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ABSTRACT
Sparse representations have been advocated as a relevant advance
in biometrics research. In this paper we propose a new algorithm
for fusion at the data level of sparse representations, each one ob-
tained from image patches. The main novelties are two-fold: 1) a
dictionary fusion scheme is formalised, using the `1−minimization
with the gradient projection method; 2) the proposed representa-
tion and classification method does not require the non-overlapping
condition of image patches from where individual dictionaries are
obtained.

In the experiments, we focused in the recognition of periocular
images and obtained independent dictionaries for the eye, eyebrow
and skin regions, that were subsequently fused. Results obtained in
the publicly available UBIRIS.v2 data set show consistent improve-
ments in the recognition effectiveness when compared to state-of-
the-art related representation and classification techniques.

Categories and Subject Descriptors
C.2.0 [Security and Protection]; I.5.1 [Pattern Recognition]; I.2.10
[Vision and Scene Understanding]

General Terms
Biometrics, Sparse Representations

1. INTRODUCTION
Biometrics attempts to recognize human beings according to their

physical characteristics or behavioural traits [6]. In the past, vari-
ous traits were used for biometric recognition, being the iris and
the face among the most popular (e.g., [13], [15], [7] and [9]). Re-
cently, the concept of periocular recognition arisen [11] as a trait
that profits from the advantages of both the iris and face, being par-
ticularly suitable for the recognition under visible wavelength light
and uncontrolled acquisition conditions (e.g., [10] and [17]).
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Figure 1: Examples of periocular images of a single subject,
containing the corneal, eyebrows and skin regions, with varying
gazes.

Wright et al. [18] proposed the concept of sparse representation
for classification (SRC) purposes, which attains high effectiveness
when a sufficient number of training images is available and images
are moderately aligned. Subsequently, Pillai et al. [12] proposed a
SRC model for the iris trait, recognizing different sectors of the iris
separately and combining results at the score level, according to a
confidence estimate from each sector.

In this paper, we propose a periocular recognition model based
on sparse representations of image patches, that are fused into a sin-
gle representation, and does not require the non-overlapping condi-
tion of image patches.

The proposed model differs from the work of Wright et. al. [18]
recognition model in the sense that it is able to combine overlap-
ping patches. Also, it is different from the work of Pillai et al. [12],
as we do not recognize each image patch separately. Also, Pillai et
al. [12] used a Bayesian fusion framework with combination of
different regions as quality measure. Our implementation consid-
ers an `1−norm minimization problem solved by a fast algorithm
based on gradient projection methods (GP) [5, 8, 16] which allows
us to efficiently obtain sparse solutions of our models. In the exper-
iments we used a set of periocular images from the UBIRIS.v2 data
set [14], acquired in visible wavelengths from 4 to 8 meters away
of the subjects, in uncontrolled acquisition conditions and varying
gazes, poses and amounts of occlusions. Examples of images used
are shown in Figure 1. The obtained results allowed us to observe
consistent increases in performance when compared to the classical
SRC model and to the state-of-the-art approaches due to Wright et.
al. [18] and Pillai et al. [12]. Also, it should be stressed that such
increases in performance were obtained without a significant over-
load in the computational burden of the recognition process.

The remainder of this paper is organized as follows. Section 2
summarizes the existing methods in the scope of the proposed pa-
per. Section 3 introduces the proposed representation and classifi-



cation model. Section 4 describes the experimental validation pro-
cedure that was carried out, with respect to state-of-the-art tech-
niques. Finally, Section 5 concludes the paper.

2. RELATED METHODS
Here we summarize the work of Wright et al. [18] (SRC model)

and Pillai et al. [12] (Fusion model), which are among the most
relevant algorithms proposed in this scope.

A. Sparse Representation for Classification (SRC) Model
Having a set of labeled training samples (ni samples from
the ith subject), they are arranged as columns of a matrix
Ai = [vi,1, . . . ,vi,ni ] ∈ Rm×ni . The dictionary results
from the concatenation of all samples of all classes:

A = [A1, . . . ,Ak]

= [v1,1, · · · ,v1,n1 | . . . |vk,1, · · · ,vk,nk ].

Next, the key insight is that any probe y can be expressed as
a linear combination of elements of A. As the data acquisi-
tion process often induces noisy samples, it turns out to be
impractical to express the test sample exactly as a sparse su-
perposition of the training samples. In this case, for any test
sample y ∈ Rm the system to solve is given by the following
`1−minimization problem:

(`1s) : x̂1 = arg min ‖x‖1 subj. to ‖Ax− y‖2 ≤ ε,
(1)

where ‖x‖1 =
∑
|xi|. This way, it is expected to get a

sparse solution [4, 1, 3, 2] of the system

y = Ax + z.

where z ∈ Rm is the noise term with a bounded energy con-
straint ‖z‖2 ≤ ε, and the solution is expected to be similar
to

x0 =[0, · · · , 0| . . . |xi,1, · · · , xi,ni | . . . |0, · · · , 0]T .

Classification is based on the observation that high values
of the coefficients in the solution x0 are mainly associated
with the columns of A of a single class, corresponding to the
identity of the probe. A residual score per class is obtained,
1i : Rn → Rn, defined by x̂ → 1i(x̂). The probe y is
then reconstructed by ŷi = A1i(x̂) and the minimal recon-
struction error deemed to correspond to the identity of the
probe:

ri(y) = ‖y − ŷi‖2,

between y and ŷi, that is we find,

id(y) = arg min
i
ri(y).

Further, a sparsity concentration index (SCI) is used to ac-
cept/reject the response given by the minimal reconstruction
error [18]. The SCI of a coefficient vector x̂ ∈ Rn corre-
sponds to:

SCI(x̂) =

kmaxi ‖1i(x̂)‖1
‖x̂‖1

− 1

k − 1
∈ [0, 1], (2)

where 1i is a indicator function that set the values of all coef-
ficients to 0, except those associated to the ith class. Having
a sparse solution x̂, if SCI(x̂) ≈ 1, the probe is considered
to be acceptably represented by samples from a single class.
Otherwise, if SCI(x̂) ≈ 0 the sparse coefficients spread
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Figure 2: Periocular regions defined from a given image. (a)
Original image. (b) Eyebrow region. (c) Eye region. (d) The
surrounding skin region.

evenly across all classes and a reliable identity for that probe
cannot be given.

B. Fusion Model
The recognition model proposed by Pillai et al.[12] obtains
separate sparse representation from disjoint regions of an im-
age and combines the results considering a quality index from
each region. Let L be the number of classes with labels
C = {ci}Li=1. Any vector y is divided into sectors, each one
described by the SRC algorithm. SCI values are obtained
over each sector, allowing to reject those with quality bel-
low a threshold. Let {d}i represent the class labels of the
retained sectors, and P(di|c) be the probability that the i-th
sector returns a label di when the true class is c:

P(di|c) =


t
SCI(di)
1

t
SCI(di)
1 +(L−1)t

SCI(di)
2

if di = c,

t
SCI(di)
2

t
SCI(di)
1 +(L−1)t

SCI(di)
2

if di 6= c,

being t1 and t2 constants such that 0 > t1 > t2 > 1. Ac-
cording to a maximum a posteriori (MAP) estimate of the
class label, the response corresponds to the class having the
highest accumulated SCI:

c̃ = argmax
c∈C

∑L
j=1 SCI(dj)δ(dj = c)∑L

j=1 SCI(dj)
.

3. PROPOSED METHOD
As above stated, the proposed method was developed in the con-

text of periocular recognition, even though it can be easily extended
to other biometric traits. In the case of the periocular region, it has
varying levels of contrast, and suffers from heavy heterogeneity in
terms of average local intensities, due to the morphologic proper-
ties that induce shadows, and uneven illumination (some examples
are given in Figure 1).

The rationale is as follows: instead of recognizing the entire pe-
riocular region, we combine the information given by regions that
can be easily detected by standard object detection algorithms: the
eye, eyebrow and the (remaining) skin. As in the general SRC
model, a w × h grayscale periocular image is concatenated into a
column vector v ∈ Rwh. Given ni training samples of the ith class,
each sample is divided into three sub-sets (as shown in Figure 2).
Formally, let vi,ni,1, vi,ni,2 and vi,ni,3 be vectors such that:

• vi,ni,1 has non-zero values in the regions corresponding to
the eye.

• vi,ni,2 has non-zero values in the regions corresponding to
the eyebrow.

• vi,ni,3 has non-zero values in the regions corresponding to
the skin.



Vectors vi,ni,j have the same dimension, i.e., v. ∈ Rm. Let
z0 ∈ Rm be a vector with all values equal to 0. Three matrices
Āi,s (s = 1, 2, 3) are defined as follows:

Āi,1 =


vi,1,1 · · · vi,r,1 · · · vi,ni,1

z0 · · · z0 · · · z0
z0 · · · z0 · · · z0
z0 · · · z0 · · · z0



Āi,2 =


z0 · · · z0 · · · z0

vi,1,2 · · · vi,r,2 · · · vi,n2,2

z0 · · · z0 · · · z0
z0 · · · z0 · · · z0



Āi,3 =


z0 · · · z0 · · · z0
z0 · · · z0 · · · z0

vi,1,3 · · · vi,r,3 · · · vi,n3,3

z0 · · · z0 · · · z0


Each Ā.,. regards local information of the set of training im-

ages. Also, we consider a new matrix that contains information of
the complete periocular region, resulting from the concatenation of
vectors vi,1,4, . . . ,vi,ni,4:

Āi,4 =


z0 · · · z0 · · · z0
z0 · · · z0 · · · z0
z0 · · · z0 · · · z0

vi,1,4 · · · vi,r,4 · · · vi,ni,4

 .

Our goal is to combine the local and holistic information in a single
representation, by considering the concatenation of the four types
of matrices above defined:

Ai = [Āi,1|Āi,2|Āi,3|Āi,4] ∈ R4m×4ni ,

yielding the final dictionary :

A = [A1 . . . ,Ak] ∈ R4m×n.

The following properties of the new dictionary with respect to
previous works should be noted:

• In opposition to Wright et al. [18], our approach allows to
combine sectors from different image samples.

• In opposition to Pillai et al. [12], the used sectors do not need
to satisfy the non-overlapping condition.

• The obtained performance is not sensitive to accurate esti-
mates of each sector.

• The proposed classification scheme can be implemented with-
out any fusion technique, and by solving a unique system of
linear equations.

In our model, a sample y is represented by the vector [y1|y2|y3|y4]T

where yi, i ∈ {1, 2, 3}, have non-zero components exclusively in
an image patch and y4 regards the complete periocular region. It
follows that

yT
s = Asxs =

k∑
i=1

nk∑
j=1

vi,j,sαi,j,s,

with As = [v1,1,s, · · · ,v1,n1,s| · · · |vk,1,s, · · · ,v1,nk,s] and s =
1, 2, 3. Moreover, y satisfies

2y =

4∑
s=1

yT
s =

k∑
i=1

nk∑
j=1

4∑
s=1

vi,j,sαi,j,s,

Sparse Models Recognition Rate
Proposed Method 97.63%
Proposed Method Without Ai,4 97.02%
Wright et al.[18] (SRC) 96.88%
Pillai et al.fusion [12] 87.56%
Eyebrow Region 61.25%
Eye Region 38.95%
Skin Region 94.79%

Table 1: Summary of the recognition rates observed. Values
regard the average from all recognition experiments.

and the solution of the `1−minimization system (1) has the form

x0 =[0, · · · , 0| . . . |αi,1,1, · · · , αi,ni,1, αi,1,2, · · · , αi,ni,2

αi,1,3, · · · , αi,ni,3, αi,1,4, · · · , αi,ni,4| · · · |0, · · · , 0]T .

In this paper, we use the gradient projection method by considering
the LASSO problem [16] for solving the `1−minimization problem
(1) .

4. EXPERIMENTS AND DISCUSSION
Our experiments were conducted in the UBIRIS.v2 database [14].

The periocular regions were manually detected and the ROI down-
sampled to 10 × 9 pixels. Six samples from 80 different sub-
jects were used, captured from different distances (4 to 8 meters),
with varying gazes/poses and notable changes in lighting condi-
tions, as shown in Figure 1. One image per class was randomly
drawn as probe data and the remaining five samples included in
the dictionary. Experiments were repeated, changing the image
used as probe (per subject). Hence, six dictionaries with dimension
270× 1600 were considered, each one tested in 80 probe samples.

Results are summarized in Table 1 in terms of the recognition
rates. For the sparse solutions validated by the sparsity concen-
tration index (SCI) values (2), the corresponding confusion matrix
CM was computed. Then, the recognition rates obtained:

RR = 1−
∑

i 6=j CM(i, i)∑
i,j CM(i, j)

.

The method proposed in this paper got better results than the
classical SRC model (96.88% to 97.63%), which was considered
an achievement due to the high effectiveness attained by the base-
line algorithm. Also, the fusion technique due to Pillai et al. got
consistently lower recognition rates in our experiments: the fusion
at score level of different sparse representations actually decreased
the recognition effectiveness, when compared o the original SRC
model. This might be due to the non-rigidity of the periocular re-
gions, that induce non-linear local distortions that might be con-
tributing for the decrease in results.

Even if the proposed method does not use the complete perioc-
ular region in the sparse representation (second line of results in
Table 1), the results were still slightly better than for the other al-
gorithms tested. Even though, we concluded that including over-
lapping data in the dictionaries (Ai,4 contains information from
Ai,1,Ai,2 andAi,3), contributes for the improvement of the results
(97.02% to 97.63%).

Another interesting analysis is the effectiveness attained by each
of the regions in a singular way, i.e., when sparse representations
are obtained exclusively from a single region. In this case, we con-
firmed that the skin area provided the most discriminant informa-
tion, followed by the eyebrow and the eye region. As illustrated



(a) (b)
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Figure 3: Coefficient vector found using `1- minimization based on sparse representation approaches. (a) Proposed dictionary fusion
model. (b) Wright et al. [18] sparse representation based classification. (c), (d) and (e) are sparse solutions obtained using only
eyebrow, eye and the surrounding skin region (as shown in Figure 2), respectively.

in Figure 2, the eye region comprises exclusively the ocular globe,
which due to its moving nature and to the fact that eyelids often
occlude significant portions of the ocular globe, might explain the
results obtained.

In Figure 3 we illustrate the sparsity of the solutions found, ac-
cording to the `1−minimization system (1). Solutions in our model
tend to be sparse (a) and relatively similar to those observed for
Wright et. al. [18] (b), even though a higher density of non-zero co-
efficients in the class of interest can be observed in our model (note
the number of non-zero coefficients near the peak in our model and
Wright et al’s. Another interesting observation is the high similar-
ity of the coefficients found for the proposed model and when using
exclusively the skin area (e). Also, both the coefficients found from
the eyebrow and eye regions appear to have some complementar-
ity, which from our viewpoint justifies the outperforming results
obtained by the proposed SRC algorithm.

A comparison between the ROC curves of our algorithm (black
curve) and of the Wright et al. [18]’s (green curve) is given in Fig-
ure 4, when varying the SCI value to accept a match. Even though
both algorithms got identical performance, the proposed algorithm
(black line of the Image at left) approximates more to the optimal
performance point (complement of specificity=0, sensitivity=1). In
this case, the minimal distance from the ROC values to the (0, 1)
point was of 0.1417, while a value of 0.2021 was observed for the
Wright et al. [18] algorithm. Again, we considered this slight dif-
ference meaningful due to the extremely high effectiveness of the
baseline algorithm.

Finally, the statistical correlation between the outputs given by
our method and the methods used as comparison terms was as-
sessed. This kind of analysis is of particular interest for further
research, pointing about improvements in performance that might
obtained, if the fusion of multiple SRC algorithms is considered.
The levels of correlation of the responses attained when using ex-
clusively each of the periocular regions considered (skin, eye and
eyebrow) were also obtained. Considering that eventual depen-
dences will be linear, the Pearson’s sample correlation was used for
that purpose. Given a pair of samples, the correlation coefficient is
given by:

r(X,Y ) =
1

k − 1

k∑
i=1

(
Xi − X̄
σX

)(
Yi − Ȳ
σY

)
,

where Xi, Yi denote the systems outputs, X̄ , Ȳ are the sample

means and σX , σY the standard deviations. As it can be observed
from the results in Table 2, the proposed method and the SRC [18]
model are strongly correlated, which is expected due to the high
recognition rates both achieve. Also, it should be noted the strong
correlation between the outputs given by the model of Wright et.
al. [18] and the model obtained when using exclusively the skin re-
gion. This is also easily explained, as the skin region comprises the
large majority of the periocular region. Also, using the proposed
method on a singular region corresponds to the classical SRC al-
gorithm. The correlation values between the proposed method and
the responses when using exclusively one kind of regions (eyebrow,
eye and skin) confirmed the role of each region in the responses of
our method, as the values given in Table 1 and Figure 3 point. Also,
it is particularly interesting to observe the negative (and small) cor-
relation values between the responses obtained when using the eye
and the eyebrow, pointing for a complementarity that might con-
tribute for the outperforming results of the method proposed in this
paper.

5. CONCLUSIONS AND FURTHER WORK
This paper focused in the recognition of periocular images and

proposed an algorithm based on the sparse representation for clas-
sification (SRC) model. The main singularity is to fuse at the data
level representations from easily detectable areas in the periocu-
lar region (skin, eye and eyebrows), and obtain a unique sparse
representation subsequently. Also, in contrast to previous works,
the proposed algorithm does not require that image patches used
in sparse representations are disjoint, augmenting the robustness to
inaccuracies in the algorithm that detects ROIs. Using highly chal-
lenging images of the UBIRIS.v2 dataset, we compared the per-
formance of the proposed model against state-of-the-art SRC al-
gorithms, and observed slight but consistent improvements, which
was regarded as an achievement, considering the high effectiveness
of baseline algorithms.

Our current efforts are concentrated in formalising the conditions
required for maximize performance, in fusing local/holistic image
patches for SRC algorithms. This should enable extend the pro-
posed classification algorithm for other regions than the periocular.
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