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Abstract: Detecting anomalies in texture has become a significant concern across various industrial
processes. One prevalent application of this is in inspecting patterned textures, especially in the
domain of fabric defect detection, which is a commonly encountered scenario. This task entails
dealing with a wide array of colours and textile varieties, spanning a broad spectrum of fabrics.
Due to the extensive diversity in colours, textures, and defect characteristics, fabric defect detection
presents a complex and formidable challenge within the realm of patterned texture inspection. While
recent trends have seen a rise in the utilization of deep learning methods for anomaly detection,
there still exist notable gaps in this field. In this paper, we introduce a novel dataset comprising a
diverse selection of fabrics and defects from a textile company based in Portugal. Our contributions
encompass the provision of this unique dataset and the evaluation of state-of-the-art (SOTA) methods’
performance on our dataset.

Keywords: anomaly detection; texture inspection; fabric defect detection

1. Introduction

Clothing is a basic necessity, and the textile industry is one of the oldest industries in
human civilization. As such, ensuring high product quality by detecting fabric defects has
posed a persistent challenge for the textile industry. Currently, human inspection remains
the primary method due to the lack of superior alternatives. However, this approach
is labour-intensive and prone to errors due to visual fatigue and distractions. Human
accuracy in defect detection hovers around 60–75%, diminishing further as work time
increases, or for visually intricate fabrics like stripes.

Several constraints compound this issue: industrial processes must remain seamless
without any disruption, and the array of fabric defects is vast, and constantly evolving
with new collections. Furthermore, each manufacturer holds different standards for what
constitutes a defect, with up to 235 different types of defects [1]. Traditionally, computer
vision-based solutions to the problem involved performing mathematical operations on the
images, such as analysing grey-pixel-value distribution in an image, histogram statistics,
and other such methods, but these methods boasted questionable performance, and few if
any were actually applied in the previously described factory conditions.

Recently, there has been a notable increase in the adoption of deep learning-based
approaches for anomaly and defect detection. In this area, these approaches boast consid-
erable increases in performance over traditional approaches, but as in other areas where
deep learning is applied, massive quantities of data are necessary to train the deep learning
models. Furthermore, as mentioned before, the lack of a universal standardized taxonomy
of what is to be considered a defect makes it difficult to create universally applicable
datasets for this area.
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The defects themselves are also sometimes difficult even for humans to spot. Some de-
fects vary significantly according to their characteristics, while others vary slightly, making
applying general algorithms to this problem difficult. Furthermore, not all defects occur
at the same rates, with some rare defects barely occurring at all, resulting in unbalanced
datasets, which increases the difficulty in using supervised methods. Additionally, not all
fabric types have the same texture, with the same types of defects occasionally looking
different in different types of fabrics, further compounding the problem [2].

Due to these difficulties, vast quantities of data are necessary to train models that can
accurately detect such defects. Despite that, there are few good datasets in this area, with
most of them suffering from either a severe deficit in available samples, annotation, or
all of the former, although the situation has improved in recent years with datasets such
as ZJU-Leaper [3]. One of the innovations of these new datasets consists in, instead of
labelling each defect individually, addressing all defects as a single class, following the
idea of one-class classification. This approach has been used across many different areas to
solve the issue of unbalanced datasets, with promising results. In Table 1, we summarize
the most important aspects of each dataset we encountered in our search. For each dataset,
we collected how many samples it has, whether it classifies defects as multiple classes, and
if so, how many, as well as whether it uses synthetic images or not.

Table 1. Comparison of datasets for fabric defect detection.

Dataset Samples Multi-Class
Defects

Defect
Types

Synthetic
Images Public Availability

ine TILDA [4] 3200 Yes 8 No

Yes (https://universe.
roboflow.com/irvin-
andersen/tilda-fabric/
dataset/2), accessed on 4
April 2024

HKU Fabric [5] 162 Yes 6 Yes
Yes (https://ytngan.
wordpress.com/codes/
accessed on 4 April 2024)

Fabric Stain Dataset [6] 466 No - No

Yes (https://www.
kaggle.com/datasets/
priemshpathirana/fabric-
stain-dataset accessed on 4
April 2024)

DHU FD [7] 1500 Yes 10 No No

Aliyun Tianchi Fabric [8] 15,436 Yes 15 No No

YDFID-1 [9] 3501 No - No

No (https://github.com/
ZHW-AI/YDFID-1/blob/
main/README_ENG.md
accessed on 13 November
2022)

ZJU-Leaper [3] 98,777 No - No

Yes (http://www.
qaas.zju.edu.cn/zju-
leaper/accessed on 4 April
2024 )

Lusitano (our dataset) 36,000 No 35 No

Yes (https://
kailashhambarde.github.
io/Lusitano/accessed on 4
April 2024 )
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In our study, we conducted a comparative analysis between our proposed dataset
and existing datasets, as illustrated in Figure 1. To perform this comparison, we randomly
selected images representing both defective and non-defective fabric samples. Subsequently,
we analysed the pixel intensity and cumulative density function (CDF) of these chosen
images. Our observations revealed that our proposed dataset exhibited significantly higher
levels of complexity in terms of pixel intensity and CDF disparities between defect and
non-defect images.

Figure 1. The red frame shows images from the HKU fabric dataset. In the first row, the first image
exhibits a defect, while the second image does not. Both images are from the same fabric type. In
the second row, the first image shows the pixel intensity of the defect and normal images, while
the second image displays the cumulative distribution function (CDF) of both images. The blue
frame represents images from the zipper dataset, while the green frame depicts images from the
Lusitano dataset.

To further improve efforts in this area, we propose our new dataset. Its main innova-
tion consists in applying the one-class classification paradigm, which means our dataset
contains only fabric images without defects, so that neural networks can be trained to
detect any anomaly encountered as a defect. We collected 32,000 fabric images without
defects, which can be used for training purposes, and created a test set with 1100 normal
and 1300 defect images. All of these images were obtained directly from the factory, in
industry conditions, and no data augmentation or post-processing was performed. While
the total number of pictures does not match that of the ZJU-Leaper dataset, it surpasses
that of other datasets. Furthermore, the absence of augmented or synthetic data entails
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that this dataset can be used for real use cases, or that any future users may apply data
augmentation/synthesis pipelines as necessary for their particular use cases.

We also tested several baseline anomaly detection methods on this dataset and present
the results. We believe our new dataset thus poses a valuable contribution to the area of
fabric defect detection.

2. Related Work
2.1. One-Class Classification

A one-class classification is an approach that involves labelling only a single class in a
dataset so that any mild deviation from these data is classified as an anomaly. This method
is widely applied in financial fraud detection, cybersecurity, healthcare, and automated
visual inspection [10]. The primary advantage of this approach is its ability to detect
anomalies without needing labelled data for every possible class of anomalies, which is
especially useful in rare or diverse scenarios.

Various techniques exist to handle the problem of texture defect detection, including
statistical, transform-based, model-based, and graph-based approaches. Each of these
methods offers distinct advantages and drawbacks. More recently, deep learning-based
feature extraction has produced outstanding results in identifying important patterns. For
instance, supervised training methods [11] are often used in industrial settings for defect
detection. However, gathering data for every possible defect is laborious and may lead to
poor performance if some defect types are not considered.

Unsupervised approaches, such as autoencoders [12], suffer from high generalization
capabilities, making them less effective for specific defect types. To improve performance,
knowledge distillation [13] has been adapted for unsupervised anomaly detection [14,15].
This involves training a student network on normal samples using the output of a pre-
trained teacher network. During testing, the student network replicates the features of the
teacher network for normal samples but fails to do so for anomalous samples, allowing for
the computation of a relevant anomaly score.

Several one-class classification methods have been developed, including but not
limited to PatchCore [16], FastFlow [17], PaDiM (Patch Distribution Modeling) [18], Cut-
Paste [19], Uninformed Student [20], and Patch SVDD [21]. Zhou et al. used one-class
classification for fabric defect detection with mixed results [22]. In our study, we evalu-
ated two methods, DBFAD [23] and RD4AD [24], chosen based on their availability as
open-source code and their suitability for one-class classification.

The advantages of the selected methods are that they are effective in scenarios where
anomalies are rare or diverse, as they do not require labelled data for every possible anomaly.

2.2. Fabric Defect Detection

There are multiple ways of grouping different types of fabric defect detection ap-
proaches. One way consists of motif-based approaches and non-motif-based approaches.
Motif-based methods compare recurring motifs to detect defects, and as such require a
defect-free ground truth of the motifs in a fabric. This ground truth is hard to acquire in in-
dustry conditions, so these approaches are less used than non-motif-based approaches [25].

Non-motif-based approaches, which have undergone far more research, can be further
subdivided into other categories, generally classified as:

• Statistical approaches;
• Spectral approaches;
• Model-based approaches;
• Structural-based approaches;
• Learning-based approaches.

However, due to the recent interest in artificial intelligence (AI) and deep learning
(DL), some authors [26] have started categorizing the former four approaches as traditional
approaches, and the latter one as a separate approach, further subdivided into:
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• Classical machine learning methods;
• Deep learning methods.

We adopted this categorization and cover each of these types in the following subsections.

2.2.1. Traditional Methods

We briefly cover each traditional method, along with their respective submethods, in
the following sections.

Statistical Approaches

Statistical approaches analyse the spatial distribution of grey pixel values in an image.
These approaches comprise histogram statistics, auto-correlation functions, co-occurrence
matrices, local binary patterns (LBP), and mathematical morphological features [27].

Histogram statistics. A histogram displays statistical information on the grey-level
pixel distribution in an image. Some commonly used histogram statistics are the range,
mean, standard deviation, variance, and median. There are also histogram comparison
statistics, such as L1/L2 norm, Mallows or EMD distance, Bhattacharyya distance, Matusita
distance, divergence, Chi-square, and normalised correlation coefficient, which can be used
as texture features [28]. Anomalous variations in these statistics can then be tracked and
usually correspond to defects in the fabric.

This type of approach is simple and not taxing computationally but has shown weak
performance in detecting small defects [29,30].

Co-occurrence matrices. Spatial grey-level co-occurrence matrices (GLCMs) are statis-
tical methods that measure the spatial relationships of grey-scale pixels into co-occurrence
matrices. These functions calculate how often specific pairs of pixels, with certain values
and spatial relationships, occur in an image, given a displacement vector, and extract
texture features from these matrices [31]. This method has been used multiple times across
a wide variety of tasks [32,33] but shows lower performance than alternative methods and
is computationally demanding [34].

Auto-correlation functions. Auto-correlation functions measure spatial frequency
and depict maxima at multiple locations corresponding to the length (or width) of the
repetitive primitive of an image [35]. This method is used primarily in textures with a
repetitive nature, such as textiles, and are unsuited to erratic textures [36].

Local binary patterns An LBP is a shift-invariant complementary measure for local
image contrast. It uses the grey level of a sliding window’s central pixel as a threshold
against surrounding pixels and outputs a weighted sum of thresholding neighbouring
pixels. It has been applied in defect detection with different types of surfaces, such as
ceramic [37], wood [38], and OLED panels [39]. It is insensitive to changes in illumination
and image rotation and has a low computational cost but low performance [40].

Mathematical morphological features. Mathematical morphology performs a geo-
metric description and representation of a shape by extracting useful components from an
image. This is accomplished through basic operations such as expansion, erosion, opening,
and closing [41]. It is used across fields such as medicine [42] or civil engineering [43]. This
method is sensitive to defect sizes and shapes and effective for segmentation tasks but is at
its most effective when performed on patterned fabric and ineffective otherwise [44].

Spectral Approaches

Spectral approaches employ spatial- and frequency-domain features, with spatial
features being used to discover a defect’s location, while frequency features help determine
whether a defect is present. These approaches work by extracting texture primitives and
then generalizing the obtained texture with spatial layout rules. These approaches are
widely used but only effective when used on textures with a high degree of periodicity and
are ineffective otherwise [45].

We cover the most common approaches of this type, namely: Fourier transform,
wavelet transform, Gabor transform, and filtering methods.
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Fourier transform. The Fourier transform, derived from the Fourier series, involves
converting signals from a spatial domain to a frequency domain [46]. As the spatial
domain is often noise-sensitive, the frequency domain is a better alternative towards
finding defects [47]. There are many works that use this technique across many types of
defects, in different materials such as ceramics [48], electronic surfaces [49], solar cells [50],
and other industrial images [51].

Wavelet transform. The wavelet transform technique was developed as an alter-
native to the Fourier transform, to achieve multi-resolution signal decomposition. This
transform converts an image into a series of wavelets, small waves of varying frequency,
which provide information on horizontal, vertical, and diagonal directions in that given
image [52,53]. Contemporarily, the wavelet transform is mostly used as an intermediate
image preprocessing step or as a feature extractor for neural networks [54–56].

Gabor transform. Gabor filters are a well-known method for analysing textured
images, using a joint or spatial-frequency representation. These filters use a Gaussian
distribution function and can be customized with different scale and angle values according
to the analysed texture [2]. This approach attempts the optimal joint localization in spatial
and spatial frequency domains [57]. In regards to fabric defect detection, this approach
has been used many times over the last decades [58–60] but more recently has been mostly
used as a feature extractor for machine learning methods [61–63].

Model-Based Approaches

These revolve around the construction of an image model that can both describe and
synthesize texture. They are most effective with fabric images with stochastic surface
variations, or for randomly textured fabrics for which statistical or spectral approaches are
ineffective [64].

While there are many different types of approaches, the literature is mostly focused
on autoregressive models and Markov Random Fields (MRFs).

Autoregressive models. These models characterize the linear dependence of pixels in
any given textured image. As such, to compute it, one is only required to solve a system of
linear equations, which requires much less computational time, making this a widely used
technique for many areas [65]. However, this technique does not seem to be used much for
fabric defect detection.

Markov Random Fields. Markov Random Fields (MRFs) model context-dependent
entities, such as pixels, which depend on their neighbouring pixels, by combining statistical
and structural information. They are often used in segmentation [66] or classification
problems [67]. In recent years, very few works were found exploring this approach, which
casts doubt regarding its applicability in this area [68,69].

Structural-Based Approaches

Structural approaches consider the fabric texture as a composition of texture elements,
referred to as texture primitives, with a certain spatial arrangement, according to arrange-
ment rules. The goal for these approaches then is to extract the texture primitives, which can
consist of individual pixels, uniform grey-level regions, or line segments, and from there
infer their spatial arrangement rules, by learning their statistical properties or modelling
geometric relationships. This approach is considered more effective in regular textures [70].

2.2.2. Deep Learning-Based Methods

These approaches are based on machine learning algorithms, as well as neural net-
works. Recently, due to the immense growth achieved by AI across all areas of research,
these have become the most common method across the literature in the area, and this
growth is likely to continue [71].

There are many different approaches in this area, given the wide selection of neural
network architectures available. However, we can clearly identify three main approaches
which have been prominent for the last decade.
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The first is the use of Convolutional Neural Networks (CNNs), which are composed
of multiple convolutional layers, mixed in with subsampling or pooling, performing
increasingly more complex feature extraction between the input and output layers until
reaching a final classification layer [72]. This appears to be the most commonly used
approach in the reviewed articles.

The second is based on object detection approaches across other domains. These
revolve around the use of one-stage or two-stage detectors. One-stage detectors such
as Single-Shot MultiBox Detector (SSD) [73] or You Only Look Once (YOLO) [74] treat
object detection as a regression problem and learn class probabilities and bounding-box
coordinates directly. Two-stage detectors such as R-CNN, Fast R-CNN [75], Faster R-
CNN [76], or Mask R-CNN [77] approach the problem in two stages, using a Region
Proposal Network (RPN) in the first stage to generate regions of interest, which are sent
to the next stage for classification and bounding-box regression. One-stage detectors are
much faster than two-stage detectors but have lower accuracy [78].

The third is the use of generative models, which are neural networks trained to
approximate high-dimensional probability distributions using a large number of samples.
Their architectures involve numerous hidden layers. These models are usually used for
generative tasks, such as finishing a word at the end of a sentence or generating images
based on several instances. There are several variants of this approach, such as Generative
Adversarial Models (GANs), or autoencoders [79,80].

Each of these topics is approached in their own subsection ahead.

CNN-Based Approaches

Jing et al. used a LeNet architecture, achieving good detection rates on TILDA, HKU,
and a private dataset, compared to other architectures such as AlexNet, VGG16, and oth-
ers [81]. Jeyaraj et al. used a multi-scaling CNN, averaging the results of three CNN
architectures [82]. The same authors later tried using a ResNet512 architecture, outper-
forming Support Vector Machines (SVMs) and Bayesian classifiers [83]. Sun et al. used an
end-to-end multi-convoluted model, based on grey histogram back-propagation [84].

Almeida et al. used a custom CNN with false negative (FN) reduction methods [85].
Zhao et al. used a visual long short-term memory-based model, which involved a shallow
CNN [7]. Durmusoglu and Kahraman used a VGG19 CNN model [86]. The same authors
later switched to capsule networks instead, a new alternative to CNNs that have recently
become popular for other task types [87].

Jing et al. used a Mobile-Unet model, using MobileNetV2 as an encoder and five
deconvolutional layers as a decoder. It achieved good accuracy on the HKU dataset, and a
self-made one [88].

Object Detection

These approaches are often based on one-stage detectors and two-stage detectors, as
mentioned. We summarize relevant examples of each in the following subsections.

One-stage detectors. Many works consist in making alterations to YOLO models. Liu
et al. used a lightweight CNN model named YOLO-LFD, competitive over other YOLO
models, with a much lighter computational load [89]. The same authors later used a new
weakly supervised learning framework, named DLSE-Net, to classify fabric defects with
91% accuracy, which, while worse than supervised approaches, outperformed other weakly
supervised approaches [90].

Liu et al. implemented a new Spatial Pyramid Pooling (SPP) module, with Maxpool
operations replaced with Softpool, into the YOLOv4 backbone, along with image prepro-
cessing with contrast-limited adaptive histogram equalization (CLAHE), improving over
baseline results [91].

Guo et al. introduced an Atrous Spatial Pyramid Pooling (ASPP) module, along with
a convolution squeeze-and-excitation (CSE) attention channel module, into the YOLOv5
backbone [92]. Li et al. also improved on the YOLOv5 network by replacing the bottleneck
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structure with a coordinate attention module, switching the SiLU activation function with
Mish, the CIoU loss function with SIoU, and combining focal loss and GHM loss functions
as the target confidence loss function [93].

Wang et al. used a modified YOLOv3, with a coordinate attention module and a
new tiny defect detection layer, culminating in a new anchor-free detector, YOLOX-CATD,
which did not require anchor-related hyperparameter tuning [94].

Two-stage detectors. We found fewer works with approaches based on two-stage
detectors. We briefly describe some of the most representative ones.

Chen et al. improved a faster R-CNN backbone with Gabor filters optimized with
genetic algorithms, achieving better accuracy in [63]. Li et al. used a cascade R-CNN with a
switchable atrous convolution layer and an upgraded feature pyramid network [95]. Wu et
al. used a network structure based on Faster R-CNN, WALNet, with a dilated convolution
module, which employed a multi-scale convolution kernel to adapt to defects of different
sizes [96].

Generative Model-Based Approaches

Regarding autoencoders, Tian et al. proposed an MXNet-based autoencoder, using
cross-patch similarity to detect and reconstruct similarities between different patches of
the selected image [97]. Han et al. used stacked convolutional autoencoders on synthetic
datasets, created with a new method, using expert knowledge to extract defect character-
istics, with a method that would allow for the creation of new datasets without needing
many defect data at all [98]. Zhang et al. used a deep denoising convolutional autoen-
coder (DDCAE), performing image reconstruction with a depth denoising convolution
self-encoder, followed by a mathematical morphology analysis of the resulting image [99].

Regarding GAN-based methods, Hu et al. used an unsupervised method with a deep
convolutional GAN that reconstructed a given defect image without the aforementioned
defect and compared it to the original image to discover the presence of defects [100].
Liu et al. devised a GAN-based framework capable of automatically adapting to different
fabric textures with a customized deep semantic segmentation network [101]. The same
author later proposed another approach wherein a GAN model was used to build fault
blocks from an acquired distribution of fabric defect features, applying a faster R-CNN for
further defect detection.

3. Lusitano Dataset Description

The Lusitano dataset was collected over a 3-month period, spanning from January
to March, from Paulo de Oliveira, S.A., based in Covilhã, Portugal (https://www.paulo-
oliveira.pt/), accessed on 2 April 2024 , a prominent textile company in Portugal renowned
for its innovative contributions to the textile industry.

To constitute the dataset, we placed 1 camera (shown in Figure 2) in front of a fabric
inspection machine with a strong and nearly uniform light source.

This dataset comprises images with dimensions of 4096 × 1024, meticulously captured
by an industrial-grade Teledyne Dalsa Linea camera (https://www.teledynedalsa.com/
en/products/imaging/cameras/linea/, accessed on 27 March 2024)The camera’s high
resolution and precision ensured the accurate depiction of textile samples, capturing
intricate details crucial for defect analysis.

It is noteworthy that the defects depicted in this dataset were not artificially gen-
erated; rather, they stemmed from genuine occurrences observed during this collection
period. These defects represented real-world challenges encountered in textile production
processes.

The dataset provides an encompassing view of various fabric examples. Figure 3
showcases normal images.

We provide two folders, training and test, in the same folder architecture, an MVTEC
AD dataset [102], containing images normal in training and normal in testing, and both
defect and normal images. Details of the number of samples per split are shown in Table 2,

https://www.paulo-oliveira.pt/
https://www.paulo-oliveira.pt/
https://www.teledynedalsa.com/en/products/imaging/cameras/linea/
https://www.teledynedalsa.com/en/products/imaging/cameras/linea/
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where the training set contains 32k normal images for model training, and the testing set
contains 1038 normal and 1646 defect images.

Figure 2. Camera setup at the textile factory.

Table 2. Details of the dataset split for fabric defect detection/classification.

Split Normal Defects

ine Training 32k 0.0

Test 1038 1646

Figure 3. Normal fabric images: A collection of high-resolution images showing various examples of
normal fabric textures. Different fabric types have different colors and textures. These images serve
as reference samples for fabric quality assessment.

The dataset under consideration shows minimal differential changes between pixels
in normal and defect images, as visually depicted in Figure 4. In the provided illustration,
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the top row showcases original images, with the first image depicting a defect image
characterized by a linear defect. In contrast, the second image portrays a normal image
featuring the same fabric sample. In the subsequent row, pixel density histograms are
presented, revealing slight discrepancies in density between normal and defective fabric
images. Finally, the third row displays cumulative histograms, further illustrating the
marginal variations observed between the two normal and defective images. These results
highlight the difficulties in identifying defects in fabric samples because of the slight
variations in pixel properties between normal and defective examples.

Figure 4. Comparison of defect and normal images along with their pixel-wise and cumulative histograms.

4. Experiments and Discussion

In this section, we evaluate SOTA methods on our novel fabric dataset. Our objective
here is to report baseline quantitative and qualitative results, assessing the performance of
these methods in real fabric defect detection. By conducting this evaluation, we aim to gain
insights into the effectiveness of the SOTA techniques in handling the unique characteristics
and challenges posed by our fabric dataset.

4.1. SOTA Methods

To evaluate the SOTA method on our proposed fabric dataset, we considered two
methods purely based on the following factors, open-source code and a one-class classifica-
tion approach, hence DBFAD [23] and RD4AD [24]; the following sections explain these
methods in detail.

4.1.1. Reverse Distillation from One-Class Embedding for Anomaly Detection (RD4AD)

The Reverse Distillation from One-Class Embedding for Anomaly Detection (RD4AD) [24]
method comprises a pre-trained teacher encoder, a trainable one-class bottleneck embedding
module, and a student decoder. This methodology leverages a multi-scale feature fusion block
to amalgamate low- and high-level features extracted by the encoder and subsequently map
them onto a compact code using the one-class embedding block.

During the training phase, the RD4AD method employs reverse distillation, wherein
the student decoder endeavours to replicate the teacher encoder’s behaviour by minimizing
the similarity loss function. In the inference stage, the reverse distillation encoder extracts
features, while the decoder generates anomaly-free representations. The detection of
anomalies is predicated upon discerning low similarity between feature vectors from the
encoder and decoder. The RD4AD method computes the final prediction by aggregating
multi-scale similarity maps.

4.1.2. Distillation-Based Fabric Anomaly Detection (DBFAD)

Distillation-based fabric anomaly detection [23] is a method utilizing residue reverse
distillation for detecting defects within textures.

The method introduces a novel approach, termed reverse distillation, for unsupervised
anomaly detection in fabric textures, specifically targeting the challenge of fabric defect
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detection in industrial processes. This method emphasizes the absence of defective samples
during training, enabling generalization and fast inference. It utilizes a teacher–student
architecture to enhance the student model’s reconstruction capabilities for anomaly detection.

4.2. Experiment Setup

We evaluated two methods, DBFAD [23] and RD4AD [24], chosen based on their
availability as open-source code (https://github.com/SimonThomine/DBFAD accessed
on 2 April 2024) and their suitability for a one-class classification approach (https://github.
com/hq-deng/RD4AD.git accessed on 2 April 2024) for the proposed fabric dataset.

To evaluate the efficiency of the selected methods, we adopted a systematic approach.
Initially, we divided the entire training dataset into six distinct parts, with data volumes
of 1k, 2k, 4k, 8k, 16k, and 32k normal images. We enhanced the quality of our input data
by cropping the images to a standard dimension of 2000 × 1000 pixels (width × height)
from the centre, addressing the noise present around the image corners, a common issue
in our dataset. This resizing process was applied to the testing images as well, ensuring
consistency throughout our evaluation process.

Following this preprocessing phase, we trained each chosen method on each dataset
partition and tested each iteration on the testing dataset to measure performance.

For the RD4AD [24] method, we configured the parameters as follows: 200 epochs, a
learning rate of 0.005, a batch size of 16, an image size of 256 × 256 pixels, a patience of 5.
For the DBFAD [23] method, the configuration was as follows: 100 epochs, a learning rate
of 0.005, a batch size of 16. an image size of 256 × 256 pixels, a patience of 10.

We utilized the Nvidia RTX A6000, Santa Clara, CA, USA for both training and testing
purposes. These implementation details were consistent across all dataset splits, ensuring a
fair and comprehensive evaluation of our methods. This systematic approach allowed us to
rigorously compare the performance of DBFAD and RD4AD under varying data volumes,
ensuring robust and reliable results for fabric defect detection.

4.3. Results and Discussion

The Lusitano dataset offers a comprehensive look into the fabric inspection domain,
capturing real-world textile samples with meticulous detail. This dataset, sourced from
Paulo de Oliveira, S.A., showcases normal and defective fabric examples crucial for anomaly
detection and defect classification tasks. The high-resolution images, acquired using an
industrial-grade camera, ensure the faithful representation of fabric textures, enabling a
precise analysis of defects. The dataset’s composition, detailed in Table 2, delineates the
distribution of normal and defective samples across training and testing sets.

With 32k normal images for training and 1100 normal along with 1300 defect images
for testing, the dataset provides a balanced representation of fabric variations and defects,
facilitating robust model evaluation. Visual inspection of the dataset, as depicted in
Figures 3 and 4, highlights the subtle differences between normal and defective fabric
samples. These images serve as reference points for fabric quality assessment, emphasizing
the need for accurate anomaly detection techniques to identify defects reliably.

Figure 4 presents a comparative analysis of defect and normal fabric images, showcas-
ing their pixel-wise and cumulative histograms. The first row exhibits a defect image on
the left and a normal image on the right, both representing the same fabric type. Despite
the visual differences between the defect and normal images, the pixel histograms in the
second row appear remarkably similar, indicating comparable distributions of pixel values
across both image types. Similarly, the cumulative histograms in the third row display a
limited discriminative power between defect and normal fabrics based solely on pixel in-
tensity distributions. This observation underscores the challenge of distinguishing between
defective and normal fabrics with fabrics of the same type.

In our experimental evaluation, we scrutinized two state-of-the-art anomaly detection
methods for fabric defect detection: DBFAD and RD4AD. Both methods leverage innova-
tive approaches to detect anomalies within fabric textures, employing reverse distillation

https://github.com/SimonThomine/DBFAD
https://github.com/hq-deng/RD4AD.git
https://github.com/hq-deng/RD4AD.git
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techniques to enhance anomaly detection capabilities. Results from RD4AD are illustrated
in Figure 5, and those of DBFAD are depicted in Figure 6.

Our experimental setup, detailed in the experiment setup section, encompassed a
systematic evaluation of DBFAD and RD4AD across different dataset sizes. By dividing the
training dataset into six partitions and conducting evaluations with varying data volumes,
we aimed to evaluate the scalability and performance of the selected methods.

The results, summarized in Table 3, explore evaluation metrics for fabric defect
anomaly detection, comparing DBFAD and RD4AD across dataset sizes using AUC and
mAP. Both methods showed an increasing AUC with larger datasets, but improvements
were modest. RD4AD consistently outperformed DBFAD in AUC and mAP. AUC and
mAP improved notably with dataset size, especially for RD4AD, suggesting its scalability.
However, precision levels for both methods remained suboptimal, emphasizing the need
for further method improvement.

Table 3. Evaluation metrics for different dataset sizes. The % change was calculated considering 1k
as the baseline for each method. Green indicates improvement, while red indicates degradation.

Method Used Sample Size AUC Change (%) mAP Change (%)

DBFAD [23]

1k 0.7573 - 0.8162 -
2k 0.7570 −0.04% 0.8199 0.45%
4k 0.7691 1.56% 0.8293 1.60%
8k 0.7737 2.17% 0.8301 1.70%
16k 0.7797 2.96% 0.8354 2.35%
32k 0.7814 3.18% 0.8429 3.27%

RD4AD [24]

1k 0.8231 - 0.8773 -
2k 0.8189 −0.51% 0.8803 0.34%
4k 0.8640 4.97% 0.9275 5.72%
8k 0.8726 6.01% 0.9319 6.22%
16k 0.8831 7.29% 0.9374 6.85%
32k 0.8860 7.64% 0.9390 7.03%

Furthermore, precision–recall curves and ROC curves, depicted in Figures 5–8, offer
visual insights into the performance of DBFAD and RD4AD across various evaluation
criteria. These curves provide a nuanced understanding of the trade-offs between precision,
recall, and false positive rates, aiding in the interpretation of model performance.

Figure 5. PR-AUC of the DBFAD model.
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Figure 6. AUC-ROC of the DBFAD model.

Figure 7. Precision–recall curve of the RD4AD model [24].

Figure 8. ROC curve of the RD4AD model [24].

5. Conclusions

We presented a new dataset to advance the area of fabric defect detection, as we
concluded that there was a dearth of good, well-populated datasets in this area. To this end,
we collected fabric images for three months in factory settings and obtained 32,000 images
without defects, with which we created a training set. For testing purposes, we provided
1100 normal images and 1300 images with defects, also collected in factory settings. These
images can thus be used in one-class anomaly detection methods.
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We benchmarked this dataset against two open-source one-class anomaly detection
methods and obtained results that, while suboptimal, validate the use of this dataset in
this area.

In the future, we intend to continue collecting data and adding them to this dataset, test-
ing new benchmark methods on it, and perfecting the dataset, by segregating different fabric
types, better tuning lighting and camera positioning conditions, and other improvements.

We believe this dataset thus constitutes a valid contribution to this area, and we will
continue expanding it in the future.
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87. Kahraman, Y.; Durmuşoğlu, A. Classification of defective fabrics using capsule networks. Appl. Sci. 2022, 12, 5285. [CrossRef]
88. Jing, J.; Wang, Z.; Rätsch, M.; Zhang, H. Mobile-Unet: An efficient convolutional neural network for fabric defect detection. Text.

Res. J. 2022, 92, 30–42. [CrossRef]
89. Liu, Z.; Cui, J.; Li, C.; Wei, M.; Yang, Y. Fabric defect detection based on lightweight neural network. In Proceedings of

the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xi’an, China, 8–11 November 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 528–539.

90. Liu, Z.; Huo, Z.; Li, C.; Dong, Y.; Li, B. DLSE-Net: A robust weakly supervised network for fabric defect detection. Displays 2021,
68, 102008. [CrossRef]

91. Liu, Q.; Wang, C.; Li, Y.; Gao, M.; Li, J. A fabric defect detection method based on deep learning. IEEE Access 2022, 10, 4284–4296.
[CrossRef]

92. Guo, Y.; Kang, X.; Li, J.; Yang, Y. Automatic Fabric Defect Detection Method Using AC-YOLOv5. Electronics 2023, 12, 2950.
[CrossRef]

93. Li, F.; Xiao, K.; Hu, Z.; Zhang, G. Fabric defect detection algorithm based on improved YOLOv5. Vis. Comput. 2023, 40 1–16.
[CrossRef]

94. Wang, X.; Fang, W.; Xiang, S. Fabric defect detection based on anchor-free network. Meas. Sci. Technol. 2023, 34, 125402. [CrossRef]
95. Li, L.; Li, Q.; Liu, Z.; Xue, L. Effective Fabric Defect Detection Model for High-Resolution Images. Appl. Sci. 2023, 13, 10500.

[CrossRef]
96. Wu, J.; Le, J.; Xiao, Z.; Zhang, F.; Geng, L.; Liu, Y.; Wang, W. Automatic fabric defect detection using a wide-and-light network.

Appl. Intell. 2021, 51, 4945–4961. [CrossRef]
97. Tian, H.; Li, F. Autoencoder-based fabric defect detection with cross-patch similarity. In Proceedings of the 2019 16th International

Conference on Machine Vision Applications (MVA), Tokyo, Japan 27–31 May 2019; IEEE: New York, NY, USA, 2019; pp. 1–6.
98. Han, Y.J.; Yu, H.J. Fabric defect detection system using stacked convolutional denoising auto-encoders trained with synthetic

defect data. Appl. Sci. 2020, 10, 2511. [CrossRef]
99. Zhang, H.; Tang, W.; Zhang, L.; Li, P.; Gu, D. Defect detection of yarn-dyed shirts based on denoising convolutional self-encoder.

In Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May
2019; IEEE: New York, NY, USA, 2019; pp. 1263–1268.

100. Hu, G.; Huang, J.; Wang, Q.; Li, J.; Xu, Z.; Huang, X. Unsupervised fabric defect detection based on a deep convolutional
generative adversarial network. Text. Res. J. 2020, 90, 247–270. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1146/annurev-statistics-010814-020120
http://dx.doi.org/10.1111/cote.12394
http://dx.doi.org/10.1108/IJCST-11-2018-0135
http://dx.doi.org/10.1177/0040517519884124
http://dx.doi.org/10.1587/transinf.2019EDP7092
http://dx.doi.org/10.1109/ACCESS.2021.3086028
http://dx.doi.org/10.3390/app12105285
http://dx.doi.org/10.1177/0040517520928604
http://dx.doi.org/10.1016/j.displa.2021.102008
http://dx.doi.org/10.1109/ACCESS.2021.3140118
http://dx.doi.org/10.3390/electronics12132950
http://dx.doi.org/10.1007/s00371-023-02918-7
http://dx.doi.org/10.1088/1361-6501/ace8af
http://dx.doi.org/10.3390/app131810500
http://dx.doi.org/10.1007/s10489-020-02084-6
http://dx.doi.org/10.3390/app10072511
http://dx.doi.org/10.1177/0040517519862880


Appl. Sci. 2024, 14, 5298 18 of 18

101. Liu, J.; Wang, C.; Su, H.; Du, B.; Tao, D. Multistage GAN for fabric defect detection. IEEE Trans. Image Process. 2019, 29, 3388–3400.
[CrossRef]

102. Bergmann, P.; Fauser, M.; Sattlegger, D.; Steger, C. MVTec AD—A comprehensive real-world dataset for unsupervised anomaly
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
15–20 June 2019; pp. 9592–9600.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIP.2019.2959741

	Introduction
	Related Work
	One-Class Classification
	Fabric Defect Detection
	Traditional Methods
	Deep Learning-Based Methods


	Lusitano Dataset Description
	Experiments and Discussion
	SOTA Methods
	Reverse Distillation from One-Class Embedding for Anomaly Detection (RD4AD)
	Distillation-Based Fabric Anomaly Detection (DBFAD)

	Experiment Setup
	Results and Discussion

	Conclusions
	References

