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Abstract: The accuracy of biometric recognition in unconstrained scenarios has been a
major concern for a large number of researchers. Despite such efforts, no system can recognize
in a fully automated manner human beings in totally wild conditions, such as in surveillance
environments. In this context, several sets of degraded data have been made available to
the research community, where the reported performance by state-of-the-art algorithms is
already saturated, suggesting that these sets do not reflect faithfully the conditions in such
hard settings. To this end, we introduce the QUIS-CAMPI data feed, comprising samples
automatically acquired by an outdoor visual surveillance system, with subjects on-the-move
and at-a-distance (up to 50 m). Also, we supply a high-quality set of enrollment data. When
compared to similar data sources, the major novelties of QUIS-CAMPI are: 1) biometric
samples are acquired in a fully automatic way; 2) it is an open dataset, i.e., the number of
probe images and enrolled subjects grow on a daily basis; and 3) it contains multi-biometric
traits. The ensemble properties of QUIS-CAMPI ensure that the data span a representative
set of covariate factors of real-world scenarios, making it a valuable tool for developing
and benchmarking biometric recognition algorithms capable of working in unconstrained
scenarios.

1. Introduction

Over the last years, biometric research has been evolving towards the development of systems
that work in adverse conditions. This trend has been mainly supported by the increasing
number of commercial systems relying on biometric recognition, and, at the same time, in
the interest in extending these systems to unconstrained scenarios. These efforts have proven
fruitful, as in the case of the Verilook Surveillance system [}, where persons are recognized
on-the-move using face features. However, this system is confined to indoor scenarios and
demands a large amount of enrollment data. In fact, the recognition of humans in totally
wild conditions, such as in surveillance environments, is still to be accomplished [2], making
biometric recognition in the wild a highly popular topic, and, at the same time, one of the
most ambitious goals for the research community.

Biometric datasets are an important asset to push forward the state-of-the-art recognition
performance. As an example, we highlight the evolution of face recognition datasets, which
have moved towards more challenging conditions, as novel algorithms surpass the challenges
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Fig. 1. Illustration of the six covariate factors in the QUIS-CAMPI dataset.
The use of an automated master-slave system for acquiring facial imagery in a fully non-
cooperative and covert manner assures an effective representativeness of the covariates of
biometric recognition in the wild.

of the hardest sets. This fact is particularly evident in the case of Labeled Faces in the Wild
(LFW) [], which was originally proposed to meet the satisfactory performance of state-
of-the-art algorithms in addressing the typical covariates of facial recognition. The high
variability of the data has caught researchers attention, who have progressively advanced
the robustness of face recognition algorithms (87% accuracy in 2009 [4] to 95% accuracy in
2015 [H]) LFW has paved the way for biometric recognition in the wild, and fostered the
development of even more challenging datasets. Nonetheless, as noted by Klare et al. [0],
one explanation for unconstrained face recognition being still far from solved is that the
LFW and similar datasets are not fully unconstrained. To close this gap, Klare et al. [H]
introduced the IJB-A dataset, which follows the spirit of LFW but includes high variability
in pose. However, even this challenging dataset does not encompass the complete set of
covariate factors present in real surveillance scenarios, as the majority of the images were
not acquired on-the-move and in an automated manner, reducing the levels of blur caused
either by motion or incorrect focusing.

In this paper, we provide a tool to bridge the gap between surveillance and biometric
recognition, by announcing the QUIS-CAMPI data feed, whose acronym derives from Latin
and summarizes its goals: ’Quis’ stands for "Who is’ and ’Campi’ refers to a delimited
space. Hence, this set aims at fostering the development of biometric recognition systems
that work outdoors, in fully unconstrained and covert conditions. To this end, we designed
an automated master-slave surveillance system to capture both full body video sequences
and high-resolution head samples of subjects in a parking lot. The particularities of the
surveillance system permit the continuous acquisition of novel biometric samples that are
supplied to the dataset after being manually screened and associated to the corresponding
gallery subjects. This singularity is the rationale for considering that QUIS-CAMPI is the
first open biometric dataset, since the number of biometric samples grow on a daily basis.
For the same reason, we argue that the proposed set can be considered a data feed, where
researchers can obtain novel biometric data captured in a realistic surveillance scenario.
In spite of the multiple advantages of the QUIS-CAMPI dataset, it also raises important
questions on evaluation and privacy. As such, the impact of the continuous supply of new
probes has been carefully planned by introducing dataset versioning (refer to section {.3).
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Regarding privacy, while the data collection has been authorized by the Portuguese data
protection authority, we believe that the surveillance system could be used in a public space
without compromising privacy by adopting a watchlist-based recognition, i.e., the goal is
not to identify the person, but determine if the probe data corresponds to a subject in the
watchlist.

It should be also mentioned that a subset of the QUIS-CAMPI dataset has already been
published before [[q] to promote the ICB-RW (International Challenge on Biometric Recogni-
tion in the Wild) competition. When compared to ICB-RW, QUIS-CAMPI has the following
advantages: 1) the ICB-RW challenge provided only 10 face images from each of the 90 sub-
jects, whereas QUIS-CAMPI contains more than 3,000 images from 320 subjects; 2) ICB-RW
was based on a single evaluation metric, whereas QUIS-CAMPI provides a comprehensive
evaluation protocol both for the verification and identification modes; 3) QUIS-CAMPI
provides a comprehensive evaluation along the proposed evaluation protocols; and 4) QUIS-
CAMPI provides a continuous feed of biometric samples, as well as a version control strategy
for obtaining new data.

Contributions: When compared to the existing biometric datasets, the QUIS-CAMPI
data feed has four major novelties: 1) biometric traits are automatically acquired by a
master-slave surveillance system in a fully non-cooperative and covert manner. This allows
the data to be acquired at-a-distance (up to 50 m) and on-the-move, and assures an effec-
tive representativeness of the covariates of biometric recognition in the wild; 2) it is an open
dataset, i.e., new samples are continuously and automatically being added to the dataset and
supplied to the research community. This singularity inhibits biased performance estimation
- usually caused by parameter adjustment in the test set - without the burden of sequestered
test data; 3) it is surveillance representative, i.e., the probe images truly encompass all the
singularities of surveillance environments, and thus, advances in the recognition accuracy of
these data have a direct impact on the deployment of a fully automated biometric recogni-
tion surveillance system.

The remainder of this paper is organized as follows: Section E overviews the datasets
for assessing the recognition performance in these environments. Section B describes the
master-slave surveillance system developed for data_acquisition. A detailed description of
the announced dataset is given in Section . Section i describes the evaluation protocol and
compares the results attained by state-of-the-art face recognition algorithms in the QUIS-
CAMPI and LFW datasets. Finally, Section H concludes the paper.

2. Biometric Datasets

About 25 years ago, biometric recognition emerged as an interesting topic, leading to the de-
velopment of many novel algorithms, usually validated in small, non-representative and pro-
prietary databases, according to distinct evaluation protocols. To meet the growing demands
for objective evaluation tools, sets of biometric samples comprising different covariate factors
were introduced as a solution. The ORL database of faces [16], the AR face database [17]
and the Yale face database were pioneer sets on face recognition, while FERET [18] was the
first benchmark on this topic. Despite their valuable contribution in providing objective and
trustworthy tools for assessing recognition performance, these sets soon became outdated as
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Table 1. Comparative analysis between the datasets particularly devised for
studying unconstrained biometric recognition. Datasets are compared with respect
to the number of subjects available and the key covariate factors of recognition in the wild:
expression (E), occlusion (O), illumination (1), pose (P), motion-blur (M) and out-of-focus
(F). Also, the key aspects to ensure that the data realistic result from real-world scenarios are
also included. The abbreviations of these aspects refer to non-cooperative (NC), on-the-move
(OM), at-a-distance (AD), outdoor (OU) and automated image acquisition (AA).

XM2VTS [g]

BANCA [d]

FRGC [10]

FRVT
2006 [11]

sc-
FACE [12]

LDHEF-
DB [13]

LFW [3]

1JB-A [5]

YouTube
Faces [14]

Choke
Point [15]

QUIS-
CAMPI

IET Biometrics

Thisarticle has been accepted for publication in a futureissue of thisjournal, but has not been fully edited.
Content may change prior tofinal publication in an issue of thejournal. To cite the paper please usethe doi provided on the Digital Library page.

Number of Coverieiz Observations
subjects Factors
A multi-modal database comprising face images, video sequences
295 E, ILP . . :
and speech recordings acquired at one month intervals.
26 ElLP A database of face videos comprising twelve recordings per subject
r were acquired under controlled, uncontrolled and adverse conditions.
638 E I v Four controlled still images, two uncontrolled still images and a 3D
face model.
The first independent performance benchmark for 3D face
> 35 000 (= v recognition technology. Also, it comprises still frontal face images
acquired under controlled and uncontrolled illumination.
130 E 1P v v Facial imagt.ary acquire:d in an indoor surveil!ance sce.n:ario using five
video surveillance cameras of various qualities.
100 I E v | v This set comprises both visible and near-infrared face images at
! distances of 60m, 100m, and 150m acquired outdoors.
5749 E O IP v The first database of face Photographs des.ig-ned for the study of
unconstrained face recognition.
500 E O I PM v Similar in spirit to the LFW d.ataset, but containing high-variability
in pose.
1505 E O LPM A database of face \;ldeos de5|g!1<.ed f9r the study of unconstrained
ace recognition in videos.
o5 E O I P M v A database of face videos acquired indoors in a non-cooperative
manner.
268 (v1) E O I P M, The first data feed.of biometric san?ples aL'ltomatlcaIIy acquired by
320 (v2) E v v v an outdoor surveillance system, with subjects on-the-move and
at-a-distance.
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novel algorithms reported almost ideal accuracy on these data.

These improvements fostered the development_of more challenging datasets, such as the
CMU PIE [@], the Multi-PIE [20], the XM2VTS [§] and the BANCA [J] databases, compris-
ing biometric samples with significant variations in illumination, pose and expression. Also,
different challenges were introduced for assessing the accuracy of state-of-the-art face recog-
nition methods in less constrained scenarios (e.g., the Face Recognition Grand Challenge
(FRGC) [] and the Face Recognition Vendor Test (FRVT 2006)).

Aiming at providing more realistic data, the research has advanced towards the acquisition
of unconstrained samples along the diverse biometric traits, such as iris [21], periocular [,

| and face [@] Regarding face recognition, LEW was the first database particularly devised
for studying face verification in the wild and was, therefore, responsible for promoting the
development of more robust algorithms (an increment of 10% in the recognition accuracy
in last years), as well as for fostering the emergence of more challenging collections of data
(e.g., PubFig [@], FaceScrub [@], [JB-A [B] and Disguise and Makeup Faces Database [@])

Simultaneously, still to video modality has also gained increasing attention leading to the
development of novel datasets and biometric challenges on this topic. The video challenge
portion of the Multiple Biometrics Grand Challenge (MBGC) contained subjects walking
towards the camera and non-frontal footage of subjects performing an activity. Later, the
Point and Shoot Face Recognition Challenge (PaSC) was introduced, comprising uncon-
strained video sequences of subjects performing multiple activities outdoors. The YouTube
Faces database [@] contains unconstrained recordings obtained from the internet, and it was
particularly designed for studying the problem of unconstrained face recognition in videos.
On contrast, the SC-FACE [Ié] and the ChokePoint [] datasets were originally intended
to provide data acquired in realistic indoor surveillance scenarios. Regarding surveillance
scenarios, the PETS [], i-LIDS [@], CAVIAR [@] datasets and the VISOR [@] repository
comprise video sequences of pedestrians in realistic surveillance scenarios. Even though the
low resolution of data inhibits its use for face recognition purposes, it has been showed that
the fusion with gait information can significantly increase the performance [, .

The evolution of gait databases over time has varied over three major factors: the num-
ber of subjects and sequences, data covariates (e.g., clothing, carried items, speed), and the
acquisition scenario (e.g., indoor, outdoor). The SOTON large database [B4] was the first
set to comprise over 100 subjects and has contributed to study the impact of inter-subject
variation on gait recognition. The USF dataset [@] was introduced to provide a representa-
tive dataset for benchmarking gait recognition in challenging conditions, and investigating
which covariates significantly degrade the gait recognition performance. CASIA B [36] is
a commonly used gait database containing large view variations, as well as variations in
clothing and carrying status. For this reason, this set is usually exploited for the evaluation
of cross-view gait recognition and for evaluating the impact of clothing and carrying status
on the performance of gait recognition methods. While the remaining databases did not
exceed 200 subjects, OU-ISIR LP [37] has overcome the remaining sets by providing gait
sequences from more than 4000 subjects with a wide age range. In spite of not containing
any covariates, it is useful for estimating the performance of the gait recognition with high
statistical reliability.

A comparative analysis between state-of-the-art databases concerning unconstrained face
recognition is given in Table [ll. It is interesting to note that despite these sets comprise highly
challenging biometric data, most of them were manually captured by human operators and
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they still lack several crucial covariate factors of surveillance environments, such as motion-
blur.

3. QUIS-CAMPI Data Acquisition System

For the acquisition of QUIS-CAMPI, we rely on a master-slave surveillance system capable
of acquiring face imagery of subjects at-a-distance and on-the-move (Fig. ). Even though
this type of configuration is not novel and it has also been used in surveillance scenarios [@],
our approach has several singularities, making the system particularly suitable for working
in real-world conditions.

When compared with the existing master-slave systems, which were particularly devised
for the acquisition of biometric data at-a-distance [@, @ @], our approach has two major
advantages: 1) a novel calibration algorithm avoids the use of extra optical devices [39] or
stringent configurations for the cameras [40, 41]; 2) camera scheduling is performed using a
general graph model that determines in real-time the best tour to acquire the targets in the
scene and can be easily customized to incorporate several prioritization rules, avoiding the
use of manually defined rules [40].

The proposed surveillance system is divided in five major modules, broadly grouped in
three main phases: 1) human motion analysis; 2) inter-camera calibration; 3) camera schedul-
ing. The workflow chart of the surveillance system used for acquiring the QUIS-CAMPI
dataset is given in Fig. P and described in detail in the next sections.

[ MASTER CAMERA Il PTZ CAMERA ]

Fig. 2. Processing chain of the QUIS-CAMPI surveillance system. A master-
slave architecture is adopted for the proposed surveillance system, where the master camera
is responsible for monitoring a surveillance area and providing a set of interest regions (in
this case the location of subjects face) to the PTZ camera.

As illustrated in Fig. E, the rationale behind the surveillance system is to use the PTZ
camera as a foveal sensor, i.e., the video stream obtained from the wide camera is analyzed
to obtain the location of subjects’ head, so that the PTZ camera can image the facial
region at a high-magnification state. In the former phase, the master camera is responsible
for detecting and tracking multiple subjects in the surveillance area. In every frame, a
background subtraction algorithm prunes the search area inspected by a pre-traihed human
shape detector, whose output instantiates a tracking algorithm. Multi-person tracking is
achieved by using multiple instances of the algorithm running simultaneously. Subsequently;,
the tracking record of each subject is analyzed for inferring their position some seconds
ahead. This step is particularly important to counterbalance the time offset introduced by
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Fig. 3. Illustrative example of the biometric data available in QUIS-CAMPI.
For each subject of the database distinct biometric traits are acquired during enrollment,
comprising soft biometrics, full body imagery (a) and a 3D model (b). Subsequently, high-
resolution face images (c) are automatically collected each time a subject enters the surveil-
lance area in a non-cooperative way. Note that these data are acquired under varying lighting
and weather conditions, at different times of the day, while subjects are on-the-move and
at-a-distance.

the mechanical delay of PTZ devices. In the calibration module, the image coordinates in
the master camera referential need to be converted to_the correspondent pan-tilt angle. To
this end, we relied on a novel calibration algorithm [] that exploits geometric cues (the
vanishing points available in the scene) to automatically estimate subjects’ height and thus
determine their 3D position (refer to [@] for additional details). Finally, the calibration
module allows the PTZ camera to determine the sequence of observations which minimizes
the cumulative transition time, in order to start the acquisition process as soon as possible
and maximize the number of samples taken from the subjects in the scene. Considering that,
this problem has not a known solution that runs in polynomial time, we relied on a method
capable of inferring an approximate solution in real-time []
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Table 2. List of the soft biometric traits collected during enrollment.

Trait Labels
Age N
Height N
Weight N
Sex Male, Female
Ethnicity Caucasian, African, Hispanic, Asian, Indian
Skin Color White, Tanned, Oriental, Black
Hair Color None, Black, Brown, Red, Blond, Grey, Dyed
Hair Length None, Shaven, Short, Medium, Long
Facial Hair Color None, Black, Brown, Red, Blond, Grey
Facial Hair Length None, Stubble, Mustache, Goatee, Full beard
Hair Style None, Straight, Curly, Wavy, Frizzy

4. Description of the QUIS-CAMPI Dataset

When planning the QUIS-CAMPI dataset, we had two main concerns: 1) to acquire biomet-
ric data of subjects in a real surveillance scenario, covertly, on-the-move and at-a-distance;
and 2) to provide multiple biometric enrollment data to perceive the advantages of using
media collection [44] for identifying humans in the wild. For that purpose, we collected
multiple biometric samples that where organized into two distinct groups: 1) enrollment
data; 2) probe data. In the former, we have enrolled volunteers who have provided written
authorization for image acquisition and distribution. The enrollment was conducted in a in-
door controlled scenario and the following samples were collected: soft biometrics, full-body
imagery and a 3D face model. In the latter, the data were acquired by the system described
in Section B, while subjects walked throughout a surveillance area. Probe samples comprise
high-resolution face images automatically captured by the PTZ camera. It is important to
note that the large majority of subjects use this area in their normal routine, which ensures
a faithful representation of surveillance covariates. Figure a illustrates the biometric data
available for each subject.

4.1. Enrollment Data

Enrollment data provide good quality samples acquired indoor: soft biometrics, full-body
imagery and a 3D face model.

Soft biometrics: Eleven types of soft biometric labels were registered for each subject.
The full list is presented in Table P and the rationale behind the choice of these features was
their discernibility at a distance and the discrimination power reported in the study of Tome
et al_[45]. The distribution of each trait with respect to the labels adopted is depicted in
Fig.

Full-body shots: A high-resolution image of the person body was acquired at three
different angles (frontal, left-side and right-side). Also, the intrinsic and extrinsic parameters
of the camera were registered, along with five keypoints of the body in the frontal view. These
data can be used to infer real-world measurements of body components (e.g. height and face
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Fig. 4. QUIS-CAMPI statistics. A set of statistics was collected for distinct types of
biometric samples: 1) distribution of the soft traits along the enrollment data (denoted as
gallery) and probe data; 2) distribution of the interpupillary distance in the probe images;
3) distribution of the tracking sequences width collected outdoors; and 4) distribution of the
number of days elapsed between the acquisition of probe data and the enrollment process.

metrology).

3D face model: A set of images acquired at different viewing angles was used to con-
struct a textured 3D model of face using Visual-SFM [@]

4.2. Probe Data

Fully unconstrained biometric samples are the key novelty of the QUIS-CAMPI dataset and
comprehend face images automatically acquired by the PTZ camera.

High-resolution facial shots: The master-slave surveillance system described in Sec-
tion B is used to automatically acquire high-resolution face images of the enrolled subjects,
while they walk throughout the surveillance area. Considering that not all the acquired
data contain the facial region (e.g., incorrect human detection or tracking) and that the
surveillance rig is not able to distinguish between enrolled and non-enrolled subjects, the
data are manually screened before being supplied to the database. Also, the face location of
the interest subject in the image is provided as metadata. These annotations are determined
by a state-of-the-art face detection algorithm [47] and cross-verified manually. On average,
the interpupillary distance of a face image is 116 px with a standard deviation of 35 px, and
about 99% of the images have an interpupillary distance higher than 60 px (the minimum
resolution required for commercial face recognition engines).
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QUIS-CAMPI: Most recent version.

QUIS-CAMPI.v2

Evaluation set released.

QUIS-CAMPI.v1
Evaluation set released.

Fig. 5. History graph of the QUIS-CAMPI data feed using a version control
software. A git repository was used to deploy new samples acquired by the data feed
(represented by the master branch), while maintaining static evaluation sets released at much
lower rate (represented by branches). This strategy permits researchers to access any state of
the QUIS-CAMPI data feed for development purposes, while it also ensures that algorithms
can be compared by reporting performance on the different evaluation set versions.

New subjects and probe images added.

4.3. Database Versioning

The automated acquisition of biometric samples and their regular deployment to the dataset
is the reason for denoting QUIS-CAMPI as a data-feed and at the same it is one of the key
novelties of this tool. Moreover, this singularity is the rationale to argue that QUIS-CAMPI
is the first open dataset, which is particularly advantageous to avoid inappropriately fitting
classifiers to the final test data. Despite the advantages of this choice, it also introduces
significant challenges that have to be carefully addressed to ensure that the performance
reported in this dataset can be compared in a practical and fair manner.

To this end, we relied on git - one of the most commonly used version control systems
- to organize the QUIS-CAMPI data feed in two distinct types of branches: 1) the master
branch comprises the most updated version of the entire biometric data; 2) the evaluation
branches encompass a former snapshot of the master branch plus the evaluation files defined
according to the evaluation protocol of QUIS-CAMPI (refer to Section @) This structure is
depicted in Figure p, where the advantages of this strategy can be easily perceived. First, the
version control capabilities allow users to navigate through any state of the QUIS-CAMPI
data feed using the master branch, which is useful to obtain new biometric samples without
the burden of redownloading the entire set. Second, the evaluation branches are static
and independent of any updates on master branch, allowing researches to compare their
approaches by referring to a specific evaluation branch.

4.4. Database Availability

Regarding the dataset structure, the file names correspond to the acquisition date in the
following format: Y<a>M<b>D<c>h<d>m<e>s<f>, where a, b, ¢, d, e, and f denote
the acquisition year, month, day, hour, minute and second, respectively. The correspondences
between the files and enrolled subjects, as well as the soft biometric traits, are provided in a
relational database, which is deployed as a backup SQL file. For convenience, we include a
view in the database that eases the access to biometric data using simple SQL queries. For
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Fig. 6. Verification performance attained in the QUIS-CAMPI dataset under
the unrestricted setting with no outside data.

additional information on how to get and use the dataset, please refer to the QUIS-CAMPI
web site B,

5. Experimental Evaluation

In this section, we introduce the evaluation protocols that should be adopted for reporting the
algorithms performance in the QUIS-CAMPI set. We believe that the proposed guidelines
for the different recognition modalities are adequate for the majority of biometric recognition
algorithms. However, as in the recent case of the updated guidelines of LFW [24], additional
protocols may be included in the future to meet novel requirements.

5.1. Evaluation Protocol

Having in mind the main purpose of QUIS-CAMPI, i.e., to provide an objective tool for
assessing the performance of biometric recognition algorithms in surveillance scenarios, we
introduce two evaluation protocols for the two recognition modalities: 1) verification and 2)
identification.

5.1.1. Verification: Regarding the verification paradigm, we adopt the protocol defined in
LFW [B, 24], which is an objective, simple and well established way of assessing face ver-
ification algorithms. Accordingly, the PTZ face images are used to form pairs of matched
images (positive pairs) and mismatched images (negative pairs) organized in two groups:
1) model selection and algorithm development; and 2) performance reporting. In the first
group, random pairs are used as training (2200 pairs) and test (1000 pairs) sets. This group
is particularly intended for tuning algorithm parameters, and thus, preventing the bias in-
troduced by adjusting the method to the final evaluation set. In the second group, 10 splits
- containing 300 positive and negative pairs of PTZ face images - are built for evaluating
algorithms performance using leave-one out validation. In the training phase, two distinct
paradigms are available: image-restricted, where only the training split pairs can be used,

Thttp://quiscampi.di.ubi.pt
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Fig. 7. Identification performance attained in the QUIS-CAMPI dataset under
the closed-set setting with no outside data.

Table 3. Description of the QUIS-CAMPI evaluation protocols under the ver-
ification paradigm. As in LFW , the protocols are defined according to the use of the

image-restricted or unrestricted setting, and to the use of additional training data.

Image-restricted, Unrestricted, With Unrestricted, With

Unrestricted, No ) .} Free Outside | Unrestricted, Label QUIS-CAMPI Labelled Outside
Outside Data Free Outside Data ; .
Data Biometric Data Data

Identity information in
tralnlng images

Annotations in training
images

Binary label for external
image pairs

Identlty label for external
|mages

External images ‘

and unrestricted, where identity information is provided, which allows forming additional
training pairs. In addition, one can increase the algorithms robustness by exploiting meta-
data from outside of QUIS-CAMPI or external training images. The ensemble of training
paradigms for face verification in the QUIS-CAMPI dataset is listed in Table H During
the test phase, algorithms must be evaluated using mean classification accuracy (ACC) over
the 10 splits. If possible, the ROC curve and its corresponding Area Under Curve (AUC)
should be also reported. The metrics that shall be adopted under the different recognition
paradigms are described in Table

5.1.2. Identification: Under the identification paradigm, a probe image must be matched
against all gallery subjects. This task can be approached in two distinct manners: 1) assum-
ing that all probe images correspond to one subject in the gallery (closed-set recognition);
and 2) assuming that not all the probe identities are represented in the gallery (open-set
recognition).

Probe data comprise the PTZ face images, while the frontal mugshots acquired during
enrollment are used as gallery. Probes are divided in two mutually exclusive sets: 1) training
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Table 4. Description of the performance metrics adopted for the different

evaluation paradigms.

Performance
Metric
ROC plot
Image-restricted AUC

ACC

ROC plot
Unrestricted AUC
ACC
CMC plot
Closed-set AUC
Rank-1 accuracy

ROC plot
Open-set AUC
ACC

Paradigm Setting

Verification

Identification

(containing 70% of the subjects); and 2) test (containing 30% of the subjects). Besides, two
distinct sets of gallery subjects are provided. One comprising all the available subjects
of the dataset (closed-set) and the other containing just 80% of the subjects. At last, in
order to avoid bias in the subject separation, this process is repeated 10 times defining 10
independent evaluation sets. At the training phase three distinct paradigms can be exploited:
1) no outside data; 2) QUIS-CAMPI biometric data; and 3) biometric data from external
sources. At the test phase, algorithms must be evaluated using leave-one out validation and
the average performance should be reported according to the metrics listed in Table Y.

5.2, Results and Discussion

In order to perceive the robustness of state-of-the-art face recognition algorithms to the
QUIS-CAMPI degradation factors, we report results for six face recognition algorithms under
the unrestricted setting with no outside data (for verification) and under the closed-set setting
with no outside data (for identification) using QUIS-CAMPI.v1 . The tests are conducted
using three metric learning based approaches (ITML [48], LDML [4] and KISSME [49)]),
the Fisher vector faces (FVF) [50], a support vector machine (SVM) and the L2 distance
between SIFT features. The justification for choosing these methods is twofold: 1) they are
well established face recognition methods with competitive performance reported on LFW;
and 2) the source code is freely available allowing, which ensures a reliable assessment of
their performance. In these experiments, the QUIS-CAMPI metadata are used to provide
the algorithms with 256x256 cropped images of the facial region. Considering that, apart
from FVF, all the evaluated algorithms expect pre-processed face descriptors, we adopt the
widely used strategy of Guillaumin et al. [4], which exploits the SIFT descriptors [51] of 9
automatically detected face landmarks [52].

In accordance with the QUIS-CAMPI evaluation protocol, the methods are optimized
using the first group of pairs, i.e., the parameters are determined based on maximum recog-
nition accuracy obtained. Subsequently, the performance of each method is determined
using leave one-out validation in the 10 splits of the second group. Aiming at providing a
comparative performance analysis between QUIS-CAMPI and state-of-the-art benchmarks,
the performance of these algorithms is also assessed in LEW.
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Fig. 8. Comparison between the recognition performance observed per algo-
rithm in the QUIS-CAMPI and LFW datasets, under the unrestricted setting.

The results are reported using the ROC curves (for_verification) and CMC curves (for
identification), as well as, its corresponding AUC. Fig. B and Fig. H depict the ROC curves
and CMC curves obtained in the QUIS-CAMPI dataset under the unrestricted setting and
the closed-set setting, respectively. The comparison between the ROC curves in the QUIS-

AMPT and LFW sets is given in Fig. §. Additionally, these results are summarized in Table
, with respect to the AUC values.

Regarding the algorithms performance, it is important to note that FVF clearly out-
performs the remaining approaches, whereas the use of L2 norm on the SIFT descriptors
- without using any additional learning metric - is clearly behind the remaining methods.
While the latter is not surprising, in the first the case the performance gap can be explained
by the use of automatic keypoint detection. Due to the large variation in pose, it is likely
that the use of such strategy in completely unconstrained environments fails, yielding thus,
incorrect face descriptors. On contrast, holistic approaches, such as FVF, may be a more
adequate solution for addressing these challenging conditions.

Regarding the comparison of the recognition performance per dataset, the results ob-
tained sustain our claim that QUIS-CAMPI is much more challenging than LFW. This is
particularly evident in Fig. 8, since none of the state-of-the-art algorithm was able to improve
the results obtained in the LFW when addressing the QUIS-CAMPI dataset.

Besides, the verification accuracy achieved for QUIS-CAMPI justifies the need for such a
dataset, since much more has to be done to close the gap between surveillance and biometric
recognition.

Additionally, the discriminability of soft biometric data was assessed by determining the
probability of observing the correct identity within the top K ranks. For evaluation, the age,
gender, skin color and hair color of the subject were inferred automatically from the probe
images. The predictions were obtained by training a classifier on features extracted from the
face region. The CMC curve illustrated in Fig. J summarizes the performance obtained. Soft
biometric traits are not capable to individually authenticate the subject, which explains its
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Table 5. Recognition performance on the QUIS-CAMPI and LFW datasets
under the verification and identification modalities. Algorithms performance was
determined on both datasets according to the QUIS-CAMPI evaluation protocol under the
unrestricted setting (verification) and the closed-set setting (identification). The comparative
analysis between the results of QUIS-CAMPI and LFW confirms the additional challenges
of the proposed dataset. Performance was assessed using AUC of the ROC curve and its

corresponding standard deviation.
QUIS-CAMPI LFW

Verification Identification Verification Identification

Algorithm  AUC (%) ACC (%) AUC (%) ACC (%) AUC (%)  Rank-l  AuC (%) R?%'l

(%)
FVF 6] 89.9+28 81.7+30 97.1+08 902+ 1.6 88.5 26.4 86.8 37.7
ITML [4§] 749 +40 684+£29 857+18 775+ 20 93.9 4.9 80.3 6.4
KISSME [49] 88.0 £3.9 79.2+40 8824 1.7 80.9 % 2.0 95.8 10.7 86.8 14.3
LDML [4] 764 +31 691422 881+14 79.7=+2.0 96.9 3.9 85.6 12.2
SVM [54] 80.24+ 28 728+26 858+ 1.3 781+ 1.0 94.9 9.4 87.3 12.7
L2 65.6 +4.3 625+36 73.7+1.5 67.3+ 1.8 70.5 3.0 66.7 1.3

CMC Curves

Probability of identification
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N w e o [ ~ © © -

o

o

L L L L L
50 100 150 200 250
Rank-N

Fig. 9. Recognition performance obtained solely with soft biometric traits.

the poor identification rate. Nevertheless, it should be stressed that they can significantly
increase performance when combined with hard biometric traits, and the results obtained
are encouraging for these type of traits.

6. Additional biometric data

Even though face imagery and soft biometrics regard the principal data of the QUIS-CAMPI
data feed, there are additional traits that can be explored by prospective users. Accordingly,
this set also comprises gait recordings both on the enrollment and probe sets. Regarding
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Fig. 10. Illustrative example of the additional biometric data available in
QUIS-CAMPI. For each subject of the database the gait sequence has been acquired during
enrollment (a) and each time a subject entered the surveillance area, comprising the tracking
sequences (b) and their corresponding foreground (c).

the enrollment data, subjects were asked to walk naturally during 5m while being filmed at
three different angles. This was performed twice to obtain six different viewing angles of the
gait sequence.

Regarding the probe data, gait sequences were recorded by the master camera and cor-
respond to each PT7Z face acquisition. These tracking sequences comprise a set of videos
automatically acquired by the master camera while the person is passing in the surveillance
area. On average, each sequence has a resolution of 73 x 114 px with a standard deviation
of 43 px for both dimensions. Additionally, the output of the background subtraction algo-
rithm for each tracking sequence has also been stored. An illustrative example of these data
is depicted in Fig. [10.

7. Conclusion

In this paper, the QUIS-CAMPI data feed has been introduced, comprising biometric samples
automatically acquired outdoors, at-a-distance, on-the-move and in a fully non-cooperative
manner.

A key difference between QUIS-CAMPI and related sets is that samples are automati-
cally acquired in a real surveillance scenario, i.e., in a covert way and without any human
intervention in the process. This assures that the collected data completely encompass the
set of covariate factors of real-world scenarios. Additionally, to the best of our knowledge,
QUIS-CAMPI is the first open biometric data feed, i.e., new probes and subjects are continu-
ously being added as the system automatically acquires more data. This fact is beneficial for
inhibiting bias introduced by the complete knowledge of the entire dataset, particularly in
the case of open-set recognition. Moreover, QUIS-CAMPI comprises multi-biometric traits,
permitting the exploitation of multi-modal recognition strategies.

To objectively justify the need for QUIS-CAMPI, six face verification algorithms were
evaluated both in QUIS-CAMPI and LEW under the image-restricted and unrestricted set-
tings. The conclusions were twofold: 1) the algorithms accuracy in the QUIS-CAMPI is
much lower than in LFW, which confirms that the proposed dataset is more challenging; 2)
the state-of-the-art algorithms are still far from optimal recognition rates, and substantial
improvements in the recognition technology should be made before saturate the announced
set.
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