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Abstract—Soft biometrics have been emerging to complement
other traits and are particularly useful for poor quality data.
In this paper, we propose an efficient algorithm to estimate
human head poses and to infer soft biometric labels based on
the 3D morphology of the human head. Starting by considering
a set of pose hypotheses, we use a learning set of head shapes
synthesized from anthropometric surveys to derive a set of 3D
head centroids that constitutes a metric space. Next, representing
queries by sets of 2D head landmarks, we use projective geometry
techniques to rank efficiently the joint 3D head centroids / pose
hypotheses according to their likelihood of matching each query.
The rationale is that the most likely hypotheses are sufficiently

close to the query, so a good solution can be found by convex
energy minimization techniques. Once a solution has been found,
the 3D head centroid and the query are assumed to have
similar morphology, yielding the soft label. Our experiments
point toward the usefulness of the proposed solution, which can
improve the effectiveness of face recognizers and can also be
used as a privacy-preserving solution for biometric recognition
in public environments.

Index Terms—Soft Biometrics, Visual Surveillance, Homeland
Security, Privacy-preserving Recognition.

I. INTRODUCTION

IN biometrics research, one of the most challenging goals
is the development of recognition systems that work in

unconstrained (outdoor) scenarios and do not assume the
subjects’ willingness to be recognized. In such conditions, the
acquired data has poor quality, with faces partially occluded,
blurred, or misaligned (Fig. 1).

Fig. 1. Examples of images acquired by a visual surveillance system, composed
by a wide-view camera feeding a pan-tilt-zoom device that collects data from
moving and at-a-distance targets (up to 40 meters away).

The idea behind soft biometrics is to obtain ”characteristics
that provide some information about the individual, but lack
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Portugal, E-mail: {hugomcp, jcneves, tmarques, jcmb}@di.ubi.pt. Silvio Barra
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the distinctiveness and permanence to sufficiently differentiate
any two individuals” [16]. These characteristics not only
complement strong biometric traits, but they also prune the set
of identities for a query. Soft biometrics can also be regarded
as a response to privacy / ethical issues in using biometrics in
public places: it makes it possible to ignore the large majority
of the identities in the scene and attempt positive recognition
(e.g., with a face recognizer) only for the subjects with soft
labels similar to the identities on a watch-list.

This paper describes an algorithm to infer jointly human head
poses and soft labels in an efficient way based on poor-quality
data. During the learning phase, anthropometric head surveys
feed a stochastic process that generates a set of synthetic 3D
head meshes representing the major features of a population.
Such elements are the input of a self-organizing map that
obtains a discretized representation of the feature space, i.e.,
a matrix of centroid heads with a key property; it preserves
the topological properties of the input space and enables us to
define the closeness of its elements (i.e., the similarity of head
shapes). Considering the wildness of the data, we also generate
a set of pose hypotheses. Next, all combinations of joint poses
/ head shape hypotheses are grouped and indexed using as a
criterion the proximity of their projected head landmarks.

In classification, having a query represented by a set of
head image landmarks (detected as described in [18] or [8]),
we rank the set of hypotheses in approximate logarithmic
time according to the similarity between the query and the
joint pose / head shape 2D projections. The idea is that the
most likely hypothesis is sufficiently close to the solution so
that only slight changes in its parameterization are required
to match the query faithfully. This way, local minima are
neglected and convex optimization techniques are used to
reach acceptable solutions. A convergence test determines
whether the process stops or the next hypothesis is considered.
The method described here uses some insights from [37]
and [30], namely in the generation of the set of hypotheses
and in using projective geometry techniques to evaluate them.

The remainder of this paper is organized as follows: Section
II summarizes the related work. Sections III and IV give a
detailed description of the learning and classification phases of
the proposed algorithm. Section V describes the experiments
carried out and discusses the corresponding results. Finally,
Section VI concludes the paper.
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II. RELATED WORK

A. Soft Biometrics
According to [40], soft biometric traits are classified into

three families: 1) global traits, which regard demographic
information (e.g., age, gender, and ethnicity); 2) body traits,
which are concerned with the subjectÕs somatotype, i.e., their
overall appearance (height or body volume); and 3) head traits,
which analyze the regions that humans instinctively use to
identify others (e.g., hair or eye color, nose or neck thickness,
and ear shape / size).

Regarding global traits, Heckathorn et al. [11] measured
lengths of wrists and forearms. Using the concept of inter-
changeability of indicators, they argued that combining multiple
low accuracy measurements yields a highly accurate indicator.
Jain and Park [17] used demographic information (gender
and ethnicity) and facial marks (scars, moles and freckles) to
improve face image matching and retrieval performance. An
extended version of this work can be found in [32].

In terms of body traits, Lucas and Henneberg [23] con-
cluded that, upon the availability of accurate anthropometric
measurements, the body is actually more distinctive than the
face when distinguishing humans. Previously, other works (e.g.,
Rice et al. [36]) concluded that identification based on body
measurements can be as accurate as using the face. Moustakas
et al. [29] suggested a framework based on height and stride
length information to increase the effectiveness of a gait recog-
nition system, integrating soft labels directly in the estimation of
the matching score instead of the traditionally used score-level
fusion. Drosou et al. [7] proposed a probabilistic framework for
improving the recognition performance via soft labels (global
and body-based), modelling the systematic intrinsic error of
each measurement (e.g., due to clothing).

Finally, most works in the head traits family analyze the
discriminability of hair / facial hair styles and lengths. Dass
et al. [6] pre-aligned the images based on the position of the
eyes and, using agglomerative clustering techniques, defined
five groups of hairstyles according to hair density in image
patches. Hewig et al. [13] observed that the typical hair styles
are heavily correlated with global traits (gender and age), which
might also be useful for identification.

A noteworthy conclusion was drawn by Reid et al. [35]:
comparative descriptors (relative magnitude between subjects’
measurements) have more discriminatory power than the
absolute values themselves, and are particularly advantageous
in terms of stability. Detailed information about soft biometrics
can be found in two comprehensive surveys by Kim et al. [25]
and Reid et al. [34].

B. Head Pose Estimation
The existing methods for head pose estimation can be divided

into two main groups: 1) generative, by fitting parametric
models to the query; and 2) discriminative, which are model-
free and search for correspondences between image features
and known pose configurations.

Generative models consider prior information about hu-
man kinematics and anthropometry to reduce the number
of plausible configurations for a query. In this family of

approaches, appearance template methods (e.g., fed by Gabor
descriptors [38]), flexible models based on the elastic graph
matching (e.g., [27]) or active appearance models (e.g., [42])
can be highlighted. Model fitting methods, based on generic
3D face [1] and ellipsoidal [41] shapes, are examples of this
family of algorithms, which focus on the idea of mapping a set
of 3D face models onto the images, based on a group of 2D-
3D correspondences. Textured triangular meshes [28] or cubic
polynomials [45] can be used in such mapping. In this model-
driven family, the work of Krinidis et al. [26] shares some
insight with the algorithm proposed in this paper, specifically
by inferring the equations that govern the face deformation
model, fed by the tracking module.

Discriminative models are usually holistic, and consider
the whole image of the head / face for estimation, instead of
local landmarks. Li et al. [22] estimated local image gradients,
reduced dimensionality by an analysis of principal components
and used a support vector regression machine to infer poses.
Other similar approaches used manifold embedding algorithms
(e.g., [43]) and non-linear regression methods (e.g., based on
convolution networks [31]). A representative approach in this
family is the work of Huang and Trivedi [14], who used a
skin-tone edge-based detector to feed a tracker module based
on Kalman filter and a hidden Markov model to infer poses.

Refer to the surveys published by Murphy-Chutorian and
Trivedi [5], Ba and Odobez [3] and Zhang and Gao [46]
for detailed information about head pose estimation and its
taxonomy.

III. PROPOSED METHOD: LEARNING PHASE

For comprehensibility, we use the following notation: ma-
trices are represented by capitalized bold fonts and vectors
appear in bold. The subscripts denote indexes. All vectors are
column-wise. The ring symbol (e.g., ˚x) denotes 2D (image)
positions, while 3D positions in the Euclidean space appear
in regular font (e.g., x). The hat symbol (e.g., ˆ

x) denotes
an estimate and all the hard thresholds are denoted by the 
symbol.

A. Generation of Synthetic 3D Head Shape Models
Young [44] reported 22 head dimensions from a random,

composite of females and males in an adult population. The
author claims these dimensions are able to describe the essential
morphological properties of a human head, with 17 of these
also being considered in previous surveys (e.g., [12]). Based
on data from 195 females and 172 males, this study provides a
set of summary statistics (minimum, maximum, mean, standard
deviation, coefficient of variation, symmetry and kurtosis) for
every type of measurement. In most cases, the landmarks are
internal bone features, with paired surface landmarks defining
lines in planes from which perpendicular distances are taken.
The leftmost part of Fig. 2 illustrates some of the dimensions
provided in this survey, while Table I lists the types of lengths
we consider in this paper (at left) and their levels of linear
correlation (rightmost matrix).

We generate the 3D head shape models randomly, starting
from a single mesh that is iteratively deformed, according to
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Fig. 2. Overview of the stochastic process that generates an arbitrary number of 3D head shapes (meshes). Based on anthropometric surveys (marker 1), a set
of probability density functions for head lengths is defined (marker 2), and used to iteratively deform a base mesh, enabling to obtain head shapes of evidently
different appearance (marker 3).

TABLE I
TYPES OF ANTHROPOMETRIC MEASUREMENTS CONSIDERED IN THIS PAPER

AND THEIR LEVELS OF LINEAR CORRELATION.

Measurements Pearson Correlation
Cranium: {1- Head circumference; 2- Head
breadth; 3- Head length; 4- Biorbital
breadth; 5- Biectocanthus breadth; 6- Bipupil
breadth; 7- Nasal bridge breadth; 8- Bialar
breadth; 9- Bicheilion breadth; 10- Bitragion
breadth; 11- Bizygomatic breadth; 12- Bigo-
nial breadth}; Face: {13- Sellion-menton
length; 14- Sellion-supramentale length;
15- Sellion-stomion length; 16- Sellion-
subnasion length}; Nose: {17- Midnasal
bridge height; 18- Pronasale height (Maxil-
loare plane); 19- Pronasale height (Sellion-
promentale plane); 20- Sellion height (medial
cants plane); 21- Sellion height (lateral or-
bital plane)}
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being the unknowns ↵↵↵ found by:

ˆ↵↵↵ = argmin

↵
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(C↵↵↵� l)
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, . . . ,↵
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00
j

00
]||1  1, (4)

where 1 avoids anatomically bizarre solutions and guarantees
that the solution closest to the initial configuration is preferred
in the quadratic system (1 ⇡ 0.1 in our experiments).
According to this formulation, (4) is a constrained optimization
problem with inequality constraints that can be solved as
described in [4]. Once the ˆ↵↵↵ values are found, the coordinates of
the corresponding vertices are updated, with similar distortions
(weighted by a Gaussian kernel) applied to neighbouring
vertices to enforce smoothness in the resulting mesh. The
rightmost images in Fig. 2 are examples of the different meshes
that can result from this stochastic process.

B. Head Shape Hypotheses
Let s = [x

T

1 , . . . ,x
T

tv
]

T be a vector representing one
head shape, given as a triangulated mesh of 3D vertices.
S = {s1, . . . , stm} is the set of meshes used for learning
purposes, generated as described in Sec. III-A. Evidently, there
is some correlation between the x

i

elements in each mesh,
which can be attenuated by representing meshes in the principal
components (PC) space:
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s

⇤
= (s� s0)Tpc

, (5)

being s0 the 3t
v

-dimensional mean of the elements in S and
T

pc

the PC transformation matrix. This way, it is possible
to describe each mesh in a feature space of a much lower
dimension than the 3t

v

, which is important for the sake of
computational effectiveness. In our case, the head models have
t
v

= 957, with 50 PC coefficients being able to represent over
99.9% of their variability.

Let S⇤ represent the shape hypotheses in the PC space. The
next step is the inference of a set of prototypes that intrinsically
represent head shape similarity, with self-organizing maps [20]
(SOMs) of size t

c

⇥ t
c

being considered a good choice for
the following reasons: 1) SOMs obtain an ordered mapping
between the 50D input space and a 2D output space, where
each element represents one head prototype; 2) prototypes
in the output space are topologically ordered, i.e., neighbor
prototypes feature similar head shapes; 3) SOM prototypes
reflect the variations in density in the input space, i.e., densely
populated regions in the input space (where the most frequent
head shapes fall) are represented by the largest number of
prototypes; and 4) SOMs are known to be particularly suitable
to model non-linear input spaces, such as our input feature
space. In practical terms, the SOM output space is a similarity
graph, which is important in order to label degraded data:
even if a query is not mapped directly to the same cell as
the enrolment sample with a corresponding identity, it should
be mapped to a neighboring cell. Fig. 3 illustrates the head
prototypes (cells) that are used as soft labels.

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

Fig. 3. Representation of the 3D head centroids resulting of a 4⇥ 4 SOM.
Note the similarity in size / shape between adjacent elements, rooted in the
preservation of the topological properties of the input space that this kind of
maps offers.

C. 3D Head Shape Covariance
Let s

ci be the head shape centroid corresponding to the
ith cell in the SOM, and let {s

ci1 . . . , sciw} be the shape

samples associated with s

ci . For all the elements in s

.

that
correspond to head landmarks, the displacement between the
3D positions in the samples and in the centroid were measured
(x

cij �x

ci ), obtaining a set of 3D vectors from where the mean
and covariance matrix were taken. This captures the spread of
the 3D data and is used in the algorithm convergence test to
discriminate between genuine / spurious query landmarks. To
illustrate this point, Fig. 4 plots the 99% confidence ellipsoids
for the right ear lobe, center of right cornea and nose apex
landmarks.

a) Right ear lobe b) Center of right cornea c) Nose apex
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Fig. 4. Examples of the 99% confidence ellipsoids that represent the deviations
of the positions of landmarks in the head shape samples with respect to their
centroid. These values are used in the convergence test of the algorithm to
discriminate between genuine / spurious head landmarks.

D. Pose Hypotheses

Let p = {R, t} be a camera pose configuration, with R

being the rotation matrix and t the translation vector, i.e., p
is a 6D vector accounting for three components of rotation
(yaw, pitch and roll) and three of translation (t

x

, t
y

and t
z

).
Let P = {p1, . . . ,ptp} be a set of pose hypotheses, created
randomly using uniformly distributed random numbers for all
six degrees of freedom. Given the relatively large number of
elements generated (⇡ 100,000), a set of pose prototypes is
also obtained. In this case, as there are no requirements about
the concept of similar poses, such prototypes can be found
simply by the k-means algorithm, yielding t

p̃

pose vectors
(t
p̃

⌧ t
p

).

E. Joint Head Shapes / Pose Hypotheses Indexing

Given a set of t
p̃

pose and t2
c

head shape hypotheses, during
classification it is required to find the best joint pose / shape
configuration, which is the most likely match to the query.
Theoretically, there are a total of t

p̃

t2
c

possibilities, but exploring
all by brute-force is prohibitive in terms of time complexity.
Moreover, not all the query landmarks will be genuine, and
both false negatives and false positives are expected. Given
such constraints, a forest of binary trees was created, one per
type of landmark, where the hypotheses are grouped (k-means)
in leaves according to their neighborhood of one landmark
projection, given by the world-to-image function:

f
w!i

(x,p) =
1

�
A[R|t]


x

1

�
, (6)

being x the vertices of s, � the scalar projective parameter, A
the internal camera matrix, and p={R (rotation), t (transla-
tion)} the pose parameters. This way, each tree keeps, within



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2522441, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ??, NO. ??, ?? 2015 5

its leaves, the indices of the hypotheses that have similar
2D projections of a landmark. Later, in classification, the
position of every query landmark is used in the corresponding
tree to obtain the indices of the complying hypotheses. By
repeating the process for all landmarks and accumulating the
complying indices, the hypotheses are ranked in descending
order according to the frequency with which they appear in
leaves, so that the most likely (those with the highest number
of landmarks close to the query) will be evaluated first.
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Fig. 5. Data structure that indexes the joint pose / shape hypotheses, grouped
according to the similarity of their landmark projections. In retrieval, the
indices of the hypotheses complying the query landmarks are accumulated,
such that the most voted hypotheses will be evaluated first.

The retrieval process is illustrated in Fig. 5, and has a
time complexity O(t

l

log (t
p̃

t2
c

)), t
l

being the number of
query landmarks. This roughly logarithmic time complexity
is important for generating large sets of hypotheses without
substantially compromising the time cost of retrieval.

IV. CLASSIFICATION PHASE

Let q̊ = {̊q1, . . . , q̊tq} be a set of 2D head landmarks in a
query image. We assume that the type of each landmark ⌧ (̊q

i

)

is known, i.e., the anatomic region corresponding to each q̊

i

is
given as input. This is a readily satisfied assumption, using the
state-of-the-art techniques for head / face landmark detection
(e.g., [18], [8], or [33]).

Using the trees described in Sec. III-E, the most likely joint
pose / head shape hypothesis for the query is obtained and its
pose configuration subsequently optimized. Assuming that the
pose hypothesis p is relatively close to the query pose, the idea
is to perform only small adjustments in its parameterization to
better fit the query:

p̂ = argmin

p

d
⇣
f
w!i

(s,p), q̊
⌘
, (7)

where f
w!i

(s,p) = f
w!i

(x,p), 8x 2 s = s̊ and d(., .) is
the function that measures the similarity between two sets of
landmarks:

d(̊s, q̊) =
1

⌫ (̊q)

⌫ (̊q)X

i=1

min

q̊j |⌧(q̊j)=⌧ (̊xi)
d(̊x

i

, q̊
j

), (8)

where d(̊x, q̊) = ||̊x� q̊||2 and ⌫ (̊q) is the function that counts
the number of distinct types of landmarks in q̊. Essentially, (8)

sums the distances between projections of 3D head vertices
and their closest query landmarks of the corresponding type.

The optimization process is regarded as convex and un-
constrained, with all the advantages inherent to it in terms of
computational cost. We use a derivative-free algorithm proposed
by Lagarias et al. [21], due to its proven effectiveness in
relatively low dimensionality problems (six in our case). Having
an initial pose hypothesis p, the algorithm generates a sample
of seven points around p and iteratively discards the point
with the maximum value of the cost function (8), replacing
it with a new point generated either by reflection, expansion,
contraction or shrinkage of sample points. As Fig. 6 illustrates,
this process enables us to better fit the pose hypothesis to the
query data by only slightly adjusting the initial configuration.

a) Initial pose / shape hypothesis p b) Shape with optimized pose p̂

Fig. 6. Pose refinement, according to a convex optimisation paradigm.
Assuming that the initial hypothesis p is a good approximation of the solution,
the probability of falling in local minima is relatively short. p̂ is the optimized
configuration.

Having an optimized estimate of pose p̂, the final step is
the evaluation of the reasonability of the {p̂, s} solution, either
stopping the algorithm or continuing to the next hypothesis.
This evaluation is carried out in the 3D space by inferring
the most likely 3D positions for the query landmarks. Let
q̊ = (x, y) be one image landmark corresponding to one vertex
in s. There is a ray in the Euclidean 3D space from where
elements are projected into q̊, which is given by the image-to-
world function:

f
i!w

(

˚

q, p̂) = R

T

A

�1�


q̊

1

�
�R

T

t, (9)

with A being the internal camera parameters, R and t its
extrinsic parameters (obtained from p̂) and � being the scalar
projective parameter. The shortest distance between the ray and
the corresponding vertex in s is the most optimistic location
of ˚q in the 3D space:

ˆ

q = x

r

+ v

T

r

� (x� x

r

)

T

v

r

||v
r

||2 , (10)

being � the point-by-point multiplication operator, x
r

,v
r

the
3D point and vector defining the ray (given by (9)). Fig. 7
illustrates the rationale behind this step, where the 3D positions
ˆq
.

from where the query landmarks ˚

q

.

might have been
projected are estimated based on {p̂, s}.

According to (10), only the query landmarks q̂

⇤ that are the
most likely to be genuine are selected, providing the minimum
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fi!w (̊q, p̂)

q̂2

q̂1

x1

x2

q̊2

q̊1

s

p̂

Fig. 7. Finding the 3D positions in the Euclidean space from where the
query landmarks might have been projected, according to a pose p̂ and shape
s estimates. The ||q̂

.

� x

.

||2 values are used to discriminate between the
spurious (in red) and genuine (in green) query landmarks.

||ˆq
.

� x

.

||2 values (per type of landmark). Henceforth, all
the remaining landmarks are deemed to be spurious and are
discarded. Finally, given the set of remaining landmarks and
their most plausible 3D positions, � evaluates the reasonability
of such positions by checking if misalignments are inside the
prediction interval ellipsoid, obtained as described in Sec. III-C:

�(q̂⇤
i

|x
i

,x
ci ,⌃⌃⌃i

) =

(q̂

⇤
i

� x

i

� x

ci)
T

⌃

⌃

⌃

�1
i

(q̂

⇤
i

� x

i

� x

ci)� �2
3(0.99),

(11)
with x

ci as the position of the shape centroid, ⌃

⌃

⌃

i

as the
covariance matrix and �2

3(0.99) as the quantile function for
probability 99% of the chi-squared distribution with three
degrees of freedom. In practical terms, this function checks
if it is likely to observe a q̂

⇤
.

� x

.

misalignment between a
sample landmark and its centroid, returning a positive value
if the misalignment falls inside the covariance error ellipsoid
(Fig. 4) and a negative value otherwise. Finally, a solution
is acceptable if a sufficient number of landmarks is deemed
genuine, i.e., H

all

() � 2:

H
all

(q̂

⇤|x,x
ci ,⌃⌃⌃) =

1

⌫(q̂⇤
)

⌫(q̂⇤)X

i=1

H
�
�(q̂⇤

i

|x
i

,x
ci ,⌃⌃⌃i

)

�
,

(12)
where 2 is the convergence threshold, ⌫(q̂⇤

) is the number
of query landmarks, and H is the Heaviside function:

H(z) =

⇢
1, if z � 0

0, if z < 0.
(13)

V. RESULTS AND DISCUSSION

Three well known data sets were selected for our exper-
imental evaluation. The Annotated Facial Landmarks in the
Wild [19] (AFLW) set was used to evaluate the results of the
pose estimation phase. It has 25,993 color images, each one
annotated with a 21-point markup on visibility. In this set,
we considered exclusively samples with pose angles in the
intervals yaw ±⇡/4, pitch ±⇡/2, and roll ±⇡/5, according to
the plausibility of observing such poses in visual surveillance

scenarios. The soft biometric labels were evaluated using the
Labeled Faces in the Wild [15] (LFW) and in the SCface [10]
sets, selected due to the wildness of their data. Out of the
9,164 images in the LFW set, 670 were disregarded due to
extremely poor performance of the head landmark detector,
resulting in 8,494 samples from 1,574 subjects. For the SCface
set, we exclusively used the third sample from cameras 1-
5 (650 images from 130 subjects), which have the maximal
resolution acquired at visible wavelengths. Fig. 8 shows some
images from the data sets considered. In all the experiments
below, the thresholds were set to 1 = 0.01 and 2 = 0.9.

Fig. 8. Examples of the data sets used in the empirical validation of the
proposed method. The upper row regards the AFLW data set, whereas the
bottom rows are from the LFW and SCface sets.

A. Pose Estimation

p̂=[-0.03,-0.07,0.02,0,0,7.19] p̂=[0.16,-0.65,0,-0.02,0.02,7.16] p̂=[0.29,0.22,-0.01,0,0.01,8.29]
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Fig. 9. Upper row: examples of pose estimates in images from the AFLW data
set. Second row: boxplot of the pose estimation errors for the six degrees-of-
freedom: {yaw, pitch, roll} rotation angles (in radians), plus the {t

x

, t
y

, t
z

}
translation values. Bottom row: performance comparison with respect to a
state-of-the-art pose estimator [48] in a subset of the AFLW set.

Let p 2 R6 be the ground-truth pose of a sample and p̂

be the pose configuration found by our algorithm. In Fig. 9,
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we give the box plots of the p� p̂ values for each of the 6
pose degrees of freedom, showing the median of the errors
(horizontal solid line) and their first and third quartile values
(top and bottom of the box marks). The upper and lower
whiskers are denoted by the horizontal lines outside each
box, and the outliers are denoted by crosses. The upper row
exemplifies three queries and the corresponding poses found by
the algorithm. In these experiments we used 25,000 joint poses
/ head shape hypotheses, i.e., t

p̃

= 1, 000, t2
c

= 25, indexed in
binary trees of height 10 (⇡ 50 hypotheses per leaf).

Overall, upon the availability of a sufficient number of
pose hypotheses, the algorithm obtained a visually pleasant
approximation of the query poses for the large majority of the
cases. Objectively, we compared the performance of our pose
estimator, with 6,250, 12,500 and 25,000 joint head shapes /
pose hypotheses (t

p̃

= {250, 500, 1, 000}, t2
c

= 25), to a state-
of-the-art method due to Zhu and Ramanan [48], using the data
set these authors supply1. The cumulative error curves are given
in the bottom plot of Fig. 9, with the best configuration in our
solution attaining performance close to the state-of-the-art, but
using a much lower (and unfiltered) number of facial landmarks
than the baseline. Overall, the gap in performance between
both methods was the largest for low error values (where
a larger number of landmarks would be particularly useful),
and the results tended to converge for large cumulative errors
which correspond to rough pose estimates. For large cumulative
errors - over ⇡

4 - our method (with t
p̃

= 1, 000) attains better
pose estimates than the baseline. We note that errors increase
substantially when a reduced number of pose hypotheses are
generated, particularly for t

p̃

values below 250. However, it
should also be noted that generating large sets of hypotheses
in the learning phase is not a concern, as the indexing strategy
used accounts for several thousands of hypotheses without
significantly increasing the temporal complexity of retrieval.

B. Soft Labels’ Stability

The stability of the proposed soft labels varies per subject
and depends of the number of SOM centroids. We define the
stability of the ith subject as:

S
tc(i) = 1� 1p

2t
c

t
i

tiX

a=1

||b
ia

� ¯

b

i

||2, (14)

with b

ia

2 N2 being the ath sample label for the ith subject,
¯

b

i

being the subject centroid label (¯b
i

=

1
ti

P
ti

a=1 bia

), t
i

being the number of samples of the subject and t
c

denoting
the number of columns / rows in the SOM (only square SOMs
were considered).

For a set of subjects, a summary of their stability is given by
S
tc =

Pts
i=1 Stc (i) tiPts

i=1 ti
, t

s

being the number of subjects. Fig. 10
depicts the stability of labels in the LFW data set, with respect
to the number of centroids. The left plot gives three probability
density functions for the S

tc(i) values using three typical SOM
sizes. The right plot gives the group stability S

tc , again as
function of the SOM size.

1http://www.ics.uci.edu/⇠xzhu/face/
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Fig. 10. Left: Probability density functions of the stability of labels per
subject (S

tc (i)). Right: Variations in the overall stability S
tc with respect to

the number of shape centroids considered.

The S
tc(i) values varied from around 0.63 (worst case for

small maps) to 1 in the LFW set, with the optimal value
observed for subjects with head shapes associated with cells
in a SOM corner. Also, by using small SOMs (e.g., 3 ⇥ 3)
the probability of obtaining near optimal stability values (all
samples of a subject associated to the same cell) is increased,
but so is also obtaining many more low stability values. Note
that in small maps even small misalignments correspond to
large normalized distances.

Overall, the summary stability S
tc varied in direct correspon-

dence with the number of cells in the SOM, converging for
values around 0.87 in maps with more than 20 ⇥ 20 cells. Note
that (14) provides relative distances with respect to the size
of the SOM, i.e., values equal to 1 occur when two labels are
separated by

p
2 t

c

(a SOM diagonal). This explains why the
stability values increase for larger SOMs, even though small
maps should intuitively provide the maximum stability.

C. Soft Labels’ Discriminability

The discriminability of labels was evaluated based on the
flatness of the histogram that counts the number of subject
centroids per cell, considering that discriminating labels should
spread subjects evenly across the SOM cells. This is measured
by an entropy function:

D
tc = �

t

2
cX

i=1

p
i

log

t

2
c
p
i

, (15)

where p
i

is the empirical probability that a subject centroid
is associated with the ith cell of the SOM. In this case, the
subject centroid labels were rounded to their closest cell. Being
D

tc 2 [0, 1], values close to 1 denote flat histograms, where
subjects are spread evenly across the SOM cells. Values close
to 0 are the non-interesting case, where most subjects are
associated with a reduced number of cells.

Fig. 11 expresses the D
tc values with respect to the SOM

dimensions, having attained a maximum for the smallest maps
(3 ⇥ 3), with an approximately equal number of subject
centroids per cell. As the number of cells increased, some
of the cells started to have too few centroids, while others
attracted the elements in that region, yielding a more uneven
distribution of the number of elements per cell.
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Fig. 11. Relationship between the labels’ discriminability and the dimension
of the SOMs used.

Fig. 12 gives examples of the associations between the
queries and the 3D head centroids for the LFW data set, using
a 10 ⇥ 10 SOM. In each row, the leftmost image is the
3D head shape centroid (label) and the remaining images
illustrate samples associated with that cell. Note the evident
similarity between the major head features of the subjects
and the centroids: at the upper-left extreme in the SOM, the
(1,1) cell represents the largest heads with a round shape.
At the other extreme, the (10,10) cell represents the most
longitudinal heads with salient chins and extent maxillae. In
this kind of mapping, cells in the corners provide the most
easily distinguishable features (under visual inspection), while
central cells are not so obviously distinguishable with respect
to neighbors (note the high similarity between elements in cells
(3,2) and (3,3)). Moreover, as the central region represents the
most densely populated region of the feature space, a larger
number of prototypes is used here, which accounts for the
higher similarity between neighbouring prototypes.

Centroid label LFW Samples
(1,1)

(3,2)

(3,3)

(10,10)

Fig. 12. Examples of associations between samples of the LFW data set and
the head shape centroids of a SOM with 10 ⇥ 10 cells.

D. Robustness to Clutter

Poor-quality data queries are expected to be cluttered, i.e.,
with misplaced landmarks not corresponding to the anatomical
region they are supposed to represent. This section addresses
the effects of such cluttered input in the algorithm performance,
which are two-fold: 1) increase the number of head shapes /
pose hypotheses explicitly evaluated before convergence; and
2) decrease the convergence rate of the algorithm, which occurs
when a solution is not found after evaluating the maximum
number of hypotheses (100 in our experiments). Let p

s

be
the proportion of spurious landmarks with respect to the
accurate detections (e.g., p

s

= 0 represents a non-cluttered
input and p

s

= 1 denotes a balanced number of spurious /
genuine landmarks). Using images of the AFLW set (with
landmarks confirmed by human observers), cluttered inputs
were simulated, by adding landmarks away from their true
position (random x, y coordinates uniformly distributed over
the entire image space, U(0, 1), with coordinates normalized
in the [0,1] interval) or by changing the position of a landmark
(again, by generating uniformly distributed displacements over
the image space, U (0,1)).

0 1 2 3 4 5 60

1

2

3

4x 10−3

 

 

5x5
15x15

0 1 2 3 4 5 6−10

−9

−8

−7

−6

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

 

 

5x5
15x15

0 1 2 3 4 5−2

−1.5

−1

−0.5

0

0.5

Clutter (ps) Clutter (ps)

C
on

v.
R

at
e

H
yp

.E
va

l.

Fig. 13. Top: illustration of a query sample with spurious head landmarks
(p

s

=4), where the proposed method was still able to correctly estimate the
pose and the soft biometric label. Bottom-left plot: effect of the proportion
of spurious landmarks in the number of joint pose / head shape hypotheses
explicitly evaluated before convergence (given in linear and log scales). Bottom-
right plot: decay in the convergence rate with respect to the proportion of
spurious correspondences (linear and log scales).

As illustrated in Fig. 13, the algorithm convergence rate
decayed with respect to p

s

, but only slightly for values below
one, which is readily achieved by state-of-the-art head landmark
detectors. For larger p

s

values, the convergence rate of the
algorithm decays evidently and, for p

s

> 5, the algorithm loses
its effectiveness (bottom right plot). In terms of the number of
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hypotheses explicitly evaluated, an approximately direct linear
relationship with respect to p

s

was observed (bottom left plot).
The top image in Fig. 13 illustrates a query with p

s

= 4 and the
output of the algorithm, where the landmarks deemed genuine
(with �() � 0) appear in green and the spurious landmarks are
denoted by the color red.

E. Soft Labels Standalone Performance: The Watch-list Prob-
lem

An important surveillance task is the watch-list problem:
authorities have an explicit list of criminals (the watch-list)
they want to locate or track among a population. Given a query,
the goal is to detect occurrences of watch-list elements without
revealing the identities of any other subjects to the central
authorities, which is considered a privacy-preserving policy.

�
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Fig. 14. At left: insight of the negative identification concept, used in the
watch-list problem. All labels farther than � of a query correspond to identities
that can be rejected. At right: probability density functions of observing
distances d between intra-subject labels (values regard the LFW data set).

The metric space formulation of labels is particularly suitable
for handling this type of problem. By assigning a cell to each
element in the watch-list, the topological properties of the
input space ensure that any query assigned with cells located
sufficiently far from the watch-list cell does not correspond to
the criminal’s identity. This is illustrated in the left diagram
in Fig. 14. Depending on the radius � used (which dictates
the relationship between the hit / penetration rates), most of
the identities in the watch-list can be confidently rejected. The
plot given at the right side of Fig. 14 shows the probability
density functions of observing distances d between intra-subject
samples, which is the key for this watch-list formulation. Values
are given for SOMs of three different sizes and enable us to
conclude that there is a minimal probability of observing large
distances (> 0.5) between intra-subject labels.

The suitability of the soft labels for watch-list identification
is confirmed in the results given in Fig. 15, which expresses
the hit / penetration values for the LFW set, using SOMs of
dimensions 3 ⇥ 3 (continuous line with square marks), 9 ⇥ 9
(dashed line with circular marks), and 15 ⇥ 15 (dot-dashed line
with triangular marks). The performance lines of the largest
SOMs almost overlap and enable to reject over 50% of the
identities for a query, keeping hit rates close to 99%.

Fig. 16 gives the hit / penetration values obtained for the
SCface set, which are worse than the LFW values. This was
justified by the small image resolution in the set, making the
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Fig. 15. Hit / penetration plots for the LFW data set, using SOMs of dimensions
3 ⇥ 3 (continuous line), 9 ⇥ 9 (dashed line) and 15 ⇥ 15 (dot-dashed line).

detection of head landmarks an extremely difficult task. Also,
poses variations in this set are constrained to pitch angles (yaw
and roll angles close to 0, pitch values in [⇡/40,⇡/10]), which
led us to use only 100 pose prototypes. However, the key factor
behind the relatively poor performance was that, in data of
such reduced resolution, even small inaccuracies in landmark
detection lead to large deviations in the 3D model positions
inferred, which considerably reduced the stability of labels.
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Fig. 16. Hit / penetration plots for the SCface data set, using SOMs of
dimensions 3 ⇥ 3 (continuous line), 9 ⇥ 9 (dashed line) and 15 ⇥ 15 (dot-
dashed line).

F. Fusion of Soft / Strong Traits: Recognition Performance

This section addresses the effectiveness of the soft labels to
provide auxiliary information to a strong biometric expert. As
in the previous sections, the LFW was used as main data set,
having chosen the evaluation mode (unsupervised) that provides
the lowest recognition performance among all protocols2. As

2http://vis-www.cs.umass.edu/lfw/results.html
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a baseline, we considered the face recognition method due to
Arashloo and Kittler [2] based on two reasons: 1) this method
is among the best performers in the unsupervised (training
free) LFW evaluation mode; and 2) it integrates well known
techniques in a typical biometric recognition processing chain
that could be easily applied to other traits (i.e., the ocular or
the ear regions). It uses a multi-layered graphical model that
measures the geometric distortion between image pairs, fed
by the Daisy [39] feature descriptor. In classification, multi-
resolution LBPs, image registration techniques and the cosine
similarity yield the pairwise similarity score.

Note that the purpose of these experiments is not to obtain a
system that outperforms the face recognition state-of-the-art, but
to show that the proposed type of weak trait can be fused with
strong systems and still improve the recognition performance
with respect to the baseline. From this perspective, the relative
performance between the ensemble and the baseline is most
important than the absolute effectiveness rates. Also, note that
other improvements in performance with respect to the baseline
could be obtained by properly using the landmarks information
provided by the soft expert inside the face recognition engine.
However, that will be an attempt to improve a specific face
recognizer, which is out of the scope of this paper.

The face and soft biometric experts were fused at the score
level, learning a linear discriminant that projects both scores
into the subspace that maximizes the Fisher discriminant ratio
(found in a disjoint set composed by 10% of the available
pairwise comparisons). Let ✏

f

be the pairwise similarity score
returned by the face recognition expert and ✏

s

be the score
returned by the soft expert:

✏
s

=

1 + erf
�
( ||b1�b2||2p

2tc
� 0.5)

�

2

, (16)

where erf() is a transfer function (error function) with sigmoid
shape, b1,b2 2 N2 are the labels (of a t

c

⇥t
c

SOM) associated
to the image pairs and  is the parameter that controls the shape
of the transfer function (✏

s

2 [0, 1]). Results are summarized
in the Receiver Operating Characteristic curves of Fig. 17: the
black line gives the baseline performance of the face expert,
and the colored lines are the results attained by the ensemble,
for three different shapes of transfer functions ( 2 {1, 2, 4}),
with larger values corresponding to those farther from linear
shapes. When compared to the baseline, the improvements
in performance were maximized when the transfer function
had the most pronounced sigmoid shape ( = 4), i.e., when
small misalignments between b1 and b2 were not excessively
penalized. On the other hand, for roughly linear transfer
functions ( ⇡ 1), the performance of the ensemble was even
slightly worse than the baseline.

Analyzing in detail the  = 4 ensemble, we concluded
that improvements in performance were due to reducing the
variability of intra-subject scores, typically by improving the
pairwise scores when both samples had largely different poses,
with the face recognition expert showing a particular sensitivity
to such covariates (cases where the graphical model was
not able to infer the appropriate deformation parameters).
Conversely, we observed that the impostors’ score distributions

in the baseline and in the ensemble were almost equal.
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Fig. 17. Comparison between the recognition performance attained by a face
recognition system in standalone mode and when using also the soft biometric
labels as auxiliary information. Results are given for the LFW data set and
regard the unsupervised evaluation mode.

G. Effect of Facial Expressions

Considering that facial expressions may significantly distort
the head morphology (Fig. 18), this section addresses the
effect of facial expressions on the soft labels from three
perspectives. Initially, it reports the deviations in the SOM
cells associated with intra-subject samples with neutral / non-
neutral expressions. Next, it compares the labels’ stability /
discriminability in three different scenarios: 1) with 3D head
shapes and queries having neutral expression; 2) with neutral
3D shapes against queries of unconstrained (neutral and non-
neutral) expressions; and 3) with unconstrained 3D shapes and
queries. Finally, it evaluates the suitability of the soft labels
recognizing facial expressions.

All the experiments were conducted using the previously
mentioned LFW set, with images divided into disjoint groups,
according to the facial expressions considered. Additionally,
the Extended Kohn-Canade (CK+) [24] set was selected, being
one of the most popular sets in this research topic. In terms of
the facial expressions considered, we constrained the analysis
to the neutral and happy expressions, due to two reasons: 1)
the recognition of the remaining types of facial expressions
(e.g., fear, disgust or sadness) implies the detection of action
units that depend of an excessively large number of facial
landmarks that cannot be detected in poor quality data; and
2) the LFW set has a small number of samples with other
facial expressions (apart from neutral and happy), as they are
unlikely in visual surveillance scenarios. In these experiments
SOMs had 15 ⇥ 15 cells, maintaining all the 

i

values used
previously.

Initially, only 3D head shapes of neutral expression were
generated, with queries grouped per individual and per facial
expression. For each subject, the centroid labels for neutral
¯

b

(n)
i

and happy ¯

b

(h)
i

expressions were found. The left plot in
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Neutral (N) Happy (H)

N H N H N H N H

Neutral Happy

Fig. 18. Upper row: variations in the head shape appearance with respect to
the levels of evidence of a facial expression (happy). Second row: pairwise
samples of 3D head shapes with neutral / happy facial expression. Bottom
row: division of the samples from the LFW and Cohn-Kanade data sets into
two disjoint groups, according to their facial expression.

Fig. 19 gives the velocity plot corresponding to the ¯

b

(h)
i

�¯

b

(n)
i

misalignments, showing the average magnitude / direction of
vectors representing the typical movements in SOM labels when
expressions change from neutral to happy. It is evident that
movements vary across the maps, with central regions being
more stable than regions near the corners. Overall, movements
converge in the bottom-right corner that represents the most
elongated faces (with the largest deformations in the head shape
due to the happy expression). The rightmost part of Fig. 19
gives two examples of neutral / happy head shapes falling in
the SOM regions where the largest deviations were observed.

N H

(1,11)

(2,13)

N H

(11,14)

(14,15)

Fig. 19. At left: velocity plot representing the predominant intra-subject
displacements in labels with respect to changes in facial expression from
neutral to happy ( ¯

b

(h)
i

� ¯

b

(n)
i

), using 3D head prototypes of exclusively
neutral expression. At right: samples associated to the SOM regions with
the largest movement slopes, i.e., where facial expressions imply the largest
misalignments between the positions of soft labels in the SOM.

In addition, to perceive the decrease in soft labels effective-
ness due to facial expressions, Fig. 20 compares the labels’
stability / discriminability for three distinct configurations:
1) using 3D head shapes and queries exclusively of neutral
expression; 2) using neutral head shapes and unconstrained
queries (i.e., samples with neutral / non-neutral expressions);

and 3) using unconstrained head shapes and queries. Results
are given in terms of the hit / penetration plots and show that
facial expressions consistently decrease the effectiveness of
soft labels. However, such degradation is counter-balanced if
3D shape hypotheses with non-neutral expressions are also
generated, yielding results that are not too far off the baseline
neutral against neutral configuration (at the expense of an
increase in the computational burden of the labelling task by
doubling the number of head shape hypotheses).
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Fig. 20. Decreases in soft labels performance with respect to data of non-
neutral facial expression. Using queries with non-neutral facial expression
decreases the effectiveness of the soft labels, which can be counterbalanced if
3D head shapes with non-neutral expressions are also used (Fac. Exp. $ Fac.
Exp. series). Results are given for 15 ⇥ 15 SOMs.

Finally, the suitability of the proposed method recognizing
facial expressions in multi-pose data was assessed. We doubled
the number of 3D head hypotheses, having generated for each
neutral head shape a corresponding happy expression (second
row in Fig. 18). Joint head shapes / pose hypotheses were
clustered and indexed in the same way as before. Next, for
each SOM cell s

ci , the number of neutral / happy 3D head
shape hypotheses associated with it was assumed to give the
class likelihood p(s

ci |✓) in that region of the feature space,
with ✓ 2 {”Neutral”, ”Happy”}. Then, any query assigned to
s

ci was classified in terms of facial expression according to the
Bayesian paradigm, with the posterior probability for a facial
expression given by p(✓|s

ci) / p(s
ci |✓) . p(✓)/p(sci). Under

this formulation, and using equal priors per class, queries are
considered to have neutral / happy expressions according to
the most frequent expression of the 3D head shape hypotheses
associated with that cell.

The left plot in Fig. 21 illustrates the power of cells in a
15 ⇥ 15 SOM to discriminate facial expressions, showing the
|s(n)

ci |/|�s(n)
ci |+ |s(h)

ci |� per cell, |s(.)
ci | being the number of 3D

head shapes of neutral (n) / happy (h) expression associated
with a cell. Values around 0.5 denote the non-interesting cases,
i.e., cells with poor discriminating power (the number of neutral
and happy elements is balanced). The right side of this same
figure gives the confusion matrices for the LFW and CK+ sets,
showing the mean and standard deviation performance values
when repeating the recognition tests, using each time 85%
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of the available samples in a bootstrapping-like strategy. The
results are below the state-of-the-art [9] method, mostly due to
the poor discriminating cells with classification performance
only slightly better than random. In our view, results would
be improved if facial models with more facial landmarks
are used, which in poor quality data would be hard to infer
without filtering techniques (e.g., graphical models to obtain
the optimum configuration from a set of candidate landmarks).
Note that filtering landmarks would violate one constraint in
this paper: using exclusively non-filtered landmarks to enable
real-time processing.
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|/|
�
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Fig. 21. At left: power of each SOM cell s
ci to discriminate between neutral

and happy expressions, expressed by the proportion of neutral head centroids
associated to each cell. Red / orange cells represent predominantly neutral
regions of the SOM space, whereas blue cells represent predominantly happy
regions. Green / yellow cells have a balanced number of shapes per expression,
making them particularly weak to discriminate between both classes. At right:
confusion matrices for discriminating neutral / happy expressions in the LFW
and CK+ sets.

VI. CONCLUSION

In this paper, we proposed a method to infer jointly
human head poses and soft biometric labels based on the
3D morphology of the human head (the joint lengths between
particular positions on the head). Using learning data from
anthropometric surveys, a set of typical 3D head shapes (the
labels) was inferred. Next, we described an algorithm to
associate labels to low quality query samples, where subjects
appear partially occluded and in varying poses. Using projective
geometry techniques, we efficiently ranked a set of joint poses
/ head shape hypotheses, and iteratively evaluated the most
likely hypothesis. The idea is to explicitly evaluate only a few
hypotheses before the algorithm convergence, which is the key
for the reduced temporal cost of the whole process.

The experiments were carried out using challenging data sets
and support the usefulness of the soft biometric labels in two
different ways: 1) coupled with a strong biometric classifier
(e.g., a face recognizer), the resulting ensemble offers consistent
improvements in performance over the strong expert alone;
and, more importantly 2) these labels accord the concept of
privacy-preserving recognition. In public environments, there
are ethical / privacy issues behind the covert recognition of
every subject passing-by. If soft labels are used, the system
can confidently ignore the large majority of the identities in a
scene and perform positive recognition only for a small subset
of the subjects (those with soft labels similar to the watch-list
elements).
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