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Iris Recognition: On the Segmentation
of Degraded Images Acquired
In the Visible Wavelength

Hugo Proenca

Abstract—Iris recognition imaging constraints are receiving increasing attention. There are several proposals to develop systems that
operate in the visible wavelength and in less constrained environments. These imaging conditions engender acquired noisy artifacts
that lead to severely degraded images, making iris segmentation a major issue. Having observed that existing iris segmentation
methods tend to fail in these challenging conditions, we present a segmentation method that can handle degraded images acquired in
less constrained conditions. We offer the following contributions: 1) to consider the sclera the most easily distinguishable part of the
eye in degraded images, 2) to propose a new type of feature that measures the proportion of sclera in each direction and is
fundamental in segmenting the iris, and 3) to run the entire procedure in deterministically linear time in respect to the size of the image,

making the procedure suitable for real-time applications.

Index Terms—Iris segmentation, biometrics, noncooperative image acquisition, visible-light iris images, covert recognition.

1 INTRODUCTION

THE human iris supports contactless data acquisition and
can be imaged covertly. Thus, at least theoretically, the
subsequent biometric recognition procedure can be per-
formed without subjects” knowledge. The feasibility of this
type of recognition has received increasing attention and is
of particular interest for forensic and security purposes,
such as the pursuit of criminals and terrorists and the
search for missing children.

Deployed iris recognition systems are mainly based on
Daugman’s pioneering approach, and have proven their
effectiveness in relatively constrained scenarios: operating
in the near-infrared spectrum (NIR, 700-900 nm), at close
acquisition distances and with stop-and-stare interfaces.
These systems require high illumination levels, sufficient to
maximize the signal-to-noise ratio in the sensor and to
capture images of the discriminating iris features with
sufficient contrast. However, if similar processes were used
to acquire iris images from a distance, acceptable depth-of-
field values would demand significantly higher f-numbers
for the optical system, corresponding directly (squared)
with the amount of light required for the process. Similarly,
the motion factor will demand very short exposure times,
which again will require too high levels of light. The
American and European standards councils ([1] and [8])
proposed safe irradiance limits for NIR illumination of near
10 mW/cm?. In addition to other factors that determine
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imaging system safety (blue light, nonreciprocity, and
wavelength dependence), these limits should be taken into
account, as excessively strong illumination can cause
permanent eye damage. The NIR wavelength is particularly
hazardous because the eye does not instinctively respond
with its natural mechanisms (aversion, blinking, and pupil
contraction). However, the use of visible light and un-
constrained imaging setups can severely degrade the
quality of the captured data (Fig. 1), increasing the
challenges in performing reliable recognition.

The pigmentation of the human iris consists mainly of
two molecules: brown-black Eumelanin (over 90 percent)
and yellow-reddish Pheomelanin [26]. Eumelanin has most
of its radiative fluorescence under the VW, which—if
properly imaged—enables the capture of a much higher
level of detail, but also of many more noisy artifacts,
including specular and diffuse reflections and shadows.
Also, the spectral reflectance of the sclera is significantly
higher in the VW than in the NIR (Fig. 2a) and the spectral
radiance of the iris in respect of the levels of its
pigmentation varies much more significantly in the VW
than in the NIR (Fig. 2b). All of these observations justify
the need for specialized segmentation strategies, as the type
of imaged information is evidently different. Furthermore,
traditional template and boundary-based iris segmentation
approaches will probably fail, due to difficulties in
detecting edges or in fitting rigid shapes. These observa-
tions were the major motivation behind the work described
in this paper: the development of an iris segmentation
technique designed specifically for degraded iris images
acquired in the VW and unconstrained scenarios.

First, we describe a deterministic linear-time algorithm to
discriminate nonparametrically between noise-free iris pix-
els and all other types of data. The key insights behind our
algorithm are: 1) to consider the sclera as the most easily
detectable part of the eye in degraded VW images, and 2) that
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(b)

Fig. 1. Comparison between (a) the quality of iris biometric images acquired in highly constrained conditions in the near-infrared wavelength (WVU
database [39]) and (b) images acquired in the visible wavelength in unconstrained imaging conditions, acquired at-a-distance and on-the-move

(UBIRIS.v2 database [38]).

invariably, the sclera is contiguous and surrounds the iris
region, which is used in the detection and segmentation of
the iris. The algorithm is based on the neural pattern
recognition paradigm. Its spatial and temporal complexity
is deterministic and classified as linear time (O(n)), as its
asymptotic upper bound is linearly proportional to the size of
the input data (n). We also present a method for parameter-
izing segmented data because this parameterization is
required for subsequent processing. We frame this task as a
constrained least squares minimization in order to compute
the polynomial regression of two functions that approximate
the iris inner and outer borders. We justify the use of this
technique by its ability to parameterize data with arbitrary
order while smoothing its shape and compensating for small
inaccuracies from the previous classification stage.

The remainder of this paper is organized as follows:
Section 2 briefly summarizes the most popular iris
segmentation methods, emphasizing those most recently
published. In Section 3, we describe our method in detail.
Section 4 describes our experiments and discusses our
results. Finally, Section 5 concludes.

2 Iris RECOGNITION

This section summarizes several recently published works
about iris imaging constraints and acquisition protocols.
Later, within the scope of this paper, we analyze and
compare several iris segmentation proposals, especially
focusing on those that may be more robust against
degraded data.
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2.1 Less Constrained Image Capturing

The “Iris-on-the-move” project [25] should be emphasized:
It is a major example of engineering an image acquisition
system to make the recognition process less intrusive for
subjects. The goal is to acquire NIR close-up iris images as a
subject walks at normal speed through an access control
point. Honeywell Technologies applied for a patent [19] on a
very similar system, which was also able to recognize irises
at-a-distance. Previously, Fancourt et al. [13] concluded that
it is possible to acquire sufficiently high-quality images at a
distance of up to 10 meters. Narayanswamy et al. [29] used
a wave-front coded optic to deliberately blur images in such
a way that they do not change over a large depth-of-field.
Removing the blur with digital image processing techni-
ques makes the trade-off between signal-to-noise ratio and
depth-of-field linear. Also, using wave-front coding tech-
nology, Smith et al. [42] examined the iris information that
could be captured in the NIR and VW spectra, addressing
the possibility of using these multispectral data to improve
recognition performance. Park and Kim [32] acquired in-
focus iris images quickly at-a-distance, and Boddeti and
Kumar [5] suggested extending the depth-of-field of iris
imaging frameworks by using correlation filters. He et al.
[17] analyzed the role of different NIR wavelengths in
determining error rates. More recently, Yoon et al. [47]
presented an imaging framework that can acquire NIR iris
images at-a-distance of up to 3 meters, based on a face
detection module and on a light-stripe laser device used to
point the camera at the proper scene region. Boyce et al. [6]
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Fig. 2. Spectral reflectance and radiance of the iris and the sclera in respect of the wavelength. (a) Spectral reflectance of the human sclera [31].
(b) Spectral radiance of the human iris according to the levels of iris pigmentation [21].
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TABLE 1
Overview of the Most Relevant Recently Published Iris Segmentation Methods
Method Experiments | Preprocessing Ord. Pupillary Border Scleric Border
Bor-
ders
Zuo et al. [50] CASIA.1, Specular reflections de- P—S Randomized  Elliptical ~Hough Weighted Integro-differential oper-
ICE, WVU tected (threshold), PDE Transform ator
(NIR) and impainting
Puhan er al. [28] UBIRIS Image binarization S - Construction of a set of unidimen-
(VW) (threshold ~ of  the sional signals, gradient analysis
local Fourier spectral
density)
Ross and CASIA.1, 2-D Median filter P—S Binarization (threshold), Circular Geodesic Active Contours
Shah [40] WVU Hough Transform
(NIR)
Poursaberi  and CASIA.1 Negative image, im- P Iterative expansion/shrink of the -
Araabi [35] (NIR) painting detected border based on morpho-
logical operators
Morimoto et Non- Not described P—S Images difference Images cascade at different scales,
al. [27] specified Sobel edges detection, elliptical
(NIR) form fitting
Liu ez al. [23] ICE (NIR) Not described P—S Angular constrained Canny edge Hough-based form fitting, hypoth-
detection, Hough-based transform esis and test process
Kennell et BATH Histogram P—S Morphological operators, integro- Image binarization based on pix-
al. [22] (NIR) equalization, image differential operator els+ neighborhood variance, form
binarization (threshold) fitting
Vatsa et al. [44] UBIRIS, Not described P—S Rough estimation according to Process similar to the pupillary
CASIA.v3 an elliptical model, followed by border
(NIR, VW) a modified Mumford-Shah func-
tional
Proenca and UBIRIS Histogram equalization S—P Feature extraction (pixel position + Process similar to the pupillary
Alexandre [37] (VW) intensity) and fuzzy clustering to border
reduce image heterogeneity, Canny
edges detection and circular Hough
transform
Zaim [48] CASIA.1 Morphologic operators S—P Split and merge process to localize Image normalization based on
(NIR) to eliminate eyelashes regions of uniform intensity pupil coordinates, Sobel filtering,
detection of horizontal edges in the
normalized image
Broussard et BATH Not described PS Extraction of local texture features, Process similar to the pupillary
al. [7] (NIR) feed forward neural network border
He and Shi [16] Non- Image binarization, P—S Geometrical projection methods, Canny edge extraction, Hough
specified morphologic Sobel filtering, form fitting transform
(NIR) operations
Basit and BATH Image binarization, P—S Iterative bijections-based method Maximization of the difference of
Javed [3] (NIR) morphologic intensities of radial direction
operations
Arvacheh and CASIA.1 Not described P—S Near circular active contour model Integro-differential operator
Tizhoosh [2] (NIR) (snakes), interpolation process to
improve performance
Daugman [10] ICE (NIR) Not described P—S Active contours based on Fourier Active contours based on Fourier
series, modeled with 17 discrete series, modeled with 4 discrete
Fourier coefficients Fourier coefficients
He er al. [18] CASIA.1 Not described P—S Adaboost based object detection, Image normalization, Sobel and
(NIR) iterative circumference shifting Canny filtering, line fitting
Zheng et al. [49] SITU Conversion into Hsv P—S Assume existence of specular re- Iterative shift, shrink and expand
(VW) color space flections, maximization of integral circumference process to minimize
projections, integro-differential op- average intensity
erator
Xu and Shi [46] CAS- Not described P—S Integral projection functions, me- Sobel filtering, Edges weighting
PEAL dian filtering, circumference shift- according to position and curvature
VW) ing based on average intensity min-
imization
Honeywell Inter- CASIA.1 Not described P Search for radial texture disconti- -
national [20] (NIR) nuities
Dobes ez al. [12] AR, CVL Histogram S - Canny edges detection, Angular
(VW) equalization, Gaussian constrained Hough transform
blur
Shuckers et WVU Remove specular P—S Elliptical integro-differential oper- Elliptical integro-differential oper-
al. [41] (NIR) reflections (threshold), ator ator
impainting
Tan et al. [43] UBIRIS.vI, Image clustering to P, S Integro-differential constellation Integro-differential constellation
UBIRIS.v2 perform rough eye
localization

studied the image acquisition wavelength of revealed
components of the iris, and identified the important role
of iris pigmentation.

2.2 Iris Segmentation Methods

Table 1 gives an overview of the main techniques behind
several recently published iris segmentation methods. We
compare the methods according to the data sets used in the
experiments, categorized by the order in which they
segment iris borders. The “Experiments” column contains
the iris image databases used in the experiments. “Pre-
processing” lists the image preprocessing techniques used
before segmentation. “Ord. Borders” lists the order in

which the iris borders are segmented, where P denotes
pupillary borders and S denotes scleric iris borders
(“z — y” denotes the segmentation of y after x and “z,y”
denotes independent segmentation). “Pupillary Border”
and “Scleric Border” refer to the main methods used to
segment any given iris border.

We note that a significant majority of the listed methods
operate on NIR images that typically offer high contrast
between the pupil and the iris regions, which justifies the
order in which the borders are segmented. Also, various
innovations have recently been proposed, such as the use of
active contour models, either geodesic [40], based on
Fourier series [10], or based on the snakes model [2]. These



Captured Image

Feature Set 1

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. XX, XXXXXXX 2010

Segmented Image

|
I
Feature Extraction T}, vy D, I @

f—— I
1 (Sclera stage) B 2Ty ey TR :
|
J |
I
I

| |

Feature Extraction o O : Constrained
2 (Iris Stage) z WQ | Polynomial Fitting
I
Neural network classification !
J Detected sclera (sc) : lios ys)
|
|
2 .2 2 O

T, T, - T N o S !

13 9% I N

S <@<3 — > ————| Locate Iris Center

af, ah, ...,z /%’)‘Q !
I
|

Feature Set 2 Neural network classification

Detecting noise-free iris pixels

Fig. 3. Block diagram of our iris segmentation method.

techniques require previous detection of the iris to properly
initialize contours, and are associated with heavy computa-
tional requirements. Modifications to known form fitting
methods have also been proposed, essentially to handle off-
angle images (e.g., [50] and [44]) and to improve perfor-
mance (e.g., [23] and [12]). Finally, the detection of noniris
data that occludes portions of the iris ring has motivated the
use of parabolic, elliptical, and circular models (e.g., [3], and
[12]) and the modal analysis of histograms [10]. Even so, in
noisy conditions, several authors have suggested that the
success of their methods is limited to cases of image
orthogonality, to the nonexistence of significant iris occlu-
sions, or to the appearance of corneal reflections in specific
image regions.

3 OuR METHOD

Fig. 3 shows a block diagram of our segmentation method,
which can be divided into two parts: detecting noise-free
iris regions and parameterizing the iris shape.

The initial phase is further subdivided into two
processes: detecting the sclera and detecting the iris. The
key insight is that the sclera is the most easily distinguish-
able region in nonideal images. Next, we exploit the
mandatory adjacency of the sclera and the iris to detect
noise-free iris regions. We stress that the whole process
comprises three tasks that are typically separated in the
literature: iris detection, segmentation, and detection of
noisy (occluded) regions. The final part of the method is to
parameterize the detected iris region. In our tests, we often
observed small classification inaccuracies near iris borders.
We found it convenient to use a constrained polynomial
fitting method that is both fast and able to adjust shapes
with an arbitrary degree of freedom, which naturally
compensates for these inaccuracies.

3.1 Feature Extraction Stages

We used local features to detect the sclera and noise-free iris
pixels. Due to performance concerns, we decided to
evaluate only those features that a single image scan can
capture. Viola and Jones [45] proposed a set of simple

Detected iris (27)

Iris parameterization

features (reminiscent of Haar basis functions) and com-
puted them over a single image scan with an intermediate
image representation. For a given image I, they defined an
integral image:

I(z,y) = i Zf(x/,y/)7

'=1y'=1

(1)

where 2 denotes the image column and y denotes the row.
They also proposed a pair of recurrences to compute the
integral image in a single image scan:

s(z,y) = s(z,y —1) + I(z,y), (2)

I (z,y) = 1(z - 1,y) + s(z,y),

with s(z,0) = I1(0,y) = 0.

According to this concept, the average intensity (u)
within any rectangular region R;, delimited by its upper left
(z1,41) and bottom-right (x3,y2) corner coordinates, is
determined by accessing just four array references. Let T; =
(g — 1+ 1) x (y2 — 11 + 1) be the number of pixels within
R;. Then,

3)

u(R) = % (T2, o) + (w1, 1) — T (w0, 1) — TT(21,30)).
(4)

Similarly, the standard deviation (o) of the intensities
within R; is given by
o(R:) = \/u(2) - (R, (5)
where pu(R;) is given by (4) and p(R?) is obtained similarly,
starting from an image with squared intensity values.
According to (4) and (5), the feature sets used in the
detection of the sclera and the noise-free iris regions are
central moments computed locally within regions of
varying dimensions of different color spaces.

3.2 Sclera Stage

When examining degraded eye images, the iris region can
be hard to discriminate, even for humans. Also, the sclera is
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(a) (b) (©)

Fig. 4. Discriminating between the regions that belong to the sclera and
all the remaining types of information given by the (a) hue, (b) blue
chroma (blue—luminance), and (c) red chroma (red—Iuminance) color
components.

much more naturally distinguishable than any other part of
the eye, which is a key insight: Our process detects pixels
that belong to the sclera and, later, we exploit their
mandatory adjacency with the iris in order to find the iris.

Our empirical analysis of different color spaces led to the
selection of the hue (h), blue (cb), and red chroma (cr) color
components. These serve to maximize the contrast between
the sclera and the remaining parts of the eye, as illustrated
in Fig. 4. Using the previously described average (4) and
standard deviation (5) values, we extracted a 20-dimen-
sional feature set for each image pixel:

{l’, Y, hggj (l’, y)7 Cbg:{’i7(x7 y)v 07"8,’3(,7,7(357 y)}7

where z and y denote the position of the pixel and k(), cb(),
and cr() denote regions (centered at the given pixel) of the
hue, blue, and red chroma color components. The sub-
scripts denote the radii used (e.g., h{’; ;(=,y) means that six
features were extracted from regions of the hue color
component: three averages and three standard deviations
computed locally within regions of radii 0, 3, and 7).

3.3 Iris Stage

The human eye’s morphology dictates that any pixel inside
the iris should either have an approximately equal amount
of sclera to its left and right if the iris is frontally imaged, or
have a much higher value at one of its sides if the iris was
imaged off-axis. In any case, the number of sclera pixels in
the upper and lower directions should be minimal if the
image was acquired from standing subjects without major
head rotations.

We used data obtained in the sclera detection stage
(“Detected sclera” of Fig. 3) to extract a new type of feature,
called “proportion of sclera” p(z,y), for each image pixel.
This feature measures the proportion of pixels that belong
to the sclera in direction d with respect to the reference pixel
(z,y) (in the experiments, the four main directions north 1,
south |, east — , and west «— were used). From (4), the
result is given by:

p(z,y) = plse((Ly = 1), (2,9))), (6)
p—(z,y) = plse((z,y = 1), (w,y))), (7)
pi(z,y) = plse((z = 1,1), (z,y))), (®)
pi(@,y) = plse((z = Ly), (x, h))), (9)

w_w

(a) (b) ()

(d) (e) ()

Fig. 5. “Proportion of sclera” values toward the west (p._(z,y)) and east
(p— (x,y)), obtained from the detected sclera of a frontal (upper row) and
an off-angle (lower row) image. For visualization purposes, darker pixels
represent higher values. (a) Detected sclera (sc) of a frontal image.
(b) Proportion of sclera in the east direction (p_.(z, y)). (c) Proportion of
sclera in the west direction (p._(z,y)). (d) Detected sclera (sc) of an off-
angle image. (e) Proportion of sclera in the east direction (p_(z,v)).
(f) Proportion of sclera in the west direction (p_(z,y)).

where sc((.,.),(.,.)) denotes regions of the image that
feature the detected sclera (Figs. 5a and 5d), delimited by
their top-left and bottom-right corner coordinates. w and h
are the image width and height. By definition, the value of
p() was set to O for all the sclera pixels. Fig. 5 illustrates the
p—(z,y) and p_,(z,y) feature values for a frontal image in
the upper row and an off-angle image in the lower row. You
can see that in both cases, the simple overlap of the feature
values almost optimally delimits the iris region.

These “proportion of sclera” values, the pixel position,
the local image saturation, and blue chrominance (obtained
similarly to the previous feature extraction stage) are
computed to yield a 18-dimension feature set:

{I, Y, 83?7(%7 y)7 Cbg:;7($, y)7p<7,*>,T.,l (xa y)}

Again, we selected the color spaces empirically, according to
the contrast between the sclera and the iris, as illustrated in
Fig. 6. s() and cb() denote regions of the saturation and blue
chrominance color components. As in the previously
described feature extraction stage (sclera detection), the
subscripts give the radii we used, centered at the given pixel.

3.3.1 Adaptability to Near-Infrared Images

Both of the feature extraction stages we described use
information about pixel color (hue, red, and blue chroma).
As this information is not available in single channel NIR
images, we thought it would be useful to adapt both feature
extraction stages to this type of data. In this situation, all of
the features were extracted from the intensity image and

Fig. 6. Color components used in iris detection. (a) Saturation color
component. (b) Blue chroma color component.
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Fig. 7. Schema for the multilayered feed-forward neural networks used
in both classification stages of our segmentation method.

computed locally at five different radii values, yielding
12 feature values per image pixel in the sclera detection
stage and 16 in the iris detection stage. The feature set used
in sclera detection consists of: {z,y, (%5 7¢(7,y)}, where z
and y denote the position of the pixel and i() denotes
regions (centered at the given pixel) of the intensity image.
Again, the subscripts denote the radii of such regions. Iris
detection is based on the following set of features:
{z,y, 105570, y), P——1.(x,y)}, where p() denotes the
above-defined proportion of sclera features.

3.4 Supervised Machine Learning and
Classification

Both classifiers in our method operate at the pixel level and
perform binary classification. For these, we evaluated
several alternatives according to three fundamental learn-
ing theory issues: model capacity, computational complex-
ity, and sample complexity. We were mindful of
heterogeneity and the amount of data available for learning
purposes, which justified the use of neural networks. We
know that these types of classifiers can form arbitrarily
complex decision boundaries. Thus, the model capacity is
good. Also, the back-propagation learning algorithm
propitiates good generalization capabilities using a rela-
tively small amount of learning data.

As shown in Fig. 7, we used multilayered perceptron feed-
forward neural networks with one hidden layer for both
classification stages, not considering the input nodes as a
layer. All of the networks feature as many neurons in the
input layer (k;) as the feature space dimension (k2) neurons
in the hidden layer and a single neuron in the output layer.
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As transfer functions, we used the sigmoid hyperbolic
tangent on the first two layers and pure linear on the output.
Several parameters affect the networks’ results, such as the
number of neurons used in the hidden layer, the amount of
data used for learning, and the learning algorithm. During
the experimental period, we varied most of these parameters,
to arrive at the optimal values as reported in Section 4.

3.5 Shape Parameterization

Efficient shape parameterization is a key issue for post-
segmentation recognition stages. With a set of image pixels
that are classified as noise-free iris, the goal is to parame-
trically approximate the contour of the pupillary and scleric
iris borders. Recently, researchers have proposed using
active contour and spline techniques for this type of task,
although they were not considered the most convenient for
the purposes of our work, essentially due to performance
concerns. Instead, we performed a polynomial regression
on a polar coordinate system, which runs naturally fast and
compensates for inaccuracies from the previous classifica-
tion stage, as illustrated in Fig. 8. The process starts by
roughly localizing the iris center. The center serves as a
reference point in the translation into a polar coordinate
system, where we perform the polynomial regression.
Remapping the obtained polynomials into the original
Cartesian space gives the parameterization of the pupillary
and scleric iris borders.

The iris and pupil are not concentric, although their
centers are not distant from one another. We identify a pixel
(¢, ye) that roughly approximates these centers and use it
as a reference point. Let B be a binary image that
distinguishes between the noise-free iris regions and the
remaining types of data (Fig. 5d). Let C' = {ci, ..., ¢, } be the
cumulative vertical projection of B, and R = {r1,...,7,} be
the horizontal projection, that is, ¢; = Z;,L:l B(i,j) and
ri =Y i, B(j,7). Since the iris regions are darker, the
values of ¢; and r; decrease in the rows and columns that
contain the iris, as illustrated in Fig. 9.

Let C* = {cy+,...,cm} be a subset containing the first-
quartile elements of C; and R* = {ry-,...,7,-} be a subset
containing the first-quartile elements of R; which corre-
spond to the darkest columns and lines of the binary image.
An approximation to the iris center (z.,y.) is given by the
median values of C* and R*: that is, =, = Cae and y. = cur.
We measure the distance between (z.,y.) and the pixels

Cartesian to Polar Transformation

Noise-free Iris Regions

Shape-parameterized Iris

Constrained Polynomial Fitting

Cartesian Remapping

Coarsely Classified Data

P

Interpolated Border

Fig. 8. Parameterizing segmented noise-free iris regions through constrained polynomial fitting techniques.
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Fig. 9. Horizontal and vertical cumulative projections of the iris image
(¢r) illustrated in Fig. 8.

classified as iris along 6; directions, such that 6; = %’r,
it =1,...,t — 1. The highest value in each direction approx-
imates the distance between the contour of the iris and the
reference pixel (z.,y.), as illustrated in Figs. 10a and 10b
(Cartesian and polar coordinate systems). A set of simple
semantic rules keeps incompletely closed pupil or iris
shapes from degrading the process. The simplest rule is that
contour points should be within the interval [l1,l5]. The
regression procedure discards values outside this interval.

Hereafter, we regard the problem as a polynomial
regression. We could use other shape-fitting techniques at
this stage with similar results, but we chose this approach
for its lower computational requirements. Given a set of
t data points (z;,y;), the goal is to optimize the parameters
of a kth degree polynomial p(z) = ag + a1z + - + azz* so
as to minimize the sum of the squares of the deviations 5%

t

§? = Z(lﬁ —p(ﬂ%))?a

i=1

(10)

where y; is the desired value at z; and p(z;) is the response
value at z;. To guarantee a closed contour of the iris border
in the Cartesian coordinate system, we must ensure that
p(z1) = p(z¢), which gives rise to an equality constrained
least squares problem [15]. The goal is to find a vector = €
R* that minimizes |Az — b||,, subject to the constraint
Bz = d, assuming that A € R"**, Be RP**, be R", d € R?,
and rank(B) = p. Here, A refers to the iris boundary points
that are to be fitted and B is the constraint that guarantees a
closed contour. Considering that the null spaces of A and B
intersect only trivially, this problem has a unique solution,
x*. As Loan describes [24], a possible solution is obtained
through the elimination method, which uses the constraint
equation to solve for m elements of b in terms of the

remaining ones. The first step to the solution is to find an
orthogonal matrix @ such that Q7 BT is upper triangular:

Q"B = [}EB]. (11)

Next, we solve the system ngl =d and set x; to Q1y1,

where Q = [Q1Q2], Q1 € R?,and Q € R¥?. Again, we find an

orthogonal matrix U such that U7 (AQ>) is upper triangular:

R

oaqe = | | (12)

We set Rays=Ul(b— Az1) and x5 = Qsy», where

U = [UUs], Uy € R¥?, and U, € R™ 7. Finally, the solu-

tion is given by

= x1 + x9. (13)

3.6 Computational Complexity

As noted previously, the computational complexity of the
given segmentation method is a major concern for real-time
data handling. The first part of the method operates at the
pixel level, and all the corresponding operations receive as
input all the image pixels: either their RGB, intensity, or
feature vectors. Let I be a RGB image with n = ¢ x r pixels
(typically 120,000 = 400 x 300 in the experiments). Given this
relatively large value, we must maintain an asymptotic upper
bound on execution time that is linear in the size of the input,
ensuring that the first stage of the method (and the most time
consuming) runs quickly. Thereafter, the parameterization of
the iris borders depends on the number of directions from
which reference points are picked and on the polynomial
degree. As these values are relatively low (in our experi-
ments, the number of directions is 64 and the degree is 10),
increased computational complexity is not a concern since it
will not significantly lower the method’s performance. Also,
as we discuss in Section 4.5, we emphasize that our method
offers roughly deterministic performance, that its perfor-
mance is linear in image size, and that it is significantly faster
than other segmentation methods for similar scenarios.

4 EXPERIMENTS

We describe two types of experiments. We performed the
first type while developing our method. This type is related
to the main configuration parameters (network topology,
learning algorithm, and polynomial degree), and we tuned
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Fig. 10. Greatest distances between the iris center and the pixels classified as iris along ¢ directions (a) in the Cartesian coordinate system,
4 directions, and (b) in the polar coordinate system, 64 directions. The continuous line gives the 10th degree constrained polynomial for the purposes

of data regression.
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Fig. 11. Examples of images acquired at large varying distances
(between 4 and 8 meters) from moving subjects and under dynamic
lighting conditions (UBIRIS.v2 database). (a) Sequence of images taken
on the move and at a distance. (b) Degraded images from the
UBIRIS.v2 database.

it exclusively to the UBIRIS.v2 data set. Later, to contextua-
lize our results, we compared our method’s performance
with that of three state-of-the-art segmentation strategies
across three well-known data sets (Face Recognition
Technology (FERET) [33], Face Recognition Grand Chal-
lenge (FRGC) [34], and ICE [30]).

4.1 Development Data Set

As illustrated in Fig. 11a, the significantly higher range of
distances between the subjects and the imaging framework
(between 4 and 8 meters, Fig. 11a) is a major distinguishing
point between the UBIRIS.v2 data set and others with similar
purposes. Through visual inspection, 14 ways to degrade
images were detected and classified into one of the two
classes: local or global, according to whether they affect image
regions alone or the entire image. The first class comprises
iris occlusions (eyelids, eyelashes, hair, glasses, specular,
and lighting (ghost) reflections), nonlinear deformations due
to contact lenses, and partial images, while the latter
comprises poorly focused, motion-blurred, rotated, off-
angle, improper lighting, and out-of-iris images (that is,
images without any portion of the iris texture visible).
Fig. 11b compares a high-quality close-up iris image (the
upper left image) with degraded iris images.
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The known good control data comprises 1,000 manually
made binary maps that distinguish between noise-free iris
regions and all of the remaining types of data in the
UBIRIS.v2 images. We also created 1,000 binary images that
segment the sclera manually, in order to better understand
which classifiers should be used in the sclera detection
stage. Images measure 400 x 300 pixels, yielding a total of
120,000,000 pixels for the whole data set.

4.2 Learning Algorithms

The learning stages of the sclera and iris classifiers use a
back-propagation strategy. Initially, this learning strategy
updates the network weights and biases it in the direction of
the negative of the gradient, that is, the direction in which
the performance function E decreases most rapidly. F is a
squared error cost function given by 137 | [|y; — di|?, p is
the number of learning patterns, y; is the network’s output,
and d; is the desired output. There are many variations of
the back-propagation algorithm, which essentially improve
learning performance by a factor of between 10 and 100.
Typical variants fall into two classes: The first uses heuristic
techniques, such as the momentum or variable learning
rates. The second category uses standard numerical optimi-
zation methods, for example, search across the conjugate
directions (with Fletcher-Reeves [14] or Powell-Beale [36]
updates) or quasi-Newton algorithms (Broyden, Fletcher,
Goldfarb, and Shanno [11] and one-secant [4] update rules)
that, although based on the Hessian matrix to adjust values,
do not require the calculation of second derivatives.

The neural network we use has three parameters that
determine its final accuracy: the learning algorithm, the
amount of learning data, and the network topology. To avoid
an exhaustive search for the optimal configuration, we first
chose the back-propagation learning algorithm. We builta set
of neural networks with an a priori reasonable topology
(three layers with the number of neurons in the input and
hidden layers equal to the dimension of the feature space),
and we used 30 images in the learning set, from which we
selected 50,000 instances (pixels) randomly, equally divided
between positive (iris) and negative (noniris) samples. Table 2
lists our results. “Learning Error” columns list the average
errors recorded in the learning stages, “Time” the average
computational time for the learning processes (in seconds),
“Classification Error” the average error obtained across the
test set images. “Sc” denotes the sclera classification stage,
and “Ir” denotes the iris classification stage. All of the values
are expressed in confidence intervals of 95 percent. These
experiments led to the selection of the Fletcher-Reeves [14]
learning method for the back-propagation algorithm and to
its use in all subsequent experiments.

TABLE 2
Comparison between the Average Error Rates (from the Learning and Classification Stages)
of the Variants of the Back-Propagation Algorithm Used in Our Experiments

Learning Algorithm Time (Sc) Learning Error (Sc) Classification Error (Sc) Time (Ir) Learning Error (Ir) Classification Error (Ir)
Fletcher-Reeves [14] 2808 + 7.35 0.027 + 21E~% 0.029 + 27E~% 3320 + 8.98 0.020 + 1.8E~4 0.021 + 1.8E—4
Powell-Beale [36] 2751+ 8.20 0.0264 23E~4 0.0204 27E~4 3187 £ 9.30 0.020+ 20E~4 002+ 21E~4
Broyden er al. [11] 48074 9.14 0.026+ 32E—4 0.031+ 35E~4 5801 =+ 10.52 0019+ 27E—4 0.023 + 29E—4
One-secant [4] 2993+ 7.13 0.030+ 22E—*4 0034+ 2454 3491 + 8.61 0024+ 20E 4 00314+ 21E—4
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Fig. 12. Error rates obtained with the UBIRIS.v2 data set, for the number
of images used in the learning stage (“#lmages”) and the number of
neurons in the network hidden layer (“#Neurons,” expressed in the
feature space dimension). The error values are percentiles and
averaged over 20 neural networks with the given configuration.
(a) Error rates in the sclera classification stage. (b) Error rates in the
iris classification stage.

4.3 Learning Sets and Network Topology

Fig. 12 shows two 3D graphs that give the error rates
obtained on the test data set, according to the number of
images used in the training set (“#Images”) and the
proportion between the feature space dimension and the
number of neurons used in the networks’ hidden layers
(“#Neurons”). The error values are averages from 20 neural
networks and are expressed as percentages. We note that
error values correspond directly to the number of neurons
and to the number of images used to learn. Also, we observed
that error values stabilize when more than 40 images are
used in the learning set and when the number of neurons in
the hidden layer is 1.5 times higher than the feature space
dimension. We confirmed this conclusion with both the
sclera and the iris classification models.

Interestingly, we recorded the lowest error rates in the iris
classification stage, which can be explained by the useful
information provided by the previous classification stage,
which lessens the difficulty of this task. The lowest iris
classification error was about 1.87 percent, which—based on
visual inspection of the results—was considered very
acceptable. This gives about 2,244 misclassified pixels per
image, a number that can be reduced by basic image
processing methods. For instance, morphologic operators
should eliminate small regions of iris that are not contiguous
with the largest iris region and would otherwise cause errors.

(d (e)

Fig. 13. Variability of the shapes that parameterize the iris borders
consistent with the degree of the interpolating polynomial. (a) Close-up
iris image. (b) Fitted polynomial (1 degree). (c) Fitted polynomial
(5 degrees). (d) Fitted polynomial (10 degrees). (e) Fitted polynomial
(15 degrees).

4.4 Iris Border Parameterization
Evaluating the goodness-of-fit of any parametric model is a
major issue in fitting functions. Here, we assume there
should exist a polynomial relationship between the inde-
pendent and dependent variables. As illustrated in Fig. 13,
the degree of the interpolating polynomials dictates the
shape of the segmented iris border. Here, an iris image with
upper and lower extremes occluded by eyelashes and
eyelids exhibits a far-from-circular noise-free iris shape. The
subsequent figures give the shapes of the segmented iris
borders, according to the degree of the fitted polynomials.
An objective measure for the goodness-of-fit is the
R? value, equal to

Sy -9
where y; are the desired response values, §; the polynomial
response values, and y the average of y;. Fig. 14 gives the
average R’ values for the scleric (continuous line with
circular data points) and pupillary (dashed line with cross
data points) iris borders. We note that the values tend to
stabilize when the degree of the polynomial is higher than 6
and remain practically constant for degrees higher than 10.
Also, keep in mind that higher R? values do not always

R2=1— Z(yt - gb)z (14)

Fig. 14. Obtained R? values for the degree of the fitted polynomials in
the scleric (continuous line with circular data points) and pupillary
(dashed line with cross data points) iris borders.
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Fig. 15. Examples of the results achieved by our segmentation method on visible wavelength images from the UBIRIS.v2 database. Noise-free iris
pixels appear in gray and the iris borders are black dashed lines. (a) Example of a close-up iris image. (b), (d), (f), (h), (j), (1), (n), and
(p) Segmentation results. (c) Heavily occluded iris image. (e) Heavily pigmented iris. (g) Black subject. (i) Off-angle iris image. (k) Iris occluded by

glasses. (m) Rotated eye. (o) Iris occluded by reflections.

indicate better iris borders, as the polynomial fitting
procedure was chosen to smooth the data and compensate
for classification inaccuracies near the iris borders.

Fig. 15 illustrates the results obtained for the UBIRIS.v2
images, where the noise-free iris data appear in gray and the
iris borders are represented with dashed black lines. The
visual plausibility of the results is evident, either for images
within a large range of acquisition distances (8 meters,
Figs. 15b and 15d, and 4 meters, Figs. 15f and 15j), different
levels of iris pigmentation (light, Figs. 15j and 15n, and
heavy, Figs. 15h and 15p), with large iris occlusions (Figs. 151
and 15p), and on off-angle (Fig. 15j), poor focused (Fig. 15f),
and rotated (Fig. 15n) eyes. The method was suitable to
segment noncontiguous iris data in the context of severe iris
occlusions, as exemplified in Figs. 15k and 151.

4.5 Contextualizing Results and Data Dependencies

We elected to compare our results with three state-of-the-art
iris segmentation strategies on four well-known data sets:
the VW color UBIRIS.v2, FERET [33] and FRGC [34], and

the NIR ICE [30]. The first method we chose for comparison
was the integrodifferential operator [9], due to its promi-
nence in the iris recognition literature. We used elliptical
shapes to detect the iris, and parabolic shapes to detect
eyelid borders. The second method was the active contour
approach based on discrete Fourier series expansions [10]
(with 17 activated Fourier components to model the inner
iris boundaries and 5 to model the outer boundaries), and
the detection of eyelashes through a modal analysis of the
intensity histogram. Finally, we used the proposal of Tan
et al. [43] (detailed in Table 1), which achieved the best
results in a recent international iris segmentation contest.'
We note that this is not a completely fair comparison for the
integrodifferential and active contour-based strategies, as
they are only designed to handle NIR images. The results
from the color data sets are solely for comparison and to
confirm that, although highly efficient for NIR images, these
algorithms cannot handle VW degraded data. Also, we

1. NICE.I: http:/ /nicel.di.ubi.pt.
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(©

Fig. 16. Other databases used in the experiments. (a) Images from the FRGC database. (b) Images from the FERET database. (c) NIR images from

the ICE (2006) database.

stress that all of the parameters previously tuned for the
method given in this paper were preserved: Specifically, we
consistently used neural networks with topologies 20 : 35 : 1
and 18 : 27 : 1 in the sclera and iris classification stages, the
Fletcher-Reeves back-propagation learning algorithm,
50,000 pixels randomly selected from the learning data
and fitted polynomials with degree 10. Finally, the images
used for learning and testing are completely separable, in a
twofold cross-validation schema.

The data set used in the FRGC was collected at the
University of Notre Dame and contains images with
varying definition, taken under both controlled and un-
controlled lighting conditions. We selected a subset (500) of
the higher definition images and manually cropped and
resized the eye regions, obtaining a set of images illustrated

(b)

U]

O

U} 0

in Fig. 16a. These are degraded for several reasons (poorly
focused, occluded irises, and large reflection areas). The
FERET database is managed by the US Defense Advanced
Research Projects Agency and the US National Institute of
Standards and Technology. It contains 11,338 facial images
from 994 subjects over multiple imaging sessions. Again,
we selected a subset of images (500) and cropped and
resized the eye regions manually, obtaining images similar
to those in Fig. 16b. Finally, we selected 500 images from the
ICE (2006) data set, as illustrated in Fig. 16c. For all of the
data sets, we manually created the corresponding binary
maps that localize the iris and the sclera.

Fig. 17 shows segmentation results output by our
method on the FRGC, FERET, and ICE data sets. The
procedure adopted for the FERET and FRGC images was

(©)

(h)

Lo

(k) ()

Fig. 17. Examples of the results achieved by our segmentation method on the FRGC (upper row), FERET (middle row), and ICE (lower row)
databases. (a) Heavily occluded FRGC image. (b), (d), (f), (h), (j), and () Segmentation results. (c) Heavy pigmented FRGC image. (e) Lightly
pigmented iris FERET image. (g) Heavily pigmented iris FERET image. (i) Off-angle ICE image. (k) Occluded ICE image.
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Fig. 18. Results obtained using the four tested segmentation strategies on the UBIRIS.v2, FRGC, FERET, and ICE (2006) data sets. (a) UBIRIS.v2
images, (b) FRGC images, (c) FERET images, and (d) ICE (2006) images.

similar to that used for UBIRIS.v2, while for the ICE data we
made changes to the NIR images described in Section 3.3.1.
For all of the tested data sets, we observed that—most of the
time—our method segmented the noise-free iris data in a
visually acceptable way.

Fig. 18 quantitatively compares the error rates obtained
by the four segmentation methods we tested on each of the
above-mentioned data sets. Our method is denoted by
continuous lines with circular data points, the integrodif-
ferential operator by dotted lines with triangular data
points, and the active contour approaches by the dash-
dotted line with square data points. Finally, the proposal of
Tan et al. is denoted by the dashed line series with cross
data points. The horizontal axis gives the number of images
used in the learning stages of our method and in the tuning
of Tan et al’s parameters. The vertical axis gives the
percentage of misclassified pixels (to contextualize these
values and relate them with the intuitive acceptability of the

segmentation result, Fig. 19 shows a segmented image that
illustrates the percentage of misclassified pixels between 1
and 5 percent). We note the pronounced deterioration of the
results obtained by the integrodifferential and active
contour methods on the VW degraded data sets. Although
their effectiveness on the NIR images is clear, they
encountered problems in handling the higher data hetero-
geneity of these data: specifically, the many types of noise
factors that occlude regions inside the iris texture and make
it difficult to tune the active contour convergence criterion.
This underscores the exclusive suitability of these well-
known segmentation strategies to deal with images ac-
quired under constrained acquisition conditions. The
results from our method and the method of Tan et al. were
usually very similar for the VW color data sets. However,
the method of Tan et al. may better handle NIR images and
clearly achieved error rates comparable to the active
contour approach. This is to be expected because the latter

G G G

/ / /
\
. \,

(a) (b) ()

(d) (e) U]

Fig. 19. lllustration of the segmentation results, according to the percentage of misclassified pixels. (a) Ground truth segmentation. (b) Segmentation
error 1 percent. (c) Segmentation error 2 percent. (d) Segmentation error 3 percent. (e) Segmentation error 4 percent. (f) Segmentation error

5 percent.
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TABLE 3

Comparison of the Best Results Obtained by Our Method, the Elliptical Integrodifferential Operator,
and Two State-of-the-Art Segmentation Techniques

Data Set

UBIRIS.v2

FRGC

FERET

ICE(2006)

Segmentation Method

Error [%] (Time [s])

Error [%] (Time [s])

Error [%] (Time [s])

Error [%] (Time [s])

Our method

1.87 + 2.4E~3 (0.78 £+ 0.01)

4.33 £ 3.6E73 (0.78 + 0.01)

4.61 £3.7E~2 (0.78 + 0.01)

2.66 £ 2.9E73 (0.70 4 0.01)

Integro-differential [9]

13.97 + 6.2E 73 (2.73 £ 0.01)

15.1 4 6.4E~3 (2.73 £ 0.01)

16.83 + 6.7E 2 (2.73 & 0.01)

2.39 + 3.4E73 (2.73 £ 0.01)

Fourier active contours [10]

6.20 + 4.3E~3 (3.90 + 0.18)

8.10 + 4.9E~3 (4.66 + 0.18)

9.96 £ 5.3E72 (4.69 + 0.11)

1.79 + 2.3E73 (4.41 £ 0.13)

Tan er al. method [43]

1.72 £ 2.3E72 (5.08 £ 0.16)

420+ 3.6E2 (5.03 £ 0.14)

5.02 + 3.9E~2 (5.01 + 0.09)

2.26 + 2.6 E~ > (4.80 £ 0.13)

method exclusively analyzes the red component of VW
color images and the use of the NIR data does not demand
significant changes, as opposed to our method.

Table 3 summarizes the best results obtained by each
segmentation strategy and the corresponding average
computation time (in seconds). The error rates are percen-
tiles and correspond to 95 percent confidence intervals.
From this analysis, the lower computational requirements
of the proposed method are clear: Our method runs
extremely fast and in practically deterministic time, taking
less than a second per image, even using an interpreted
programming language and an integrated development
environment. This is almost one order of magnitude faster
than the method that achieved comparable error rates on
the VW data sets. Also, appropriate code optimization and
porting to a compiled language should make the method
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suitable for real-time data. Note that the above results were
obtained when we used the same type of data set (albeit a
separable one) for learning and test purposes.

To assess the data dependence of our method, we
calculated the following results when we used different
types of the VW databases for learning and testing. Fig. 20
shows four plots that quantify the obtained error rates,
where z — y in the upper right corner of each plot means
that the 2 database was used for learning and y for testing.
Fig. 20a illustrates the results obtained when using one of
the databases exclusively for learning and a test set that was
derived from each of the different databases (denoted *). We
note that the error rates tend to stabilize when a larger
number of images were used in the training stage (over
60 images) and that the results were better when UBIRIS
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Fig. 20. Data dependence of our segmentation method. (a) Multiple database evaluations. (b) Learning/test in the UBIRIS and FRGC data sets.
(c) Learning/test in the UBIRIS and FERET data sets. (d) Learning/test in the FRGC and FERET data sets.
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images were used for learning. This is justified by the
higher definition of the UBIRIS.v2 data, compared with the
other data sets, which yields an excess of information that is
useful for learning purposes. The lowest error rates
(5.02 percent) were obtained when either the learning data
or the test data were derived equally from all of the VW
data sets. This yielded a deterioration of about 3.14 percent
as compared to the better results. A slightly higher error
value (5.85 percent) was obtained when the learning data
consisted solely of UBIRIS.v2 images and the test data were
derived equally from each of the three data sets.

Figs. 20b, 20c, and 20d illustrate the results obtained
when using images of the UBIRIS.v2/FRGC, UBIRIS.v2/
FERET, and FRGC/FERET data sets in the learning and test
stages. Again, the * symbol denotes a set derived from each
of the given data sets. Not surprisingly, better results were
generally obtained when the learning data comprised
images from all the databases. Also, the error rates were
generally lower when the database with higher definition
data was included in the learning set, as seen from the plots
of UBIRIS — FRGC and FRGC — UBIRIS (Fig. 20b) and
UBIRIS — FERET and FERET — UBIRIS (Fig. 20c).
The greatest difference in resolution is between the
UBIRIS.v2 and FERET images, which explain the higher
error rates obtained when these data sets were mixed, in
comparison with the results obtained for the UBIRIS.v2/
FRGC and FRGC/FERET data sets. The average deteriora-
tion of the results when the learning and the test data did not
contain the same type of data was about 1.83, 0.57, and
1.29 percent, respectively, for the UBIRIS.v2, FRGC, and
FERET data sets. However, we note that the characteristics
of the data sets are very different and that the adjustment of
any parameter in such heterogeneous data is highly
challenging in any situation. We concluded that including
multiple types of data in the learning set would not be an
obvious problem for our method’s effectiveness, even
though its inclusion would lower the resulting effectiveness.
Also, we stress that the major method configuration
parameters (network topology, neuronal transfer functions,
and number of instances used to learn) were not adjusted
during any of the experiments.

5 CONCLUSIONS

Due to favorable comparisons with other biometric traits,
the popularity of the iris has grown considerably and efforts
are concentrated in the development of systems that are less
constrained to subjects, using images captured at-a-distance
and on-the-move. These are extremely ambitious conditions
that lead to severely degraded image data, which can be
especially challenging for image segmentation.

Our method encompasses three tasks that are typically
separated in the literature: eye detection, iris segmentation,
and discrimination of the noise-free iris texture. Our key
insight is 1) to consider the sclera as the most easily
distinguishable part of the eye in the case of degraded
images and 2) to exploit the mandatory adjacency between
the iris and the sclera to propose a new type of feature
(proportion of sclera) that is fundamental in the localization of
the iris, through a machine learning classification approach.
Finally, a constrained polynomial fitting procedure that
naturally compensates for classification inaccuracies para-
meterizes the pupillary and scleric iris borders.

Due to performance concerns, we aimed to preserve the
linear and deterministic computational complexity of our
method, offering the ability to handle real-time data. We
conclude that, using a relatively small set of data for learning,
our method accomplished its major goals and achieved
acceptable results when compared with other state-of-the-art
techniques at significantly lower computational cost.
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