upper threshold This parameter is used in the hysteresis operation. Sets the higher values

of the gradient map to be considered as edge points.

Lower threshold In the hysteresis operation pixels with gradient values lower than this are

immediately considered as non-edge points.

Gaussian kernel dimension As above referred, in order to remove high frequency infor-

mation, the algorithm starts with a blur operation in the image. The power of this

operation is determined by the width of the Gaussian kernel used in the bi-dimensional

image convolution. The higher is the kernel dimension, the lower will be the resultant

frequency components in the blurred image. This parameter has strong influence in
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the overall computation time, since higher values significantly increase the computa-

tion time.

Sigma of the Gaussian kernel This parameter defines the standard deviation of the bi-

dimensional Gaussian kernel. Higher values increase the power of the blur operator

and result in less number of detected edges.

Vertical edges weight This is used to weight the vertical derivatives in the gradient map

construction. It is usually in the [0, 1] interval and is multiplied by the vertical

derivative value.

Horizontal edges weight Similarly to the above parameter, it is the correspondent regard-

ing the horizontal derivatives. It must be noted that, usually, the sum of the vertical

and horizontal weight values must be equal to 1.

Shen-Castan Edge Detector

This operator [104] receives a grayscale image and outputs a binary map correspondent

to the identified edges. It starts by the removal of the higher frequency information, usually

correspondent to noise, followed by the edge detection through a Laplacian-based kernel.

The resultant intensity values are compared and edges are detected according to the a priori

user defined proportion of edges in the image. The implemented algorithm receives the

following arguments:

Width of the gradient kernel This is used to smooth the image by the Laplacian kernel. It

has strong impact in the final computation time, which is directly proportional to the

width of the kernel.

Smoothing factor This value is applied in the ISEF [104] blur operation and determines

the amount of information correspondent to the higher frequencies that are removed

in the preprocessing stage.

Edge ratio This parameter is used after the application of the Laplacian kernel. It is closed

in the [0,1] interval and dictates the proportion of pixels that are classified as edges.

Zero-Crossing Detector

This is a well known and widely used edge detector [69] used in common image process-

ing. It starts by the bi-dimensional convolution of the image with a Gaussian kernel,
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followed by an approximation to the gradient through a Laplacian filter. Edges are identified

as the points with changes in the gradient signal. We implemented an optimized version

that uses an hysteresis-like process to expand the edge-map and to constrain the minimum

number of connected pixels that are considered as part of the edges. It receives the following

parameters:

Filter dimension This value determines the width of the Gaussian and of the Laplacian

kernels, respectively used as low-pass filter and gradient estimator.

Gaussian kernel sigma Higher values of this parameter reduce the number of identified

edges. As in the above described Canny edge detector, the Gaussian kernel is used to

remove the higher frequency components, that are commonly correspondent to noise.

Minimum of connected pixels This parameter defines the minimum number of pixels that

must be connected, either using 4 or 8 neighboring, to be considered as part of an

edge.

Upper threshold This parameter is used in the hysteresis process to a priori classify as

edge the pixels with higher gradient amplitude.

Lower threshold Similarly to the above parameter, it classifies the pixels with lower gra-

dient amplitude as non-edge.

4.3.4 Experiments and Discussion

In the experiments we evaluated the accuracy of the above described segmentation processes

in the chosen data set. For every image, we started by the detection of the scleric border

followed by the pupillary border. We assumed that both have circular form, thus, each

one is completely defined by its center (x, y) and radius r values. Further, we overlapped

the detected circumferences and the respective iris image and evaluated the segmentation

accuracy by visual inspection.

We considered the segmentation as accurate exclusively when both circumferences, cor-

respondent to the pupillary and scleric borders, fall exactly into the respective iris borders,

as illustrated by figures 4.4a and 4.4b. Oppositely, figures 4.4c and 4.4d exemplify failed

segmentation processes, respectively due to iris extreme eyelids obstructions and large

reflection areas in the iris and pupil regions.
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(a) Accurate iris segmen-

tation.

(b) Accurate iris segmen-

tation.

(c) Failed iris segmen-

tation induced by eyelid

obstructions.

(d) Failed pupil segmen-

tation induced by spec-

ular and lighting reflec-

tions.

Figure 4.4: Examples of segmented iris images from the UBIRIS database.

4.3.4.1 Data Sets

As stated above, segmentation plays a crucial role in the overall success of the recognition

system. Being the first stage of the recognition process, it must directly deal with the noise

factors and heterogeneous characteristics of the images, thus attaching higher relevance to

robustness. After the analysis of the available iris image databases, that are described in

chapter 3, we chosen the 1877 images from the UBIRIS database. Thus, the data set

used in the segmentation experiments - UBIRISseg - is comprised by all the 1877 images

of the database. The statistical information about the quality of the images and the main

characteristics of the data set are, respectively, described in chapter 3 and appendix B.

4.3.4.2 Results

The obtained results are given in table 4.2. The first column identifies the method, the

second specifies eventual parameter modifications, where ”HEP”, ”MOP” and ”TP” respec-

tively stand for ”histogram equalization preprocess”, ”morphological opening preprocess”

and ”threshold preprocess”, operations that were described in section 4.3.3. The third and

forth columns contain the results obtained in images of the first and second image capture

sessions. These values are expressed in percentage and correspond to a 95% confidence

interval. The fifth column denotes the accuracy deterioration between the images of the first

and of the second session and, finally, the last column shows the average computation time

of each method (in seconds).
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Method Parameters Session 1, % Session 2, % Degr., % Tm., s
Daugman - 95.22 ± 0.02 88.23 ± 0.03 6.99 2.73

Daugman HEP 95.79 ± 0.01 91.10 ± 0.02 4.69 3.01

Daugman MOP 93.18 ± 0.01 90.91 ± 0.02 2.27 3.27

Daugman TP (128) 96.54 ± 0.01 95.32 ± 0.02 1.22 2.92

Wildes - 98.68 ± 0.00 96.68 ± 0.01 2.00 1.95

Wildes HEP 98.74 ± 0.00 95.62 ± 0.01 3.12 2.23

Wildes MOP 98.68 ± 0.00 96.68 ± 0.01 2.00 2.48

Wildes
Shen and Castan edge detector

96.29 ± 0.01 95.47 ± 0.02 0.82 2.49

Wildes
Zero-crossing edge detector

94.64 ± 0.01 92.76 ± 0.02 1.88 2.51

Camus and Wildes Number of directions=8 96.78 ± 0.01 89.29 ± 0.03 7.49 3.12

Camus and Wildes HEP, number of directions=8 95.81 ± 0.01 88.31 ± 0.03 7.50 3.42

Camus and Wildes MOP, number of directions=8 95.60 ± 0.01 88.05 ± 0.03 7.55 3.71

Martin-Roche et al. - 77.18 ± 0.03 71.19 ± 0.04 5.99 2.91

Martin-Roche et al. HEP 78.21 ± 0.03 72.45 ± 0.04 5.76 3.20

Martin-Roche et al. MOP 78.10 ± 0.03 72.28 ± 0.04 5.82 3.38

Tuceryan Total clusters=5 90.28 ± 0.02 86.72 ± 0.03 3.56 4.81

Proposed Method - 98.02 ± 0.01 97.88 ± 0.01 0.14 2.30

Proposed Method HEP 98.28 ± 0.01 98.91 ± 0.01 0.37 2.60

Proposed Method MOP 97.90 ± 0.01 97.18 ± 0.01 0.72 2.81

Table 4.2: Comparison between the accuracy of the tested segmentation algorithms and our

proposal in images of the UBIRIS database.

In the context of non-cooperative recognition, the most relevant value is the accuracy

degradation as function of the images’ quality. We observed that our method is clearly less

dependent of the image characteristics, since it presented the smallest accuracy degrada-

tion between both sessions - just about 0.14%. This is in contrast with all the remaining

methods, specially those proposed by Martin-Roche et al. [70], Daugman [18] and Camus

and Wildes [11]. It must be stressed that our method is the one that presented the highest

accuracy on images from the second session, indicating that it is well adapted to deal with

noisy images.

Wildes’ [120] method achieved the best results in absolute terms, having 98.74% ac-

curacy on the first session images. However, as the image quality decreases, its accuracy

degraded more than 2%. This fact may indicate that, if we incorporate other noise factors,

its accuracy will be strongly affected, which discourages its use in the non-cooperative

setting. The implemented variants of this method, both the preprocessing methods and the
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alternative edge detection algorithms, didn’t get significant improvements when compared

to the original method.

Daugman’s [18] method has one important advantage: it is not dependent of any pa-

rameter value. This fact may, in theory, potentiate its robustness, but the results showed

that its accuracy is influenced by the images quality, namely the requirements of a sufficient

separability between the intensities of the iris and sclera regions. Specially in the iris images

with higher intensity values (blue or green irises), where the intensity difference between the

iris and sclera regions is not as large, the method’s seek strategy for the maximal difference

between consecutive circumferences tends to identify regions tangent to the pupil region,

which have considerable high contrast.

The approaches similar to Daugman’s, such as Camus and Wildes [11] and Martin-Roche

et al. [70], presented similar problems. These methods proved to be effective on good

quality images, but significantly deteriorated their accuracy when the iris contains large

reflection areas or significant eyelids and eyelashes obstructions.

Regarding the Tuceryan method [113], the fact that it was not specifically thought for

iris recognition can probably explain that its average accuracy was about 7% worst than the

specific iris segmentation proposals. Apart from this, the accuracy degradation (around 4%)

was in both cases higher when compared with other approaches. Moreover, as figure 4.3

illustrates, we concluded that the geometric moments do not have sufficiently discriminant

capacity to distinguish between the iris regions, inducing frequently the failure in the seg-

mentation.

Finally, regarding the tested optimizations to the proposed methods, we observed that,

apart from small and circumstantial improvements in some of the methods, none of them

proved to consistently contribute for the improvement of segmentation’s accuracy and ro-

bustness.

Computation Time

All the algorithms were implemented in C++, following an object-oriented paradigm,

running in an image processing framework developed by the authors and described in

appendix A. This framework is clearly not optimized for execution speed, as the algorithm’s

implementation was made without these concerns, but instead with a user-friendly objective.

The ”Time” column of table 4.2 contains the average execution time from each of the

tested segmentation processes. These values were obtained by averaging 100 segmentation

processes on 100 random chosen UBIRIS images. Regarding these values, we observed
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that the classical edge detection followed by circumference fitting algorithm (Wildes) is

more efficient than all the remaining ones.

Our proposal’s computation time is about 17% higher than that of Wildes’ algorithm,

These 17% are used in the feature extraction and clustering process. We consider that with

proper algorithm optimization this computation time gap (about 0.3 seconds) will become

irrelevant.

4.3.5 Conclusion

In the latter sections we described the challenging task of iris segmentation, which gains

higher relevance in the context of the non-cooperative image capturing. We presented

some of the most cited methods in the iris segmentation literature and used UBIRIS [89]

database to show that they are strongly dependent of the specific image characteristics and

noise factors, yielding a low robustness level.

On the basis of this fact, we proposed a new iris segmentation method that consists on

the selection of three discrete features followed by the application of the well known fuzzy-

clustering algorithm. This produces an intermediate image that tends to be more homo-

geneous, even on images captured within highly dynamic environments. Our experiments

showed that, for these non-optimal images, the creation of an intermediate labeled image

improves the segmentation robustness and is, therefore, adequate for the application on the

non-cooperative iris recognition setting.

4.4 Segmentation Inaccuracies

The dynamics of the image capturing environments can easily contribute to the existence of

segmentation inaccuracies. Moreover, we experimentally found that a significant number

of the recognition errors were due to inaccurate iris segmentation. Based on these facts, we

analyzed the relationship between the accuracy of the iris segmentation and the error rates

of typical recognition proposals. In order to achieve this, we implemented the following

process:

1. Selection of 2000 images from the UBIRIS [89] and CASIA [44] databases. Verifi-

cation, by visual inspection, that the used segmentation algorithm is able to accurately

segment all the images.
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2. Feature extraction 1. Extraction of the iris signatures, according to three distinct

feature extraction methods that represent the most common iris recognition proposals.

3. Feature comparison 1. Comparison, through the Hamming distance, between the iris

signatures extracted from the same data set.

4. Introduction of segmentation inaccuracies. Change in the implementation of the

segmentation algorithm, in order to less accurately detect the iris borders.

5. Feature extraction + comparison 2: extraction and comparison of the resulting signa-

tures, as described in steps 2 and 3.

We stress that this analysis is independent of the choice of the segmentation algorithm, as

we manually verified that the one used was able to accurately identify both the iris borders

of all data set images. On the other hand, it is dependent of the three tested feature extraction

strategies ([18], [1] and [67]), that have as common points the utilization of normalized and

dimensionless iris images and the extraction and comparison of binary iris signatures.

4.4.1 Types of Segmentation Inaccuracies

The used iris segmentation method approximates both the scleric and pupillary borders

as circumferences. Therefore, each border can be defined by its center coordinates (x, y)

and radius r. Let (xd, yd) and rd be respectively the center coordinates and radius of the

circumference detected by the segmentation algorithm. Also let (xt, yt) and rt be similar

circumference parameters of the real iris border.

Through software changes in the implementation of the segmentation algorithm, we

introduced two types of errors:

Translation Errors: we defined a translation error with amplitude of p pixels when |xd −
xt|+ |yd−yt| = p. It occurs when the center of the detected circumference is deviated

p pixels from the center of the true circumference. Figures 4.5a and 4.5b exemplify

translation errors, respectively on the pupillary and scleric borders.

Scale Errors: as illustrated by figures 4.5c and 4.5d, scale errors occur when the detected

and the real circumferences have different radius values. If |rd − rt| = p then we

defined it as a scale error with amplitude of p pixels.
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(a) Translation error on the segmented

pupillary border.

(b) Translation error on the segmented

scleric border.

(c) Scale error on the segmented pupil-

lary border.

(d) Scale error on the segmented scelric

border.

Figure 4.5: Examples of inaccurately segmented iris images.

As figure 4.5 illustrates, these two types of errors on each iris border enable the appear-

ance of four distinct segmentation errors: translation errors on the scleric border, translation

errors on the pupillary border, scale errors on the scleric border and scale errors on the

pupillary border. Other types of errors, such as those that can be expressed as a combination

of the previously defined, were not the subject of this analysis.

4.4.2 Experiments and Discussion

The segmentation stage was accomplished through the method proposed by Wildes [120].

In order to enable the experiments, we manually verified that this algorithm accurately

detected the pupillary and scleric iris borders of all images of the data sets. The cartesian

to polar transformation was made through the Daugman rubber sheet [18], that produces a

dimensionless polar representation of the iris with fixed dimensions of (512 × 64) pixels

(width × height).

Three distinct feature extraction methods were implemented. They are described re-

spectively in [18], [67] and [1] and have as common point the production of binary iris

signatures, which enabled the comparison through the Hamming distance, as described

in [18].

4.4.2.1 Data Sets

In order to analyze the impact of segmentation inaccuracies both in highly and less noisy iris

images, we constructed two data sets (UBIRISina and CASIAina) composed respectively

by 1000 images of the UBIRIS and 1000 images of the CASIA databases. We selected

10 images from 100 subjects, enabling respectively 4500 and 495000 intra- and inter-class
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comparisons. Images of the UBIRIS database have fixed dimensions of 400 × 300 pixels

(width × height) and horizontal and vertical resolution of 300 dpi. The irises have radius

values between 80 and 100 pixels and the pupils between 15 and 35 pixels. Images of

the CASIA database have 320 × 280 pixels (width × height) and horizontal and vertical

resolution of 96 dpi. The iris radius have values respectively between 87 and 110 and the

pupils between 20 and 45 pixels. Other characteristics of the UBIRISina and CASIAina

data sets are given in appendix B.

4.4.2.2 Results

When comparing two iris signatures through the Hamming distance, a dissimilarity mea-

sure comprised in the [0,1] interval is produced, which is directly proportional to the com-

pared irises dissimilarity. At each iteration of our experiments, we made all possible intra-

and inter-class comparisons between iris signatures, while varying the accuracy of the

segmentation algorithm.

Table 4.3 contains the average values obtained in the intra- and inter-class compar-

isons between images of UBIRISina and CASIAina data sets. ”Avg. Intra-Class” and

”Avg. Inter-Class” correspond respectively to the average dissimilarity between signatures

extracted from the same and from different irises. ”Std. Intra-Class” and ”Std. Inter-

Class” indicate the respective standard deviations. ”FRR, FAR=0” corresponds to the false

rejection rates when the false acceptances were minimized and, finally, ”EER” corresponds

to the approximated equal error rate.

Not surprisingly, the highest separability between the intra- and inter-class comparisons

was observed with accurate iris segmentation. Interestingly, we found that translation errors

in the pupillary border have the strongest impact in the recognition’s accuracy. In this case,

the existence of minor translation errors - just above 1 pixel - significantly increased the

false rejection rates and deteriorated the overall accuracy of the recognition system.

Regarding the scleric iris border, we observed a much more tolerant behavior of the

recognition processes to segmentation inaccuracies in this border, which can be explained

by two reasons: first, the interior part of the iris contains the majority of the information

used in the recognition and, second, the process that makes the transformation from the

cartesian to the polar and dimensionless coordinates system takes the pupil center as basis

for its operations.
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Segmentation Error Avg. Intra-Class Std. Intra-Class Avg. Inter-Class Std. Inter-Class FRR, FAR=0, % EER, %

CASIA UBIRIS CASIA UBIRIS CASIA UBIRIS CASIA UBIRIS CASIA UBIRIS CASIA UBIRIS

No error 0.158 0.180 0.002 0.005 0.412 0.392 0.001 0.001 0 0 0 0

Translation error on the pupillary border

1 pixel 0.173 0.233 0.003 0.005 0.414 0.394 0.002 0.002 2.086 16.831 1.530 8.300

2 pixels 0.190 0.284 0.004 0.006 0.415 0.403 0.002 0.003 2.277 22.081 3.306 8.599

3 pixels 0.220 0.318 0.003 0.007 0.414 0.413 0.003 0.002 6.207 40.922 4.891 11.171

4 pixels 0.247 0.350 0.004 0.005 0.423 0.417 0.002 0.003 9.003 56.183 5.977 18.787

5 pixels 0.267 0.372 0.001 0.004 0.427 0.423 0.003 0.001 13.199 80.019 6.318 21.834

Translation error on the scleric border

1 pixel 0.173 0.189 0.003 0.000 0.414 0.392 0.002 0.001 0 0 0 0

2 pixels 0.190 0.202 0.004 0.001 0.415 0.397 0.002 0.000 0 0 0 0

3 pixels 0.220 0.208 0.003 0.001 0.414 0.397 0.003 0.001 0 0 0 0

4 pixels 0.247 0.208 0.004 0.001 0.423 0.397 0.002 0.001 0 0 0 0

5 pixels 0.267 0.221 0.001 0.001 0.427 0.401 0.003 0.001 0 0 0 0

10 pixels 0.290 0.256 0.001 0.002 0.427 0.401 0.003 0.001 2.093 10.119 1.318 3.494

Scale error on the pupillary border

1 pixel 0.170 0.183 0.001 0.000 0.419 0.392 0.002 0.001 0 0 0 0

2 pixels 0.181 0.200 0.002 0.001 0.417 0.394 0.002 0.001 0 0 0 0

3 pixels 0.187 0.211 0.001 0.001 0.421 0.402 0.003 0.000 0 0 0 0

4 pixels 0.209 0.233 0.001 0.003 0.421 0.404 0.002 0.002 0 4.380 0 1.992

5 pixels 0.211 0.245 0.001 0.004 0.424 0.412 0.003 0.000 1.133 20.173 0.372 6.295

Scale error on the scleric border

1 pixel 0.181 0.191 0.002 0.002 0.411 0.394 0.002 0.000 0 0 0 0

2 pixels 0.184 0.202 0.002 0.003 0.414 0.398 0.001 0.001 0 0 0 0

3 pixels 0.192 0.214 0.002 0.002 0.423 0.402 0.002 0.001 0 0 0 0

4 pixels 0.201 0.224 0.001 0.004 0.428 0.402 0.001 0.001 0 0 0 0

5 pixels 0.217 0.245 0.003 0.003 0.434 0.412 0.003 0.000 1.133 4.821 0 1.733

Table 4.3: Iris recognition results regarding the existence of segmentation inaccuracies.

Figure 4.6 illustrates a significant degradation in the recognition’s accuracy when we in-

troduced translation errors on the pupil segmentation, using the UBIRISina and CASIAina

data sets. The left histograms (figures 4.6a and 4.6c) correspond to accurate iris segmen-

tation and the right ones (figures 4.6b and 4.6d) to translation errors with amplitude of 3

pixels on the pupil segmentation. The darker and brighter bars correspond respectively to

the intra- and inter-class comparisons. It can be seen that the separability between both

types of comparisons was considerable reduced, which significantly increased the error

rates. Moreover, we concluded about an increase in the error rates directly proportional
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(a) Accurate segmentation in the UBIRISina data set. (b) Translation errors of 3 pixels in the pupillary border segmentation

(UBIRISina data set).

(c) Accurate segmentation in the CASIAina data set. (d) Translation errors of 3 pixels in the pupillary border segmentation

(CASIAina data set).

Figure 4.6: Comparison between the histograms of the signatures dissimilarities when

varying the accuracy of the iris segmentation.

to the amplitude of this type of segmentation inaccuracies. This can be confirmed by

figure 4.7, which contains a comparison between the receiver operating curves obtained

with translation errors on the pupillary border with amplitude of respectively 1 (continuous

line) and 3 pixels (dashed line).

4.4.3 Detection of Translation Errors in The Pupillary Border

Based on the above described observations, in this section we describe a method that iden-

tifies translation errors in the segmentation of the pupillary border. This method can be

helpful to avoid the continuation of the recognition process to further stages and, perhaps,
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(a) Receiver operating curves obtained in the CASIAina data set. (b) Receiver operating curves obtained in the UBIRISina data set.

Figure 4.7: Comparison between the ROCs obtained when varying the amplitude of the

segmentation inaccuracies in the pupillary border (continuous and dashed lines respectively

represent errors with amplitude of 1 and 3 pixels).

to redirect the iris images to alternative segmentation algorithms, specialized in such tasks

and, possibly, with higher computational requirements.

4.4.3.1 Proposed Method

When a translation error on the pupil segmentation occurs, a portion of the pupil will be

considered as belonging to the iris (figure 4.5a). Independently of the subjects’ age, gender

or ethnic group, the pupil is always darker than the iris and we used this as the rationale

basis of our method. Moreover, in the normalized and dimensionless iris image, the wrongly

identified portion of the pupil is located on the upper band of the image, as exemplified by

figure 4.8.

Figure 4.8: Normalized iris image with a translation error on the pupil segmentation.

Therefore, on the upper part of the normalized iris image we computed the average

intensity of the pixels located within windows of size w × w and noticed distinct dis-
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tributions of these values. On the accurately segmented irises, values were clearly more

homogeneous and an experimentally chosen threshold (T ) and window width (w) allowed

the discrimination between the accurately and inaccurately segmented pupils.

Formally, let I(i, j) be the intensity value of the pixel located at row i and column j of

the normalized iris image. Also, let A = {a0, a1, . . . , an−1}, be a set of average values,

where each ak is given by the following equation:

ak =
1

w ∗ w

w−1∑
i=0

( (k+1)∗w−1∑
j=k∗w

I(i, j)
)
. (4.13)

Let Avg be the average value of the elements of A: Avg = 1
n

∑
ak and T a threshold. If

there is an ak such that:

|ak − Avg| > (T ∗ Avg) (4.14)

then the image is classified as containing a translation error in the pupil segmentation. As

stated above, the rationale for this method is straightforward: the large separability between

the iris and pupil intensities makes it more probable that some ak computed within a window

where the majority of the pixels corresponds to the pupil is highly deviated from the Avg

value.

4.4.3.2 Results

The above described method was tested using the same data sets described in section 4.4.2.1.

Similarly to the previous experiments, we introduced translation errors on the pupil seg-

mentation and evaluated the method accuracy in the detection of these errors. Table 4.4

gives the obtained results. The first column specifies the amplitude of the translation error

(number of pixels). The second and third columns contain the information respectively

about the method’s false positives (FP, wrong classification of ”inaccurate segmentation”)

and negatives (FN, wrong classification of ”accurate segmentation”) and are expressed in

percentage.

The experiments led us to choose the values 0.3 for the threshold parameter T and 3

for the window width w. In this case, just about 0.38% of the reported bad segmentations

were wrongly classified. Even when the translation error is minimal (1 pixel), the proposed

method presented low error rates. For translation errors with amplitude higher than 1 pixel,



4.4. SEGMENTATION INACCURACIES 91

the error was equal to zero (all the translation errors were detected and none of the accurately

segmented was classified as inaccurate).

Translation error in the pupillary border, pix FP, % FN, %
0 0.38 0

1 0 2.19

2, 3, 4 and 5 0 0

Table 4.4: Results of the proposed method on the identification of inaccuracies in the pupil

segmentation

4.4.4 Conclusion

In the latter sections we analyzed the important role of the iris segmentation accuracy in the

overall recognition success. We used two different iris data sets that allowed us to observe

a significant increase of the error rates when the segmentation is inaccurate, either in highly

or less noisy images.

Moreover, having defined four types of segmentation inaccuracies, we observed the

highest increment of the error rates when the pupillary border is inaccurately segmented

(translation errors). In this situation, minimal errors with amplitude just above one pixel,

have strong impact in the false rejection rates, which essentially can be essentially explained

by the fact that common iris normalization methods take the pupil center as the reference

point for their task.

Based on this, we proposed a method for the detection of translation errors on the

pupil segmentation. This method can avoid that the recognition process continues and

that the system wrongly outputs a non-match, which is the typical answer when the iris

segmentation is not accurately performed. Simultaneously, the information about the rough

iris localization can be provided to alternative segmentation algorithms, perhaps with higher

computational requirements, in order to accurately perform segmentation.
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4.5 Summary

In this chapter we overviewed the most common iris segmentation methods and showed

a significant degradation in their effectiveness when dealing with noisy iris images, such

as those contained in the UBIRIS database. With the purpose of overcoming this lack

of robustness, we described our iris segmentation proposal and, through a comparison

between the results obtained in images of the UBIRIS database, concluded about its higher

robustness to noise factors, making it propitious for the application in the non-cooperative

setting. Further, in section 4.4 we analyzed the variability of the recognition errors regarding

the accuracy of the segmentation algorithm. Having observed a significant impact on these

when the pupillary border is not accurately segmented, we proposed a method that is able

to detect this kind of inaccuracies.



Chapter 5

Noise Detection

As stated above, it is highly probable that the captured irises resultant of non-cooperative

imaging environments contain several other types of information. This chapter is concerned

with the detection (localization) of these regions, which for our purposes are considered as

noisy. Having stressed the difference regarding the common meaning of noise in the general

image processing domain, we overview and establish a classification of the most common

noise detection methods in the iris biometrics compass. Further, we describe our proposal,

which is based in the extraction of eight well known features for each image pixel, followed

by the classification through a feed-forward neural network. As the experiments report, this

method proved its effectiveness and accuracy in images of the UBIRIS database. Later,

in section 5.5 we describe our first and intuitive approach to deal with noisy iris regions:

their replacing by new information obtained through interpolation of the noise-free ones.

However, we experimentally concluded that this procedure, commonly designated as image

inpainting, does not present relevant benefits to the recognition of noisy iris images.

5.1 Noise

Image noise can be defined as the degree of variation of pixel values caused by the statistical

nature of the detection process. Commonly, it refers to stochastic variations in the pixels’

intensities, rather than deterministic distortions such as shading or lack of focus. In the

digital image capturing, there are three common types of noise [72]:

- Random noise. This type of noise results of short exposure times or high ISO speed.

It is characterized by intensity fluctuations above and below the real image intensity

93
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and its pattern present highly variations, even with similar exposure settings.

- Fixed pattern. Includes the often called hot pixels, which intensities far surpass those

resultant of random noise and are usually due to long exposure times or low ISO

speed. The pattern associated with this type of noise is quite predictable, since it will

show similar distribution of the hot pixels in images captured in similar conditions.

- Banding noise. It is highly dependent of the digital capturing devices and appears

when the camera reads data from the digital sensor. It is most visible at high ISO

speeds, in shadows or when the image is excessively brightened.

However, as detailed in section 2.2.4.4, for the terms of our work and of this thesis

the meaning of noise is quite distinct: we considered as noisy the image regions that

correspond to any other types of information apart from the iris and are localized within

the region delimited by the pupillary and scleric iris borders. As they obstruct portions of

the iris texture, ideally they should not be captured because they significantly increase the

challenges of the biometric recognition itself. Moreover, in the iris recognition literature it

is common the reference to the term noise for all the information that obstructs portions of

the iris.

5.2 Noise Factors in Normalized Iris Images

In section 2.2.4.4 we detailed the most common types of information that obstruct the

iris texture captured within non-cooperative imaging settings. This section analyzes the

localization of these noise regions within the segmented and normalized iris image, which,

as described below, is the one used as basis for our noise detection proposal.

Figure 5.1 illustrates the most common noise regions that result of non-cooperative

imaging processes, either in the captured (figure 5.1a) and in the segmented and normalized

iris image (figure 5.1b). Eyelids and eyelashes obstructions are usual in the lower part

of the normalized images (numbers 1 and 2), corresponding to the upper and lower iris

extremes that are naturally obstructed by eyelid movement. Oppositely, since these are

determined by heterogeneous lighting conditions, both specular and lighting reflections are

highly disseminated across the irises and are in this example signalled with numbers 3 and 4.

Finally, the noise region signalled with number 5 is due to the inaccurate pupil segmentation,

that resulted in the wrong classification of a portion of the pupil as belonging to the iris.
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(a) Captured iris image.

(b) Segmented and normalized iris image.

Figure 5.1: Common types of noise in the captured and normalized iris images.

In the following section, we overview the most common proposals for the detection of

noise regions, either through the overall classification of the noise level of the iris images or

through the localization of each noise region within the irises.

5.3 Noise Detection Proposals

In order to avoid the problems originated by noise, some authors (e.g., Daugman [18])

propose to recognize individuals using exclusively portions of the iris, those where noise

factors are less probable.

Zhu et al. [127] and Kim et al. [54] proposed the equalization of the histogram of the

segmented and normalized iris image to reduce the effect of non-uniform illumination. The

latter proposed the utilization of morphological operators to detect isolated eyelashes.

Ma et al. [66] proposed a global iris image enhancement by means of local histogram

equalization and the removal of the high-frequency noise through Gaussian low-pass filter-

ing.

Motivated by the observed difference between the standard deviation of the intensity

values within small windows from noisy and noise-free regions, Nam et al. [79] and Du et

al. [29] proposed the computation of the standard deviations within small (3× 3 and 5× 5

pixels) windows. If the value is higher than a threshold, the central pixel of the window is

considered noise, providing the exact localization of each noise region within the image.
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Wildes [120] proposed the equalization of the histogram of the whole image and the

localization of the inferior and superior eyelids by means of an edge detector, followed

by the linear Hough transform. As other similar approaches, this implies a search in the

N5 space for the ellipses fitting task, which contributes to its poor performance and its

dependency of the threshold parameters used by the edge detector.

In [63] a global measure of the quality of the captured images is described by Ma et al.,

based on the analysis of its frequency distributions. Authors claim that noise-free irises have

relatively uniform distribution, as opposed to those with eyelid or eyelash obstructions. In a

posterior paper [64], they started by the image enhancement, through the subtraction of the

average intensity computed within small image windows, followed by the local equalization

of the histogram. They did not identify eyelashes or eyelids, having however concluded

that a substantial part of the observed false rejections were due to the eyelid and eyelash

obstruction (57.7%) and inaccurate iris segmentation (21.1%).

Kond and Zhang proposed [56] the classification of noisy iris regions directly in the

captured image. They identified the separable (isolated) eyelashes through the energy of

the convolution of the image with a bank of Gabor filters. The values that are lower than

a threshold correspond to the noise regions. Multiple eyelashes were identified through

the computation of the standard deviation within small regions of the image. Reflections

were classified as strong (identified with a simple threshold) and weak. The latter simply

correspond to transitions between the strong reflections and the noise-free areas and are

identified through an iterative algorithm that expands the strong reflections areas.

Motivated by the problem of the high false rejection rates, Vatsa et al. [116] proposed

the use of an edge detector followed by the linear Hough transform to detect eyelids and

eyelashes. This approach was also proposed with minor variants by Ives et al. [47] and

Huang et al. [38].

Based on the analysis of the energy resultant of the convolution between the image and

a group of Mexican-Hat wavelets at three different scales, Chen et al. [14] proposed both

local and global image quality measures. From our viewpoint, the database used was not

adequate for the effective test of the method, since it contains almost no reflections.

The purpose of Huang et al. [37] was the identification of four distinct types of noise:

eyelashes, eyelids, reflections and pupil. The basic idea is that there’s always some type of

edge between the noisy and the noise-free areas. All these edges were identified through an

illumination invariant measure (phase congruency).
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After analyzing each of the above mentioned proposals, we classified each one according

to the following parameters:

- Global versus local methods. Global methods seek for the classification of the whole

image, as poor focused or obstructed iris. Oppositely, local methods operate at the

pixel level and individually classify each one, additionally providing the localization

of each noise region within the iris images.

- Utilization of the captured versus the normalized iris image. Some authors propose

the noise identification (usually eyelids and eyelashes) before the normalization of the

segmented image. Oppositely, other authors perform first the iris segmentation and,

afterwards, analyze the noisy factors in the segmented and normalized iris image.

Noise Detection Method Global Local Captured Normalized
Daugman [18] X - X -

Zhu et al. [127] X X - -

Kim et al. [54] - X X -

Ma et al. [66] X - - X

Nam et al. [79] X - -

Du et al. [29] - X X X

Wildes [120] - X X -

Ma et al. [63] X - - -

Ma et al. [64] X - - X

Kong and Zhang [56] - X X -

Vatsa et al. [116] - X X -

Ives et al. [47] - X X -

Huang et al. [38] - X X -

Chen et al. [14] X X X -

Huang et al. [37] - X - X

Table 5.1: Overview of the noise detection and classification methods.

Table 5.1 establishes a classification of the studied noise detection proposals, according

to the above described parameters: the utilization of the captured or the normalized iris

image and the global or local noise classification, respectively at the image or at the pixel

level. The ”X” sign means that the proposal has the respective characteristic, and ”-” to

denotes the opposite.
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It must be stressed that, from our viewpoint, few efforts have been made in the de-

velopment and proposal of robust and effective methods to localize and handle noisy iris

regions. In fact, we observed that most of the proposals with the exclusive purpose of noise

localization are quite recent and we claim that this area deserves a lot of more attention from

the researchers community, as an answer to the robustness demands.

Based on the above described analysis and conclusions, we decided to focus our efforts in

the development of a noise detection proposal at the pixel level (local) using the normalized

iris image. First, the attempt to recognize noisy iris images demands the localization of

each noise region instead of the global image classification and, second, the utilization of

the captured image, which contains more information apart from the iris, will obviously

tend to decrease the method’s accuracy and increase its computational complexity.

5.4 Proposed Noise Detection Method

In the following sub-sections we describe the proposed method for the detection of noise

regions in normalized iris images, which, at the coarsest level, means the detection of any

other types of information apart from the iris in the segmented and normalized iris image.

As stated above, our method starts with the extraction of eight well known features for each

image pixel, followed by the classification through a fully connected feed-forward neural

network.

5.4.1 Feature Extraction

Centered at each pixel, we started by the computation of five commonly used statistical

measures in small image windows, as described by Randem and Husøy [98]: angular second

moment (ASM), entropy, contrast, energy and inertia. Further, we assigned the respective

measure to the pixel centered at each image window and constructed the respective statis-

tical images. Interestingly, we noticed that each of these images emphasize different types

of noise, as illustrated by figures 5.2b and 5.2c. In this situation, the inertia and entropy

images enhance distinct noise regions, respectively corresponding to eyelids obstructions

(figure 5.2c) and to lighting reflections (figure 5.2b), as can be observed in the original iris

image 5.2a.

With purposes similar to the authors of [37], we confirmed that the phase congruency

accurately identifies the relevant transitions between pixels’ intensities, while maintaining
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(a) Normalized and noisy iris image.

(b) Inertia image.

(c) Entropy image.

Figure 5.2: Example of the enhancement of noisy iris regions through different measures.

high independence from illumination changes. Later, in order to achieve spatial relationship

between image regions, we considered the position of each pixel in the normalized image

as a feature. Thus, for each pixel, we computed an eight-dimensional feature vector, with

the following components: (row, column, entropy, ASM , energy, contrast, inertia,

phase congruency).

5.4.2 Classification

The classification was accomplished through a fully connected feed-forward neural network

with one hidden layer. We selected 10 iris images from the data set and manually builded

binary maps, similar to the illustrated by figure 5.3, that were used as learning data (training

set). In this maps, the black pixels correspond to the detected noise regions and the white

ones to the noise-free regions of figure 5.1.

Figure 5.3: Noise regions of figure 5.1b.
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5.4.3 Experiments and Discussion

In the experiments, we compared our noise detection proposal with those proposed by

Huang et al. [37] and Chen et al. [14]. They were chosen due to the fact that they pro-

vide local noise measures, the claimed invariance to illumination changes and the results

presented by the authors.

5.4.3.1 Data Sets

The type of experiments described in this chapter demand the highest levels of noise in the

iris images, both of several types and of large dimensions. Due to these requirements, we

exclusively used images of the UBIRIS database and builded a data set - UBIRISnoi -

composed of 100 segmented and normalized iris images, together with the correspondent

binary maps that provide the localization of the noise regions. These noisy maps were

manually made through an image processing software and have similar appearance to the

one illustrated by figure 5.6a. The normalized iris images have fixed dimensions of 512×64

(width × height) pixels and their main characteristics are detailed in appendix B.

5.4.3.2 Results

First, regarding the optimization of our method, we experimentally chosen 7 × 7 windows

for the computation of the statistical measures described in section 5.4.1. Further, using the

same data set described in section 5.4.3.1, we randomly selected 20000 noisy and 20000

noise-free pixels, which represent just 0.12% of the whole data set. We proceed to the

feature extraction and used this data as the neural network training set. In order to optimize

the classification, we evaluated the neural network accuracy in the test data, when varying

each of the following parameters:

Number of neurons in the hidden layer Prior studies demonstrated that this number has

a strong influence on the neural network ability to optimally separate the data. Ac-

cording to this, we varied the number of neurons in the hidden layer and repeated the

learning process.

Maximum allowable error to stop the learning stage This value defines the desirable av-

erage error of the neural network when classifying the training data set. It is important

to overcome the possibility of the excessive specialization of the network on the

training data.
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Figure 5.4: Error rates of the neural network in the training data.

Figure 5.4 illustrates the obtained error rates in the training data set. The presented

values correspond to the average errors obtained after 10 repetitions of the learning process

for each configuration. The ”# Neurons” and ”Stop Learning” axis correspond respectively

to the number of neurons in the hidden layer and the minimum error value to stop the

learning process. The ”Error” axis contains the obtained error rates in the learning stage.

This allowed us to choose a neural network with five neurons in the hidden layer and stop

the leaning stage with error values below 0.03 (3%).

We tested our method in the detection of the noise regions of the data set images and

compared the results with the above described processes of Huang et al. [37] and Chen et

al. [14]. The evaluation of the results was made through the comparison with the correspon-

dent binary map of each image of the data set, which are described in section 5.4.3.1.

Table 5.2 contains a comparison between the accuracy of our method and those proposed

respectively by Huang et al. [37] and Chen et al. [14]. The first column identifies the

method and the second contains the obtained error rate in confidence intervals of 99% and

is expressed in percentage.

As can be observed, our proposal achieved a significant higher accuracy than the others

used in the comparison. However, its higher computational requirements must be stressed

and the fact that the other proposals were not thought to deal with the quantity of some of
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Noise Detection Method Error, %
Huang et al. [37] 14.61 ± 0.0501

Chen et al. [14] 20.83 ± 0.0570

Proposed method 2.74 ± 0.0232

Table 5.2: Comparison of the results obtained by the tested noise detection methods.

the noise factors that images of the data set contain. In fact, the images of the used data set

were much more noisy than those where the other proposals were tested by their authors.

5.4.4 Conclusion

In the latter sections, we proposed a method for the localization of noise regions in normal-

ized iris images. It is based on the extraction of six well known statistical image features

together the pixel position. In the classification stage we used a fully connected feed-

forward neural network with one hidden layer. Experiments led us to conclude that our

method has a much better performance (only 2.74% error) than the other methods used in

the comparison in highly noisy images of the UBIRIS database. However, this increase in

accuracy and effectiveness is obtained at the cost of an increase in the computational effort.

5.5 Image Inpainting

(a) Original image. (b) New image, resultant of the inpainting

technique.

Figure 5.5: Example of the results of one inpainting technique [4].
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Inpainting is a short term for what researchers in image processing call ”image interpo-

lation” [105]. Digital inpainting uses spatial or frequency information to restore partially

removed or damaged data from images in a visually plausible way. It can be used in photo

restoration, zooming, image coding, data recovery and special effects (e.g. removal of

objects) [106]. A number of algorithms specially address the image filling issue for the

task of restoration, removing speckles, scratches and overlaid text from images.

Several approaches considered texture synthesis as the most suitable way to fill regions

with textures. Other types of algorithms are exemplar-based techniques, which generate

new textures by sampling and copying color or intensity values from the source image.

As figure 5.5 illustrates, the use of image inpainting techniques allows the substitution

of corrupted or missing data in the original by new data, which ideally should preserve the

most important structural or textural properties. This makes this technique the most obvious

and intuitive in order to fill (replace) the noisy data, according to the textural properties of

the noise-free iris regions, as exemplified by figures 5.5a and 5.5b. Here, the regions to be

replaced by interpolated information are signalled by the white regions (figure 5.5a) and, as

can be observed in the resultant image (figure 5.5b), were filled by noise-free information

in a visually plausible way.

5.5.1 Experiments and Discussion

After studying some of the most common approaches for inpainting purposes, we selected

two of them and tested their effectiveness in the painting of noisy iris images. Our aim

consisted in evaluating the possibility that the localized noisy iris regions could be accept-

ably replaced by information from the noise-free regions. If this technique proved to be

valid, then the iris recognition algorithm could deal with the resultant images as if they

were absolutely noise-free.

Due to its extreme simplicity and low computational requirements, we implemented the

method proposed by Oliveira et al. [85]. In this paper, the authors proposed the simplest and

fastest inpaint algorithm, which consists of an iterative approach based on low-pass filtering

through Gaussian kernels.

Oppositely, having accuracy as the main concern, we selected the proposal of Criminisi

et al. [15]. Here, an algorithm for the removal of large objects from images is proposed,

through the construction a priority value for each pixel located in the border of the region to

be filled. This value is the key to define the inpaint order and, together with a block-based
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sampling process, achieves results that can be favorably compared with similar techniques.

However, it must be stressed the extreme computational requirements of this technique. In

fact, the processing of normalized iris images with 512 × 64 pixels lasted in average more

than six minutes, which obviously is not acceptable in the biometrics compass, but allowed

us to conclude about the maximum benefits that could arise from the inpainting technique.

In the experiments, we compared the separability between the intra- and inter-class

comparisons of the signatures extracted from each image of the data set, according to the

recognition process described in section 2.2.3.1. First, we extracted the biometric signatures

from the images as if they were completely noise-free. Further, before the feature extraction

stage, we used our noise detection proposal to localize the noise regions that are further

filled by the inpainting algorithms.

(a) Result of our noise detection proposal in image 5.2a.

(b) Result of the inpainting algorithm [85]applied to image 5.2a.

(c) Resultant of the inpainting algorithm [15] applied to image 5.2a.

Figure 5.6: Examples of the utilization of two inpainting techniques in a normalized and

noisy iris image.

As figure 5.6 illustrates, both of the inpainting processes replace the information corre-

spondent to noisy iris regions - signalled by the black regions - with interpolated information

from the noise-free areas. However, the filling plausibility of both algorithms is quite

different: the one of Oliveira et al. [85] has roughly filled the noise regions and the one

of Criminisi et al. [15] was much more visually plausible.
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5.5.1.1 Data Sets

In the experiments we used a data set - UBIRISinp - which is a subset of the UBIRIS

database, once again due to the high noise level of its images. We selected 400 images from

40 subjects, which enabled, respectively, 1800 intra- and 78000 inter-class comparisons,

and manually verified that the segmentation algorithm was able to accurately localize both

iris borders, preventing that segmentation errors contribute to the increase of the error rates.

The main characteristics of the data set are detailed in appendix B.

5.5.1.2 Results

The obtained results are illustrated by figure 5.7. Both sub-figures contain histograms of

the dissimilarities respectively between the intra- (dark bars) and inter-class (bright bars)

comparisons. Figure 5.7a contains the obtained results without the use of the inpainting

algorithm, when extracting the biometric signature from the noisy iris images as if they

were noise-free. Oppositely, figure 5.7b contains the obtained separability when the images

were previously processed by the algorithm proposed by Criminisi et al., before the feature

extraction and comparison stages. As the proposal of Oliveira et al. was essentially tested

due to its lower computational requirements and its results are worst than the other inpaint

method, we do not present the respective results. The horizontal axis represents the dis-

similarity values and the vertical axis the probability for the feature comparison with such

dissimilarity value.

(a) Without inpainting. (b) Using the inpainting algorithm proposed in [15].

Figure 5.7: Histograms of the dissimilarities between the intra- and inter-class comparisons

with and without the use of image inpainting techniques.



106 CHAPTER 5. NOISE DETECTION

These results showed strong evidence that no significant benefits arise of the inpainting

technique for the iris recognition purposes. Apart from this visual analysis, the recogni-

tion measures given in table 5.3 confirm our conclusion. The first column identifies the

inpainting technique, the second contains the values of a t-test given by:

τ =
µE − µI√
σI2

NI + σE2

NE

(5.1)

where µI and µE respectively indicate the mean of the intra- and inter-class dissimilar-

ities. σI and σE indicate the respective standard deviations and N I and NE are, respec-

tively, the number of intra- and inter-class comparisons. The third column contains the

approximated equal error rates and the forth contains the false rejections rates when the

false acceptances were minimized. The last two columns are in percentages.

Inpainting algorithm τ EER, % FRR, FAR=0, %
None 64.880 2.090 15.556

Oliveira et al. [85] 57.221 4.859 25.556

Criminisi et al. [15] 61.904 3.559 12.220

Table 5.3: Comparison of the results obtained with and without the use of inpainting

algorithms.

Finally, figure 5.8 contains a comparison of the ROCs obtained without the use of any

inpainting technique (continuous line) and with the use of the proposal of Criminisi et

al. [15] (dashed line). Once again, the analysis of both curves confirms the conclusion about

the useless of inpainting techniques in the filling of noisy iris information when trying to

recognize noisy iris images.

After the analysis of these results, we observed that the filling of the noisy iris infor-

mation through inpainting techniques is not advantageous to the iris recognition process.

Almost all parameters confirmed this assumption, specially the values of the t-test, which

reflect the average separability between the intra- and inter-class comparisons and tend

to be less sensitive to circumstantial features of the experiments’ data set. However, the

less common shape of the obtained ROCs, specially the significant reduction of the space

between the two curves as the values for the false acceptances decrease, should be analyzed

in the future.



5.6. SUMMARY 107

Figure 5.8: Comparison between the ROCs obtained with and without the use of the

inpainting technique [15].

5.5.2 Conclusion

The results presented in the latter section allowed us to conclude that the complexity of the

iris texture obstructed by noise regions can hardly be replaced through interpolation, as no

significant increment in the separability between the intra- and inter-class comparisons was

observed when replacing the noisy data by the interpolated (inpainted) one.

This conclusion was extremely important in the development of our work. After con-

cludeing that the noise or missing iris information can hardly be replaced through interpo-

lation of the noise-free data, we focused our efforts in the development of methods that deal

with noise in the feature extraction and comparison stages in the attempt to achieve noisy

iris recognition.

5.6 Summary

In this chapter we summarized the most common approaches for the detection and local-

ization of noise regions within iris images. After establishing a classification for those

proposals, we described a method for the local detection of noise regions in segmented and

normalized iris images. This is based on the extraction of six well known statistical image

features and the pixel position. We made the classification through a feed-forward neural

network with one hidden layer. Experiments led us to conclude that this method has a
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much better performance than the other methods for similar purposes, in spite of its higher

computational requirements.

Regarding the inpainting techniques, which were tested with the goal of replacing the

noisy iris data and enabling the feature extraction as if the iris data was completely noise-

free, they did not proved its effectiveness, allowing us to conclude that, for this purpose,

the noisy data can hardly be replaced through interpolation. This conclusion motivated the

proposals described in the next chapter, which focus on the recognition of iris images where

the noise regions are detected and localized.



Chapter 6

Noisy Iris Recognition

In the previous chapters we described our proposals to perform the segmentation of noisy

iris images and to localize each noise region within the normalized images. The conclusion

about the difficulty in replacing the noisy data through inpainting techniques, brings us to

the main subject of this chapter: the biometric recognition of iris images highly affected by

noise.

First, the probability of aliasing in the iris normalization stage is studied, which essen-

tially results from highly varying image capturing distances that determine the sampling

rates of the normalization process. Further, we describe our proposal for the measurement of

the quality of features, used to constraint the number of features that are taken into account

in the feature comparison stage. We also detail a feature selection method, that operates after

the physical installation of the imaging system and, through a learning stage where typical

images resultant of the imaging setting are processed, selects the higher discriminating

features, according to the environment specificities. Finally, our iris classification strategy is

described. It is based on the division of the normalized iris image into six regions and in the

independent feature extraction and comparison for each region, avoiding that localized noisy

iris regions corrupt the whole biometric signature. The classification is achieved through a

fusion rule applied to the results of the dissimilarity measures.

We should stress the independence between all of the proposals described in this chapter

and the feature extraction and comparison methods used for biometric recognition, which

constitutes a strong point regarding their applicability to multiple iris recognition strategies.

109
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6.1 The Aliasing Problem in the Iris Normalization Stage

The non-cooperative recognition setting is characterized by the highly dynamic and het-

erogeneous imaging conditions. Due to variations in the image capturing distances and in

the lighting conditions that influence the pupils’ size, the area of the regions correspon-

dent to the iris will have high variance. In order to compensate this variation, common

iris recognition proposals translate the segmented iris image into a double dimensionless

pseudo-polar coordinate system, in a process known as the iris normalization stage. As

described in section 2.2.2.2, this stage can be regarded as a sampling of the original data,

with the inherent possibility of aliasing. This section is devoted to the analysis of the relation

between the size of the captured iris images and the overall recognition accuracy. Our

experiments allowed us to determine the value of the iris normalization sampling rate above

which the recognition error rates significantly increase.

6.1.1 Iris Normalization Methods

Robust representations for pattern recognition must be invariant to changes in the size,

position and patterns orientation. In the biometric compass, an iris representation invariant

to changes in the distance between the eye and the capturing device, in the camera optical

magnification factor and in the iris orientation, caused by torsional eye rotation and camera

angles, must be accomplished. As described by Daugman [18], the invariance to all of these

factors can be achieved through the translation of the captured data into a double dimension-

less pseudo-polar coordinate system, which is by far the most common iris normalization

method in the literature and is detailed in section 2.2.2.2.

Yuan and Shi [124] proposed a slightly different iris normalization model, which com-

bines linear and non-linear methods to unwrap the iris region. They started by performing

a non-linear transformation of all iris patterns to a reference annular zone with a predefined

ratio of the radii of inner and outer boundaries of the iris. Further, this reference annular

zone is linearly unwrapped to a fixed-size rectangle block for subsequence processing.

In short, both normalization processes can be regarded as point sampling operators s(.)

of the original image I , defined by:

s(I) = (I(t1), I(t2), . . . , I(tn)), ti =
i

n
, i = 1, . . . , n (6.1)

However, for bi-dimensional sampling of the original data, there is a probability of
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aliasing and the correspondent data corruption and increase of the error rates.

6.1.2 Aliasing

Let I1 and I2 be two iris images similar to the Captured Image of figure 2.6. Also, let A(I)

denote the area correspondent to the iris ring in image I (Segmented Image of figure 2.6).

In the normalization stage s(.), as in any other point sampling operation, aliasing can occur

in two distinct forms:

- I1 and I2 are very dissimilar and s(I1) and s(I2) are highly similar. In the iris

biometric compass, this will increase the false acceptance rate, which is obviously

the most concerning type of error regarding security.

- I1 and I2 are very similar and s(I1) and s(I2) are are highly dissimilar, increasing the

false rejection rate, with the correspondent decrease in the users’ comfort.

Commonly, the normalized iris images have fixed dimensions of 512×64 pixels (width×
height), respectively in the angular and radial directions, thus A(s(I)) = 32768 pixels. The

sampling rate r of the normalization process s(.) can be given by the proportion between

both of the areas:

r =
A(s(I))

A(I)
=

32768

A(I)
(6.2)

where I is the captured iris image. In the following experiments, we varied the size of

the captured iris image (A(I)) and analyzed its influence in the accuracy of a common iris

recognition proposal. It will be shown that when r > 4, a strong increase of the recognition

error rates is observed, as a result of the aliasing occurred in the iris normalization stage.

Figure 6.1 illustrates the problem that we analyze in the following experiments. Here, the

capturing of an iris image with different dimensions and the correspondent normalization

to fixed dimensions of 512× 64 pixels is simulated. As can be seen, although the situation

is magnified for the purpose of illustration, the differences in the normalized images are

notorious, which increases the false rejections in the recognition task.

6.1.3 Experiments and Discussion

In the experiments we implemented the method described by Daugman [18], which is

composed by the four main stages detailed in section 2.2.3.1: iris segmentation, normal-
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(800× 600) pixels

(40× 30) pixels

Figure 6.1: Example of the potential problems associated with the iris normalization,

starting from varying sizes of the captured iris images.

ization, feature extraction and comparison. According to the author, the segmentation was

accomplished through the integro-differential operator that searches for both iris borders.

Feature extraction was performed through the use of two dimensional Gabor filters, followed

by a binarization process. Finally, feature comparison was made through the Hamming

distance.

6.1.3.1 Data Sets

The experiments described in this section are slightly different from others in this thesis.

More important than the noise factors that each database contains was the evaluation of

the recognition accuracy as function of the iris dimensions in the captured images. Due

to this, we chosen two data sets from the databases with most opposite characteristics:

UBIRIS and UPOL, respectively the noisiest and the completely noise-free ones. This

enabled the main purpose of the experiments, as well as the analysis of the recognition’s

accuracy, when simulating the image capturing with (UPOL) and without (UBIRIS) the

users’ cooperation.

The used data sets - UBIRISali and UPOLali - have respectively 130 and 132 images

of the UBIRIS and UPOL databases belonging to 13 and 44 subjects, for a total of

respectively 585 and 7800 and 132 and 8514 intra- and inter-class comparisons.

Table 6.1 contains statistics of the data sets. The first column identifies the data set,

the second specifies the initial dimensions of the images. The third and forth column

contain, respectively, the average pupil and iris radius. Finally, the fifth and sixth columns

correspond to the average area of the iris ring and the average sampling rate (6.2) of the
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Data set Image size, pix Pupil radius, pix Iris radius, pix Iris area, pix Sampling rate
UBIRISali 800× 600 51 185 99347 0.3298

UPOLali 768× 576 69 271 215758 0.1518

Table 6.1: Average areas of the regions correspondent to the iris ring in the data sets images

and average sampling rates of the iris normalization processes.

normalization processes, through the Daugman rubber sheet model. Although smaller than

the initial images of UBIRISali, the regions corresponding to the iris in the UPOLali data

set images are much larger, corresponding to larger iris areas and smaller sampling rates.

In order to avoid that segmentation errors corrupt the results, we manually verified that

the iris segmentation algorithm performed accurately in all images of both data sets. The

simulation of the varying dimensions of the captured iris images was accomplished through

bi-cubic resizing. Each image was resized from 100% to 10% of its original dimensions,

described in table 6.1.

6.1.3.2 Results

According to (6.2), figure 6.2 contains the relation between the average sampling rates of the

normalization processes and the dimensions of the captured iris images, respectively in the

UBIRISali (figure 6.2a) and UPOLali (figure 6.2) data sets. The horizontal axis specify

the size of the captured iris images in proportion with the images’ dimensions described in

table 6.1 (values are percent). The vertical axis contain the average sampling rate (6.2) of

the normalization processes of these images. A shape similar to an exponential function

can be observed, which means that a small decrease in the images dimensions imply an

high grow in the sampling rates of the normalization process. The vertical lines identify the

value for the dimensions of the images above which the error rates observed in the following

experiments significantly increased.

Figure 6.3 contains four measures of the recognition’s accuracy. The solid lines illustrate

the results obtained in the UBIRISali data set and the dashed lines those obtained in the

UPOLali data set. Again, the horizontal axis denote the dimension of the used images, in

proportion (percentage) with the ones described in table 6.1. The vertical lines correspond

to the identified threshold of 30%, from which the error rates significantly increase. Fig-

ure 6.3a contains the values for a t-test given by (5.1), figure 6.3b the approximated equal

error rates, figure 6.3c the percent values of the areas under the ROCs and, finally, figure 6.3d
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(a) Average sampling rate (r) from the images of UBIRIS

data set.

(b) Average sampling rate (r) from the images of UPOL

data set.

Figure 6.2: Average sampling rate (r) of the normalization process.

contains the values of the false rejections when the false acceptances were minimized.

It can be observed in figure 6.3a that the separability between the intra- and inter-class

comparisons, given by (5.1), remained with similar values until the area correspondent to the

iris in the captured image is below 50% of the dimensions described in table 6.1, either in the

UBIRISali and in the UPOLali data sets. However, when the area of the captured image

is below 30% of the initial dimensions, there is a significant decrease in the separability

between the intra- and inter-class comparisons, corresponding to sampling rates (6.2) higher

than 5. Above this value, we observed a significant increment of the error rates, specially

the false rejections (figure 6.3d), which led us to assume the occurrence of aliasing in the

iris normalization stage. Moreover, this degradation in the results was observed either in the

noisy and in the noise-free data sets, indicating that this problem has similar impact in both

cooperative and non-cooperative image capturing settings.

6.1.4 Conclusion

We analyzed the influence that the sampling rate used in the iris normalization stage has in

the overall accuracy of a common iris recognition proposal.

We observed no significant degradation in the accuracy when the sampling rates are lower

than 5. For higher sampling rates (correspondent to original images with iris area less than

30% of the normalized one), the error rates significantly increased, which indicates a strong

probability of the occurrence of aliasing. This increase of the error rates, specially the false

rejections, requires the development of alternate sampling/normalization processes, more

tolerant to variations in the dimension of the original data. Moreover, we stress that the
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(a) t-Test values. (b) Equal Error Rate (EER).

(c) Area Under the ROC. (d) FRR with FAR=0.

Figure 6.3: Recognition’s accuracy regarding the size of the images used in the segmentation

algorithm.

observed deterioration in the recognition’s accuracy is independent of the amount of noise

that the iris regions contain, since the values obtained for the minimum acceptable sampling

rates in the UBIRISali (noisy images) and in the UPOLali (noise-free images) data sets

were approximately equal.

6.2 Proposed Feature Quality Measure and Comparison

Method

As mentioned above, several proposals were made to access iris images quality and to

localize noise regions within the captured irises. In this section we propose a method that

measures the quality of each feature of the biometric signature and takes into account this

information to limit the comparable features in the computation of the similarity between

iris signatures. This measure is based on the proportion of noise pixels used in the extraction

of each feature and its main purpose is to avoid that features predominantly extracted from
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noise regions corrupt the biometric signatures. Experiments led us to conclude that this

method significantly decreases the error rates in the recognition of noisy iris images, which

makes it adequate for the non-cooperative setting.

6.2.1 Feature Quality

Our noise detection proposal, similarly to other local methods described in section 5.3,

produces binary maps correspondent to the segmented and normalized iris images. Here,

the noise regions are represented through the black areas and the noise-free regions through

white ones, as exemplified by figure 6.4. As can be seen, there is a discrimination between

the unobstructed iris areas and the regions correspondent to types of information other than

the iris.

(a) Segmented and normalized iris image, with significant noise regions correspondent to eyelids (1) and

eyelashes (2) obstructions and reflections (3).

(b) Detection of the noise regions of the image 6.4a.

Figure 6.4: Normalized noisy iris image and its correspondent binary noise map.

Our purpose is to produce a quality value - in the [0,1] interval - for each of the extracted

features. This value should reflect the proportion of noise pixels used in the computation

of the respective feature and will be helpful in the feature comparison, in order to avoid

the comparison of the noisiest features or assigning them a small comparison weight. As

described in the next section, this proposal is independent of the feature extraction method

used.

Its rationale is straightforward: at a coarse level, every extracted feature can be regarded

as a function of k image pixels (the original data). Thus, the proportion between the noise

and noise-free pixels used in the extraction of each feature provides a value between 0 and

1 that can be computed together with any feature extraction strategy.
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Let I be the segmented and normalized iris image and (x, y) ∈ N2 be the coordinates

of an image pixel. Let n((x, y)) : N2 → {0, 1} be the function that performs the binary

classification (noise or noise-free) for every pixel (x, y) of the image I:

n((x, y)) =

{
0 , I(x, y) is noise

1 , otherwise
(6.3)

Let F = {f1, . . . , fk} be the set of features extracted from the image I . Independently

of the feature extraction strategy, every fi is obtained having as basis Ni pixels of I . Let

Pi = {(xij , yij)} j = 1, . . . , Ni be the set of pixels’ coordinates used in the extraction of the

feature fi. We define the function q(Pi) : (N2
1× . . .×N2

N)→ [0, 1] that gives the quality of

the feature fi:

q(Pi) =
1

Ni

Ni∑
i=1

n(I(xi, yi)) (6.4)

This function q(.) gives the proportion of noisy data considered in the extraction of fi.

Through it, every extracted feature has a correspondent quality value, which is inverse to the

proportion of noisy pixels evolved in the creation of fi. Thus, for completely noisy (poorest

quality) and noise-free (optimal quality) features, the quality value will be respectively equal

to 0 and 1.

6.2.2 Feature Comparison

In the following discussion we will use a superscript to distinguish between two different

feature sets, such as, F1 and F2, and a subscript to distinguish between different features of

a feature set, such as, f 1
1 and f 1

2 .

The purpose of the feature comparison stage is to obtain a similarity value between two

feature sets (biometric signatures) - Fi and Fj - and enable a conclusion about the identity

of the subjects from which the features were extracted. Next, we describe the two tested

variants for the feature comparison stage: hard and fuzzy.

Regarding the hard feature comparison, features are considered for comparison only if

their quality value is higher than a threshold. Oppositely, in the fuzzy variant the comparison

is allowed for all features independently of their quality value and the result is weighted by

the average quality of the operands features.
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Formally, let Q0 and Q1 be two features sets with the respective quality values for each

feature: Qj = {(f j
1 , q(f

j
1 )), . . . , (f j

n, q(f j
n))}. The feature comparison function is given by:

fc(Q0, Q1) =

∑n
i=1 dist(f 0

i , q(f 0
i ), f1

i , q(f 1
i ))∑n

i=1 cnt(f 0
i , q(f 0

i ), f1
i , q(f 0

i ))
(6.5)

In the hard comparison variant, dist(.) and cnt(.) are functions that give respectively the

similarity between two features and the information about the features’ comparability. They

are defined as:

disthard(f
0
i , q(f 0

i ), f1
i , q(f 1

i )) =

{
d(f 0

i , f1
i ) , q(f 0

i ) ≥ T ∧ q(f 1
i ) ≥ T

0 , otherwise
(6.6)

cnthard(f
0
i , q(f 0

i ), f1
i , q(f 1

i )) =

{
1 , q(f 0

i ) ≥ T ∧ q(f 1
i ) ≥ T

0 , otherwise
(6.7)

where d(.) is the function that gives the distance between features (e.g., Hamming or

Euclidean distance) and T is a threshold value closed in the [0,1] interval that represents the

minimum quality value.

Regarding the fuzzy comparison variant, all the features are considered for comparison

and weighted according to their respective quality value. In this context, dist(.) and cnt(.)

are given by:

distfuzzy(f
0
i , q(f 0

i ), f1
i , q(f 1

i )) = d(f 0
i , f1

i )
q(f 0

i ) + q(f 1
i )

2
(6.8)

cntfuzzy(f
0
i , q(f 0

i ), f1
i , q(f 1

i )) =
q(f 0

i ) + q(f 1
i )

2
(6.9)

where, as above, d(.) is the function that gives the distance between features.

6.2.3 Experiments and Discussion

Due to its relevance in the iris recognition literature, in the experiments we implemented the

method proposed by Daugman [18], described in section 2.2.3.1. However, we stress that

the proposed method is independent of the feature extraction and comparison strategies.

We compared the results obtained when following the method exactly as described by

the author (using all the features in the feature comparison stage) and our proposed feature
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quality measure to constraint the comparable features in the computation of the similarity

between biometric signatures (feature comparison).

6.2.3.1 Data Sets

Since this type of experiment requires the highest quantities of noise in the iris images,

we selected 260 images from the UBIRIS database, belonging to 26 different subjects,

enabling respectively a total of 1170 and 32500 intra- and inter-class comparisons. Further,

we divided the selected images into two sub sets, according to the respective quantity of

noise. The 130 less noisy images were included in the UBIRISqua1 data set and the 130

noisier ones in the UBIRISqua2 data set. This enabled us to conclude about the variations

in the recognition accuracy as the amount of image noise varies. As in the other experiments

described in this thesis, the characteristics of the data sets are detailed in appendix B.

6.2.3.2 Results

As stated above, we compared the accuracy of the classical Daugman iris recognition method

as described by the author and with our proposals, in the UBIRISqua1 and UBIRISqua2

data sets. We made the feature extraction on every image and compared the resultant

biometric signature with the remaining ones of the same data set.

Figure 6.5 contains four measures that reflect the advantages of using our proposal

together with the classical Daugman feature extraction and comparison methods. The

horizontal axis represents the threshold T (minimum feature quality value), using the hard

comparison variant. The traditional approach of comparing all the features is equivalent

to our proposal with minimum quality value equal to 0. The continuous line is relative

to the UBIRISqua2 data set and the dashed line to the less noisier UBIRISqua1 one.

Figure 6.5a contains the obtained values for a t-test given by (5.1) and figure 6.5b contains

the equal error rates, obtained when the false accepts and rejects were approximately equal.

Figure 6.5c contains the percent values of the area under the ROCs and, finally, figure 6.5d

the obtained false rejections, when the false acceptances were minimized.

The best results were observed when the comparison between features is constrained to

those that have quality value higher than 0.5. In this situation, while maintaining a large

number of comparable features, features with very poor quality, extracted from a majority

of noisy pixels, are not taken into account in the comparison and, thus, do not corrupt the

final results. Our experiments clearly showed an improvement in the recognition accuracy,



120 CHAPTER 6. NOISY IRIS RECOGNITION

(a) t-Test values. (b) Equal Error Rate (EER).

(c) Error Area Under the ROC Curve. (d) FRR with FAR=0.

Figure 6.5: Results obtained from our feature quality measuring and comparison proposals

in the UBIRISqua2 (continuous line) and UBIRISqua1 (dashed line).

simultaneously reducing the error rates and the area under the ROCs and increasing the

separability between the intra- and inter-class comparisons.

Table 6.2 contains the obtained results, when varying the feature comparison strategy.

The first column identifies the classification method. The second (τ ) contains the values

for the t-test given by (5.1), the third contains the approximated equal error rates, the forth

contains the percentage of the area under the ROC and, lastly, the fifth column corresponds

to the false rejection rates when the false acceptances were minimized. All the error values

are expressed for a confidence interval of 95%. The analysis of these results clearly shows

an increment of system’s overall accuracy using our hard variant proposal, specially in

the noisier UBIRISqua2 data set. Regarding the less-noisy UBIRISqua1 data set, the

advantages resultant of the use of our proposal were also clearly visible. This means that

even in images with insignificant portions of noise our proposal can slightly improve the

recognition’s accuracy.

Surprisingly, the fuzzy feature comparison variant achieved worst results than the hard
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Method τ EER, % Error ROC, % FRR, FAR=0, %

UBIRISqua1 data set

Original 3.130 2.690± 0.004 0.112 12.778± 0.009

Proposed (hard), T=0.5 4.012 0.366± 0.001 0.032 2.667± 0.004

Proposed (fuzzy) 3.813 0.900± 0.002 0.058 6.166± 0.006

UBIRISqua2 data set

Original 2.258 2.090± 0.004 0.449 15.556± 0.010

Proposed (hard), T=0.5 2.892 0.904± 0.002 0.036 6.667± 0.007

Proposed (fuzzy) 2.699 1.130± 0.002 0.057 11.639± 0.009

Table 6.2: Comparison between the results obtained by the Daugman recognition method

exactly as described by the author and together with our feature quality measure and

comparison constraint proposals.

one. Although it is intuitively more advantageous, we observed that the comparison between

all the features, even if it is weighted by the respective quality value, did not represent a valid

alternative. However, it is our purpose to validate this conclusion in the near future through

experiments with different data sets.

6.2.4 Conclusion

In the previous sections we described and experimentally tested a method for the measure-

ment of each feature quality. Once again, the main motivation was the significant increment

of the error rates observed when the recognition systems deals with noisy images.

The quality value is used to constraint the number of features that are taken into account

in the feature comparison stage. Experiments led us to conclude that our proposal signifi-

cantly decreases the error rates in the recognition of noisy iris images, thus being appropriate

for the application in a non-cooperative setting, where the ability to deal with noisy images

is required.

Even in images with small portions of noise, the results showed that our proposal con-

tributes for the increase of the separability between the intra- and inter-class comparisons,

with the correspondent improvements in the recognition’s accuracy. Moreover, the indepen-

dency between our proposal and the chosen feature extraction and comparison methods is

stressed and regarded as a strong point, enabling its use together with multiple iris recogni-
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tion strategies.

6.3 Proposed Feature Selection Method

The non-cooperative image capturing setting, either under natural luminosity or varying

lighting conditions leads to the appearance of images whose typical characteristics are

determined by the used optic device and the environment itself. For instance, it is expectable

that some imaging conditions propitiate the existence of reflections (specular or lighting) in

specific iris regions, while others propitiate the iris occlusion by eyelids and eyelashes.

Current iris matching proposals (feature extraction and comparison) are independent of

the imaging environments and do not take into account this information in the recognition

task. In this section we propose a feature selection method that operates after the phys-

ical installation of the image capturing framework. First, a training set of iris images is

captured, which should reflect the typical characteristics of the images captured in such

environment, namely their predominantly noisy iris regions. Further, the candidate features

are extracted from each image and their values used in the computation of the merit of each

candidate feature. This allows the selection of the higher discriminating features, according

to each environment and its lighting conditions. Experiments show a substantial increase

in the separability between the intra- and inter-class comparisons when the 30% highest

discriminating features are selected, leading to a substantial decrease of the error rates in

the recognition of noisy iris images.

6.3.1 Feature Selection

The problem of feature selection is to take a set of candidate features and select a subset that

best performs under some classification system [129]. This procedure can reduce the cost

associated with classification, by reducing the number of features that must be collected,

and in some cases it also provides better results due to the finite sample size effects: as the

number of features is reduced, and the number of points is maintained, the feature space

becomes more densely populated.

Formally, let T and S be respectively the candidate and selected feature sets, S ⊆ T .

Also, let ‖.‖ denote the cardinality of the set, such that ‖T‖ = t and ‖S‖ = s. The feature

selection criterium function for the set X is represented by J(X). Considering that higher

values of J indicate better feature sets, the problem of feature selection is to find a subset
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S ⊆ T such that |S| = s and:

J(S) = maxX⊆T,|X|=sJ(X) (6.10)

Physical Installation

of the Image Capture

Framework

Image Capture:

n images

k subjects

Feature

Extraction

n images

Computation of the

Merit of Each Feature

Selection d Features

Highest Merit

Selected Features for

the Recognition

(f1, f2, . . . , fx)

(fi, qi)

Figure 6.6: Block diagram of the proposed feature selection method.

According to this definition, the block diagram of the proposed feature selection method

is given in figure 6.6. After the physical installation of the image capturing framework,

n images from the irises of k subjects are collected, which should represent the typical

characteristics and noise regions of the images captured within the environment. Further, the

candidate features are extracted for all these images and their values used in the computation

of the features’ merit (6.11). Finally, the s features with highest merit are selected.

The motivation behind this proposal is the valorization of the features which respectively

maximize and minimize the signatures dissimilarity in the inter- and intra-class compar-

isons. As can be seen in (6.11), the dissimilarity between two feature values contributes to

an increase of the respective merit if they were extracted from different irises and, inversely,

contributes to its decrease if the features were extracted from images of the same iris.

In the following discussion we will use F p
i to denote the ith feature set extracted from the

iris p and fp
i,j to denote the jth feature of the ith feature set extracted from the iris p. Thus,

F p
i = {fp

i,1, . . . , f
p
i,t}. Let A = {F p1

1 , . . . , F pk
n } be the set of training feature sets extracted

from n images of k subjects. The merit value m(.) of each candidate feature i is given by:

m(i) : {1, . . . , t} → R:

m(i) =
n−1∑
j=1

n∑
k=j+1

d(fp
j,i, f

r
k,i)

(tI − tE) δp,r + tE
(1− 2 δp,r) (6.11)
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where d(.) is the function that gives the features dissimilarity (e.g., Hamming or Euclid-

ean distance), δp,r is the Kronecker delta and tI and tE are, respectively, the number of intra-

and inter-class comparisons between elements of A. This definition implies that the highest

values occur when the features dissimilarity is respectively smaller in the intra- and higher

in the inter-class comparisons, obtaining a value that is directly correspondent to the feature

discriminant capacity within the respective imaging environment.

According to (6.10), the function J(.) that performs the feature selection will give us the

feature set S, which contains the s features with highest values of q(.).

However, if the features are selected as above described, it is not possible to achieve

invariance to iris rotation through signature shifting, and this is a very common technique

used in the feature comparison. We compensate this by making the normalization process

into the dimensionless polar coordinate system starting from 5 different deviation angles of

the segmented iris image (-10o, -5o, 0o, +5o, +10o) and obtaining 5 normalized iris images.

The subsequent processing is further made separately for each of these images and the

dissimilarity between iris signatures is given by the lowest dissimilarity between the enrolled

signature and those extracted from each of these images.

6.3.2 Algorithm

Algorithm 1 contains the pseudo-code of the above described feature selection method.

Its computational complexity of O(n3) is not a concern, as it will be executed before the

functioning stage of the recognition system and, due to this fact, without critical time

constraints. In this algorithm f(i, j) represents the ith feature extracted from the image

j and id(f) the identity of the subject from where the feature f was extracted.

6.3.3 Experiments and Discussion

In these experiments we implemented a recognition method based in the proposal of Daug-

man [18], with exception of the feature extraction stage, that was accomplished through

the Haar dyadic wavelet decomposition instead through a bank of 2D Gabor wavelets. We

found that, apart of obtain similar results, the purpose of illustration of the results through

the association between each feature and a correspondent image region justified this option.

However, we stress that we experimentally observed that the advantages resultant of the

application of our proposal together with the Daugman’s recognition method were similar
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Algorithm 1 Feature Selection Algorithm
t← Number of feature sets in the training set

n← Number of candidate features

d← Number of features to be selected

tI ← Number of intra-class comparisons between elements of T

tE ← Number of inter-class comparisons between elements of T

for i = 1 to n do
merit(i)← 0

end for
for i = 1 to t− 1 do

for j = i + 1 to t do
for k = 1 to n do

x← dist(f(k, i), f(k, j))

if id(f(k, i)) == id(f(k, j)) then
merit(k)← merit(k) - x / tI

else
merit(k)← merit(k) + x / tE

end if
end for

end for
end for
S=Select s Features Highest Merit(n,s,merit)

return(S)

to the ones reflected in the experiments that we describe in the following.

We compared the results when following the classical approach of computing the dis-

similarity between biometric signatures through the comparison between the 2048 extracted

features and the proposed feature selection method, when selecting different feature sub sets,

according to the specific characteristics of the training set images and their predominant

noise regions.

6.3.3.1 Data Sets

In order to conclude about the benefits of our proposal either in the cooperative and non-

cooperative image capturing settings, we chose UBIRIS, CASIA and UPOL databases
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for the experiments, enabling the analysis both in highly (UBIRIS), less noisy (CASIA)

and noise-free environments (UPOL). We selected 400 images from UBIRIS and CASIA

databases, belonging to 40 different subjects, enabling respectively 1800 and 87000 intra-

and inter-class comparisons. Due to constrains on the number of available images per

subject, from the UPOL database 132 images belonging to 44 subjects were selected, for

a total of 132 intra- and 8514 inter-class comparisons. Further, we divided each of the data

sets into two sub sets. The first ones - UBIRISfs1, CASIAfs1 and UPOLfs1 - were used

as training sets in the computation of features quality and in the feature selection The latter

- UBIRISfs2, CASIAfs2 and UPOLfs2 - in the evaluation of the recognition accuracy.

Additional image characteristics can be found in appendix B.

As illustrated by figure 6.7, the selected images from the UBIRIS database contain

severe iris obstructions by eyelids and eyelashes in the lower and upper regions of the iris

(regions 1) and specular and lighting reflections predominantly in the left and right regions

(regions 2). Images from the CASIA database typically contain iris obstructions by eyelids

and eyelashes in the vertical iris extremes (regions 1) and those from the UPOL database

are completely noise free.

(a) Typical noise regions in the

tested iris images.

(b) Correspondent noise regions in the segmented and normalized iris images.

Figure 6.7: Predominant noise regions of the used data sets in the captured (figure 6.7a) and

normalized (figure 6.7b) iris images.
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6.3.3.2 Results

According to the process described in section 6.3.1, we performed the feature extraction in

the training set images and obtained 2048 features for each image. Further, through (6.11),

we computed the merit m(.) of each candidate feature. With the purpose of illustration,

figure 6.8 contains a representation of the quality of the candidate features extracted from

the 3rd octaves dyadic wavelet decomposition, when used respectively the UPOLfs1 (fig-

ure 6.8a), CASIAfs1 (figure 6.8b) and UBIRISfs1 (figure 6.8c) as training data sets. The

chosen feature extraction strategy, similarly to other common approaches, allows a simulta-

neous scale-space data representation and, thus, feature values have direct correspondence

with a spacial image region. In all of the sub-figures, each pixel’s intensity I(p) is given by:

I(p) =
m(p)−minq

maxq −minq

∗ 255 (6.12)

where m(p) is the feature merit correspondent to the pixel p and minq and maxq are

respectively the minimum and maximum values of the features quality.

(a) Merit value of the candidate features from the UPOLfs1

data set.

(b) Merit value of the candidate features from the CASIAfs1

data set.

(c) Merit value of the candidate features from the UBIRISfs1

data set.

Figure 6.8: Merit value (6.11) of the 3rd octave dyadic wavelet decomposition candidate

features extracted from the training data sets.
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It is evident that figure 6.8a is brighter and its intensity values are more homogeneous.

Since it corresponds to features that were extracted from the noise-free database, it indicates

that within noise-free environments all the candidate features have similar discriminating

capacity. Oppositely, the pixels intensity of figures 6.8b and 6.8c are more heterogeneous.

Moreover, several dark regions can be observed, corresponding to features that were ex-

tracted from the typically noise regions of the training set images (figure 6.7).

To obtain an objective measure of the features’ merit and homogeneity, we computed

the mean (µ) and standard deviation (σ) of the pixels intensity in each of the figures. The

obtained values were (µ, σ) = (111.5, 64.3), (75.25, 70.8) and (61.9, 77.1) respectively in

figures 6.8a, 6.8b and 6.8c. As expected, features from the noisiest data sets have lowest

quality and higher heterogeneity, confirming the hypothesis that motivated this proposal: the

feature selection assumes higher relevance in the recognition of noisy iris images, resultant

from the capturing in less constrained imaging environments.

Hereinafter, the goal was to obtain an approximation of the optimal number of features

that must be selected for comparison. With this purpose, we started from the original feature

set - composed by 2048 components - and reduced the number of selected features between

90% and 10% of the initial cardinality. Again, UPOLfs1, CASIAfs1 and UBIRISfs1

were used to perform the feature selection and UPOLfs2, CASIAfs2 and UBIRISfs2 to

evaluate the error rates. Figure 6.9 contains the results. The horizontal axis values represent

the number of selected features, in proportion with the original set of 2048 candidate fea-

tures. Thus, the classical feature comparison approach is equivalent to the results obtained

with 100% of selected features. Figure 6.9a contains the values for the t-test given by

(5.1). Figures 6.9b and 6.9c contain the approximated equal error rates and the area of the

regions under the ROCs. Finally, figure 6.9d contains the false rejection rates when the false

acceptances were minimized. The continuous, dashed and doted lines represent the results

obtained respectively in the UBIRISfs2, CASIAfs2 and UPOLfs2 data sets.

It is evident that, for all the data sets, the best results were obtained when a smaller

number were selected to comparison. Even in the noise-free UPOLfs2 data set, the highest

accuracy was observed when 20 to 60% of the candidate features were selected. Within this

interval, the recognition algorithm presented error rates equal to 0.

Regarding the UBIRISfs2 data set, the best values were observed when 30% of the

candidate features were selected, which gives a total of 614 features. In this case the EER

value was about 6%, although in highly noisy images. We remark that the original method,

comparing the 2048 features, obtained an EER above 12%, which is a very significant



6.3. PROPOSED FEATURE SELECTION METHOD 129

(a) Values of the t-test described by 5.1. (b) Equal Error Rate (EER).

(c) Error Area Under the ROC Curve. (d) FRR with FAR=0.

Figure 6.9: Results obtained by our feature selection proposal.

decrement (around 50%) of the error rates.

(a) Best features according to the CASIAfs1 data set.

(b) Best features according to the UBIRISfs1 data set.

Figure 6.10: Features with highest merit m(.) (signalled by the dark pixels), computed in

the UBIRISfs1 and CASIAfs1 data sets.

Figure 6.10 illustrates the 30% features with highest quality values q(.) that were for
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this reason selected for the feature comparison. The black pixels of figures 6.10a and 6.10b

correspond respectively to the best features obtained from the CASIAfs1 and UBIRISfs1

data sets. Not surprisingly, it is curious to observe the small number of features selected

from the typical noisy iris regions of both data sets (figure 6.7).

In order to validate the advantages resultant of our proposal, we compared the ROCs

obtained by the classical feature comparison strategy and our proposal, when selecting for

comparison exclusively 30% of the candidate features with highest merit. Figure 6.11 con-

tains the results. The continuous and dashed lines respectively represent the results obtained

by our proposal and the classical strategy and are relative to the CASIAfs2 (figure 6.11a)

and UBIRISfs2 (figure 6.11b) data sets, which best enhance our proposal’s advantages for

the purposes of illustration.

(a) Receiver operating curves obtained in the CASIAfs2 data set. (b) Receiver operating curves obtained in the UBIRISfs2 data set.

Figure 6.11: Comparison between the receiver operating curves (ROC) obtained by the

classical Daugman recognition method (dashed lines) and our feature selection proposal

(continuous lines) when selecting 30% of the features with highest merit values (6.11).

This can be explained by the selection of features that were extracted from typically

noise-free regions and have, for this reason, higher discriminating capacity. As the images

of the test data set have similar characteristics to the training set ones, these features tend to

increase the classes separability and significantly improve the recognition accuracy. Of

course, part of the improvement is certainly related to the fact that a reduction in the

dimensionality of the feature space occurred with the feature selection process.
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All these experiments led us to conclude that the proposed procedure increases the adapt-

ability of the recognition system to the typical noise regions of the captured images, through

the selection of the best features, according to the typical image characteristics.

6.3.4 Conclusion

The typical noise regions and characteristics of the images captured within non-cooperative

environments are highly influenced by the used optic device and the specific lighting con-

ditions of each environment. This leads to a significant increment of the error rates, which

was the main motivation for this section proposal.

We described a method for the feature selection that takes into account the typical charac-

teristics of the images, namely their predominant noise regions determined by the imaging

environment. Using a training set composed of images captured after the physical instal-

lation of the imaging system, we computed the merit value for each candidate feature and

selected those with highest values.

Since the training set images are representative of the ones that the recognition system

will have to deal with, this process contributes for the adaptability of the recognition system

to the specific environment.

We stress that this approach is compatible with different imaging environments, since

each recognition system will select a proper sub set of features that are further taken into

account in the recognition process, through the comparison with the correspondent enrolled

features.

Experiments led us to conclude about an improvement in the system’s accuracy when the

cardinality of the selected feature set is between 30 and 50% of the number of candidate fea-

tures. In this situation, the error rates significantly decreased (about 50%) in the recognition

of noisy iris images, which must be considered an achievement.

However, one concern may be the way we dealt with rotational invariance, since the

common signature shifting does not work with the proposed feature selection method. The

iris normalization started from 5 deviation angles and replication of the process for each of

the resultant images significantly incremented the computational cost.
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6.4 Proposed Iris Classification Strategy

Assuming that, in spite of being noisy, the iris image has been accurately segmented, in

this section our aim consists in the proposal of a classification strategy more robust to noise

factors. We observed that, in most cases, the noise is localized in some subpart of the iris.

Our method is based on the division of the segmented iris into six regions, followed by

the independent feature extraction on each one. Further, through the feature comparison

between signatures extracted from correspondent regions, six dissimilarities are obtained

and fused according to a classification rule. The hope is that most of the iris regions are

noise-free and that accurate recognition can be achieved, even in highly noisy images. As

our experiments confirm, the proposed classification method decreases the false rejection

rates more than 40%, which is obviously an achievement towards the non-cooperative iris

recognition.

Based on this, in the following sub-sections we describe the proposed iris partition,

feature extraction and classification strategies.

6.4.1 Iris Division and Feature Extraction

As illustrated by figure 6.12, our method is based on the division of the segmented and

normalized iris image into 6 regions, followed by the independent feature extraction and

comparison for each of these regions. Thus, the noisy information that usually is localized

in some of the iris subparts will not corrupt the whole biometric signature. Making the

normalization process as described in [18] and starting from an angle of -45o, regions 1

to 4 correspond to successive quadrants of the iris image. Regions 5 and 6 correspond

respectively to the outer and inner parts of the iris. The main motivation for this division

was the observation that the most usual types of noise (iris obstructions and reflections) are

predominantly localized respectively in the upper/lower and left/right portions of the iris.

Also, reflections resultant of natural and artificial lighting environments are respectively

usual in the outer and inner iris regions. The proposed division schema minimizes the

number of regions simultaneously affected by each type of noise.

According to the chosen feature extraction method, the process consists in the creation

of six independent biometric signatures, each one correspondent to a specific iris region.

The details of the tested feature extraction method are described in section 6.4.3. However,

we stress that this process is independent of the feature extraction strategy. Oppositely, as
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(a) Division of the iris in 4 different parts. (b) Division of the iris in outer and inner parts.

(c) Correspondent regions of figure 6.12a in

the normalized iris image.

(d) Correspondent regions of figure 6.12b in

the normalized iris image.

Figure 6.12: Division of the iris in 6 regions.

the process starts from the normalized iris image, it is dependent of the previous accurate

iris segmentation, which is obviously a challenge, regarding the dynamics of the non-

cooperative image capturing environments.

6.4.2 Feature Comparison and Classification

In the following discussion we will use a superscript to distinguish between two different

iris images, such as I1 and I2, and a subscript to distinguish between different regions of an

iris image, such as I1
1 and I1

2 .

Let Ij be a region of an iris image, such as the ones identified in figure 6.12. We define the

function b(Ij) : Ij → Rk, as the biometric signature of Ij . Next, we define the dissimilarity

between two signatures as d(b(I1
j ), b(I2

j )) : Rk × Rk → R, noting that these values are

found for two signatures obtained from correspondent iris regions.

If we choose to define N regions in an iris image Ii, i = 1, . . . , N , we obtain N signatures

b(Ii), one for each region. Consider I1 and I2 respectively as the template and sample

images. For I1 we have the N signatures {b(I1
1 ), . . . , b(I1

N)} and for I2 the correspondent

{b(I2
1 ), . . . , b(I2

N)}.

Let D be the set that contains the dissimilarities between the correspondent regions of I1

and I2: D = {D1, . . . , DN} where Di = d(b(I1
i ), b(I2

i )), i = 1, . . . , N .

Let T = {T1, . . . , TN}, Ti ∈ R+, be a set of N threshold values, such that Ti ≤ Tj, ∀i <
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j.

We define the function C(D, Ti) : Rk × R+ → N, that counts the number of Dj ∈ D

that are smaller or equal to Ti, as:

C(D, Ti) =
N∑

j=1

I{Dj≤Ti} (6.13)

Images I1 and I2 correspond to the same iris if:

∃i : C(D, Ti) ≥ i, i = 1, . . . , N (6.14)

The rationale behind this classification strategy consists in the inverse correspondence

between the number of comparisons that must be smaller or equal to Ti and the constraining

level of Ti.

Figure 6.13 illustrates 3 examples of the application of the proposed classification strat-

egy. It contains the dissimilarities between the template and the sample biometric signatures

of 3 subjects, represented in the horizontal axis (A, B and C). The similarity threshold

set (T ) is represented by the horizontal dashed lines. The application of (6.14) confirms

the identity of subjects A and B and denies the identity of subject C. Subject A has one

dissimilarity value below the lower threshold (T1) and subject B has two dissimilarities

below the second lower threshold (T2). The dissimilarities that determined the identity

acceptance are represented by filled circles, oppositely to the remaining ones.

As our experiments report, this method significantly decreases the false rejection rates

in the recognition within noisy environments, since it isolates the noisy information in

the correspondent biometric signature extracted from the iris region that contains it. This

decreases the probability that noisy iris regions corrupt the whole biometric signature when

extracting the lower components of the signal.

However, if the iris is divided as above described, it is not possible to achieve invariance

to iris rotation through signature shifting, and this is a very common technique used in

the feature comparison. We compensate this by making the normalization process into

the dimensionless polar coordinate system starting from 5 different deviation angles of the

segmented iris image (-10o, -5o, 0o, +5o, +10o) and obtaining 5 normalized iris images.

The subsequent processing is further made separately for each of these images and the

final similarity is given by the highest similarity between the enrolled signatures and those

computed from each of these images.
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Figure 6.13: Examples of the proposed classification strategy.

6.4.3 Experiments and Discussion

In the experiments we implemented the recognition method proposed by Daugman [18]

and described in section 2.2.3.1. We compared the results when following the method

as described by the author and using the proposed iris division and classification strategy.

To achieve independency between our experiments and the accuracy of the segmentation

algorithm, we manually verified that all images from the used data sets were accurately

segmented. This means that no iris segmentation errors increased the error rates rates.

Initially, we made the feature extraction and comparison using the whole segmented iris,

extracting a total of 2048 bits. Further, according to figure 6.12, we divided the iris into

6 regions and, through feature extraction, obtained 512 and 1024 bits respectively for the

signatures extracted from the iris regions 1 to 4 and 5 to 6. The iris classification was made

through the fusion rule given by (6.14). We stress that we did not implemented any noise

detection technique, which increased the obtained error rates, but enabled clear conclusions

about the robustness to noise of each classification strategy.

6.4.3.1 Data Sets

Similarly to the majority of the experiments described in this thesis, our purpose was the

evaluation of our proposal both in highly and less noisy images, which led us to choose

UBIRIS and CASIA and enabled the analysis of the recognition accuracy when simulat-
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ing the cooperative and non-cooperative environments. Moreover, this type of dual analysis

avoids the hypothesis that the method could be advantageous in the non-cooperative setting

and disadvantageous within cooperative environments. We selected 400 images from each

of the databases, belonging to 40 different subjects. Further, we divided each of them into

2 distinct data sets, each one containing 200 images from 20 subjects. The first data sets -

UBIRISid1 and CASIAid1 - were used as training, to obtain the threshold sets (T ) and the

latter - UBIRISid2 and CASIAid2 - to evaluate the recognition accuracy. Each of the data

sets enabled respectively 900 and 19000 intra- and inter-class comparisons. The selected

images of the UBIRIS data sets contain iris obstructions by eyelids and eyelashes, poor

focused and motion blurred irises and irises with specular and lighting reflections, while

those from the CASIA data sets contain almost exclusively iris obstructions by eyelids

and eyelashes. As in the remaining experiments of this thesis, all data sets are detailed in

appendix B.

6.4.3.2 Results

The proposed classification strategy demands the computation of the dissimilarity threshold

set (T ) that minimizes the error rates. In order to obtain it, we started by the feature

extraction and comparison using the whole iris and each of the proposed regions in both

the UBIRISid1 and CASIAid1 data sets.

Figure 6.14 contains the histograms of the dissimilarities between the signatures ex-

tracted from the UBIRISid1 data set, using the whole iris (figure 6.14a) and each of the

regions individually (figures 6.14b to 6.14g). The line series correspond to the approximated

normal distributions obtained through curve fitting, with a 95% confidence interval. τi

represents the value for a t-test given by (5.1).

Through this process, we obtained the parameters of the normal distributions for each of

the iris regions and type of comparisons (intra- and inter-class). Let the subscript denote

the image regions (1 to 6) identified in figure 6.12 and the superscript denote respectively

the intra- (I) and inter-class (E) comparisons, such as N I
1 (the normal distribution of the

intra-class comparisons between the irises region 1).

The goal is to find the values for the ordered threshold set T = {T1, . . . , T6} that

minimize the error rates. Let DE = {D1, . . . , D6} be the set of random variables following

the respective NE
i , i = 1, . . . , 6 distributions. According to (6.13), C(DE, Tk) is the

function that counts the number of Dj ∈ DE that are smaller or equal to Tk. The FAR
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(a) Whole iris distribution. τW =

81.2

(b) Region ”1” distribution. τ1 =

79.9

(c) Region ”2” distribution. τ2 =

75.7

(d) Region ”3” distribution. τ3 =

65.3

(e) Region ”4” distribution. τ4 =

36, 6

(f) Region ”5” distribution. τ5 =

68, 2

(g) Region ”6” distribution. τ6 =

63, 0

Figure 6.14: Histograms of the dissimilarities between the signatures extracted from the

whole iris (figure 6.14a) and each of the regions identified in figure 6.12.

is given by:

FAR =
6∑

i=1

P
(
C(DE, Ti) ≥ i |

i−1⋂
j=1

C(DE, Tj) < j
)

(6.15)

where P (A|B) denotes the probability of A conditioned by the occurrence of B. Using

the same notation, let DI = {D1, . . . , D6} be the set of random variables following the

respective N I
i , i = 1, . . . , 6 distributions. The FRR is given by:

FRR =
6∏

i=1

P
(
C(DI , Ti) < i

)
(6.16)

Using (6.15) and (6.16), we made an exhaustive search in the [0, 1] interval, having tested

all the possible combinations for the 6 thresholds values with 10−3 precision.

Figure 6.15 contains the obtained receiver operating curves, when following the classi-

cal Daugman recognition method (dashed line) and our proposal (continuous line) in the

UBIRISid2 and CASIAid2 data sets. These results indicate a significant decrease of the

error rates by our proposal, either in the highly noisy (UBIRISid2) and less noisy images

(CASIAid2).
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(a) Receiver operating curves obtained in the CASIAid2 data set. (b) Receiver operating curves obtained in the UBIRISid2 data set.

Figure 6.15: Comparison between the receiver operating curves (ROC) obtained by the

classical Daugman recognition method (dashed line) and our iris classification strategy

(continuous line) in the CASIAid2 (figure 6.15a) and UBIRISid2 (figure 6.15b) data sets.

Table 6.3 contains a comparison of the obtained results by the original classification

method, as described by Daugman, our iris division and classification proposals and three

usual classification fusion strategies (mean, minimum and product). The first column identi-

fies the classification method, the second contains the false rejection rates when preventing

the false accepts errors. EER corresponds to the equal error rates and the last column

contains the approximate percent value of the area under the ROCs. All the error rates are

expressed for a confidence interval of 95%.

We confirmed that our method consistently achieved better results, as the error rates

decreased about 40% when compared to the original proposal. These achievements can be

observed either in the highly noisy images from the UBIRISid2 data set or in the less noisy

images from the CASIAid2 one.

This higher accuracy in the recognition of noisy images can be explained by its ability

to perform recognition using small portions of the iris whereas avoiding the corruption of

the whole signature by localized noise regions. These results led us to conclude that the

proposed iris division and classification strategy is more tolerant to noise factors and, for this

reason, more adequate for the application is less constrained image capturing environments.
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Classification Strategy FRR, FAR=0, % EER, % Error ROC, %
UBIRISid2 data set
Daugman Original 22.95± 0.03 3.72± 0.01 3.21

Proposed 16.49± 0.02 2.38± 0.00 1.73

Mean 19.90± 0.02 4.98± 0.01 3.30

Minimum 18.38± 0.02 4.80± 0.01 2.39

Product 18.81± 0.02 4.81± 0.01 2.81

CASIAid2 data set
Daugman Original 3.41± 0.01 1.44± 0.00 0.64

Proposed 2.39± 0.00 1.01± 0.00 0.55

Mean 3.11± 0.00 1.26± 0.00 0.61

Minimum 4.62± 0.01 1.29± 0.00 0.64

Product 2.95± 0.00 1.20± 0.00 0.60

Table 6.3: Comparison of the error rates obtained when following the original Daugman’s

recognition method, our classification strategy and three common classification fusion

strategies.

6.4.4 Conclusion

In the latter sections we addressed the problems motivated by the existence of noise in

the captured iris images and the correspondent increase of the error rates, with particular

relevance to the false rejections, in the context of non-cooperative iris recognition.

Common feature extraction strategies usually focus in the lower and middle low fre-

quency components of the signal, which implies that small portions of non-identified noise

can corrupt the whole biometric signature and decrease the recognition accuracy.

Based on this, we proposed a new iris classification strategy that divides the iris into

6 regions and makes independent feature extraction and comparison for each of these re-

gions. Iris classification is achieved through a classification rule that uses a threshold set to

combine the dissimilarity values resultant from the comparison between correspondent iris

regions.

Experiments in the recognition of noisy images showed a significant decrease in the

error rates, above 40% in the false rejections. Moreover, as can be seen by the results

presented in table 6.3, we performed a comparison between our proposal and three common

classification fusion strategies - product, mean and minimum - and the proposed method

consistently achieved lower error rates.



140 CHAPTER 6. NOISY IRIS RECOGNITION

6.5 Summary

This chapter was devoted to the description and experimental evaluation of our proposals

to deal with noisy iris images for biometric recognition purposes. Assuming that, in spite

of noisy, the iris segmentation was accomplished, our main objective was the increase of

recognition robustness to such noise factors.

After previously concluding, as described in chapter 5, that the localized noise that

obstructs portions of the iris texture can hardly be replaced, we focused our efforts on

the development and proposal of methods able to deal with noise and achieve recognition

accuracy, even in such challenging conditions.

First, we proposed a method for feature quality measurement, which later constraints the

features that are taken into account in the computation of the biometric signatures’ dissim-

ilarity. Next, we described our feature selection proposal, that is based on the analysis of

the predominant noisy regions of the images captured in each specific imaging environment

to select the features with highest discriminating capacity. Finally, our iris division and

classification strategies were detailed, in order to avoid that localized noise corrupts the

whole biometric signature, when extracting the lower frequency components of the original

data.

We concluded that each of these proposals contributes for the increase of the adaptability

and robustness of iris recognition to noise factors, satisfying the purposes that motivated

them. Moreover, we stress the independence between all of these methods and the particular

feature extraction and comparison used by the iris recognition strategy, which is obviously a

strong point, regarding its applicability. However, we stress that these results are dependent

from the previous accurate iris segmentation, which is highly challenging, given the dy-

namics of non-cooperative environments. The requirement of optical frameworks that are

able to capture iris images with enough quality and of real-time face and eye localization

methods, is assumed too.

In short, it is our belief that each of the proposals described in this chapter is propi-

tious for the application in less constrained imaging capture environments, thus in a non-

cooperative setting, and contributes to increase the range of domains where iris recognition

can be applied.
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Conclusions

During the last three years, the main purpose of our research was the development of reliable

personal recognition based on iris images captured at a distance, without requiring the

subjects cooperation and under heterogeneous lighting conditions: the non-cooperative iris

recognition.

After introducing and delimiting the theme, it must be stressed that the complete achieve-

ment of such a recognition system will have a significant impact in a broad range of domains,

specially those related with security and reliability. By not demanding the users’ coopera-

tion, it is possible to perform covert recognition, which, among other advantages, minimizes

of the probability for active counterfeit measures. Oppositely, several questions concerning

the users’ privacy subsist and should be object of legal framing.

As described along this thesis, the dynamics of the imaging environments lead to the

appearance of highly heterogeneous images with the iris information corrupted by several

types of noise. These images significantly increase the difficulty of performing reliable

recognition, which is a problem identified by several authors.

We believe that this thesis constitutes a step-ahead towards the non-cooperative iris

recognition. While evaluating the robustness to noise that common iris recognition propos-

als present, we found a potential weak point. We concentrated our efforts in the proposal

of methods that, together with the existing recognition methods, significantly contribute to

the robustness of iris recognition regarding noise factors, as reflections and iris obstructions.

As illustrated by figure 1.3, our proposals comprise the main stages of typical recognition

systems and the independence between each one and the particular iris recognition strategies

must be stressed. Since the earlier stages of our work, one of our main objectives was the
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proposal of methods that could be applied to different iris recognition strategies, which

contributes for their potential use in different scenarios. We considered this as an achieved

goal.

We hope that this thesis has shown the challenge of performing reliable human recogni-

tion based on noisy iris images. Again, it must be enhanced the significant decrease in the

accuracy of current iris recognition proposals when the captured images contain significant

portions of noise. Overcoming this was the main motivation for our work and, as a result,

we described and experimentally evaluated methods that act in the iris segmentation and

normalization, in the feature extraction and comparison stages. The obtained results were

highly satisfactory, reducing the error rates in the recognition of noisy iris images in about

40-50%, which must be considered an achievement.

An overall explanation for the observed improvements in the recognition accuracy can

be given by two factors: first, the ability to distinguish between biometric features, either

by assigning them quality values or by selecting those with higher discriminant capacity

in each specific imaging environment. Second, the avoidance of corruption of the whole

biometric signature, as a result of the extraction of the lower frequency components of

noisy iris images. The notion of biometric sub-signature, resultant of the feature extraction

within small iris regions, avoids that localized noise regions can significantly decrease the

recognition accuracy, although significantly increased the computational demands of the

process itself.

To conclude, we consider that we have accomplished the main purposes of our work.

However, the planning and construction of the optical image capturing framework has

revealed itself as harder and more expensive than initially thought, and is presently the main

subject of our research work, as we expect to build a non-cooperative recognition system

prototype.

7.1 Contributions and Achievements

As we searched for the goal of non-cooperative iris recognition, a number of new ideas

were developed. These can be summarized as follows: the construction of a new iris image

database, the proposal of methods to perform the iris segmentation, the localization of noise

regions within normalized images and the increase in the robustness to noise of common

iris recognition proposals, with emphasis to the classical Daugman’s recognition method.
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First, the development of a new iris image database, with distinguishable characteristics

from the remaining ones, has represented a valuable resource to the research and develop-

ment of more robust iris recognition proposals. As it is stated before, the conclusion about

the acceptance of the UBIRIS database by the research and academic communities can be

gauged by the number of users (more than 360) from 60 countries that requested the access

to the database.

The iris segmentation challenges, which are highlighted by the non-cooperative imaging

setting, motivated our segmentation proposal. It is based in the creation of an intermediate

image, used in the construction of the edge-map. This image has much less information

than the captured one and a smaller number of intensities, which facilitates the task of the

edge detector and propitiates the accuracy of the form fitting algorithm. It must be stressed

that this method has obtained the best results of any of the methods compared, even in

images with high portions of noise, either with severe iris obstructions or with very large

iris reflection areas.

Assuming that the iris segmentation was accomplished, we focused our efforts in the

development of a method that localizes the regions correspondent to noise in the segmented

and normalized iris images. This method produces a binary map, where the noise-free and

the noise regions are distinguished. This information is used by our feature quality and

selection proposals to perform the biometric recognition on noisy iris images.

Starting from the normalized images, together with the correspondent binary maps that

localize the noise regions, we developed methods that, more than alternatives, were thought

to be used together with the existing iris recognition proposals, in order to increase their

robustness to noise and image heterogeneity. With this purpose, we described a method

to measure the quality of the extracted biometric features and use this value to constraint

the features than are taken into account in the computation of the similarity between iris

signatures. Its rationale is to compute the proportion between the noise-free and noise

pixels that were used in the computation of each feature. Lower quality values correspond

to features that were extracted from typical noise pixels, and, as such, it is probable that

the resultant feature value is corrupted and with small discriminating capacity. We further

applied a threshold in the feature comparison, in order to compute the similarity between iris

signatures using exclusively noise-free features, or at least those that were extracted from a

majority of noise-free pixels.

Further, we proposed a feature selection method to increase the iris recognition adapt-

ability to the distinct characteristics of each imaging environment. After having observed
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that common iris recognition proposals do not take into account the typical noise regions

resultant of each specific lighting conditions and optical hardware used, we proposed a

method that uses a training set of images, captured within the environment where the

recognition system is functioning, to obtain information about the discriminating capacity of

each feature, which we hypothesized that should vary according to the typical noise regions

induced by the environment.

Finally, we proposed a strategy to perform the iris classification based in several inde-

pendent biometric sub-signatures. After observing that, commonly, the noise regions of the

captured irises are localized in some subpart of the iris, we proposed the division of the

segmented and normalized iris image into 6 different regions and performed independent

feature extraction and comparison on each region. The hope is that any eventual noise region

should be circumscribed to some of the iris sub-regions and will not corrupt the biometric

signatures extracted from the noise-free regions. Further, the classification is achieved

through a fusion rule, that is based in an inverse correspondence between the necessary

similarity between iris signatures to accept a match and the number of correspondent regions

that must achieve that minimal similarity.

The results of the mentioned methods were highly encouraging, since each of them

isolated improved the recognition accuracy in about 30-40%. Moreover, we stress that the

rationale of any of our proposals is quite straightforward and any of them can be used to-

gether with different iris recognition strategies. These are obviously strong points, regarding

their potential applicability and the eventual optimization, in which our research is currently

focused.

7.2 Future Work

We are currently working on the analysis of the requirements for the physical implementa-

tion of the non-cooperative prototype system. This has revealed, specially the planning of

the optical framework, as a task with higher difficulty than we initially thought.

Simultaneously, we are implementing, and in specific situations adapting and improving,

algorithms for the real-time human silhouette, face and and eye detection. Our purpose

demands algorithms with high performance, which decreased the number of potential alter-

natives.

Regarding the experiments and results contained in this thesis, we are presently per-
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forming the experimental evaluation of the proposed methods with larger data sets, in

order to obtain information about the advantages resultant of the methods with higher

statistical relevance. Moreover, we are performing the comparison between three common

iris recognition proposals (Daugman’s [19], Wildes’ [120] and Ma et al. [64]) as they are

described by the authors and together with the totality of our proposals. This will bring us

new information about the improvements in the recognition accuracy, according to different

recognition strategies.

The evaluated types of noise should be the subject of further work, since this work has not

dealt, for instance, with off-angle iris images. This will obviously introduce new challenges

to the recognition that must be overcome, and predictably demand the adjustment of some

of our methods to these new constraints.
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Appendix A

Implementation

This appendix is devoted to the description of the software implemented to perform our

experiments. We detail the most relevant features of the builded framework, which is

concerned mainly with user-friendliness and easy-parametrization. We also present the final

deployed application, where performance was considered a priority.

A.1 Experiments’ Framework

In the earlier stages of our work, the requirements of test and analysis of several iris recog-

nition methods lead us to use MATLAB as the programming environment for the rapid

application development (RAD). However, we immediately observed that this environment

- that concerns essentially about user friendly and easy code syntax - has very low perfor-

mance. Since common image processing and pattern matching algorithms are usually of

high computational requirements, the complete iris recognition process lasted for several

seconds. As an example, it can be referred that an algorithm similar to the Daugman’s

recognition method uses about 3 minutes to perform one recognition in the verification

mode, which makes it impracticable for our purposes.

Therefore, we decided to build an application using the C++ language, with the main

purpose of allowing the test and comparison of iris recognition algorithms with maximal

performance. The desired application should have two major concerns: parametrization and

performance. We wanted the possibility of quick defining and adjusting the parameters of

each iris recognition algorithm and of each one of its stages. The code should be optimized

to enable the execution of recognition process in few seconds.
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The kernel of this application was developed in the last months of 2004 and it has

constituted as a valuable tool for the achievement our proposals.

Figure A.1 illustrates a screen capture of the developed framework. The typical image

processing algorithms are located in the right panel and can be dragged to the central one,

where processes are built. Every algorithm has a number of expected parameters and returns

a result that can be further used as the input to other(s) algorithm(s). This run-time definition

of image processing methods through the link of algorithms constitutes one of the biggest

advantages of the implemented framework.

Figure A.1: Developed framework for the test and comparison of iris recognition algo-

rithms.

Another relevant feature of the implemented application is the minimal level of formation

required to the users that start to work with it. The only existing basic concepts are: object,

operator and process. The first is anything that can be modified by an operator (e.g., an

image or a vector). An operator is simply an algorithm that receives a set of objects as input,

performs a simple operation and returns the results, a modified object that can be redirected

to another operator. At the highest level, every process is regarded as an ordered set of

connected operators, where the connections specify the flow of objects between operators.
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The graphical interface allows the users to build complex processes exclusively through

drag-and-drop operations. With the purpose of illustrating the simplicity of the creation of

a new process, figure A.2 shows the three step sequence needed to construct of an edge-

map, through the widely used and well known Canny edge detector, followed by the form

fitting task, through the circular Hough transform. First, in a notation similar to popular

state diagrams, the process input and output are defined, through drag-and-drop of the

respective symbols (figure A.2a). Further, once again through drag-and-drop, both operators

are included (figure A.2b) and, if the user wants to adjust the parameters of each operator, the

just has to double-click on the desired one. Finally, the flow of objects between operators is

defined (figure A.2c). In this example, the initial object is received by the edge detector and

its result (binary edge-map) is redirected to the input of the form fitting operator. Finally, this

operator returns a circunference object, denoting the image location where the potential

for the existence of a circumference is maximal.

(a) Definition of the process input

and output

(b) Inclusion of the operators (c) Definition of the flow of ob-

jects within the process

Figure A.2: Construction of a process through the implemented experiments’ framework.

Every operator has a configuration file in the XML format, with a complete specification

of the type and number of required parameters, as well their default values. This facilitates

the readability and interpretation of the operator itself and its parametrization. Figure A.3

exemplifies the configuration file of one of the implemented image processing operators, the

circular Hough transform. It specifies that the operator must receive an imagem (image) as

parameter and has four configuration parameters: raio maximo (maximum radius) and raio

minimo (minimum radius) respectively indicate the upper and lower limits of the potential

radius of the circumferences, and reduz espaço procura (reduce search space) and contida

imagem (contained in image) that act as performance improvement parameters.
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Figure A.3: XML configuration file of the circular Hough transform.

The Microsoft Windows XP executable and configuration files of the implemented opera-

tors are freely available for download in the UBIRIS website1 and, from our viewpoint, can

constitute a valuable tool for the development and test of biometric recognition proposals.

Further, we plan to implement each operator as an isolated dynamic link library (DLL),

which will enable the dynamic creation of operators and its incorporation in the application

without requiring the compilation and rebuilding of the whole source code.

A.2 Application Deployment

In the final stage of our research work, we focused on the deployment of the implemented

recognition processes, again with two major concerns: performance and compliance with

the defined standards for the biometric field. First, we optimized the source code re-

garding performance. The compliance with the defined standards was accomplished fol-

lowing essentially the Common Biometric Exchange File Format and the BioAPI. These

define respectively the standard structure of the biometric data and of the APIs that develop

biometric-related applications. In the following sub-sections they are briefly described.

1http://www.iris.di.ubi.pt
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A.2.1 Common Biometric Exchange File Format

The Common Biometric Exchange File Format (CBEFF) describes a set of data elements

necessary to support biometric technologies in a common way. These data can be placed in

a single file used to exchange biometric information between different system components

or between systems. The result promotes interoperability of biometric-based application

programs and systems developed by different vendors by allowing biometric data inter-

change [81].

The expected benefits of CBEFF are the ability to identify different biometric data struc-

tures (public or proprietary) supporting multiple biometric types within a system or appli-

cation, the ability to reduce the need for additional software development and the ability to

promote development cost savings. CBEFF describes a set of required and optional fields, a

domain of Use to establish the applicability of a standard or specification that meets CBEFF

requirements, and a process by which new technology or systems can create formats that

meet these requirements.

It includes the definition of format and content for data elements such as:

- A biometric data header that contains such information as version number, length of

data, whether the data is encrypted or not, etc., for each biometric type available to

the application or system;

- Biometric data, with the content not specified;

- Any other required biometric data or data structures;

- Description of the means for obtaining a unique value for identifying the format

(owner and type) of the biometric data;

According to this standard, the CBEFF data elements, which are placed in fields inside a

CBEFF file, are composed by three fields:

Standard Biometric Header (SBH) Apart from other optional fields, the SBH must con-

tain information about the security options of the data element (plain, encrypted or

signed data), the ID of the group or vendor which defined the data element, the specific

format of the following BSMB and information about the version of the data element.
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Biometric Specific Memory Block (BSMB) This block contains the biometric data in any

specific format that must be specificated in the SBH. Thus it can be either a propri-

etary format, or one agreed upon by a standards body, working group, or industry

consortium.

Signature Block (SB) This field holds the signature or MAC data. It can contain algorithm

identifier information and/or any parameters needed to perform the signature and/or

the MAC function. This field exists only if the header it is defined the encrypted or

signed data option.

A.2.2 BioAPI

The BioAPI Consortium was founded to develop a biometric API that brings platform and

device independence to application programmers and biometric service providers. The

BioAPI Consortium is a group of over 120 companies and organizations that have a common

interest in promoting the growth of the biometrics market [6].

The BioAPI Consortium developed a specification and reference implementation for a

standardized API that is compatible with a wide range of biometric application programs

and a broad spectrum of biometric technologies. In the deployment of our proposed al-

gorithms for iris recognition, we considered valuable, its implementation according to the

BioAPI specification. This document is freely available in the Internet and has been created

to allow applications to interact with a wide variety of biometric devices and even different

types of biometrics, without needing to know the details of how the different devices work.

It is compliant with the CBEFF, described in the National Institute of Standards Publication,

NISTIR 6529.

It assists the application developers in writing applications truly usable with as wide

variety of biometric technologies as possible and to assist BSP developers in writing BSPs

that meet the requirements of as many applications as possible. This specification provides:

- Standard access methods to biometric functions, algorithms, and devices.

- Simple application interfaces.

- Robust biometric data management and storage.

- Standard methods of managing biometric data and technology types.
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- Support for biometric verification and identification in distributed computing environ-

ments.

According to the scope and objectives of our research work, among other potential

advantages, we enhanced:

- The rapid development of applications employing biometrics.

- Flexible deployment of biometrics across platforms and operating systems.

A.2.3 Application Performance

Although the time spent in the performance optimization was not the desirable and several

work with this purpose remains, we achieved a significant decrease of the average elapsed

time of a recognition process. Obviously, this value is strongly dependent of the initial

dimension of the captured iris images as well of other parameters that determine the relation-

ship between accuracy and performance. However, it must be stressed that the performance

of the final deployed application was about five times better than the one of the experiments’

framework and 156 times better than the obtained with the initial MATLAB code. Table A.1

summarizes the average time elapsed for a recognition process in the verification mode

(1:1). The first column identifies the type of application and the second specifies the average

elapsed time (in seconds). These values were obtained through averaging of 100 recognition

processes, on a personal portable computer with a 2.2Ghz Pentium 4 processor and 512MB

of dedicated RAM memory.

Application Average Elapsed Time, s.
MATLAB code 180.36

Experiments framework, C++ 5.80

Deployed application, C++ 1.15

Table A.1: Average elapsed time for a recognition process in the verification mode (1:1).
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Appendix B

Description of the Data Sets

In order to facilitate the reproduction of the presented results and the comparison with other

methods, in this appendix we describe the data sets used in our experiments. As can be

seen by the following description, the majority of the used data sets comprises images of

the UBIRIS database. This is motivated by its higher noise quantities and types, which

can be confirmed in table 3.2. When it was considered specially relevant the analysis of

a method’s accuracy simultaneously in both high and low noise or noisy-free data, images

from other databases were used, specially those from CASIA and UPOL. CASIA was

the first database available for biometric purposes and, as such, it is by far the most used in

the iris recognition research and acts almost as a standard comparison measure of common

recognition proposals. The UPOL database was the only one found with completely noise-

free images, which enables conclusions about a method’s accuracy in optimal conditions.

B.1 Experiments’ Data Sets

UBIRISseg - This data set comprises 1877 images of the UBIRIS database belonging

to 241 subjects. It enables respectively 8415 and 1752190 intra- and inter-class

comparisons and its images have fixed dimensions of 800 × 600 pixels (width ×
height). It was used in the experiments related with the iris segmentation, which are

described in chapter 4. Contains images captured in two different sessions, with three

weeks of interval. Predominantly, images of the first session have good quality - to

simulate the enrollment process - and images of the second session contain all the

noise factors that the UBIRIS database incorporates and are highly heterogeneous,

155



156 APPENDIX B. DESCRIPTION OF THE DATA SETS

in order to simulate the non-cooperative image capturing.

UBIRISinp - Comprises 400 segmented and normalized images of the UBIRIS database,

belonging to 40 subjects. This data set enables respectively 1800 and 78000 intra- and

inter-class comparisons. Images have fixed dimensions of 512 × 64 pixels (width ×
height) and were used in the experiments about the use of inpainting techniques in

normalized and noisy iris images. Since it constituted a goal that the images contain

large noise regions, we selected those with noise homogeneously distributed across

all regions. As the iris obstructions by eyelids and eyelashes are predominant in the

lower regions of the normalized iris images, to compensate this, we selected images

with large reflections areas, either specular or lighting, which are predominant in the

lateral iris regions.

UBIRISnoi - 100 segmented and normalized iris images belonging to 100 different sub-

jects. These images have fixed dimensions of 512 × 64 pixels (width × height)

and were used in the experiments associated with the detection of noisy regions in

normalized iris images. Due to this, images with the highest noise quantities and

types of noise were selected, but we verified that the segmentation algorithm can

accurately perform the iris segmentation on every image.

UBIRISali - This data set comprises 130 images from 13 subjects, enabling a total of

585 and 7800 intra- and inter-class comparisons. Images belong to the UBIRIS

database, have fixed dimensions of 800 × 600 pixels (width × height) and were used

in the experiments of section 6.1. These consisted in the evaluation of the recognition

accuracy as the dimension of the irises in the captured images varies. The simulation

of the varying size was made through bi-cubic interpolation, between 100% and 10%

of the initial images size. As in the majority of the other data sets, we manually

verified that the used segmentation algorithm performed its task accurately on every

data set image.

UPOLali - This data set contains 132 images from 44 subjects of the UPOL database.

Images have fixed dimensions of 768 × 576 pixels (width × height) and enable re-

spectively 132 and 8514 intra- and inter-class comparisons. Similarly to the previous

data set, it was used in the experiments described in section 6.1. As the remaining

images of this database, all the images are completely noise-free. In order to avoid

that segmentation errors could corrupt the analysis, we manually verified that the
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segmentation algorithm performed accurately on each of the images.

UBIRISqua1 - These 130 images are from the UBIRIS database and belong to 13 sub-

jects. They have fixed dimensions of 800 × 600 pixels (width × height) and enable

respectively 585 and 7800 intra- and inter-class comparisons. They were used in

the experiments of our proposed method for the feature quality measuring. As we

considered useful to evaluate the benefits of this method in images that, although

noisy, have different quantities of noise, they correspond to the 130 less noisy images

from the originally builded UBIRISqua data set.

UBIRISqua2 - Similarly to the previous data set, this data set comprises 130 images from

13 subjects and corresponds to the noisiest images from the original UBIRISqua

data set. In spite of having severe iris obstructions by eyelids and eyelashes and large

reflection areas (both specular and lighting), we manually verified the accuracy of the

segmentation algorithm for every data set image. This enabled us to conclude about

the benefits that our proposed method for feature quality measuring could have both

in highly and less noisy images.

UBIRISfs1 - This data set contains 200 images from 20 subjects, enabling a total of

1800 and 87000 intra- and inter-class comparisons. Images have fixed dimensions

of of (768 × 576) pixels (width × height) and were used in the learning stage of our

proposed feature selection method. This method should increase the adaptability of

the recognition system to typical imaging conditions and, thus, we selected images

with similar noise characteristics, namely the predominant type and localization of

the noise regions. This enabled the simulation of the typical noise regions that occur

in each imaging environment.

UBIRISfs2 - It corresponds to the data set used in the evaluation of the proposed feature

selection method. Contains 200 images from 20 subjects, for a total of 1800 and

87000 intra- and inter-class comparisons. The type of experiments where it was

used demanded that the images had similar characteristics to the previous data set, in

order to simulate the predominant noise regions that result from each specific image

capturing environment. As in the above data set, although the images are highly noisy,

we manually verified that the used segmentation algorithm can accurately perform its

task in every image of the data set.

CASIAfs1 - This data set has a similar purpose as the UBIRISfs1, contains an equal



158 APPENDIX B. DESCRIPTION OF THE DATA SETS

number of images and enables an equal number of intra- and inter- class comparisons.

Images have fixed dimensions of 320 × 280 pixels (width × height). It was used in

the learning stage of the feature selection method described in section 6.3, in order to

perform the method’s evaluation in less noisy iris images.

CASIAfs2 - Similarly to the UBIRISfs2 data set, it was used to evaluate the recognition

accuracy of our feature selection method that was trained with CASIAfs1 images.

Since we decided to have an equal number of training and test images, the data set

has 200 images from 20 subjects.

UPOLfs1 - This was the third data set used in the learning stage of our feature selection

method. Contains 132 images from 44 subjects, enabling a total of 132 and 8514

intra- and inter-class comparisons. Its inclusion in the experiments is justified by

our purpose to evaluate the feature selection benefits either in highly, less noisy and

noise-free environments. This one was used in the learning stage of the method. As

the remaining images of the UPOL database, images are completely noise-free and

have fixed dimensions of 768 × 576 pixels (width × height).

UPOLfs2 - These 132 images from 44 subjects are completely noise-free and were used

in the evaluation of the recognition accuracy of our feature selection proposal. The

number of possible intra- and inter-class comparisons, as well the dimension of the

images are equal to the previous data set.

UBIRISid1 - This data set comprises 200 images from 20 subjects and enables a total of

1800 and 87000 intra- and inter- class comparisons. Its images have fixed dimensions

of 800 × 600 pixels (width × height). It was used in the learning stage of our

iris classification strategy, which demanded the inclusion of iris images with noise

distributed across the majority of the iris regions. Thus, we selected essentially images

with significant reflections and iris obstruction areas.

UBIRISid2 - These 200 images from 20 subjects allowed us to perform respectively 1800

and 87000 intra- and inter-class comparisons and were used in the evaluation of our

iris classification proposal. They have fixed dimensions of 800 × 600 pixels (width

× height) and contain predominantly large reflection and iris obstructions areas, in

order to distribute as evenly as possible the noise across the irises regions.

CASIAid1 - We considered useful to evaluate the merits of our iris classification strategy

when the images contain small portions of noise and when the noisy regions are
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concentrated in specific iris regions. To achieve these purposes, we selected 200

images from 20 subjects of the CASIA database and used this data set in the training

stage of our iris classification proposal. As in the above described data sets, the

number of selected images allowed respectively 1800 and 87000 intra- and inter-class

comparisons. Images have fixed dimensions of 320 × 280 pixels (width × height)

and its noise regions are almost exclusively related with iris obstructions by eyelids

and eyelashes in the vertical iris extremes.

CASIAid2 - This data set comprises the same number of images as the CASIAid1 and was

used in the evaluation of our iris classification strategy. Its images have characteristics

similar to the learning data set, which are essentially related with iris obstructions due

to eyelids and eyelashes in the vertical iris extremes. The dimensions and number of

possible intra- and inter-class comparisons are the same as the previous data set.
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