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7KHVLV SUHSDUHG DW ,7 � ,QVWLWXWR GH 7HOHFRPXQLFDo}HV� ZLWKLQ WKH 3DWWHUQ DQG ,PDJH $QDO\VLV �
&RYLOKm *URXS� DQG VXEPLWWHG WR 8QLYHUVLW\ RI %HLUD ,QWHULRU IRU GHIHQVH LQ D SXEOLF H[DPLQDWLRQ
VHVVLRQ�

:RUN ILQDQFHG E\ WKH 3RUWXJXHVH )XQGDomR SDUD D &LrQFLD H 7HFQRORJLD WKURXJK JUDQW FRQWUDFW
6)5+�%'����������� XQGHU WKH SURJUDP 45(1 � 323+ � 7\SH ��� ² $GYDQFHG 7UDLQLQJ� FR�IXQGHG
E\ WKH (XURSHDQ 6RFLDO )XQG DQG E\ QDWLRQDO IXQGV IURP WKH 3RUWXJXHVH 0LQLVWpULR GD (GXFDomR
H &LrQFLD�
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$FNQRZOHGJPHQWV

7KLV GRFWRUDO UHVHDUFK SURJUDP ZRXOG QRW EH SRVVLEOH ZLWKRXW WKH KHOS RI PDQ\ SHRSOH� WR ZKRP
, DP VLQFHUHO\ JUDWHIXO�

)LUVW DQG IRUHPRVW� , ZRXOG OLNH WR WKDQN P\ IDPLO\ IRU EHLQJ E\ P\ VLGH� ZLWK HQFRXUDJLQJ ZRUGV
DQG VXSSRUWLQJ DWWLWXGH GXULQJ WKHVH ODVW \HDUV� ,Q SDUWLFXODU P\ SDUHQWV� P\ VLVWHU DQG P\ IL�
DQFpH� IRU DOO WKH ORYH DQG VXSSRUW� , VKRXOG DOVR QRW IRUJRW WR PHQWLRQ WKH HQFRXUDJHPHQW IURP
P\ JUDQG�PRWKHUV� DXQWV� XQFOHV� FRXVLQV DQG PRWKHU�LQ�ODZ� $QG� RI FRXUVH� WKH FKHHULQJ IURP
P\ VWHSFKLOGUHQ� , DP JUDWHIXO IRU WKHLU XQGHUVWDQGLQJ GXULQJ DOO WKH WLPH , ZDV DEVHQW GXH WR
WKLV UHVHDUFK ZRUN�

6HFRQG , ZRXOG OLNH WR WKDQN DOO P\ IULHQGV� ZKR VWRRG E\ P\ VLGH DOO WKHVH \HDUV� DOZD\V FKHHU�
LQJ PH XS DQG JLYLQJ PH WKH VXSSRUW , QHHGHG WR FDUU\ RQ� , DP DOVR JUDWHIXO WR P\ FROOHDJXHV
DW 62&,$ /DE� 10&* DQG 5HOHDVH� ZKR VKDUHG VRPH FRQFHUQV DQG D ORW RI FRIIHH RQ WKH HQGOHVV
GD\V DQG QLJKWV RI KDUG ZRUN�

, PXVW DOVR PHQWLRQ P\ JUDWLWXGH WKRXJK WKH SHRSOH DW 2SWLFV &HQWHU� LQ SDUWLFXODU 3URIHVVRU
3DXOR )LDGHLUR� WKDW QRW RQO\ PDGH WKH ORJLVWLFV IRU WKH H[SHULPHQWV SRVVLEOH� EXW ZDV DOZD\V
YHU\ VXSSRUWLYH� , FRXOG QRW IRUJHW WR PHQWLRQ DOO WKH SHRSOH WKDW FRQWULEXWHG DV YROXQWHHUV LQ
WKH FRQVWUXFWLRQ RI WKH ZRUNLQJ GDWDVHWV XVHG GXULQJ P\ GRFWRUDO UHVHDUFK�

/DVW� EXW QRW OHDVW� , ZRXOG OLNH WR H[SUHVV P\ JUDWLWXGH WR P\ VXSHUYLVRU� 3URI� +XJR 3URHQoD�
IRU WKH JXLGDQFH DQG WUXVW� VSHFLDOO\ LQ WKH PRVW GLIILFXOW PRPHQWV� , FDQ QRZ FRQFOXGH WKDW RXU
GLVFXVVLRQV RYHU WKH ODVW \HDUV VWURQJO\ FRQWULEXWHG WR WKH GHYHORSPHQW RI WKLV WKHVLV�
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3HRSOH WKLQN WKDW FRPSXWHU VFLHQFH LV WKH

DUW RI JHQLXVHV EXW WKH DFWXDO UHDOLW\ LV

WKH RSSRVLWH� MXVW PDQ\ SHRSOH GRLQJ

WKLQJV WKDW EXLOG RQ HDFK�RWKHU� OLNH D

ZDOO RI PLQL VWRQHV�

'RQDOG .QXWK
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/LVW RI 3XEOLFDWLRQV

$UWLFOHV LQFOXGHG LQ WKH WKHVLV UHVXOWLQJ IURP WKLV GRFWRUDO UHVHDUFK
SURJUDP

-RXUQDO $UWLFOHV

�� )XVLQJ &RORU DQG 6KDSH 'HVFULSWRUV LQ WKH 5HFRJQLWLRQ RI 'HJUDGHG ,ULV ,PDJHV DW 9LVLEOH
:DYHOHQJWKV
+XJR 3URHQoD DQG *LO 6DQWRV
&RPSXWHU 9LVLRQ DQG ,PDJH 8QGHUVWDQGLQJ� ���� �������� �����
'2,� ��������M�FYLX������������

�� 2Q 3HULRFXODU %LRPHWULFV� $ &RPSUHKHQVLYH 2XWOLQH
*LO 6DQWRV DQG +XJR 3URHQoD
$UWLILFLDO ,QWHOOLJHQFH 5HYLHZ� VXEEPLWWHG IRU FRQVLGHUDWLRQ� �����

�� $ )XVLRQ $SSURDFK WR 8QFRQVWUDLQHG ,ULV 5HFRJQLWLRQ
*LO 6DQWRV DQG (GPXQGR +R\OH
3DWWHUQ 5HFRJQLWLRQ /HWWHUV� ������ �������� -XQH �����
'2,� ��������M�SDWUHF�����������

�� )XVLQJ ,ULV DQG 3HULRFXODU ,QIRUPDWLRQ IRU &URVV�VHQVRU 5HFRJQLWLRQ
*LO 6DQWRV� (PDQXHO *UDQFKR� 0DUFR 9� %HUQDUGR DQG 3DXOR 7� )LDGHLUR
3DWWHUQ 5HFRJQLWLRQ /HWWHUV� �����
'2,� ��������M�SDWUHF������������

�� %LR+''� $ 'DWDVHW IRU 6WXG\LQJ %LRPHWULF ,GHQWLILFDWLRQ RI +HDYLO\ 'HJUDGHG 'DWD
*LO 6DQWRV� 3DXOR 7� )LDGHLUR DQG +XJR 3URHQoD
,(7 %LRPHWULFV� �����
'2,� ��������LHW�EPW����������

,QWHUQDWLRQDO &RQIHUHQFHV

�� ,ULV 5HFRJQLWLRQ� 3UHOLPLQDU\ $VVHVVPHQW DERXW WKH 'LVFULPLQDWLQJ &DSDFLW\ RI 9LVLEOH
:DYHOHQJWK 'DWD
*LO 6DQWRV� 0DUFR %HUQDUGR� 3DXOR )LDGHLUR DQG +XJR 3URHQoD
�WK ,((( :RUNVKRS RQ 0XOWLPHGLD ,QIRUPDWLRQ 3URFHVVLQJ DQG 5HWULHYDO � 0,35 ·��� 'HFHP�
EHU ������ ����� 7DLZDQ�
,6%1� �����������������

�� 3HULRFXODU %LRPHWULFV� $Q (PHUJLQJ 7HFKQRORJ\ IRU 8QFRQVWUDLQHG 6FHQDULRV
*LO 6DQWRV DQG +XJR 3URHQoD
,((( 6\PSRVLXP RQ &RPSXWDWLRQDO ,QWHOOLJHQFH LQ %LRPHWULFV DQG ,GHQWLW\ 0DQDJHPHQW �
&,%,0 ·��� $SULO ������ ����� 6LQJDSRUH�
,6%1� ��������������������

�� $ 5REXVW (\H�&RUQHU 'HWHFWLRQ 0HWKRG IRU 5HDO�:RUOG 'DWD
*LO 6DQWRV DQG +XJR 3URHQoD
,((( ,QWHUQDWLRQDO -RLQW &RQIHUHQFH RQ %LRPHWULFV ² ,-&% ·��� 2FWREHU ������ ����� :DVK�
LQJWRQ '&� 86$�
'2,� ��������LMFE�������������
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

�� 6HJPHQWLQJ WKH 3HULRFXODU 5HJLRQ XVLQJ D +LHUDUFKLFDO *UDSKLFDO 0RGHO )HG E\ 7H[WXUH
� 6KDSH ,QIRUPDWLRQ DQG *HRPHWULFDO &RQVWUDLQWV
+XJR 3URHQoD� -RmR &� 1HYHV DQG *LO 6DQWRV
,((( ,QWHUQDWLRQDO -RLQW &RQIHUHQFH RQ %LRPHWULFV ² ,-&% ·��� 6HSWHPEHU �� � 2FWREHU ���
����� &OHDUZDWHU� )ORULGD� 86$�

�� $ 'XDO�6WHS $SSURDFK WR +HDG /DQGPDUN 'HWHFWLRQ ,Q 7KH :LOG
*LO 6DQWRV DQG +XJR 3URHQoD
VXEPLWWHG WR WKH 8WK ,$35 ,QWHUQDWLRQDO &RQIHUHQFH RQ %LRPHWULFV ² ,&%������ 0D\ ������
����� 3KXNHW� 7KDLODQG�

�� 4XLV�&DPSL� ([WHQGLQJ ,Q 7KH :LOG %LRPHWULF 5HFRJQLWLRQ WR 6XUYHLOODQFH (QYLURQ�
PHQWV
*LO 6DQWRV� -RmR &� 1HYHV� 6tOYLR )LOLSH� (PDQXHO *UDQFKR� 6LOYLR %DUUD DQG )DELR 1DUGXFFL
VXEPLWWHG WR WKH 8WK ,$35 ,QWHUQDWLRQDO &RQIHUHQFH RQ %LRPHWULFV ² ,&%������ 0D\ ������
����� 3KXNHW� 7KDLODQG�

2WKHU SXEOLFDWLRQV UHVXOWLQJ IURP WKLV GRFWRUDO SURJUDP QRW LQ�
FOXGHG LQ WKH WKHVLV

%RRN &KDSWHUV

�� 8VLQJ 2FXODU 'DWD IRU 8QFRQVWUDLQHG %LRPHWULF 5HFRJQLWLRQ
+XJR 3URHQoD� *LO 6DQWRV� -RmR &� 1HYHV
)DFH 5HFRJQLWLRQ LQ $GYHUVH &RQGLWLRQV� 0DULD GH 0DUVLFR� 0LFKHOH 1DSSL� 0DVVLPR 7LVWDUHOOL
�(GV��� ,*, *OREDO� �����
'2,� �������������������������

-RXUQDO $UWLFOHV

�� 5REXVW 3HULRFXODU 5HFRJQLWLRQ E\ )XVLQJ 6SDUVH 5HSUHVHQWDWLRQV RI &RORU DQG *HRPHWU\
,QIRUPDWLRQ
-XDQ &� 0RUHQR� 9� %� 6XU\D 3UDVDWK� *LO 6DQWRV DQG +XJR 3URHQoD
-RXUQDO RI 6LJQDO 3URFHVVLQJ 6\VWHPV� VXEEPLWWHG IRU FRQVLGHUDWLRQ� �����

,QWHUQDWLRQDO &RQIHUHQFHV

�� ,ULV 5HFRJQLWLRQ� $QDO\VLQJ WKH 'LVWULEXWLRQ RI WKH ,ULVFRGHV &RQFRUGDQW %LWV
*LO 6DQWRV DQG +XJR 3URHQoD
,((( 3URFHHGLQJV RI WKH �UG ,QWHUQDWLRQDO &RQJUHVV RQ ,PDJH DQG 6LJQDO 3URFHVVLQJ � &,63
����� 2FWREHU ������ ����� <DQWDL� &KLQD�

�� )DFLDO ([SUHVVLRQV� 'LVFULPLQDELOLW\ RI )DFLDO 5HJLRQV DQG 5HODWLRQVKLS WR %LRPHWULFV
5HFRJQLWLRQ
(OLVD %DUURVR� *LO 6DQWRV DQG +XJR 3URHQoD
,((( 6\PSRVLXP RQ &RPSXWDWLRQDO ,QWHOOLJHQFH LQ %LRPHWULFV DQG ,GHQWLW\ 0DQDJHPHQW �
&,%,0 ·��� $SULO ������ ����� 6LQJDSRUH�
,6%1� ��������������������

[LL



5HVXPR

$R VHU KXPDQR HVWi DVVRFLDGR� SHOD VXD QDWXUH]D� XP FRQMXQWR GH FDUDFWHUtVWLFDV ItVLFDV H FRP�
SRUWDPHQWDLV TXH R FDUDFWHUL]DP� 2 HVWXGR GHVVDV FDUDFWHUtVWLFDV SHUPLWLX R GHVHQYROYLPHQWR
GH XP FRQVLGHUiYHO Q~PHUR GH VLVWHPDV H DSOLFDo}HV ² VLVWHPDV ELRPpWULFRV�

$ XWLOL]DomR GH VLVWHPDV ELRPpWULFRV WHP YLQGR D DXPHQWDU DR ORQJR GRV ~OWLPRV DQRV� SULQFL�
SDOPHQWH QD iUHD GD VHJXUDQoD� DXWHQWLFDomR� FRQWUROR GH DFHVVR� LGHQWLILFDomR FULPLQDO� HWF�
6HQGR XP VHFWRU GH HOHYDGD H[LJrQFLD� p QDWXUDO TXH VH Gr PDLRU GHVWDTXH jV FDUDFWHUtVWLFDV
ELRPpWULFDV TXH SHUPLWDP DWLQJLU XPD PDLRU GLVFULPLQDomR HQWUH RV VXMHLWRV� DR PHVPR WHPSR
TXH VmR PHQRV SURStFLDV D IDOVLILFDomR� &RQWXGR� HVWDV UHVWULo}HV DFDUUHWDP XP LPSDFWR VLJQL�
ILFDWLYR WDQWR QD XVDELOLGDGH GR VLVWHPD FRPR QD VXD IOH[LELOLGDGH� QHFHVVLWDQGR GH XP HOHYDGR
JUDX GH FRRSHUDomR SRU SDUWH GR XWLOL]DGRU� e QHVWH FRQWH[WR TXH D tULV VH DSUHVHQWD FRPR D FD�
UDFWHUtVWLFD ELRPpWULFD SRU H[FHOrQFLD� 2V VLVWHPDV GH UHFRQKHFLPHQWR ELRPpWULFR TXH XWLOL]DP
D tULV FRPR FDUDFWHUtVWLFD SULQFLSDO EDVHLDP�VH HVVHQFLDOPHQWH QD DERUGDJHP SLRQHLUD SURSRVWD
SRU -RKQ 'DXJPDQ� (VWD GHPRQVWURX VHU XPD H[FHOHQWH RSomR SDUD FHQiULRV GH UHFRQKHFLPHQWR
FRRSHUDWLYR HP TXH DV LPDJHQV SRVVDP VHU DGTXLULGDV QR LQIUDYHUPHOKR�

&RQWXGR� QHP VHPSUH D FRRSHUDomR SRU SDUWH GRV LQGLYtGXRV p H[SHFWiYHO H� QHVVHV FDVRV�
VLVWHPDV FRP HOHYDGDV UHVWULo}HV QD DTXLVLomR GHL[DP GH VHU YLiYHLV� /LQKDV GH LQYHVWLJDomR
PDLV UHFHQWHV WHQWDP HQWmR FRQWRUQDU HVWD SUREOHPiWLFD VHJXLQGR GXDV SRVVtYHLV DERUGDJHQV�
DGDSWDQGR RV PpWRGRV H[LVWHQWHV DRV QRYRV FHQiULRV H GHVDILRV� RX HQFRQWUDQGR QRYDV FDUDF�
WHUtVWLFDV ELRPpWULFDV TXH PHOKRUHV VH DGDSWHP D HVWD UHDOLGDGH� 1HVWD ~OWLPD DERUGDJHP� D
UHJLmR SHULRFXODU �L�H�� R ROKR H D UHJLmR FLUFXQGDQWH� p XPD GDV FDUDFWHUtVWLFDV PDLV SURPLV�
VRUDV� DSUR[LPD�VH GR PpWRGR GH UHFRQKHFLPHQWR XVDGR QDWXUDOPHQWH H GH IRUPD HVSRQWkQHD
SHOR VHU KXPDQR� WHP XPD ORFDOL]DomR SULYLOHJLDGD HP UHODomR j tULV� IDFLOLWDQGR D DTXLVLomR
VLPXOWkQHD GH DPEDV DV FDUDFWHUtVWLFDV� H WHP� WDO FRPR FRUURERUDGR SHOD OLWHUDWXUD� XP FRQ�
MXQWR GH FDUDFWHUtVWLFDV SURPLVVRUDV TXH SRGHP VHU XVDGDV SDUD HIHLWRV GH UHFRQKHFLPHQWR�

2 REMHWLYR SULQFLSDO GHVWHV WUDEDOKRV GH GRXWRUDPHQWR p HQWmR DGDSWDU RX GHVHQYROYHU XP VLV�
WHPD GH UHFRQKHFLPHQWR ELRPpWULFR� HVSHFLDOPHQWH DGHTXDGR SDUD DPELHQWHV QmR�FRQWURODGRV
�LQ WKH ZLOG�� (VVH VLVWHPD� SHORV VHXV UHTXLVLWRV H HVSHFLILFLGDGHV� GHYHUi XVDU D UHJLmR SHUL�
RFXODU FRPR FDUDFWHUtVWLFD SUHIHUHQFLDO GH UHFRQKHFLPHQWR� GDGR TXH HVWD SHUPLWH XPD PDLRU
IOH[LELOLGDGH H IDFLOLGDGH QD DTXLVLomR HP FRQGLo}HV SDUWLFXODUPHQWH DGYHUVDV� SRU IRUPD D
PLQLPL]DU DV UHVWULo}HV GH IXQFLRQDPHQWR� 2V LQGLYtGXRV SRGHUmR VHU UHFRQKHFLGRV D GLVWkQ�
FLDV VXSHULRUHV� HP PRYLPHQWR� FRP FRQGLo}HV GH LOXPLQDomR LUUHJXODUHV� H XVDQGR LQIRUPDomR
DGTXLULGD QR HVSHFWUR GH OX] YLVtYHO�

3RU IRUPD D DWLQJLU HVWH REMHWLYR� XPD VpULH GH HWDSDV LQWHUPpGLDV IRL HVWDEHOHFLGD� &RPHoRX�
VH SRU HVWXGDU D tULV HQTXDQWR VLQDO ELRPpWULFR� SUHVWDQGR HVSHFLDO DWHQomR j YHUWHQWH QmR�
FRRSHUDWLYD H DR IXQFLRQDPHQWR QR FRPSULPHQWR GH RQGD YLVtYHO� (VWH HVWXGR HQJORERX WDPEpP
RV HIHLWRV GD OX] YLVtYHO QR UHFRQKHFLPHQWR� WHQGR VLGR OHYDGD D FDER XPD DQiOLVH GD UHIOHFWkQFLD
GD tULV HP IXQomR GR FRPSULPHQWR GH RQGD GH GLIHUHQWHV LOXPLQDQWHV� 7HQGR HP FRQWD TXH D tULV
QmR VH DSUHVHQWD FRPR VLQDO LGHDO DR UHFRQKHFLPHQWR LQ WKH ZLOG� IRUDP HVWXGDGDV FDUDFWHUtV�
WLFDV ELRPpWULFDV HPHUJHQWHV� SUHVWDQGR HVSHFLDO DWHQomR j UHJLmR SHULRFXODU� 'D OLWHUDWXUD
DQDOLVDGD� RV PpWRGRV PDLV UHOHYDQWHV IRUDP LPSOHPHQWDGRV H WHVWDGRV FRQWUD XP PHVPR FRQ�
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MXQWR GH GDGRV� )LQDOPHQWH� YiULDV FRQWULEXLo}HV IRUDP SURSRVWDV H DFHLWHV SHOD FRPXQLGDGH
FLHQWtILFD� FRP DSOLFDomR HP GLIHUHQWHV DPELHQWHV QmR�FRQWURODGRV� WHQGR VLGR D ~OWLPD D FRQ�
FHSWXDOL]DomR GH XP VLVWHPD ELRPpWULFR FDSD] GH WUDEDOKDU QDV FRQGLo}HV GHVDILDQWHV D TXH QRV
SURS~QKDPRV�

3DODYUDV�FKDYH

DQiOLVH GH HUUR� DQiOLVH GH WH[WXUD� DSUHQGL]DJHP DXWRPiWLFD� DSUHQGL]DJHP VXSHUYLVLRQDGD�
DYDOLDomR GD SHUIRUPDQFH� EDVHV GH GDGRV GH LPDJHQV� ELRPHWULD� ELRPHWULD PXOWL�PRGDO�
ELRPHWULD QmR�FRRSHUDWLYD� ELRPHWULD RFXODU� FRPSULPHQWR GH OX] YLVtYHO� GDGRV GHJUDGDGRV�
GHFLVmR EDVHDGD QD IXVmR GH UHVXOWDGRV� GHVFULWRUHV JOREDLV� GHVFULWRUHV ORFDLV� H[WUDFomR GH
FDUDFWHUtVWLFDV� LGHQWLILFDomR GH SHVVRDV� SULYDFLGDGH� UHFRQKHFLPHQWR SHULRFXODU� UHFRQKHFL�
PHQWR ELRPpWULFR GD tULV� UHJLmR GH LQWHUHVVH� UREXVWH] GR UHFRQKHFLPHQWR� VHOHFomR GH FDUDF�
WHUtVWLFDV� YDULDomR GH SRVH� YtGHR�YLJLOkQFLD�
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5HVXPR DODUJDGR

,QWURGXomR

(VWD WHVH WHP SRU REMHFWLYR DERUGDU D SUREOHPiWLFD DVVRFLDGD DR UHFRQKHFLPHQWR ELRPpWULFR
HP DPELHQWHV QmR�FRQWURODGRV� &RPSUHHQGHQGR TXH HVWH p XP REMHWLYR GHVDILDQWH� RSWiPRV
SRU VHJXLU XPD DERUGDJHP SRU HWDSDV� 'HVWD IRUPD� FRPHoiPRV SRU DQDOLViPRV D YLDELOLGDGH
GR UHFRQKHFLPHQWR ELRPpWULFR HP FHQiULRV QmR�FRRSHUDWLYRV WHQGR D tULV FRPR SULQFLSDO VLQDO
ELRPpWULFR� 'H VHJXLGD SURFXUiPRV DOWHUQDWLYDV PDLV YLiYHLV� WHQGR HVWDEHOHFLGR D UHJLmR SH�
ULRFXODU FRPR D FDUDFWHUtVWLFD ELRPpWULFD PDLV SURPLVVRUD SDUD RV FHQiULRV DOYR H� FRPR WDO�
FRQGX]LPRV XP HVWXGR PDLV DSURIXQGDGR VREUH D PHVPD� $R ORQJR GRV WUDEDOKRV GHVHQYROYLGRV
IRUDP SURSRVWDV YiULDV FRQWULEXLo}HV FLHQWtILFDV H� SRU ILP� p DSUHVHQWDGR XP VLVWHPD GH UHFR�
QKHFLPHQWR�

(QTXDGUDPHQWR GD 7HVH

1D VRFLHGDGH DWXDO WHP YLQGR D UHJLVWDU�VH XPD FUHVFHQWH SUHRFXSDomR FRP D VHJXUDQoD� TXHU
LQGLYLGXDO TXHU JOREDO� LPSXOVLRQDQGR D SHVTXLVD FLHQWtILFD QD iUHD GD ELRPHWULD� (VWD WHQGrQ�
FLD GH FUHVFLPHQWR p YLVtYHO WDQWR QRV PpWRGRV H WpFQLFDV GHVHQYROYLGRV� FRPR HP DSOLFDo}HV�
HVWDQGR SUHVHQWH KRMH HP GLD QXP YDVWR Q~PHUR GH GLVSRVLWLYRV� 2 XWLOL]DGRU FRPXP SRGH IDFLO�
PHQWH HQFRQWUDU PRGRV GH DXWHQWLFDomR EDVHDGRV HP ELRPHWULD HP WHOHPyYHLV H FRPSXWDGRUHV
SHVVRDLV� PDV p QRV VLVWHPDV GH FRQWUROR GH DFHVVR D XP PDLV DOWR QtYHO �H�J�� SRVWRV GH FRQWUROR
IURQWHLULoRV� TXH VH IRFD D PDLRULD GRV GHVHQYROYLPHQWRV� 1HVWH ~OWLPR JUXSR GH DSOLFDo}HV� H
GHYLGR DRV HOHYDGRV SDGU}HV GH VHJXUDQoD� D PDLRU SDUWH GD SHVTXLVD p FHQWUDGD HP FDUDFWHUtV�
WLFDV ELRPpWULFDV TXH SHUPLWDP XPD PDLRU GLVFULPLQDomR GRV LQGLYtGXRV� DR PHVPR WHPSR TXH
PLQLPL]DP D SRVVLELOLGDGH GH FRQWUDIDomR� HVFROKD HVWD TXH SRGH FRPSURPHWHU D XVDELOLGDGH H
IOH[LELOLGDGH GR VLVWHPD�

2 UHFRQKHFLPHQWR ELRPpWULFR p QD VXD HVVrQFLD XP SUREOHPD GH UHFRQKHFLPHQWR GH SDGU}HV�
QD PHGLGD HP TXH R REMHWLYR p UHFRQKHFHU XP GHWHUPLQDGR LQGLYtGXR FRP EDVH QXP FRQMXQWR
GH FDUDFWHUtVWLFDV ItVLFDV RX FRPSRUWDPHQWDLV� (QWHQGH�VH SRU UHFRQKHFLPHQWR GH SDGU}HV D
GLVFLSOLQD FLHQWtILFD UHVSRQViYHO SHOR SURFHVVDPHQWR GRV GDGRV ´FUXVµ UHFROKLGRV GH XP GHWHU�
PLQDGR REMHWR� H REWHQomR GD LQIRUPDomR �L�H�� SDGU}HV� QHFHVViULD SDUD TXH HVWH SRVVD VHU
DWULEXtGR D XPD GHWHUPLQDGD FODVVH� 7HQGR VLGR XPD GLVFLSOLQD PHUDPHQWH WHyULFD DWp DRV
DQRV ��� D HYROXomR GRV VLVWHPDV FRPSXWDFLRQDLV WURX[H FRQVLJR XP YDVWR OHTXH GH DSOLFDo}HV�
WRUQDQGR�VH QXPD iUHD H[WUHPDPHQWH DWLYD QR GRPtQLR GD DSUHQGL]DJHP DXWRPiWLFD H HP YLVmR
FRPSXWDFLRQDO� PLQHUDomR H GDGRV H H[WUDomR GH FRQKHFLPHQWR HP SDUWLFXODU >�@� $ WtWXOR GH
H[HPSOR� D )LJXUD ��� LOXVWUD GXDV FODVVHV GH XP SUREOHPD WtSLFR GH UHFRQKHFLPHQWR GH SDGU}HV�
WHQGR XPD UHSUHVHQWDomR GH XP GDGR REMHWR� GHWHUPLQDU D TXH FODVVH HOH SHUWHQFH� 1HVWH FDVR
SDUWLFXODU R REMHWLYR VHULD DQDOLVDU XPD LPDJHP PpGLFD FRQWHQGR XPD UHJLmR GHYLGDPHQWH GH�
OLPLWDGD� H GHFLGLU VH HVWD FRUUHVSRQGLD D XPD OHVmR EHQLJQD �FODVVH $� RX HUD QD UHDOLGDGH XP
FDQFUR �FODVVH %�� 3DUD HIHLWRV LOXVWUDWLYRV� DVVXPDPRV TXH HVWDPRV QD SRVVH GH XPD EDVH�GH�
GDGRV FRQWHQGR LPDJHQV GHVWH WLSR� H TXH GHQWUR GD PHVPD FODVVH HVWDV VmR VLPLODUHV� 3DUD
TXH SRVVDPRV FODVVLILFDU XPD QRYD LQVWkQFLD GH GDGRV p QHFHVViULR TXH DV FDUDFWHUtVWLFDV TXH
WRUQDP DV FODVVHV GLVWLQWDV VHMDP LGHQWLILFDGDV� 1HVWH H[HPSOR LOXVWUDWLYR� H FRPR p SRVVtYHO
SHUFHEHU SRU LQVSHomR YLVXDO� D LQWHQVLGDGH GRV SL[HLV GLIHUH VLJQLILFDWLYDPHQWH GH XPD FODVVH
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SDUD D RXWUD� $VVLP VHQGR� XVDQGR PpWULFDV WmR VLPSOHV FRPR D PpGLD �3� H R GHVYLR SDGUmR
�4� GRV YDORUHV GH LQWHQVLGDGHV� FRQVHJXLPRV REWHU XPD yWLPD VHSDUDELOLGDGH HQWUH DV FODVVHV
² )LJXUD ���� +DYHQGR HVWH WLSR GH GLVWLQomR� XP WKUHVKROG GH FODVVLILFDomR SRGH VHU LQHTXLY�
RFDPHQWH GHILQLGR �)LJXUD ���� OLQKD FRQWtQXD�� $R DGTXLULU GDGRV GH XPD QRYD REVHUYDomR�
SURFHGH�VH j H[WUDomR GH FDUDFWHUtVWLFDV WDO FRPR UHDOL]DGD DQWHULRUPHQWH �3 H 4�� 7UDoDQGR D
QRYD REVHUYDomR QR JUiILFR �
� SRGHPRV HQWmR FODVVLILFDU D PHVPD FRPR SHUWHQFHQGR j FODVVH
$� XPD YH] TXH VH HQFRQWUD DFLPD GR OLPLDU GH FODVVLILFDomR� 6mR HVWHV RV SDVVRV JHUDLV QD
UHVROXomR GH XP SUREOHPD GH FODVVLILFDomR GH SDGU}HV�

'RV VLQDLV ELRPpWULFRV H[LVWHQWHV� RV VLVWHPDV LPSOHPHQWDGRV FRPHUFLDOPHQWH GmR SUHIHUrQFLD
DRV TXH FRQGX]DP D WD[DV GH HUUR PtQLPDV� SHOR TXH D tULV VH DSUHVHQWD FRPR XPD FDUDFWHUtV�
WLFD ELRPpWULFD SULPRUGLDO� &RQWXGR� D FDSWXUD GH LPDJHQV GD tULV HVWi FRQGLFLRQDGD SRU UtJLGRV
SURWRFRORV GH DTXLVLomR� R TXH VH GHYH HVVHQFLDOPHQWH DR HX WDPDQKR UHGX]LGR H SURSULHGDGHV
PyYHLV� QmR VHQGR SRUWDQWR XP VLQDO ELRPpWULFR LGHDO SDUD XP VLVWHPD GH IXQFLRQDPHQWR VXE�
UHSWtFLR HP DPELHQWHV QmR�FRQWURODGRV� (P RSRVLomR DRV VLVWHPDV ELRPpWULFRV FOiVVLFRV TXH
UHTXHUHP XP HOHYDGR QtYHO GH FRRSHUDomR SRU SDUWH GRV XWLOL]DGRUHV� HP DSOLFDo}HV UHDLV VRE
WtSLFRV FHQiULRV GH YtGHR�YLJLOkQFLD QHP VHPSUH WDO p H[SHFWiYHO� &RQWUDULDPHQWH D FUHQoDV
SRSXODUHV� QmR H[LVWH DLQGD XP VLVWHPD FDSD] GH OHYDU D FDER R UHFRQKHFLPHQWR ELRPpWULFR
HP FRQGLo}HV WmR DGYHUVDV� 1HVWH FRQWH[WR D UHJLmR SHULRFXODU DSUHVHQWD�VH FRPR XP VLQDO
ELRPpWULFR HPHUJHQWH� KDYHQGR XP FUHVFHQWH Q~PHUR GH SXEOLFDo}HV VREUH R VHX SRWHQFLDO GH
UHFRQKHFLPHQWR� WDQWR GH IRUPD DXWyQRPD� FRPR HP IXVmR FRP RXWUDV FDUDFWHUtVWLFDV ELRPpWUL�
FDV� 1HVWH ~OWLPR FHQiULR� D tULV DVVXPH�VH FRPR XP FDQGLGDWR SDUWLFXODUPHQWH LQWHUHVVDQWH�
YLVWR TXH GHYLGR j VXD ORFDOL]DomR DPEDV SRGHP VHU DGTXLULGDV VLPXOWDQHDPHQWH UHFRUUHQGR
DSHQDV D XP ~QLFR VHQVRU�

2V GHVDILRV j FRPXQLGDGH FLHQWtILFD DSUHVHQWDP�VH HQWmR VRE GXDV IRUPDV� �� SRU XP ODGR
HVWXGDP�VH DOWHUQDWLYDV TXH SHUPLWDP UHOD[DU RV SURWRFRORV GH DTXLVLomR� DGDSWDQGR RV VLV�
WHPDV H[LVWHQWHV SDUD R IXQFLRQDPHQWR QmR�FRRSHUDWLYR� �� H SRU RXWUR� H[SORUD�VH D XWLOL]DomR
GH QRYDV FDUDFWHUtVWLFDV ELRPpWULFDV TXH PHOKRU VDWLVIDoDP DV DWXDLV H[LJrQFLDV� (VWHV WUD�
EDOKRV GRXWRUDLV GHEUXoDP�VH VREUH RV GRLV HL[RV� QD PHGLGD HP TXH DYDOLDP D XVDELOLGDGH GH
FDUDWHUtVWLFDV ELRPpWULFDV WUDGLFLRQDLV �H�J�� tULV� DGDSWDQGR�DV DRV UHTXLVLWRV GR IXQFLRQDPHQWR
QmR�FRRSHUDWLYR� H FRPELQDQGR�DV FRP VLQDLV ELRPpWULFRV HPHUJHQWHV �L�H�� UHJLmR SHULRFXODU��
2 QRVVR REMHWLYR SULQFLSDO p SURSRU XP VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR DGDSWDGR DR
IXQFLRQDPHQWR HP FHQiULRV QmR�FRRSHUDWLYRV� FDSD] GH OLGDU FRP D DTXLVLomR GH LQGLYtGXRV D
PDLRUHV GLVWkQFLDV� HP PRYLPHQWR� VRE FRQGLo}HV GH LOXPLQDomR YDULiYHLV H DGTXLULQGR D LQ�
IRUPDomR QR FRPSULPHQWR GH RQGD YLVtYHO� $ PRWLYDomR SDUD HVWHV WUDEDOKRV GH GRXWRUDPHQWR
FRQYHUJH DLQGD FRP RXWUD WHQGrQFLD GH LQYHVWLJDomR� QD PHGLGD HP TXH FRPELQD R UHFRQKH�
FLPHQWR ELRPpWULFR FRP FHQiULRV QRUPDOPHQWH DVVRFLDGRV DR IXQFLRQDPHQWR GH VLVWHPDV GH
YtGHR�YLJLOkQFLD� WHQGR HP YLVWD R GHVHQYROYLPHQWR GH VROXo}HV KtEULGDV FDSD]HV GH LGHQWLILFDU
XWLOL]DGRUHV DOYR HP FHQiULRV QmR�FRQWURODGRV�

'HVFULomR GR 3UREOHPD H 2EMHWLYRV GH ,QYHVWLJDomR

'H XPD IRUPD JHUDO� HVWD WHVH IRFD�VH QR SUREOHPD GR UHFRQKHFLPHQWR ELRPpWULFR HP DPEL�
HQWHV QmR�FRQWURODGRV� $VVLP VHQGR� R REMHWLYR FHQWUDO GHVWHV WUDEDOKRV GH GRXWRUDPHQWR p
DGDSWDU RX GHVHQYROYHU XP VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR FDSD] GH OLGDU FRP HVWH WLSR
GH FHQiULRV� 7HQGR SRU EDVH D SHVTXLVD GHVHQYROYLGD� D UHJLmR SHULRFXODU DVVXPH�VH FRPR FDUDF�
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WHUtVWLFD FHQWUDO SUHIHUHQFLDO� GHYLGR j VXD IOH[LELOLGDGH H IDFLOLGDGH GH DTXLVLomR QDV FRQGLo}HV
TXH R VLVWHPD H[LJH�

3RU IRUPD D DWLQJLU R REMHWLYR SURSRVWR IRL HVWDEHOHFLGR XP FRQMXQWR GH PHWDV LQWHUPpGLDV SDUD
PHOKRU HVWUXWXUDomR GR WUDEDOKR TXH VHULD QHFHVViULR OHYDU D FDER�

�� (VWXGDU D tULV HQTXDQWR VLQDO ELRPpWULFR� GDQGR SDUWLFXODU rQIDVH DRV PpWRGRV GHVHQYROYL�
GRV SDUD DPELHQWHV QmR�FRRSHUDWLYRV TXH IXQFLRQHP QR FRPSULPHQWR GH RQGD YLVtYHO� (VWH
HVWXGR GHYH IRFDU�VH HP PpWRGRV GH UHFRQKHFLPHQWR TXH YLVHP D UHGXomR GDV UHVWULo}HV
GH DTXLVLomR� RX TXH GH RXWUR PRGR VHMDP FDSD]HV GH OLGDU FRP LQIRUPDomR HVSHFLDOPHQWH
GHJUDGDGD�

�� 8PD YH] TXH D LQIRUPDomR DGTXLULGD QR FRPSULPHQWR GH RQGD YLVtYHO LQWURGX] QRYRV IDWRUHV
GH UXtGR FRP XP LPSDFWR FRQVLGHUiYHO QR UHFRQKHFLPHQWR ELRPpWULFR GD tULV� p QHFHVViULR
DQDOLVDU D VXD UHIOHFWkQFLD DR VHU LOXPLQDGD SRU GLIHUHQWHV LOXPLQDQWHV� HP GLIHUHQWHV
FRPSULPHQWRV GH RQGD� $V SURSULHGDGHV GLVFULPLQDWLYDV GD tULV GHYHP VHU DQDOLVDGDV VREUH
WUrV HL[RV� R WLSR GH LOXPLQDQWH SUHVHQWH QD FHQD� R QtYHO GH OXPLQkQFLD GHVVH PHVPR
LOXPLQDQWH� H R QtYHO GH SLJPHQWDomR GD tULV�

�� (VWXGDU VLQDLV ELRPpWULFRV HPHUJHQWHV� FRP HVSHFLDO GHVWDTXH DRV TXH PLQLPL]HP RV
FRQGLFLRQDQWHV DVVRFLDGRV D DPELHQWHV QmR�FRQWURODGRV �H�J�� UHJLmR SHULRFXODU�� $ UHJLmR
SHULRFXODU XPD FDUDFWHUtVWLFD ELRPpWULFD DSURSULDGD SRU WUrV PRWLYRV� �� p XPD UHJLmR
XWLOL]DGD GLiULD H LQWULQVHFDPHQWH SHOR VHU KXPDQR DR ID]HU R UHFRQKHFLPHQWR� �� SRVVXL
XPD ORFDOL]DomR SULYLOHJLDGD HP UHODomR j tULV� SHUPLWLQGR D DTXLVLomR VLPXOWkQHD GHVWHV
GRLV VLQDLV ELRPpWULFRV FRP R PHVPR VHQVRU� �� SRVVXL XP YDVWR OHTXH GH FDUDFWHUtVWLFDV
SDVVtYHLV GH VHUHP H[SORUDGDV� WDO FRPR FRUURERUDGR SHOD OLWHUDWXUD�

�� ,PSOHPHQWDU H DYDOLDU R GHVHPSHQKR GRV PpWRGRV PDLV UHOHYDQWHV DQDOLVDGRV QR WySLFR
DQWHULRU� DYDOLDomR HVWD TXH GHYH VHU OHYDGD D FDER VREUH R PHVPR FRQMXQWR GH GDGRV�
3UHWHQGH�VH DLQGD HVWDEHOHFHU XPD QRYD EDVH�GH�GDGRV FRP LQIRUPDomR FDSWXUDGD VL�
PXOWDQHDPHQWH QRV FRPSULPHQWRV GH RQGD GR LQIUDYHUPHOKR H OX] YLVtYHO� TXH HPERUD
DGTXLULGD HP FRQGLo}HV FRRSHUDWLYDV LQWURGX]D XP FRQMXQWR GH UXtGRV TXH VLPXOHP RV TXH
VmR HQFRQWUDGRV HP DPELHQWHV QmR�FRQWURODGRV�

�� 3RU ILP� D PDLRULD GRV VLVWHPDV ELRPpWULFRV LGHQWLILFD �RX YHULILFD D LGHQWLGDGH� SRVL�
WLYDPHQWH XP GHWHUPLQDGR LQGLYtGXR GH HQWUH XPD JDOHULD GH XWLOL]DGRUHV SUHYLDPHQWH
DGLFLRQDGRV DR VLVWHPD� WHQGR SRU EDVH XPD PHGLGD GH VHPHOKDQoD� &RQWXGR� HP PXLWDV
DSOLFDo}HV LQ WKH ZLOG� WDLV VLVWHPDV IDULDP PDLV VHQWLGR VH RSHUDVVHP QXPD SHUVSHWLYD
GH UHFRQKHFLPHQWR QHJDWLYR� JDUDQWLU FRP GHWHUPLQDGD FRQILDQoD TXH XP LQGLYtGXR GR
TXDO VH GHVFRQKHFH D LGHQWLGDGH QmR SHUWHQFH D XP FRQMXQWR GH ´SHVVRDV GH LQWHUHVVHµ�
DR LQYpV GH R WHQWDU LGHQWLILFDU� 1HVVD EDVH� R QRVVR ~OWLPR REMHWLYR LQWHUPpGLR VHULD R
HVWXGR GR HVWDGR GD DUWH UHODWLYR DR SDUDGLJPD GH UHFRQKHFLPHQWR QHJDWLYR�

'H HQWUH RV REMHWLYRV D TXH QRV SURSXVHPRV DSHQDV D SRVVLELOLGDGH GH HVWXGDU H OHYDU D FDER
R UHFRQKHFLPHQWR QHJDWLYR QmR IRL WRWDOPHQWH DWLQJLGR� VHQGR DSUHVHQWDGR FRPR XPD OLQKD GH
WUDEDOKR IXWXUR� &RPSUHHQGHPRV FRQWXGR DV YDQWDJHQV SUiWLFDV GH XP VLVWHPD FRP HVWH WLSR
GH IXQFLRQDPHQWR� HP HVSHFLDO VH R VLVWHPD VH HQFRQWUDU D IXQFLRQDU GH IRUPD VXE�UHSWtFLD�
WDO FRPR HVWDEHOHFLGR DR ORQJR GR QRVVR WUDEDOKR >�@� $LQGD DVVLP� RSWiPRV SRU SULRUL]DU D
FRQFHomR GH QRYRV VLVWHPDV� LJXDOPHQWH GHVDILDQWHV H DSOLFDGRV D GLIHUHQWHV FHQiULRV �H�J��
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GLVSRVLWLYRV PyYHLV >�@��

3RU ~OWLPR� R VLVWHPD ELRPpWULFR SURSRVWR QR ILQDO GHVWHV WUDEDOKRV GRXWRUDLV� IRL HVWUXWXUDGR
GH IRUPD D SRGHU VHU IDFLOPHQWH LPSOHPHQWDGR� YDOLGDGR H RWLPL]DGR�

3ULQFLSDLV &RQWULEXLo}HV

6HJXH XPD EUHYH GHVFULomR GDV FRQWULEXLo}HV UHVXOWDQWHV GR WUDEDOKR GH SHVTXLVD GHVHQYROYLGR
QR kPELWR GHVWH SURJUDPD GRXWRUDO� WDO FRPR LOXVWUDGR QD )LJXUD ����

$ SULPHLUD FRQWULEXLomR FRQVLVWH QXPD DYDOLDomR SUHOLPLQDU VREUH D FDSDFLGDGH GLVFULPLQDWLYD GD
tULV TXDQGR DGTXLULGD QR FRPSULPHQWR GH RQGD YLVtYHO� SHUFHEHQGR H TXDQWLILFDQGR DV FRQGLo}HV
TXH SHUPLWHP HIHWXDU R UHFRQKHFLPHQWR ELRPpWULFR FRP XP GHWHUPLQDGR JUDX GH FRQILDQoD�
(VWH HVWXGR HVWi GHVFULWR QR FDStWXOR �� TXH FRQVLVWH QXP DUWLJR SXEOLFDGR QRV SURFHHGLQJV GR
6◦ ,((( :RUNVKRS HP 0XOWLPHGLD ,QIRUPDWLRQ 3URFHVVLQJ DQG 5HWULHYDO >�@�

$ VHJXQGD FRQWULEXLomR SURS}H XP QRYR PpWRGR GH UHFRQKHFLPHQWR� EDVHDGR HP WpFQLFDV VXEV�
WDQFLDOPHQWH GLIHUHQWHV GDV XVDGDV WUDGLFLRQDOPHQWH� $ DQiOLVH R QtYHO GH FRUUHODomR HQWUH R
UHVXOWDGR GR PpWRGR SURSRVWR H RXWUDV WpFQLFDV GR HVWDGR�GD�DUWH VXJHUH TXH D IXVmR GH DP�
EDV DV HVWUDWpJLDV GH UHFRQKHFLPHQWR FRQWULEXL SDUD XP DXPHQWR VLJQLILFDWLYR GD SHUIRUPDQFH�
$VVLP VHQGR� p XP SDVVR SRVLWLYR HP GLUHomR DR GHVHQYROYLPHQWR GH WLSRV GH UHFRQKHFLPHQWR
PDLV DPELFLRVRV� (VWH HVWXGR HVWi GHVFULWR QR FDStWXOR �� TXH FRQVWLWXL R DUWLJR SXEOLFDGR QR
116◦ YROXPH GD UHYLVWD &RPSXWHU 9LVLRQ DQG ,PDJH 8QGHUVWDQGLQJ >�@�

$ WHUFHLUD FRQWULEXLomR RIHUHFH XPD YLVmR FRPSDUDWLYD GRV WUDEDOKRV GH SHVTXLVD PDLV UHOHYDQWHV
QR kPELWR GR UHFRQKHFLPHQWR SHULRFXODU� VXPDULDQGR RV PpWRGRV GHVHQYROYLGRV H HQXPHUDQGR
RV SUREOHPDV LGHQWLILFDGRV� 1HVWH HVWXGR FRQVLVWH R FDStWXOR �� DUWLJR SXEOLFDGR QRV SURFHHG�
LQJV GR ,((( 6\PSRVLXP RQ &RPSXWDWLRQDO ,QWHOOLJHQFH LQ %LRPHWULFV DQG ,GHQWLW\ 0DQDJHPHQW
² &,%,0 ���� >�@�

$ TXDUWD FRQWULEXLomR IRUQHFH XPD YLVmR HP PDLRU GHWDOKH VREUH RV PpWRGRV PDLV UHOHYDQWHV GR
UHFRQKHFLPHQWR SHULRFXODU� FRP XPD DQiOLVH DSURIXQGDGD GDV WpFQLFDV VXE�DGMDFHQWHV H XPD
DQiOLVH FRPSDUDWLYD GRV UHVXOWDGRV GHVVHV PHVPRV PpWRGRV FRQWUD XPD EDVH�GH�GDGRV FRPXP�
&RPHoD FRP XPD YLVmR LQWURGXWyULD GRV PpWRGRV H VLVWHPDV ELRPpWULFRV WUDGLFLRQDLV� DQDWRPLD
GD UHJLmR SHULRFXODU H GLILFXOGDGHV H[LVWHQWHV� H FRQFOXL FRP REVHUYDo}HV VREUH RV SULQFLSDLV
IDWRUHV GH GHJUDGDomR H SRVVtYHLV GLUHo}HV GH SHVTXLVD� (VWH HVWXGR HVWi GHVFULWR QR FDStWXOR ��
TXH FRQVLVWH QXP DUWLJR VXEPHWLGR SDUD D UHYLVWD $UWLILFLDO ,QWHOOLJHQFH 5HYLHZ�

$ TXLQWD FRQWULEXLomR FRQVLVWH QXP QRYR PpWRGR GH GHWHomR GRV FDQWRV GR ROKR� FDSD] GH OLGDU
FRP GDGRV GHJUDGDGRV� GDQGR HVSHFLDO rQIDVH D DSOLFDo}HV HP FRQGLo}HV H DPELHQWHV QmR�
FRQWURODGRV� $V QRVVDV H[SHULrQFLDV PRVWUDP TXH R PpWRGR SURSRVWR VXSHUD RV H[LVWHQWHV QD
OLWHUDWXUD WDQWR HP LPDJHQV VHP UXtGR FRPR QDTXHODV FRP GHJUDGDomR �GHVIRTXH� URWDomR H
YDULDomR VLJQLILFDWLYD GH HVFDOD�� (VWH HVWXGR HVWi GHVFULWR QR FDStWXOR �� TXH FRQVLVWH QR DUWLJR
SXEOLFDGR QRV SURFHHGLQJV GD ,((( ,QWHUQDWLRQDO &RQIHUHQFH RQ %LRPHWULFV ² ,-&% ���� >�@�

$ VH[WD FRQWULEXLomR DSUHVHQWD XP QRYR PpWRGR GH VHJPHQWDomR �URWXODJHP� GD UHJLmR SHUL�
RFXODU� FDSD] GH GLVFULPLQDU VHWH FRPSRQHQWHV SULQFLSDLV� tULV� HVFOHUD� SHVWDQDV� VREUDQFH�
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OKDV� FDEHOR� SHOH H yFXORV� (VWH WLSR GH VHJPHQWDomR SHUPLWH� HQWUH RXWUDV FRLVDV� PHOKRUDU
D GHILQLomR GD UHJLmR SHULRFXODU H D HVWLPDWLYD GD SRVH� (VWH HVWXGR HVWi SUHVHQWH QR FDSt�
WXOR �� TXH FRQVLVWH QXP DUWLJR SXEOLFDGR QD ,((( ,QWHUQDWLRQDO &RQIHUHQFH RQ %LRPHWULFV ² ,-&%
���� >�@�

$ VpWLPD FRQWULEXLomR SURS}H XP QRYR PpWRGR GH UHFRQKHFLPHQWR QmR�FRRSHUDWLYR GD tULV� FRP�
ELQDQGR GLIHUHQWHV VLQDLV ELRPpWULFRV� (VWH PpWRGR IRL DYDOLDGR QR GHVDILR 1RLV\ ,ULV &KDOOHQJH
(YDOXDWLRQ � 3DUW ,, �1,&(�,,�� RQGH GHPRQVWURX ERD SHUIRUPDQFH H WHUPLQRX FODVVLILFDGR HP
WHUFHLUR OXJDU GH HQWUH RV PpWRGRV D FRQFXUVR� (VWH HVWXGR HVWi GHVFULWR QR FDStWXOR �� DUWLJR
SXEOLFDGR QR 33◦ YROXPH GD UHYLVWD 3DWWHUQ 5HFRJQLWLRQ /HWWHUV >�@�

$ RLWDYD FRQWULEXLomR WUDWD D TXHVWmR GR UHFRQKHFLPHQWR ELRPpWULFR HP GLVSRVLWLYRV PyYHLV�
XVDQGR D tULV H D UHJLmR SHULRFXODU FRPR FDUDFWHUtVWLFDV ELRPpWULFDV� $QXQFLD DLQGD D GLVSRQL�
ELOL]DomR GH XPD QRYD EDVH�GH�GDGRV GD tULV H UHJLmR SHULRFXODU� FRQWHQGR LPDJHQV DGTXLULGDV
FRP GH] FRQILJXUDo}HV GLIHUHQWHV GH GLVSRVLWLYRV PyYHLV� MXQWDPHQWH FRP D PiVFDUD GH VHJ�
PHQWDomR GD tULV� (VWD QRYD EDVH�GH�GDGRV SHUPLWH WHVWDU WDQWR PpWRGRV GH VHJPHQWDomR FRPR
GH UHFRQKHFLPHQWR GD tULV H GD UHJLmR SHULRFXODU� $OpP GLVVR� UHSRUWD WDPEpP R UHVXOWDGR GH
XPD WpFQLFD GH FDOLEUDomR DMXVWDGD DRV GLVSRVLWLYRV PyYHLV� FDSD] GH FRPSHQVDU DV GLIHUHQWHV
SHUFHo}HV FRORULPpWULFDV DVVRFLDGDV D FDGD FRQILJXUDomR� (VWH HVWXGR HVWi GHVFULWR QR FDSt�
WXOR ��� DUWLJR SXEOLFDGR QD UHYLVWD 3DWWHUQ 5HFRJQLWLRQ /HWHUV�

$ QRQD FRQWULEXLomR p FHQWUDGD QR UHFRQKHFLPHQWR ELRPpWULFR HP GDGRV H[WUHPDPHQWH GHJUDGD�
GRV� 1HVWD FRQWULEXLomR p DQXQFLDGD D GLVSRQLELOL]DomR GH XPD QRYD EDVH�GH�GDGRV DQRWDGD�
FRQWHQGR LQIRUPDomR GH ��� SDUWLFLSDQWHV� IRWRV GH UHJLVWR GH DOWD TXDOLGDGH� LPDJHQV GHJUDGD�
GDV SRU GLIHUHQWHV IDWRUHV GH UXtGR� H YtGHRV GRV SDUWLFLSDQWHV DGTXLULGRV WDPEpP HP FRQGLo}HV
DGYHUVDV� 6mR DLQGD GLYXOJDGRV UHVXOWDGRV GH XPD H[SHULrQFLD FRQGX]LGD VLPXODQGR XP FHQiULR
GH ZDWFKOLVW LGHQWLILFDWLRQ� IRL FRQGX]LGR XP LQTXpULWR RQOLQH HP TXH RV SDUWLFLSDQWHV HUDP
FRQYLGDGRV D UHDOL]DU R UHFRQKHFLPHQWR TXHU SRVLWLYR TXHU QHJDWLYR GH XP LQGLYtGXR QmR LGHQWL�
ILFDGR� H FXMD IRWR HVWDYD GHJUDGDGD� FRQWUD XP JUXSR GH LGHQWLGDGHV FRQKHFLGDV� -XQWDPHQWH
FRP DV UHVSRVWDV IRUQHFLGDV� RV SDUWLFLSDQWHV LQGLFDUDP RV PRWLYRV TXH MXVWLILFDYDP DV VXDV
HVFROKDV� SHUPLWLQGR�QRV SHUFHEHU TXDLV DV FDUDFWHUtVWLFDV PDLV IUHTXHQWHPHQWH DVVRFLDGDV DR
SURFHVVR GH UHFRQKHFLPHQWR HIHWXDGR SHOR VHU KXPDQR� 3RU ILP� RV UHVXOWDGRV VXJHUHP TXH R
UHFRQKHFLPHQWR QHJDWLYR SRGHUi VHU XPD DOWHUQDWLYD PDLV LQWHUHVVDQWH DR OLGDU FRP LQIRUPDomR
H[WUHPDPHQWH GHJUDGDGD� (VWH HVWXGR HVWi SUHVHQWH QR FDStWXOR ��� TXH FRQVLVWH QXP DUWLJR
SXEOLFDGR QD UHYLVWD ,(7 %LRPHWULFV�

$ GpFLPD FRQWULEXLomR FRQVLVWH QXP QRYR PpWRGR GH GHWHomR GH ODQGPDUNV� FDSD] GH LGHQWLILFDU
H ORFDOL]DU VHLV HOHPHQWRV�FKDYH QXPD LPDJHP FRQWHQGR D FDEHoD GH XP LQGLYtGXR� LQGHSHQGHQ�
WHPHQWH GR VHX kQJXOR GH DTXLVLomR RX GD LQFOLQDomR GD FDEHoD� $OpP GDV YDQWDJHQV GR SRQWR
GH YLVWD GH FRPSUHHQVmR GD FHQD� XP VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR PXOWL�PRGDO SRGH
WDPEpP EHQHILFLDU GHVWH WLSR GH PpWRGR� QD PHGLGD HP TXH VH WRUQD SRVVtYHO GHFLGLU TXDO R
FODVVLILFDGRU D XVDU RX� HYHQWXDOPHQWH� DMXVWDU R SHVR GH FDGD XP GRV FODVVLILFDGRUHV LQGLYLGXDLV
HP IXQomR GDV UHJL}HV TXH HVWmR HIHWLYDPHQWH YLVtYHLV� $YDOLDQGR D SHUIRUPDQFH GR PpWRGR HP
LPDJHQV TXH VLPXODP R WLSR GH LQIRUPDomR DGTXLULGD HP DPELHQWHV GH YtGHR�YLJLOkQFLD� GHPRQ�
VWUiPRV TXH HVWH FRQVHJXH OLGDU FRP GLIHUHQWHV kQJXORV GH DTXLVLomR �FREULQGR FRPSOHWDPHQWH
WRGRV RV 360◦� H DSUHVHQWDQGR WDPEpP LQYDULkQFLD DR kQJXOR GH LQFOLQDomR GD FDEHoD� (VWH
HVWXGR HVWi GHVFULWR QR FDStWXOR ��� TXH FRQVLVWH QXP DUWLJR VXEPHWLGR SDUD D 10D ,QWHUQDWLRQDO
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

&RQIHUHQFH RQ %LRPHWULFV�

$ GpFLPD�SULPHLUD H ~OWLPD FRQWULEXLomR LQWURGX] R VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR LGH�
DOL]DGR� (VWH VLVWHPD PLQLPL]D DV UHVWULo}HV GH RSHUDomR GH WDO IRUPD TXH SHUPLWH OHYDU D FDER
R UHFRQKHFLPHQWR ELRPpWULFR HP FHQiULRV GH YtGHR�YLJLOkQFLD� &RQVLVWH QXP VLVWHPD FRPSOHWD�
PHQWH DXWyQRPR TXH FRPELQD GHWHomR H WUDFNLQJ GH SHVVRDV QD FHQD� FRP R UHFRQKHFLPHQWR
ELRPpWULFR� (VWH VLVWHPD HVWi GHVFULWR QR FDStWXOR ��� H FRQVLVWH QXP DUWLJR VXEPHWLGR SDUD D
10D ,QWHUQDWLRQDO &RQIHUHQFH RQ %LRPHWULFV�

(VWDGR GD $UWH

(VWD VHFomR FRPHoD SRU LQWURGX]LU DOJXQV FRQFHLWRV GH ELRPHWULD� QRPHDGDPHQWH RV DQWHFHGHQWHV
KLVWyULFRV� SULQFLSDLV FDUDFWHUtVWLFD GH XP VLVWHPD ELRPpWULFR H VLQDLV ELRPpWULFRV� 'H VHJXLGD
GHVFUHYHUHPRV RV GHVDILRV DVVRFLDGRV D DPELHQWHV QmR�FRQWURODGRV� SULQFLSDLV SUREOHPDV H HV�
IRUoRV GHVHQYROYLGRV QR kPELWR GR UHFRQKHFLPHQWR QmR�FRRSHUDWLYR� $QDOLVDPRV GH IRUPD
VXPiULD DV WpFQLFDV GHVHQYROYLGDV SDUD D tULV PDLV DGHTXDGDV D HVWH WLSR GH DPELHQWHV� H LQ�
WURGX]LPRV D UHJLmR SHULRFXODU FRPR XPD DOWHUQDWLYD PDLV YLiYHO� 3RU ILP� WHFHPRV DOJXPDV
FRQVLGHUDo}HV VREUH TXHVW}HV pWLFDV H GH SULYDFLGDGH�

%LRPHWULD

2 WHUPR ELRPHWULD WHYH RULJHP QR *UHJR ´ELR �YLGD�µ � ´PHWULD �PHGLGD�µ� H R VHX VLJQLILFDGR
OLWHUDO p ´PHGLU D YLGDµ� 'H XPD IRUPD PDLV REMHWLYD� ELRPHWULD UHIHUH�VH j FDSDFLGDGH GH
UHFRQKHFHU XP VXMHLWR FRP EDVH QXP VXE�FRQMXQWR GDV VXDV FDUDFWHUtVWLFDV ItVLFDV RX FRPSRU�
WDPHQWDLV� &RPSDUDGR FRP RXWURV PHLRV GH LGHQWLILFDomR SHVVRDO �H�J�� FDUWmR GH FLGDGmR RX
SDVVZRUGV�� D XWLOL]DomR GH VLVWHPDV ELRPpWULFRV WUD] LQ~PHUDV YDQWDJHQV� DV FDUDFWHUtVWLFDV
ELRPpWULFDV QmR VmR SHUGLGDV� URXEDGDV RX HVTXHFLGDV� VmR UHODWLYDPHQWH GLItFHLV GH IRUMDU� H
QmR SRGHP VHU XWLOL]DGDV SRU WHUFHLURV� JDUDQWLQGR D QmR�UHSXGLDomR�

$QWHFHGHQWHV +LVWyULFRV

0HVPR VHP UHJLVWRV ItVLFRV� SRGHPRV FRP WRGD D VHJXUDQoD LGHQWLILFDU R XVR GH FDUDFWHUtVWLFDV
IDFLDLV FRPR XP GRV PDLV DQWLJRV H[HPSORV GH XWLOL]DomR GD ELRPHWULD SRU SDUWH GR VHU KXPDQR�
'LDULDPHQWH� PHVPR VHP TXH QRV DSHUFHEDPRV� UHFRUUHPRV D LQIRUPDomR IDFLDO SDUD QRV UH�
FRQKHFHUPRV� WRUQDQGR D IDFH D FDUDFWHUtVWLFD ELRPpWULFD PDLV XWLOL]DGD HP WRGR R PXQGR�

$ XWLOL]DomR GRFXPHQWDGD GD ELRPHWULD GDWD GH ����� D�&� DOWXUD HP TXH R KRPHP SUp�KLVWyULFR
XVRX D LPSUHVVmR GDV VXDV PmRV SDUD DVVLQDU SLQWXUDV HP FDYHUQDV� &HUFD GH ��� D�&�� RXWUD
FDUDFWHUtVWLFD ELRPpWULFD HUD XVDGD SHORV %DELOyQLRV� TXH UHJLVWDYDP DV VXDV WUDQVDo}HV FRPHU�
FLDLV MXQWDPHQWH FRP D LPSUHVVmR GLJLWDO� (VFULWRV GH -RmR GH %DUURV �����²����� GHVFUHYHP
SUiWLFDV PHUFDQWLV FKLQHVDV TXH LQFOXtDP D XWLOL]DomR GD LPSUHVVmR GLJLWDO SDUD ILUPDU DFRUGRV
FRPHUFLDLV� H D XWLOL]DomR GDV LPSUHVV}HV GDV SDOPDV GDV PmRV H SpV GH FULDQoDV HP SDSHO SDUD
HYLWDU D VXD WURFD >��@� 1R DQWLJR (JLWR �����²��� D�&�� GHVFULWRUHV ItVLFRV GRV FRPHUFLDQWHV
HUDP XWLOL]DGRV SDUD GLVWLQJXLU LQGLYtGXRV GH FRQILDQoD� 1DV HVFULWXUDV FDQyQLFDV H[LVWHP WDP�
EpP YiULDV UHIHUrQFLDV GH SHUVRQDJHQV TXH VH UHFRQKHFLDP DWUDYpV GH GLIHUHQWHV FDUDFWHUtVWLFDV
ELRPpWULFDV� QR OLYUR GH 7RELDV ���� UHODWD�VH D XWLOL]DomR GD IRUPD GH FDPLQKDU H GD VLOKXHWD�
´>���@ HOD HVSHUDYD R UHJUHVVR GH VHX ILOKR� TXDQGR YLX DR ORQJH TXH YROWDYD UHFRQKHFHX�R >���@µ�
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H HP 6DPXHO ����� ´>���@ 6DXO UHFRQKHFHX D YR] GH 'DYLG� H H[FODPRX� 1mR p D WXD YR] TXH
RXoR� PHX ILOKR 'DYLG" >���@µ� HWF�

0DLV UHFHQWHPHQWH� HP ����� :LOOLDP +HUVFKHO LQLFLRX R UHJLVWR GD SDOPD GD PmR GH FDGD XP
GRV WUDEDOKDGRUHV FLYLV QD tQGLD� SDUD TXH SXGHVVH YHULILFDU D VXDV LGHQWLGDGHV QR GLD GH HIH�
WXDU R SDJDPHQWR >��@� 1mR REVWDQWH� R SULPHLUR VLVWHPD ELRPpWULFR UHDO ² ´DQWKURSRPHWULFDO
VLJQDOPHQWµ ² IRL FULDGR HP ���� SRU $OSKRQVH %HUWLOOLRQ� FKHIH GD GLYLVmR GH LQYHVWLJDomR FUL�
PLQDO� 6DEHQGR TXH RV FULPLQRVRV UHFRUUHQWHV XVDYDP IUHTXHQWHPHQWH GLVIDUFHV RX IRUQHFLDP
LQIRUPDomR IDOVD TXDQGR HUDP GHWLGRV SHOD SROtFLD� %HUWLOOLRQ SUHWHQGHX HVWDEHOHFHU XPD IRUPD
GH LGHQWLILFDomR TXH QmR QHFHVVLWDVVH GHVVH QtYHO GH FRRSHUDomR SRU SDUWH GRV LQGLYtGXRV� 3DUD
LVVR� UHFRUUHX j PHGLomR GH GHWHUPLQDGRV DWULEXWRV ItVLFRV UHJLVWDQGR�RV SDUD UHIHUrQFLD IXWXUD
² )LJXUD ���� 8P WRWDO GH RQ]H PHGLo}HV HUD UHDOL]DGDV SDUD FDGD LQGLYtGXR� HQWUH DV TXDLV D
DOWXUD HP Sp H VHQWDGR� D GLVWkQFLD HQWUH DV SRQWDV GRV GHGRV� R WDPDQKR GD FDEHoD� HWF� (VVH
VLVWHPD DFDEDULD SRU VHU XWLOL]DGR SRU IRUoDV SROLFLDLV XP SRXFR SRU WRGR R PXQGR� DLQGD TXH
IDOKDV QD VXD FRQFHomR YLHVVHP D WRUQD�OR REVROHWR HP ����� XPD YH] TXH GXDV SHVVRDV GLVWLQWDV
SRGLDP DSUHVHQWDU PHGLGDV VHPHOKDQWHV�

(P ���� )UDQFLV *DOWRQ SXEOLFD R SULPHLUR HVWXGR VREUH DV DSOLFDo}HV ELRPpWULFDV GDV LPSUHVV}HV
GLJLWDLV� GHWDOKDQGR GH TXH IRUPD RV SRQWRV GH PLQ~FLD SRGLDP VHU XWLOL]DGRV SDUD R UHFRQKHFL�
PHQWR >��@� &LQFR DQRV GHSRLV� HP ����� D XWLOL]DomR GH LPSUHVV}HV GLJLWDLV IRL LQWURGX]LGD QDV
IRUoDV SROLFLDLV VHJXLQGR DV HVSHFLILFDo}HV GH (GZDUG 5LFKDUG +HQU\ GD 6FRWKODQG <DUG TXH� FRP
D DMXGD GH )UDQFLV *DOWRQ H $]L]XO +DTXH LQFOXLX GLYHUVDV PHOKRULDV QR VLVWHPD GH LQGH[DomR� $
XWLOL]DomR GRV SRQWRV GH PLQ~FLD SURSRVWD SRU *DOWRQ p XPD WpFQLFD DLQGD DWXDO�

$R ORQJR GDV ~OWLPDV GpFDGDV WHPRV DVVLVWLGR D XP FUHVFLPHQWR DFHQWXDGR QD iUHD GD ELRPHWULD�
SDXWDGR SHOR DSDUHFLPHQWR GH QRYRV VLQDLV ELRPpWULFRV� WpFQLFDV H DSOLFDo}HV�

3ULQFLSDLV )DVHV GH XP 6LVWHPD %LRPpWULFR

$R GHVHQKDU XP VLVWHPD ELRPpWULFR� RX VHMD� XP VLVWHPD GH UHFRQKHFLPHQWR GH SDGU}HV TXH
DSOLFDGR j LQIRUPDomR ELRPpWULFD GH XP LQGLYtGXR GHWHUPLQH D VXD LGHQWLGDGH� p QHFHVViULR
FRQVLGHUDU TXDWUR IDVHV SULQFLSDLV >��@� VHQVRU� DYDOLDomR GD TXDOLGDGH H H[WUDomR GH FDUDF�
WHUtVWLFDV� FRPSDUDomR H WRPDGD GH GHFLVmR� H� SRU ILP� EDVH�GH�GDGRV�

6HQVRU
5HVSRQViYHO SHOD DTXLVLomR GR VLQDO ELRPpWULFR� p D LQWHUIDFH HQWUH R XWLOL]DGRU H R VLVWHPD�
'HSHQGHQGR GD FDUDFWHUtVWLFD ELRPpWULFD TXH VH SUHWHQGH DGTXLULU� YiULRV VHQVRUHV SRGHP
VHU HVFROKLGRV� 1D PHGLGD HP TXH D PDLRU SDUWH GRV VLQDLV XWLOL]D LQIRUPDomR YLVXDO� D
PDLRULD GRV VLVWHPDV XVD FkPDUDV SDUD UHDOL]DU D VXD DTXLVLomR�

$YDOLDomR GD TXDOLGDGH H H[WUDomR GDV FDUDFWHUtVWLFDV
$SyV DGTXLULU R VLQDO ELRPpWULFR� H DVVHJXUDQGR TXH R SURFHVVR IRL FRQGX]LGR FRUUHWDPHQWH
H TXH D LQIRUPDomR D VHU SURFHVVDGD WHP TXDOLGDGH VXILFLHQWH� XP FRQMXQWR GH FDUDFWHUtV�
WLFDV GLVFULPLQDWLYDV p H[WUDtGR H FRGLILFDGR�

&RPSDUDomR H WRPDGD GH GHFLVmR
1HVWD IDVH� DV FDUDFWHUtVWLFDV H[WUDtGDV VmR FRPSDUDGDV FRP RV WHPSODWHV DUPD]HQDGRV
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

QD EDVH GH GDGRV� H WRPDGD D GHFLVmR VREUH D LGHQWLGDGH GR XWLOL]DGRU� 'H DFRUGR FRP R
PRGR GH IXQFLRQDPHQWR� HVWD FRPSDUDomR SRGH VHU ��� RX ��1�

%DVH�GH�GDGRV
(VWH ~OWLPR PyGXOR p RQGH WRGD D LQIRUPDomR GRV XWLOL]DGRUHV UHJLVWDGRV QR VLVWHPD p
DUPD]HQDGD� (VWD LQIRUPDomR Mi VH HQFRQWUD FRGLILFDGD XWLOL]DQGR D WpFQLFD HVWDEHOHFLGD
QR PyGXOR GH H[WUDomR GH FDUDFWHUtVWLFDV� SDUD TXH SRVVD VHU GLUHWDPHQWH FRPSDUDGD FRP
D LQIRUPDomR H[WUDtGD GH QRYRV LQGLYtGXRV TXH VH DSUHVHQWHP DR VLVWHPD� *HUDOPHQWH D
EDVH GH GDGRV p FULDGD GXUDQWH D IDVH GH UHJLVWR�

0RGRV GH )XQFLRQDPHQWR

2 VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR SRGH IXQFLRQDU VHJXQGR XP GH WUrV PRGRV >��@� YHUL�
ILFDomR� LGHQWLILFDomR� H LGHQWLILFDomR QHJDWLYD �VFUHHQLQJ��

0RGR GH 9HULILFDomR
1R PRGR GH YHULILFDomR� R VLVWHPD WHQWD YDOLGDU D LGHQWLGDGH GH XP LQGLYtGXR HP SDU�
WLFXODU �)LJXUD ����� &RPR R XWLOL]DGRU TXH WHQWD DFHGHU DR VLVWHPD Mi UHFODPD SDUD VL
XPD LGHQWLGDGH FRQKHFLGD� R VLVWHPD UHDOL]D DSHQDV XPD FRPSDUDomR ��� �XP�SDUD�XP�
GH IRUPD D SURGX]LU XP UHVXOWDGR ELQiULR� RX D LGHQWLGDGH GR XWLOL]DGRU p YHULILFDGD RX
QmR� (VWH PRGR GH IXQFLRQDPHQWR p XWLOL]DGR QR TXRWLGLDQR HP ORJLQV GH FRPSXWDGRU�
$70V� HWF�

0RGR GH ,GHQWLILFDomR
1RPRGR GH LGHQWLILFDomR R VLVWHPD YDL FRPSDUDU XP GHWHUPLQDGR LQGLYtGXR FRQWUD WRGRV RV
XWLOL]DGRUHV SUHYLDPHQWH UHJLVWDGRV QR VLVWHPD �)LJXUD ����� &RQWUDULDPHQWH DR PRGR GH
YHULILFDomR� QmR H[LVWH XPD LGHQWLGDGH LQLFLDO TXH R XWLOL]DGRU UHFODPH SDUD VL� SHOR TXH DV
FRPSDUDo}HV VmR UHDOL]DGDV QD IRUPD ��1 ���SDUD�YiULRV�� (VWH PRGR GH RSHUDomR QmR SRGH
VHU DSOLFDGR D RXWURV PpWRGRV GH LGHQWLILFDomR WUDGLFLRQDLV �H�J�� WRNHQV H SDVVZRUGV�� Vy
SRGHQGR VHU DOFDQoDGR SHOD ELRPHWULD�

0RGR GH ,GHQWLILFDomR 1HJDWLYD
2 PRGR GH UHFRQKHFLPHQWR QHJDWLYR� WDPEpP FKDPDGR GH VFUHHQLQJ >��@� SRGH VHU YLVWR
FRPR XPD H[WHQVmR DR PRGR GH LGHQWLILFDomR� 2 REMHWLYR p JDUDQWLU TXH XP GHWHUPLQDGR
LQGLYtGXR QmR SHUWHQFH D XP VXE�JUXSR GH XWLOL]DGRUHV UHJLVWDGRV QR VLVWHPD� UHDOL]DGR
XP FRQMXQWR GH FRPSDUDo}HV ��1 RULHQWDGDV j H[FOXVmR �)LJXUD ����� (VWH PRGR GH IXQ�
FLRQDPHQWR p SDUWLFXODUPHQWH ~WLO QD VHJXUDQoD GH DHURSRUWRV� ORFDLV S~EOLFRV� HWF�

&ODVVLILFDomR H 3URSULHGDGHV GRV 6LVWHPDV %LRPpWULFRV

([LVWH DWXDOPHQWH XP YDVWR OHTXH GH VLVWHPDV ELRPpWULFRV HP IXQFLRQDPHQWR� 3DUD DX[LOLDU j
VXD FODVVLILFDomR� RV VLVWHPDV ELRPpWULFRV SRGHP VHU DJUXSDGRV GH DFRUGR FRP VHLV GLIHUHQWHV
SHUVSHWLYDV GH IXQFLRQDPHQWR >��@�

2VWHQVLYR �2YHUW� YV� 6XE�UHSWtFLR �&RYHUW�
'HSHQGHQGR GH VH R LQGLYtGXR HVWi RX QmR FLHQWH GH TXH R VLVWHPD VH HQFRQWUD HP IXQ�
FLRQDPHQWR� HVWH SRGH VHU FODVVLILFDGR HP RVWHQVLYR �RYHUW� RX VXE�UHSWtFLR �FRYHUW� UHV�
SHWLYDPHQWH� 6LVWHPDV ELRPpWULFRV FRRSHUDWLYRV VHPSUH IXQFLRQDP GH IRUPD RVWHQVLYD�
HPERUD DWXDOPHQWH H[LVWDP HVIRUoRV GD FRPXQLGDGH FLHQWtILFD FRQFHQWUDGRV HP DWLQJLU
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XP IXQFLRQDPHQWR R PDLV VXE�UHSWtFLR SRVVtYHO� UHVROYHQGR WDQWR RV SUREOHPDV DVVRFLD�
GRV FRP HOHYDGDV UHVWULo}HV GH IXQFLRQDPHQWR� FRPR DTXHOHV TXH DGYrP GH XWLOL]DGRUHV
QmR�FRRSHUDWLYRV�

&RP�KDELWXDomR �+DELWXDWHG� YV� 6HP�KDELWXDomR �1RQ�KDELWXDWHG�
6LVWHPDV FRP RV TXDLV RV XWLOL]DGRUHV LQWHUDMDP FRP UHJXODULGDGH VmR FKDPDGRV� DSyV
DOJXP WHPSR� GH ´KDELWXDGRVµ� (PERUD VHMD UHOHYDQWH HVWDEHOHFHU TXDO R JUDX GH HQ�
YROYLPHQWR GR XWLOL]DGRU FRP R VLVWHPD� R IXQFLRQDPHQWR LGHDO SDVVD SRU XPD LQWHUDomR
QDWXUDO HQWUH RV GRLV PHVPR VHP KDELWXDomR�

6XSHUYLVLRQDGR �$WWHQGHG� YV� 1mR�6XSHUYLVLRQDGR �1RQ�DWWHQGHG�
8P VLVWHPD ELRPpWULFR TXH QHFHVVLWH GH XP VXSHUYLVRU TXH FRQGX]D R SURFHVVR GH UHFR�
QKHFLPHQWR p GHVLJQDGR SRU VXSHUYLVLRQDGR� &RQWXGR� XP VLVWHPD QmR�VXSHUYLVLRQDGR p
JHUDOPHQWH SUHIHUtYHO� LVWR p� XP VLVWHPD FRP R TXDO R XWLOL]DGRU SRVVD LQWHUDJLU GH IRUPD
DXWyQRPD� VHP TXDOTXHU WLSR GH VXSHUYLVmR�

$PELHQWH 3DGUmR �6WDQGDUG� YV� 1mR�3DGUmR �1RQ�VWDQGDUG HQYLURQPHQW�
6LVWHPDV ELRPpWULFRV LQVWDODGRV HP FRQGLo}HV FRQWURODGDV� JHUDOPHQWH HP DPELHQWHV GH
LQWHULRU� FRP LOXPLQDomR UHJXODU� H TXH FRQWHP FRP D FRRSHUDomR GR XWLOL]DGRU� RSHUDP
HP ´DPELHQWHV SDGUmRµ� 4XDQGR R VLVWHPD HVWi LQVWDODGR HP DPELHQWHV QmR�FRQWURODGRV�
FRP FRQGLo}HV GH DTXLVLomR YDULiYHLV� p GLWR TXH VH HQFRQWUD D RSHUDU QXP DPELHQWH ´QmR�
SDGUmRµ�

3~EOLFR �3XEOLF� YV� 3ULYDGR �3ULYDWH�
(VWD SHUVSHWLYD GH IXQFLRQDPHQWR HVWi UHODFLRQDGD FRP R WLSR GH XWLOL]DGRU TXH LQWHUDJH
FRP R VLVWHPD� 6H R VLVWHPD HVWi LQVWDODGR QXP DPELHQWH HPSUHVDULDO� RQGH RV XWLOL]DGRUHV
UHJLVWDGRV QR VLVWHPD VmR HPSUHJDGRV GHVVD PHVPD HPSUHVD� WUDWD�VH GH XP VLVWHPD SUL�
YDGR� 4XDQGR RV LQGLYtGXRV DSUHVHQWDGRV DR VLVWHPD QmR WrP TXDOTXHU ILOLDomR FRP D
HPSUHVD� p FKDPDGR GH VLVWHPD S~EOLFR�

$EHUWR �2SHQ� YV� )HFKDGR �&ORVHG�
6H R PRGR FRPR R VLVWHPD IXQFLRQD� RX VH D LQIRUPDomR VREUH D TXDO HOH WUDEDOKD VmR
GHVFRQKHFLGRV RX SURSULHWiULRV� GL] WUDWDU�VH GH XP VLVWHPD IHFKDGR� &DVR FRQWUiULR�
WUDWD�VH GH XP VLVWHPD DEHUWR�

1R kPELWR GHVWHV WUDEDOKRV GRXWRUDLV� SUHWHQGH�VH FULDU XP VLVWHPD DEHUWR� TXH VHMD VLPXO�
WDQHDPHQWH VXE�UHSWtFLR� QmR�KDELWXDGR H QmR�VXSHUYLVLRQDGR� FRP YLVWD D VHU LQVWDODGR HP
DPELHQWHV S~EOLFRV H QmR�SDGUmR�

$R GHVHQYROYHU XP VLVWHPD ELRPpWULFR� H DOpP GRV UHTXLVLWRV UHODWLYRV DR VLQDO RX FDUDFWHUtVWLFD
ELRPpWULFD� H[LVWHP FLQFR SURSULHGDGHV TXH GHYHP VHU WLGDV HP FRQWD >��@�

3HUIRUPDQFH
7RGRV RV IDWRUHV TXH LQIOXHQFLHP TXHU D YHORFLGDGH� TXHU D SUHFLVmR GR VLVWHPD GHYHP VHU
FRQWHPSODGRV� VHQGR HVFROKLGRV DTXHOHV TXH FRQGX]DP DRV QtYHLV GH SHUIRUPDQFH H[LJLGRV
SHOR FRQWH[WR DR TXDO LUi VHU DSOLFDGR�

$FHLWDomR
e HVVHQFLDO TXH RV XWLOL]DGRUHV DRV TXDLV R VLVWHPD VH GHVWLQD HVWHMDP GLVSRVWRV D DFHLWDU
D GLVSRQLELOL]DomR GRV GDGRV ELRPpWULFRV QHFHVViULRV j RSHUDomR GR PHVPR�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

(YDVmR
2 VLVWHPD GHYH VHU UHODWLYDPHQWH UREXVWR D WHQWDWLYDV GH IUDXGH SDUD TXH QmR SRVVD VHU
IDFLOPHQWH FRQWRUQDGR�

([FHo}HV
2 VLVWHPD GHYH HVWDU PXQLGR GRV PHLRV QHFHVViULRV D OHYDU D FDER IRUPDV GH UHFRQKHFL�
PHQWR DOWHUQDWLYDV �H�J�� VLVWHPD PXOWL�PRGDO� QR FDVR GDV FDUDFWHUtVWLFDV QmR SRGHUHP
VHU H[WUDtGDV SDUD XP XWLOL]DGRU HVSHFtILFR�

&XVWR
2 FXVWR DVVRFLDGR DR GHVHQYROYLPHQWR H PDQXWHQomR GR VLVWHPD GHYH VHU DGHTXDGR DR
FRQWH[WR D TXH LUi VHU DSOLFDGR�

6LQDLV %LRPpWULFRV

$ IDFH H D tULV HQFRQWUDP�VH HQWUH RV VLQDLV ELRPpWULFRV PDLV XWLOL]DGRV SDUD ILQV GH UHFRQKH�
FLPHQWR� H VmR MXQWDPHQWH FRP D LPSUHVVmR GLJLWDO RV PDLV UHIHULGRV QD OLWHUDWXUD >��� ��@�
-DLQ HW DO� >��@ HVWDEHOHFHUDP XP FRQMXQWR GH TXDWUR UHTXLVLWRV DRV TXDLV XPD GHWHUPLQDGD
FDUDFWHUtVWLFD ItVLFD RX FRPSRUWDPHQWDO GHYH REHGHFHU SDUD TXH SRVVD VHU XWLOL]DGD FRPR VLQDO
ELRPpWULFR�

8QLYHUVDOLGDGH
6H XP GHWHUPLQDGR LQGLYtGXR YDL VHU UHFRQKHFLGR DWUDYpV GHVVD FDUDFWHUtVWLFD� HQWmR HOD
WHP GH VHU FRPXP D WRGDV DV SHVVRDV�

'LVFULPLQDomR
$ FDUDFWHUtVWLFD GHYH VHU GH WDO IRUPD LQHTXtYRFD TXH GXDV SHVVRDV GLILFLOPHQWH VHMDP
FRQIXQGLGDV�

3HUIRUPDQFH
$ FDUDFWHUtVWLFD GHYH SHUPDQHFHU HVWiYHO SRU XP SHUtRGR UD]RiYHO GH WHPSR�

&ROHFWLELOLGDGH
3RU ILP� D FDUDFWHUtVWLFD WHP GH FRQVHJXLU VHU DGTXLULGD� H DV VXDV SURSULHGDGHV H[WUDtGDV
GH IRUPD TXDQWLWDWLYD�

'H IRUPD JHUDO� WRGRV H FDGD XP GRV VLQDLV ELRPpWULFRV XWLOL]DGRV DWXDOPHQWH UHVSHLWDP HVVHV
UHTXLVLWRV�

$SUHVHQWDPRV GH VHJXLGD RV VLQDLV ELRPpWULFRV PDLV XWLOL]DGRV >��@� DJUXSDGRV SRU UHJLmR FRU�
SRUDO� WDO FRPR LOXVWUDGR QD )LJXUD ����

$ UHJLmR GD PmR FRQWpP YiULDV FDUDFWHUtVWLFDV H[SORUDGDV SHOR VHX SRWHQFLDO ELRPpWULFR� LP�
SUHVVmR GLJLWDO� LPSUHVVmR GD SDOPD GD PmR� JHRPHWULD GD PmR� SDGU}HV GRV YDVRV VDQJXtQHRV�
LPSUHVVmR GRV QyV GRV GHGRV� HWF�

,PSUHVVmR GLJLWDO
$ SHOH GRV QRVVRV GHGRV FRQWpP SHTXHQDV LUUHJXODULGDGHV� RQGH FXPHV H VXOFRV IRUPDP XP
FRQMXQWR GH SDGU}HV� $ SDUWLU GHVVHV SDGU}HV SRGH VHU H[WUDtGR XP FRQMXQWR GH SRQWRV
GH PLQ~FLD XVDGR SDUD R UHFRQKHFLPHQWR� 7DO FRPR UHIHULGR DQWHULRUPHQWH� HVWH VLQDO
ELRPpWULFR WHP YLQGR D VHU XWLOL]DGR j YiULRV VpFXORV FRP XPD SHUIRUPDQFH FRQVLGHUiYHO�
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6HQGR XPD FDUDFWHUtVWLFD EHP DFHLWH� IiFLO GH XVDU H SDVVtYHO GH VHU DGTXLULGD UHFRUUHQGR
D GLVSRVLWLYRV UHODWLYDPHQWH SHTXHQRV H EDUDWRV� HQFRQWUD�VH DWXDOPHQWH LPSOHPHQWDGD
HP LQ~PHURV DPELHQWHV� GHVGH FRQWUROR GH DFHVVR HP HPSUHVDV DWp DRV FRPSXWDGRUHV
SHVVRDLV�

,PSUHVVmR GD SDOPD GD PmR
'H IRUPD DQiORJD j LPSUHVVmR GLJLWDO� R UHFRQKHFLPHQWR ELRPpWULFR EDVHDGR QD LPSUHVVmR
GD SDOPD GD PmR DVVHQWD QD H[LVWrQFLD GH XP FRQMXQWR GH SDGU}HV IRUPDGR SRU FXPHV H
VXOFRV� 8PD YH] TXH D iUHD GD SDOPD GD PmR p VLJQLILFDWLYDPHQWH PDLRU TXH D GRV GHGRV�
RV SDGU}HV GLVWLQWLYRV VmR WDPEpP HQFRQWUDGRV HP PDLRU Q~PHUR� &RQWXGR� p QHFHVViULR
UHFRUUHU D XP VHQVRU PDLRU SDUD SURFHGHU j DTXLVLomR GRV PHVPRV� &RPR QHP WRGD D iUHD
GD SDOPD GD PmR HQWUD HP FRQWDFWR FRP RV REMHWRV GR GLD�D�GLD GD PHVPD IRUPD TXH D
SRQWD GRV GHGRV� HVWH VLQDO ELRPpWULFR SHUGH DOJXP LQWHUHVVH GR SRQWR GH YLVWD GD DQiOLVH
IRUHQVH�

*HRPHWULD GD PmR
$ JHRPHWULD GD PmR WDPEpP SRGH VHU XWLOL]DGD FRPR VLQDO ELRPpWULFR� DWUDYpV GD PHGLomR
GR FRPSULPHQWR H ODUJXUD GD SDOPD H GHGRV� $SUHVHQWD FRPR YDQWDJHP XPD IRUPD GH
DTXLVLomR QmR�LQWUXVLYD� H QmR UHTXHUHU HTXLSDPHQWR WmR GLVSHQGLRVR FRPR RXWURV VLQDLV�
&RQWXGR� HVWD FDUDFWHUtVWLFD HVWi ORQJH GH VHU VXILFLHQWHPHQWH GLVFULPLQDWLYD SDUD TXH
SRVVD VHU XWLOL]DGD HP ODUJD HVFDOD� XPD YH] TXH PXLWDV SHVVRDV SDUWLOKDP DV PHVPDV
GLPHQV}HV GH PmR�

3DGU}HV GRV YDVRV VDQJXtQHRV
2V SDGU}HV GRV YDVRV VDQJXtQHRV VmR ~QLFRV SDUD FDGD LQGLYtGXR� 1DV PmRV HP SDUWLFXODU�
H[LVWH XP FRPSOH[R VLVWHPD GH YDVRV TXH SHUPLWH R UHFRQKHFLPHQWR ELRPpWULFR� 'HYLGR j
VXD ORFDOL]DomR� WHP XPD ERD DFHLWDomR SRU SDUWH GRV LQGLYtGXRV� HPERUD VHMD QHFHVViULR
TXH WRGD D PmR HVWHMD HP FRQWDFWR FRP R VHQVRU HQTXDQWR p LOXPLQDGD SRU UDGLDomR QR
FRPSULPHQWR GH RQGD LQIUDYHUPHOKR� GH IRUPD D PD[LPL]DU R FRQWUDWH HQWUH DV YHLDV H RV
P~VFXORV GD PmR�

,PSUHVVmR GRV QyV GRV GHGRV
$ LPSUHVVmR GRV QyV GRV GHGRV p UHFROKLGD GD SHOH QD SDUWH GH WUiV GRV GHGRV� (PERUD D VXD
XWLOL]DomR QmR HVWHMD WmR JHQHUDOL]DGD� D WH[WXUD GHVWD UHJLmR GD SHOH p SDUWLFXODUPHQWH
ULFD HP LQIRUPDomR� SRVVXLQGR SRU LVVR ERD FDSDFLGDGH GLVFULPLQDWLYD�

1D ]RQD GD FDEHoD HQFRQWUDP�VH WDPEpP YiULDV UHJL}HV FRP FDUDFWHUtVWLFDV YDOLRVDV GR UHFR�
QKHFLPHQWR ELRPpWULFR� IDFH� IRUPDWR GD RUHOKD� GHQWLomR� HWF� (PERUD D UHJLmR SHULRFXODU
WDPEpP HVWHMD FRQWLGD QHVWH JUXSR� VHUi WUDWDGD QXPD VHFomR VHSDUDGD�

)DFH
2 UHFRQKHFLPHQWR IDFLDO WRUQRX�VH XPD GDV DSOLFDo}HV GH PDLRU VXFHVVR QD GLVFLSOLQD GH
SURFHVVDPHQWR GH LPDJHP� 6HQGR QmR�LQWUXVLYD H SHUPLWLQGR DTXLVLomR VXE�UHSWtFLD� p
XP VLQDO ELRPpWULFR SUHIHUHQFLDO HP UHODomR D RXWURV FRP PHOKRUHV WD[DV GH UHFRQKHFL�
PHQWR� SDUD DSOLFDo}HV QmR�FRRSHUDWLYDV� 9iULRV VLVWHPDV FRPHUFLDLV GH UHFRQKHFLPHQWR
IDFLDO HVWmR GLVSRQtYHLV� EHP FRPR LQ~PHUDV WpFQLFDV GHVHQYROYLGDV WDQWR SDUD LPDJHQV
HVWiWLFDV� FRPR SDUD YtGHRV� QR FRPSULPHQWR GH RQGD YLVtYHO H QR LQIUDYHUPHOKR� (VWDV
WpFQLFDV EDVHLDP�VH TXHU QD DQiOLVH JOREDO GH WRGD D UHJLmR GD IDFH� TXHU QD UHODomR HQWUH
RV YiULRV DWULEXWRV IDFLDLV� D VXD ORFDOL]DomR H IRUPDWR�
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)RUPDWR GD RUHOKD
2 IRUPDWR GD RUHOKD WDPEpP SRGH VHU XWLOL]DGR FRPR FDUDFWHUtVWLFD ELRPpWULFD� PDLV SUH�
FLVDPHQWH D HVWUXWXUD GD VXD FDUWLODJHP� 2V SDGU}HV SRU HOD JHUDGRV SRGHP VHU DGTXLULGRV
WDQWR QR FRPSULPHQWR GH RQGD YLVtYHO H XWLOL]DQGR FkPDUDV FRPXQV� FRPR FRP FkPDUDV
TXH WUDEDOKHP QR LQIUDYHUPHOKR H SHUPLWDP D UHFROKD GD DVVLQDWXUD WpUPLFD� RX DLQGD D
VXD LPSUHVVmR� 2 SULQFLSDO SUREOHPD GHVWH VLQDO ELRPpWULFR HVWi UHODFLRQDGR FRP R IDFWR
GH H[LJLU GR XWLOL]DGRU XP JUDX GH FRRSHUDomR VLJQLILFDWLYR� XPD YH] TXH TXDQGR HP DPEL�
HQWHV QmR�FRQWURODGRV DV RUHOKDV IDFLOPHQWH VH DSUHVHQWDUmR FREHUWDV� $OpP GLVVR� R VHX
DOLQKDPHQWR FRP R VLVWHPD p GLItFLO�

'HQWLomR
$ HVWUXWXUD GD GHQWLomR p ~QLFD SDUD FDGD LQGLYtGXR� &RQWXGR� D DTXLVLomR GD LQIRUPDomR
TXH OKH HVWi DVVRFLDGD FRQVLVWH QXP SURFHVVR DOWDPHQWH FRRSHUDWLYR H LQWUXVLYR� 3RU HVVH
PRWLYR� HVWH WLSR GH UHFRQKHFLPHQWR p XWLOL]DGR HVSHFLDOPHQWH SRU HTXLSDV IRUHQVHV HP
FHQiULRV RQGH QmR SRGHP VHU XWLOL]DGRV RXWURV VLQDLV ELRPpWULFRV�

$ UHJLmR RFXODU p XPD GDV PDLV H[SORUDGDV HP ELRPHWULD� QmR Vy SRU FRQWHU P~OWLSODV FDUDF�
WHUtVWLFDV� PDV WDPEpP SRU SRWHQFLDU VLVWHPDV FRP HOHYDGDV WD[DV GH UHFRQKHFLPHQWR� 2V
VLQDLV H[LVWHQWHV QD UHJLmR RFXODU VmR D tULV� UHWLQD� D SUySULD UHJLmR SHULRFXODU� HWF�

ÌULV
$ tULV KXPDQD DSUHVHQWD XPD PRUIRJHQLD SUHGRPLQDQWHPHQWH DOHDWyULD� ~QLFD SDUD FDGD
LQGLYtGXR� FRQGX]LQGR SRU LVVR D HOHYDGDV WD[DV GH UHFRQKHFLPHQWR� ([LVWH SRU LVVR XP HOH�
YDGR YROXPH GH SHVTXLVD HP WRUQR GHVWH VLQDO ELRPpWULFR� WHQGR�VH WRUQDGR UDSLGDPHQWH
XP GRV PDLV SRSXODUHV� 6HQGR XP yUJmR YLVtYHO GR H[WHULRU� RV VHXV SDGU}HV SRGHP VHU
DGTXLULGRV GH IRUPD PHQRV LQWUXVLYD� &RQWXGR� D VXD SHUIRUPDQFH HVWi IRUWHPHQWH FRQGL�
FLRQDGD HP DPELHQWHV QmR�LGHDLV� GHYLGR DR VHX WDPDQKR UHGX]LGR H HOHYDGD PRELOLGDGH�
WRUQDQGR�VH GLItFLO GH FDSWXUDU D GLVWkQFLDV PDLRUHV VHP D FRRSHUDomR GR XWLOL]DGRU�

5HWLQD
$ UHWLQD p D SDUWH PDLV LQWHUQD GR ROKR� H RV YDVRV VDQJXtQHRV TXH D DWUDYHVVDP SRGHP VHU
XWLOL]DGRV SDUD LGHQWLILFDU LQHTXLYRFDPHQWH XP LQGLYtGXR� (PERUD VHMD XP VLQDO ELRPpWULFR
DOWDPHQWH GLVFULPLQDWLYR� QD PHGLGD HP TXH QmR H[LVWHP GXDV SHVVRDV FRP D PHVPD FRQ�
ILJXUDomR GH YDVRV VDQJXtQHRV� D VXD ORFDOL]DomR H WDPDQKR WRUQDP�QR GLItFLO GH FDSWXUDU�
e QHFHVViULR XP QtYHO HOHYDGR GH FRRSHUDomR SRU SDUWH GR XWLOL]DGRU� TXH WHP GH SHU�
PDQHFHU LPyYHO H FRP R ROKR DOLQKDGR FRP R VHQVRU� 3RU RXWUR ODGR� p H[WUHPDPHQWH
GLItFLO GH IRUMDU� H p DGTXLULGR FRP QtYHLV PXLWR EDL[RV GH UXtGR�

3HULRFXODU
$ UHJLmR SHULRFXODU DSUHVHQWD XP ERP FRPSURPLVVR HQWUH D XWLOL]DomR GH WRGD D IDFH� RX
DSHQDV GD tULV� $ LQIRUPDomR GHVWD UHJLmR p IDFLOPHQWH DGTXLULGD� PHVPR VHP FRRSHUD�
omR SRU SDUWH GR LQGLYtGXR� QD PHGLGD HP TXH QmR UHTXHU XPD FDSWXUD FRRSHUDWLYD H D
FXUWD GLVWkQFLD� &RPR WDO� D VXD XWLOL]DomR FRPR VLQDO ELRPpWULFR WHP YLQGR D HPHUJLU�
FRQVWLWXLQGR KRMH HP GLD XPD IRUWH DOWHUQDWLYD SDUD DPELHQWHV QmS�FRQWURODGRV�

&DUDFWHUtVWLFDV ELRPpWULFDV TXH QHFHVVLWDP GH VHQVRUHV PpGLFRV SDUD VHUHP DGTXLULGDV VmR FODV�
VLILFDGDV GH PpGLFR�TXtPLFDV� $'1� HOHFWUR�FDUGLRJUDP �(&*�� RGRU� HWF�

$'1
2 iFLGR GHVR[LUULERQXFOHLFR �$'1� p D PROpFXOD UHVSRQViYHO SHOD FRGLILFDomR GH WRGDV DV
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LQVWUXo}HV JHQpWLFDV� HVWDQGR SUHVHQWH HP FDGD FpOXOD GR FRUSR KXPDQR� ­ H[FHomR GH
JpPHRV LGrQWLFRV� FDGD LQGLYtGXR WHP XP $'1 ~QLFR H TXH� FRPR WDO� SRGH VHU XVDGR
SDUD R LGHQWLILFDU GH IRUPD LQHTXtYRFD� $SHVDU GD VXD XWLOL]DomR HVWDU JHQHUDOL]DGD MXQWR
GH SURILVVLRQDLV GH FLrQFLD IRUHQVH� R UHFRQKHFLPHQWR EDVHDGR QR $'1 DLQGD p DOWDPHQWH
LQWUXVLYR H GLVSHQGLRVR HP WHUPRV GH WHPSR� H D VXD DTXLVLomR H PDQXVHDPHQWR WrP GH VHU
FRQGX]LGRV FRP H[WUHPR FXLGDGR SDUD HYLWDU FRQWDPLQDomR� $OpP GLVVR� H[LVWHP YiULDV
TXHVW}HV GH SULYDFLGDGH TXH VH OHYDQWDP� QD PHGLGD HP TXH D DQiOLVH GR $'1 SRGH UHYHODU
D SUHGLVSRVLomR GH XPD SHVVRD D FHUWDV GRHQoDV�

2GRU
2 RGRU HPDQDGR SRU XP LQGLYtGXR p WDPEpP HOH ~QLFR� 2V VLVWHPDV DWXDLV SDUD D XWLOL]D�
omR GR RGRU FRPR FDUDFWHUtVWLFD ELRPpWULFD FRQVLVWHP HP DUUD\V GH VHQVRUHV TXtPLFRV�
FDGD XP GHOHV VHQVtYHO D XPD IUDJUkQFLD HP SDUWLFXODU� $LQGD DVVLP� HVWD FDUDFWHUtVWLFD p
DIHWDGD SRU SHUIXPHV� GHVRGRUL]DQWHV� GLHWDV DOLPHQWDUHV� PHGLFDPHQWRV� HWF�

$V FDUDFWHUtVWLFDV ELRPpWULFDV FRPSRUWDPHQWDLV HQTXDGUDP�VH QXP UDPR GLVWLQWR GD ELRPHWULD�
QD PHGLGD HP TXH HVWDEHOHFHP D LGHQWLGDGH GH XP GHWHUPLQDGR LQGLYLGXR DR DQDOLVDU R PRGR
FRPR HVWH VH FRPSRUWD� H QmR RV VHXV DWULEXWRV ItVLFRV RX ILVLROyJLFRV� 2V VLQDLV FRPSRUWDPHQWDLV
PDLV XWLOL]DGRV VmR D YR]� DVVLQDWXUD� PRGR GH DQGDU� PRGR GH GLJLWDU� HWF�

9R]
$ YR] DVVXPH XP SDSHO LPSRUWDQWH QR UHFRQKHFLPHQWR KXPDQR� 0HVPR TXH QmR HVWHMDPRV
D YHU XPD GHWHUPLQDGD SHVVRD� FRQVHJXLPRV UHFRQKHFH�OD DSHQDV SRU RXYLU D VXD YR]� $V
FDUDFWHUtVWLFDV YRFDLV VmR GHWHUPLQDGRV SRU GLYHUVRV IDWRUHV� WDLV FRPR DV FRUGDV YRFDLV
H DV FDYLGDGHV ERFDO H QDVDO� 2V DWXDLV VLVWHPDV GH DXWHQWLFDomR EDVHDGRV QD YR] QmR
RIHUHFHP TXDOLGDGH VXILFLHQWH SDUD DSOLFDo}HV GH DOWD�VHJXUDQoD� XPD YH] TXH VH WUDWD GH
XP VLQDO SDUWLFXODUPHQWH VXMHLWR D LQWHUIHUrQFLDV H GLItFLO GH FDSWXUDU VHP UXtGR PHVPR
HP DPELHQWHV SDGUmR� $OpP GR PDLV� SRGH VHU FRQGLFLRQDGR SHODV HPRo}HV GR XWLOL]DGRU�
HVWDGR FOtQLFR �H�J�� LQIHo}HV UHODFLRQDGDV FRP D JDUJDQWD�� HWF�

$VVLQDWXUD
$ XWLOL]DomR GD DVVLQDWXUD SDUD YHULILFDU D LGHQWLGDGH GH XPD SHVVRD p XP SURFHGLPHQWR
FRPXP QR PXQGR LQWHLUR� HVWDQGR GH WDO IRUPD GLVVHPLQDGR TXH p GDV PRGDOLGDGHV GH
UHFRQKHFLPHQWR PDLV EHP DFHLWH� &RQWXGR� QmR Vy D IRUPD FRPR XP LQGLYtGXR DVVLQD
YDULD FRP R WHPSR� FRPR DLQGD p LQIOXHQFLDGD SHOR VHX HVWDGR HPRFLRQDO H UHTXHU D VXD
FRRSHUDomR�

0RGR GH DQGDU
2 PRGR FRPR XPD SHVVRD DQGD �JDLW� p XPD WDPEpP HOH XPD FDUDFWHUtVWLFD FRPSRUWD�
PHQWDO TXH SRGH VHU XVDGD SDUD R VHX UHFRQKHFLPHQWR� e QmR�LQYDVLYD� SRGH VHU DGTXLULGD
j GLVWkQFLD� H D PDLRULD GDV WpFQLFDV H[LVWHQWHV SDUD D VXD DQiOLVH QmR QHFHVVLWDP GH LQIRU�
PDomR HP DOWD�UHVROXomR� 3RGH SRU LVVR VHU XWLOL]DGD HP GDGRV FDSWXUDGRV SRU FkPDUDV GH
YtGHR�YLJLOkQFLD H HP ORFDLV S~EOLFRV� &RQWXGR� Ki YiULRV IDWRUHV TXH SRGHP LQIOXHQFLDU R
PRGR GH DQGDU GH XPD SHVVRD �H�J�� FDOoDGR RX URXSD GHVFRQIRUWiYHO�� OHYDQGR WDPEpP
D DOWHUDo}HV QD SHUIRUPDQFH GR VLVWHPD�

0RGR GH GLJLWDU
$ DQiOLVH GR PRGR FRPR XP XWLOL]DGRU LQWHUDJH FRP R WHFODGR FRQVWLWXL WDPEpP XPD
FDUDFWHUtVWLFD FRPSRUWDPHQWDO FRP DSOLFDo}HV QR UHFRQKHFLPHQWR ELRPpWULFR� 'H HQWUH
D LQIRUPDomR TXH SRGH VHU H[WUDtGD GHVWH VLQDO WHPRV D YHORFLGDGH GH HVFULWD� D FDGrQFLD
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HQWUH FDGD XPD GDV OHWUDV� H HUURV WtSLFRV GH GLJLWDomR� 7HP FRPR YDQWDJHP R IDFWR GH
QmR VHU QHFHVViULR QHQKXP VHQVRU GLVSHQGLRVR� H D SRVVLELOLGDGH GH VHU DGTXLULGR GH IRUPD
VXE�UHSWtFLD� &RQWXGR� D IRUPD FRPR XP LQGLYtGXR GLJLWD p FRQGLFLRQDGD SHOR VHX HVWDGR
GH HVStULWR� QtYHO GH UHOD[DPHQWR� RX WLSR GH WHFODGR�

)LQDOPHQWH� p LPSRUWDQWH UHIHULU DV FDUDFWHUtVWLFDV GH VRIW�ELRPHWULFV� TXH HPERUD QmR DSUH�
VHQWHP FDSDFLGDGHV GLVFULPLQDWLYDV VXILFLHQWHV SDUD LGHQWLILFDU XP LQGLYtGXR� SRGHP VHU XVDGDV
HP FRQMXQWR FRP RXWURV VLQDLV ELRPpWULFRV SDUD PHOKRUDU DV WD[DV GH UHFRQKHFLPHQWR RX DFH�
OHUDU R SURFHVVR GH SHVTXLVD �H�J�� FDWHJRUL]DomR GRV GDGRV�� &RPR H[HPSOR GH VRIW�ELRPHWULFV
WHPRV R JpQHUR� HWQLD� DOWXUD� PDUFDV QD SHOH �H�J�� WDWXDJHQV�� FRU GR FDEHOR RX GRV ROKRV� HWF�

$YDOLDomR GD 3HUIRUPDQFH

3RU IRUPD D DYDOLDU D SHUIRUPDQFH GH XP GHWHUPLQDGR VLQDO RX VLVWHPD ELRPpWULFR� YiULDV PpWUL�
FDV SRGHP VHU XWLOL]DGDV�

$ GHFLGDELOLGDGH d′� LQLFLDOPHQWH LQWURGX]LGD SRU -RKQ 'DXJPDQ >��@� TXDQWLILFD D VHSDUDELOL�
GDGH HQWUH FRPSDUDo}HV LQWUD� H LQWHU�FODVVH� DQDOLVDQGR D UHODomR HQWUH DV VXDV PpGLDV µ H
GHVYLRV SDGUmR σ ������ GDGR TXH DPEDV VHMDP GLVWULEXLo}HV *DXVVLDQDV� &RPSDUDo}HV LQWUD�
FODVVH UHIHUHP�VH D FRPSDUDo}HV HP TXH WDQWR D LQIRUPDomR DGTXLULGD FRPR R WHPSODWH DR
TXDO HVWi D VHU FRPSDUDGD SHUWHQFHP DR PHVPR XWLOL]DGRU� H LQWHU�FODVVH TXDQGR SHUWHQFHP D
GLIHUHQWHV LQGLYtGXRV�

2XWUD UHSUHVHQWDomR FRPXP GH SHUIRUPDQFH HP SUREOHPDV GH FODVVLILFDomR ELQiULD p D FXUYD
5HFHLYHU 2SHUDWLQJ &KDUDFWHULVWLF �52&�� (VWH JUiILFR UHODFLRQD D VHQVLELOLGDGH �RX 7UXH 3RVL�
WLYH 5DWH �735�� GH XP VLVWHPD FRP R )DOVH 3RVLWLYH 5DWH �)35� H� FRP EDVH QHOH� p SRVVtYHO
TXDQWLILFDU D SHUIRUPDQFH WDPEpP FRP EDVH QD $UHD 8QGHU &XUYH �$8&�� (VWD ~OWLPD PpWULFD
YDULD QR LQWHUYDOR [0, 1]� FRUUHVSRQGHQGR D XQLGDGH DR FHQiULR LGHDO HP TXH WRGDV DV FRPSDUD�
o}HV JHQXtQDV IRUDP REWLGDV VHP IDOVRV SRVLWLYRV� (VWDEHOHFHQGR R OLPLDU GH DFHLWDomR GH WDO
IRUPD D TXH R HUUR LQWURGX]LGR VHMD LJXDO HP DPEDV DV FODVVHV� REWHPRV R (TXDO (UURU 5DWH �((5��

$ VHQVLELOLGDGH �RX 735�� H HVSHFLILFLGDGH �63&� VmR GDGDV SHODV HTXDo}HV ����� H ����� UHVSHWL�
YDPHQWH� H UHODFLRQDP D TXDQWLGDGH GH UHVSRVWDV FRUUHFWDV FRP R WRWDO GH UHVXOWDGRV SRVLWLYRV
�7UXH 3RVLWLYHV �73� � )DOVH 1HJDWLYHV �)1�� H DV UHSRVWDV QHJDWLYDV �7UXH 1HJDWLYHV �71� � )DOVH
3RVLWLYHV �)3��� $ $FFXUDF\ �$&&� ����� p XWLOL]DGD SDUD H[SUHVVDU R UiFLR GH FRPSDUDo}HV FRU�
UHWDPHQWH FODVVLILFDGDV� 2 VHX YDORU Pi[LPR p �� TXH FRUUHVSRQGH DR FHQiULR yWLPR HP TXH
WRGDV DV FODVVHV IRUDP FODVVLILFDGDV GH IRUPD FRUUHWD� 3DUD XPD DQiOLVH PDLV HTXLOLEUDGD HP
VLWXDo}HV RQGH H[LVWD XPD JUDQGH GLVFUHSkQFLD HQWUH D TXDQWLGDGH GH FRPSDUDo}HV JHQXtQDV H
GH LPSRVWRUHV� SRGH VHU XWLOL]DGR R 0DWKHZV &RUUHODWLRQ &RHIILFLHQW �0&&� ������ (VWD PpWULFD
YDULD QR LQWHUYDOR [−1, 1]� VHQGR D XQLGDGH R YDORU yWLPR >��@�

$PELHQWHV 1mR�&RQWURODGRV

9iULRV DXWRUHV VH GHEUXoDUDP VREUH RV SULQFLSDLV SUREOHPDV HQFRQWUDGRV HP DPELHQWHV QmR�
FRQWURODGRV� )DQFRXUW HW DO� >��@ FRQFOXLX VHU SRVVtYHO DGTXLULU LQIRUPDomR GD tULV FRP TXDOLGDGH
VXILFLHQWH HP GLVWkQFLDV DWp �� PHWURV� 6PLWK HW DO� >��@ H[DPLQDUDP FRPSDUDWLYDPHQWH D LQIRU�
PDomR GD tULV FDSWXUDGD VLPXOWDQHDPHQWH QR LQIUDYHUPHOKR H QR FRPSULPHQWR GH RQGD YLVtYHO�
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DERUGDQGR D SRVVLELOLGDGH GH FRPELQDU LQIRUPDomR PXOWL�HVSHFWUDO SDUD DXPHQWDU DV WD[DV GH
UHFRQKHFLPHQWR� 1D QRVVD SHVTXLVD >�@ DQDOLViPRV D XVDELOLGDGH GD tULV QR FRPSULPHQWR GH RQGD
YLVtYHO� TXDQWLILFDQGR DV FRQGLo}HV TXH SHUPLWLULDP XPD PDLRU FRQILDQoD QR UHFRQKHFLPHQWR�
&RQFOXtPRV TXH R QtYHO GH LOXPLQDomR GD FHQD WHP XP LPSDFWR VLJQLILFDWLYR� QmR GHYHQGR VHU
LQIHULRU D 120cd/m2� VHQGR R WLSR GH LOXPLQDQWH HP XWLOL]DomR GH PHQRU UHOHYkQFLD� 5RVV HW
DO� >��@ FHQWUDUDP�VH QR SUREOHPD GR UHFRQKHFLPHQWR HP LPDJHQV GHJUDGDGDV GD tULV� WHQGR
FRQVLGHUDGR FLQFR IDWRUHV GH UXtGR� �� LOXPLQDomR QmR�XQLIRUPH� �� PRYLPHQWR� �� GHVIRTXH� ��
GHVYLR QR ROKDU� H �� GHIRUPDo}HV QmR�OLQHDUHV� 2 DVSHWR FKDYH GR VHX PpWRGR p TXH D FRGLIL�
FDomR EDVHDGD QXPD ~QLFD FDUDFWHUtVWLFD QmR VROXFLRQD WRGDV HVWDV YDULDo}HV� WHQGR RV DXWRUHV
SURSRVWR XP SURFHVVR GH FRGLILFDomR H FRPSDUDomR EDVHDGR HP WUrV PpWRGRV GLVWLQWRV� �� KLV�
WRJUDPDV GH JUDGLHQWHV RULHQWDGRV� �� 6FDOH�,QYDULDQW )HDWXUH 7UDQVIRUP �6,)7�� H �� PRGHOR
SUREDELOtVWLFR GH GHIRUPDomR� $ LQIRUPDomR H[WUDtGD GH FDGD GHVFULWRU p FRPSDUDGD GH IRUPD
LQGHSHQGHQWH� H RV UHVXOWDGRV FRPELQDGRV QR ILQDO UHFRUUHQGR D XPD UHJUD FOiVVLFD GD VRPD�
([SHULrQFLDV QDV EDVHV�GH�GDGRV )2&6 H )DFH 5HFRJQLWLRQ *UDQG &KDOOHQJH �)5*&�� HQFRUDMDP
R GHVHQYROYLPHQWR GH PDLV WUDEDOKRV FRP HVWH WLSR GH DERUGDJHP KtEULGD >��@� 4XDQWR DRV
GLIHUHQWHV IDWRUHV GH UXtGR TXH LQIOXHQFLDP R UHFRQKHFLPHQWR HP FHQiULRV QmR�FRQWURODGRV� RV
PHVPRV HQFRQWUDP�VH GHVFULWRV H LOXVWUDGR HP PDLRU GHWDOKH QD VHFomR ������ GR FDStWXOR ���
H )LJXUD �����

$ HILFLrQFLD GH VLVWHPDV GH UHFRQKHFLPHQWR EDVHDGRV QD IDFH HP DPELHQWHV QmR�FRQWURODGRV p
LQIOXHQFLDGD SRU XPD VpULH GH IDWRUHV >��@� D VXD HVWUXWXUD WULGLPHQVLRQDO SURYRFD YDULDo}HV QD
VXD DSDUrQFLD� HVVHQFLDOPHQWH D SRVH GR XWLOL]DGRU� UHJL}HV VLJQLILFDWLYDV GD IDFH HVWmR JHUDO�
PHQWH VXMHLWDV D RFOXVmR �H�J�� DTXLVLomR QmR RUWRJRQDO�� D VXD DSDUrQFLD p FODUDPHQWH DIHWDGD
SHODV H[SUHVV}HV IDFLDLV� H SRGH VHU IDFLOPHQWH GLVIDUoDGD�

3RU ~OWLPR� DPELHQWHV QmR�FRQWURODGRV SRGHP QmR SHUPLWLU DGTXLULU GH IRUPD VDWLVIDWyULD QHP
D tULV QHP D IDFH� 1HVVHV FDVRV� D XWLOL]DomR GH LQIRUPDomR QD UHJLmR FLUFXQGDQWH DR ROKR �L�H��
UHJLmR SHULRFXODU� WHP YLQGR D JDQKDU FUHVFHQWH LQWHUHVVH SRU SDUWH GD FRPXQLGDGH FLHQWtILFD�
UHSUHVHQWDQGR XP ERP FRPSURPLVVR HQWUH XWLOL]DU D IDFH FRPSOHWD RX DSHQDV D tULV >��@�

'LVSRVLWLYRV 0yYHLV

$ XWLOL]DomR GH GLVSRVLWLYRV PyYHLV �H�J�� WHOHPyYHLV H WDEOHWV� WHP YLQGR D FUHVFHU VLJQLILFDWL�
YDPHQWH DR ORQJR GRV ~OWLPRV DQRV� EHP FRPR DV VXDV FDSDFLGDGHV H DSOLFDo}HV� $ LPSOHPHQ�
WDomR GH WHFQRORJLDV GH UHFRQKHFLPHQWR ELRPpWULFR QHVWH WLSR GH JDGJHW QmR Vy p GHVHMDGD�
FRPR UHSUHVHQWD D GLVSRQLELOL]DomR GH VROXo}HV GH UHFRQKHFLPHQWR DR XWLOL]DGRU FRPXP H� FRQ�
VHTXHQWHPHQWH� HP TXDOTXHU ODGR H HP TXDOTXHU DOWXUD�

$ PDLRULD GRV DOJRULWPRV GHVHQKDGRV SDUD DPELHQWHV LQ WKH ZLOG FRQVHJXH IXQFLRQDU VHP SUR�
EOHPD HP GLVSRVLWLYRV GH FRQVXPR� &RQWXGR� H D SDU GDV TXHVW}HV Mi OHYDQWDGDV SHORV DPELHQWHV
QmR�FRQWURODGRV� XP UHFRQKHFLPHQWR EDVHDGR QD tULV HVWi� QHVWH WLSR GH GLVSRVLWLYRV PyYHLV� DV�
VRFLDGR D XPD VpULH GH SUREOHPDV� RV WHOHPyYHLV H WDEOHWV YrP HTXLSDGRV FRP XPD YDVWD JDPD
GH VHQVRUHV �L�H�� FkPDUDV� H OHQWHV� LQWURGX]LQGR GLVFUHSkQFLDV QDV LPDJHQV DGTXLULGDV �H�J��
GLVWRUo}HV GD FRU�� D DFTXLVLomR GRV VLQDLV ELRPpWULFRV RQ�WKH�JR SRU LQGLYtGXRV ´QmR�WUHLQDGRVµ
LUi UHVXOWDU HP PDLRUHV YDULDo}HV GH SRVH� H[SUHVVmR� kQJXOR GH DTXLVLomR� HVFDOD H URWDomR
�H�J�� RV XWLOL]DGRUHV VHJXUDP RV GLVSRVLWLYRV PyYHLV GH IRUPD GLVWLQWD�� R DPELHQWH RQGH D
LPDJHP HVWi D VHU DGTXLULGD SRGH WHU FRQGLo}HV GH LOXPLQDomR LQVXILFLHQWHV� RX PHVPR LOXPL�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

QDomR H[WHULRU PXLWR IRUWH TXH SRGH SURYRFDU UHIOH[RV VREUH XPD SDUWH VLJQLILFDWLYD GD tULV� HWF�

1R FDStWXOR �� HVWmR GHWDOKDGRV RV HVIRUoRV GHVHQYROYLGRV DR ORQJR GHVWHV WUDEDOKRV GRXWRUDLV
QR VHQWLGR GH PLQLPL]DU HVWHV SUREOHPDV� GHVFUHYH�VH D DTXLVLomR GH XPD EDVH GH GDGRV GD tULV
H SHULRFXODU� DGTXLULGD FRP GH] FRQILJXUDo}HV PyYHLV GLVWLQWDV� GHWDOKD�VH D XWLOL]DomR GH XP
PpWRGR GH FRUUHomR GH FRU DGDSWDGR D FDGD FRQILJXUDomR PyYHO� GH IRUPD D FRPSHQVDU DV GLIHU�
HQWHV SHUFHo}HV GH FRU TXH D HOD VmR LQHUHQWHV� H VmR DSOLFDGDV HVWUDWpJLDV GH UHFRQKHFLPHQWR
GD tULV H GD UHJLmR SHULRFXODU SUR IRUPD D DWLQJLU R UHFRQKHFLPHQWR ELRPpWULFR HP GLVSRVLWLYRV
PyYHLV�

)DVHV GH XP 6LVWHPD GH 5HFRQKHFLPHQWR ,Q WKH :LOG

$R GHVHQKDU XP VLVWHPD GH UHFRQKHFLPHQWR GHVWLQDGR D DPELHQWHV LQ WKH ZLOG p QHFHVViULR
FRPSOHPHQWDU RV TXDWUR HOHPHQWRV�FKDYH SUHYLDPHQWH PHQFLRQDGRV� ILFDQGR R VLVWHPD GLYLGLGR
QDV VHWH�IDVHV SULQFLSDLV LOXVWUDGDV QD )LJXUD ����

�� $TXLVLomR GR 6LQDO %LRPpWULFR $ HVFROKD GR VHQVRU GH DTXLVLomR GHSHQGHUi GR VLQDO ELR�
PpWULFR TXH VH SUHWHQGH DGTXLULU� 1R FDVR HVSHFtILFR GH DPELHQWHV LQ WKH ZLOG� GHYH
UHFRUUHU�VH D VHQVRUHV TXH QmR QHFHVVLWHP GH LQWHUDomR SRU SDUWH GR XWLOL]DGRU� QD VXD
PDLRULD FkPDUDV� 2XWUR IDWRU D WHU HP FRQWD� SULQFLSDOPHQWH DR SURMHWDU VLVWHPDV GH
IXQFLRQDPHQWR HP WHPSR UHDO� p R FRPSURPLVVR HQWUH D GHILQLomR GD LQIRUPDomR DGTXLULGD
H DV WD[DV GH DTXLVLomR�

�� $YDOLDomR GD 4XDOLGDGH 0HVPR R PDLV RWLPL]DGR GRV VHQVRUHV QHP VHPSUH GHYROYH LQ�
IRUPDomR FRQVLGHUDGD LGHDO� H TXH SHUPLWD D H[WUDomR GH FDUDFWHUtVWLFDV FRP HOHYDGD
FRQILDQoD� 4XDQWLILFDU D TXDOLGDGH GD LQIRUPDomR DGTXLULGD� GHVFDUWDQGR LPDJHQV TXH
QmR VH DGHTXHP jV IDVHV VHJXLQWHV GR SURFHVVDPHQWR� SHUPLWLUi GLPLQXLU WDQWR R WHPSR
ILQDO GH H[HFXomR� FRPR DV WD[DV GH HUUR GR VLVWHPD�

�� 0HOKRULD GR 6LQDO &RPSOHPHQWDUPHQWH j DYDOLDomR GH TXDOLGDGH� R VLQDO DGTXLULGR SHOR
VHQVRU SRGH VHU VXEPHWLGR D PpWRGRV GH UHPRomR GH UXtGR� VH IRUHP FRQKHFLGRV RV IDWRUHV
TXH SURYRFDUDP D VXD GHJUDGDomR� $LQGD TXH R VLQDO RULJLQDO QmR SRVVD VHU UHVWDXUDGR�
HVWH SDVVR SRGH VHU XVDGR SDUD DXPHQWDU D SHUIRUPDQFH GR VLVWHPD� RX HP VLWXDo}HV HP
TXH RV GDGRV VHMDP DGTXLULGRV FRP TXDOLGDGH HVSHFLDOPHQWH UHGX]LGD�

�� 'HWHomR H 6HJPHQWDomR 2 VLQDO ELRPpWULFR QHFHVVLWD GH VHU GHYLGDPHQWH ORFDOL]DGR H
VHJPHQWDGR� SDUD TXH D H[WUDomR GH FDUDFWHUtVWLFDV SRVVD VHU OHYDGD D FDER GH IRUPD
HILFLHQWH� $ IDVH GH VHJPHQWDomR SHUPLWH WDPEpP GHVFDUWDU IDWRUHV GH UXtGR TXH WHQKDP
WUDQVLWDGR GDV IDVHV DQWHULRUHV �H�J�� RFOXVmR GD tULV��

�� ([WUDomR GH FDUDFWHUtVWLFDV 8P FRQMXQWR UHSUHVHQWDWLYR GH FDUDFWHUtVWLFDV WHP GH VHU
H[WUDtGR� GH WDO IRUPD D TXH D LQIRUPDomR GLVFULPLQDQWH GH FDGD VXMHLWR VHMD FRGLILFDGD�
(P VLVWHPDV GH WHPSR UHDO� HVWDV FDUDFWHUtVWLFDV GHYHP VHU H[WUDtGDV WmR UiSLGR TXDQWR
SRVVtYHO� H FRGLILFDGDV PLQLPL]DQGR R FXVWR FRPSXWDFLRQDO� 'XUDQWH D IDVH GH UHJLVWR�
D LQIRUPDomR UHFROKLGD GRV XWLOL]DGRUHV p DUPD]HQDGD QD EDVH�GH�GDGRV SDUD TXH� PDLV
WDUGH� HVWHV SRVVDP VHU LGHQWLILFDGRV RX DV VXDV LGHQWLGDGHV YDOLGDGDV�

�� &RPSDUDomR $V FDUDFWHUtVWLFDV VmR HQWmR FRPSDUDGDV FRP RV WHPSODWHV GD EDVH�GH�GDGRV�
(P VLVWHPDV GH WHPSR UHDO� QmR Vy D LQIRUPDomR GD EDVH�GH�GDGRV GHYH HVWDU RWLPL]DGD
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SDUD XP UiSLGR DFHVVR� FRPR VRIW�ELRPWULFV SRGHP VHU XWLOL]DGDV SDUD UHGX]LU R HVSDoR GH
SURFXUD�

�� 7RPDGD GH GHFLVmR &RP EDVH QR UHVXOWDGR GD IDVH GH FRPSDUDomR �TXH SRGHP VHU YiULRV�
QR FDVR GH XP VLVWHPD PXOWL�PRGDO�� p WRPDGD XPD GHFLVmR ILQDO VREUH D LGHQWLGDGH GR
LQGLYtGXR� (YHQWXDOPHQWH� R VLVWHPD SRGH QmR VHU FDSD] GH FKHJDU D XPD FRQFOXVmR SRVL�
WLYD VREUH D LGHQWLGDGH GR XWLOL]DGRU� PDV DLQGD DVVLP VHU FDSD] GH UHGX]LU R FRQMXQWR GH
SRVVLELOLGDGHV�

$ ÌULV FRPR 6LQDO %LRPpWULFR

$ SRVVLELOLGDGH GH DGTXLULU D LQIRUPDomR GD tULV D XPD GHWHUPLQDGD GLVWkQFLD� H DV HOHYDGDV WD[DV
REWLGDV QR UHFRQKHFLPHQWR FRRSHUDWLYR� WRUQDP�QD XP SRVVtYHO VLQDO ELRPpWULFR WDPEpP SDUD
FHQiULRV QmR�FRQWURODGRV� MXVWLILFDQGR RV HVIRUoRV HP ´UHOD[DUµ DV FRQGLo}HV GH DTXLVLomR >��
��� ��@�

$ tULV WHP LQ~PHUDV SURYDV GDGDV HQTXDQWR FDUDFWHUtVWLFD ELRPpWULFD� VHQGR TXH RV VLVWHPDV
GH UHFRQKHFLPHQWR QHOD EDVHDGRV HVWmR LPSOHPHQWDGRV SDUD XP IXQFLRQDPHQWR IRUWHPHQWH
FRRSHUDWLYR� RV XWLOL]DGRUHV QHFHVVLWDP GH SHUPDQHFHU LPyYHLV H UHODWLYDPHQWH SUy[LPRV DR
GLVSRVLWLYR GH DTXLVLomR� HQTXDQWR XPD LPDJHP GD tULV p DGTXLULGD QR LQIUDYHUPHOKR�SUy[LPR
���� D ��� QP�� 2 UHFXUVR D LOXPLQDomR QR LQIUDYHUPHOKR SHUPLWH DGTXLULU LPDJHQV GH ERD TXDOL�
GDGH� HYLWDQGR D PDLRULD GRV IDWRUHV GH UXtGR DVVRFLDGRV j LOXPLQDomR QR FRPSULPHQWR GH RQGD
YLVtYHO �H�J�� UHIOH[RV�� &RQWXGR� DR SDVVDUPRV SDUD DPELHQWHV QmR�FRQWURODGRV HP TXH D tULV
p DGTXLULGD D GLVWkQFLDV VXSHULRUHV H HP TXH RV XWLOL]DGRUHV HVWmR HP PRYLPHQWR� QHFHVVLWD�
PRV GH FkPDUDV FRP XP I�QXPEHU PDLRU H PHQRU WHPSR GH H[SRVLomR SDUD TXH VH REWHQKD XP
GHSWK�RI�ILHOG DFHLWiYHO� 8PD YH] TXH H[LVWH XPD UHODomR GLUHWD HQWUH HVVHV YDORUHV H D TXDQWL�
GDGH GH OX] QD FHQD� SDUD TXH R VLVWHPD FRQWLQXDVVH D RSHUDU QR LQIUDYHUPHOKR VHULD QHFHVViULR
UHFRUUHU D LOXPLQDGRUHV VXILFLHQWHPHQWH SRWHQWHV� VHQGR HVWHV SUHMXGLFLDLV j YLVmR KXPDQD XPD
YH] TXH R RUJDQLVPR QmR WHP PHFDQLVPRV QDWXUDLV GH UHVSRVWD �H�J�� FRQWUDomR GD SXSLOD�� $
H[HTXLELOLGDGH GR UHFRQKHFLPHQWR GD tULV QHVWH WLSR GH DPELHQWHV XVDQGR R FRPSULPHQWR GH
RQGD YLVtYHO FRQWLQXD D VHU XP WHPD FRQWURYHUVR� HVSHFLDOPHQWH SDUD tULV FRP XP HOHYDGR QtYHO
GH SLJPHQWDomR �R TXH UHSUHVHQWD D PDLRU SDUWH GD SRSXODomR PXQGLDO��

1D IDVH GH VHJPHQWDomR GD tULV� PXLWDV WpFQLFDV EDVHLDP�VH QXPD FRUUHWD SDUDPHWUL]DomR GD
WUDQVIRUPDGD GH +RXJK� -XQOL HW DO� >��@ GHVHQYROYHUDP XPD WpFQLFD GH HOOLSVH ILWWLQJ UR�
EXVWD D PDSDV GH DUHVWDV UXLGRVRV� HVSHFLDOPHQWH DGDSWDGD D GDGRV GHJUDGDGRV� 3DUD UHVROYHU
R SUREOHPD DVVRFLDGR FRP D DTXLVLomR GH LPDJHQV D PDLRUHV GLVWkQFLDV� 7DQ DQG .LPDU >��@
SURSXVHUDP XP PpWRGR EDVHDGR QR DOJRULWPR JURZ�FXW FDSD] GH GLVFULPLQDU HQWUH LQIRUPDomR
FRUUHVSRQGHQWH j tULV H QmR� 2V UHVXOWDGRV VmR DLQGD UHILQDGRV DWUDYpV GD HVWLPDWLYD GR FHQWUR
GD tULV� GR UHILQDPHQWR GRV FRQWRUQRV� GD UHPRomR GH SHVWDQDV H VRPEUDV� H GD ORFDOL]DomR GDV
SiOSHEUDV� (VWH PpWRGR IRL YDOLGDGR FRQWUD EDVHV�GH�GDGRV EHP FRQKHFLGDV �8%,5,6�Y�� )5*&
H &$6,$�Y� 'LDWDQFH�� DSUHVHQWDGR XP PHQRU FXVWR FRPSXWDFLRQDO HP UHODomR D HVWUDWpJLDV
DQiORJDV� $ORQVR�)HUQDQGH] H %LJXQ >��@ VHJPHQWDP D tULV FRP EDVH QR DOJRULWPR *HQHUDOL]HG
6WUXFWXUH 7HQVRU� UHFRUUHQGR D ILOWURV FRPSOH[RV� RV DXWRUHV REWrP LQIRUPDomR VREUH D PDJQL�
WXGH H RULHQWDomR GH FDGD SL[HO GD IURQWHLUD� IRUQHFHQGR LQIRUPDomR DGLFLRQDO SDUD XPD PHOKRU
GLVWLQomR GRV FRQWRUQRV SHUWHQFHQWHV DRV OLPLWHV GD tULV� ;LQ\X HW DO� >��@ SURS}HP XP DOJRULWPR
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

FDSD] GH VHJPHQWDU LPDJHQV GD tULV PXLWR UREXVWR D YDULDo}HV GH HVFDOD �GLkPHWUR GD tULV D YDULDU
HQWUH �� H ��� SL[HOV�� &RPHoD SRU GHWHFWDU XP FRQMXQWR GH FRQWRUQRV XVDQGR R GHWHWRU &DQQ\�
XVDQGR GH VHJXLGD RV FRPSRQHQWHV QmR OLJDGRV FRPR QRGRV GH XP JUDIR� 3RU ILP p XWLOL]DGR XP
FULWpULR GH FRUWH SDUD GLVWLQJXLU TXDLV RV FRQWRUQRV GD tULV PDLV SURYiYHLV�

$R WUDEDOKDU HP DPELHQWHV QmR�FRQWURODGRV� p GH SDUWLFXODU LPSRUWkQFLD TXH R VLVWHPD SRVVXD
XP PyGXOR GH GHWHomR GH UXtGR SDUD TXH VH SRVVDP GLVWLQJXLU DV VXE�UHJL}HV GD tULV TXH VH
HQFRQWUDP RFOXtGDV SRU RXWUR WLSR GH LQIRUPDomR �H�J�� SiOSHEUDV� SHVWDQDV� UHIOH[RV�� 'HVWD
IRUPD� p SRVVtYHO DWHQXDU R VHX LPSDFWR QD IDVH GH FRGLILFDomR� GLPLQXLQGR D WD[D GH IDOVDV
UHMHLo}HV �)55� >��@� $ PDLRULD GRV DXWRUHV TXH VH GHEUXoDUDP VREUH HVWH SUREOHPD XWLOL]RX
PpWRGRV EDVHDGRV HP UHJUDV H� SRU FRQVHJXLQWH� D VXD HILFiFLD SRGH VHU TXHVWLRQDGD� 3RU RXWUR
ODGR� /L H 6DYYLGHV >��@ XWLOL]DUDP *DXVVLDQ 0L[WXUH 0RGHOV SDUD PRGHODU DV GLVWULEXLo}HV GH
SUREDELOLGDGH GDV UHJL}HV OLYUHV GH UXtGR� H GDV TXH HVWDYDP RFOXtGDV� &RPR FDUDFWHUtVWLFD EDVH
RV DXWRUHV SURSXVHUDP ILOWURV GH *DERU RWLPL]DGRV�

'HWHUPLQDU D TXDOLGDGH GD LQIRUPDomR DGTXLULGD SHUPLWH WDPEpP� FRPR Mi IRL UHIHULGR� PHOKR�
UDU D SHUIRUPDQFH GR VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR� =XR H 6FKPLG >��@ SURSXVHUDP
D GHWHUPLQDomR GH WUrV tQGLFHV GH TXDOLGDGH� TXDOLGDGH GD DPRVWUD� FRQILDQoD QR UHVXOWDGR
GD FRPSDUDomR� H TXDOLGDGH GD DPRVWUD H WHPSODWH� (VWH DOJRULWPR WHP D YDQWDJHP GH VHU
JHQpULFR H� SRU LVVR� DGHTXDGR WDPEpP D RXWUDV PRGDOLGDGHV ELRPpWULFDV�

$ WH[WXUD GD tULV p FDUDFWHUL]DGD SHOD GLWULEXLo}D LUUHJXODU GH FDUDFWHUtVWLFDV ORFDLV� WDLV FRPR
IXUURZV� FULSWDV� UXJDV H VSRWV� &RPR WDO� DV WpFQLFDV WUDGLFLRQDLV GH UHFRQKHFLPHQWR EDVHLDP�
VH QD WH[WXUD� GHFRPSRQGR D LQIRUPDomR GD tULV QXP FRQMXQWR GH FRHILFLHQWHV QXPpULFRV FRU�
UHVSRQGHQWHV D RULHQWDo}HV RX IUHTXrQFLDV GRV SDGU}HV GRPLQDQWHV� 2V VLVWHPDV GH UHFRQKHFL�
PHQWR GD tULV LPSOHPHQWDGRV FRPHUFLDOPHQWH EDVHLDP�VH QR PpWRGR SLRQHLUR GH 'DXJPDQ >��@�
H FRQVHJXHP DOFDQoDU XPD SHUIRUPDQFH H[FHFLRQDO HP GDGRV DGTXLULGRV QR LQIUDYHUPHOKR� $SH�
VDU GH DOJXPDV PHOKRULDV >��@� HVWH SURFHVVR GH UHFRQKHFLPHQWR FRQVLVWH QD WUDQVSRVLomR GD tULV
VHJPHQWDGD SDUD XP VLVWHPD GH FRRUGHQDGDV SVHXGR�SRODU� SRU IRUPD D REWHU LQYDULkQFLD j
HVFDOD H WUDQVODomR� 1HVWD YHUVmR QRUPDOL]DGD GD tULV p HQWmR IHLWD D FRQYROXomR FRP XP FRQ�
MXQWR GH ILOWURV GH *DERU� D P~OWLSODV IUHTXrQFLDV H RULHQWDo}HV� VHQGR R UHVXOWDGR TXDQWLILFDGR
QXP GRV TXDGUDQWHV� FRP D H[WUDomR GH GRLV ELWV SDUD D LQIRUPDomR GD IDVH� 3DUD D FRPSDUD�
omR GH DVVLQDWXUDV p XWLOL]DGD D GLVWkQFLD GH +DPPLQJ� VHQGR IHLWDV FRPSDUDo}HV FRP GLYHUVDV
WUDQVODo}HV GRV GDGRV GH IRUPD D REWHU LQYDULkQFLD j URWDomR� 2XWURV PpWRGRV FOiVVLFRV GR UHFR�
QKHFLPHQWR GD tULV EDVHLDP�VH HP ]HUR�FURVVLQJ� FRPR %ROHV H %RDVKDVK >��@ TXH XVDP ZDYHOHWV
�' FRP GLIHUHQWHV UHVROXo}HV HP FtUFXORV FRQFrQWULFRV� RX QD DQiOLVH GD WH[WXUD GD tULV� FRPR D
WpFQLFD GH :LOGHV >��@ TXH FRGLILFD D LQIRUPDomR FRP EDVH QXPD SLUkPLGH /DSODFLDQD� (P WRGR
R FDVR� TXDOTXHU XPD GHVWDV WpFQLFDV SUHVVXS}H FRRSHUDomR SRU SDUWH GR XWLOL]DGRU�

2 UHFRQKHFLPHQWR HP DPELHQWHV PHQRV FRQWURODGRV JDQKRX PDLRU UHOHYkQFLD FRP R SURMHWR
,ULV�RQ�WKH�0RYH >��@� XP VLVWHPD GH DTXLVLomR GH LPDJHP TXH WRUQD R UHFRQKHFLPHQWR GD tULV
PHQRV LQWUXVLYR SDUD RV XWLOL]DGRUHV� H XP ERP H[HPSOR GH HQJHQKDULD� LPDJHQV VmR DGTXLULGDV
QD JDPD GH LQIUDYHUPHOKRV PDLV SUy[LPD GR FRPSULPHQWR GH RQGD YLVtYHO� HQTXDQWR R LQGLYtGXR
DWUDYHVVD XP SRUWDO GH FRQWUROR GH DFHVVR GHVORFDQGR�VH j VXD YHORFLGDGH QRUPDO� $ HPSUHVD
+RQH\ZHOO 7HFKQRORJLHV GHX HQWUDGD QR SURFHVVR GH SDWHQWH SDUD XP VLVWHPD VLPLODU >��@� WDP�
EpP HOH FDSD] GH UHFRQKHFHU SHVVRDV XWLOL]DQGR FDSWXUDQGR D tULV D XPD FHUWD GLVWkQFLD�
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$ 5HJLmR 3HULRFXODU

$R ROKR H j VXD iUHD FLUFXQGDQWH Gi�VH R QRPH GH UHJLmR SHULRFXODU� $ VXD XWLOL]DomR SDUD
HIHLWRV GH ELRPHWULD IRL LQVSLUDGD QD FDSDFLGDGH TXH RV VHUHV KXPDQR WrP HP VH UHFRQKHFHU
HQWUH VL DWUDYpV GR ROKDU� $ XWLOLGDGH GHVWD UHJLmR p SDUWLFXODUPHQWH QRWyULD HP FHQiULRV PHQRV
FRQWURODGRV� TXDQGR R JUDX GH FRQILDQoD QD LQIRUPDomR DGTXLULGD VHMD PHQRU� H FRPR IRUPD GH
FRPSHQVDU SUREOHPDV LQWURGX]LGRV SHOR PHLR HQYROYHQWH RX LQGLYtGXRV TXH QmR HVWHMDP GLVSRV�
WRV D FRRSHUDU FRP R VLVWHPD� 2XWUDV DSOLFDo}HV LQWHUHVVDQWHV GD UHJLmR SHULRFXODU VmR FHQiULRV
RQGH D IDFH VRIUHX WUDQVIRUPDo}HV �H�J�� FLUXUJLD SOiVWLFD� >��� ��@�

$GTXLULU LPDJHQV GHVWH VLQDO ELRPpWULFR QmR SUHVVXS}H D QHFHVVLGDGH GH DPELHQWHV FRQWURODGRV�
QHP GD FRRSHUDomR SRU SDUWH GR XWLOL]DGRU� e UHODWLYDPHQWH HVWiYHO �TXDQGR FRPSDUDGR FRP
D UHJLmR IDFLDO� H UDUDPHQWH VH HQFRQWUD RFOXtGR� $OpP GLVVR� HVWDQGR D tULV ORFDOL]DGD QR VHX
LQWHULRU� SRGHP DPEDV VHU DGTXLULGDV FRP XPD ~QLFD FkPDUD H D VXD LQIRUPDomR FRPELQDGD
SDUD PHOKRUDU D SHUIRUPDQFH GR UHFRQKHFLPHQWR >��@�

2V FDStWXORV � H � FRQWrP XPD DQiOLVH GRV PpWRGRV PDLV UHOHYDQWHV SUHVHQWHV QD OLWHUDWXUD�
FRPSDUDQGR DV FDUDFWHUtVWLFDV GDV SULQFLSDLV EDVHV�GH�GDGRV H[LVWHQWHV H DSUHVHQWDQGR UHVXOWD�
GRV GD VXD DSOLFDomR� LGHQWLILFDQGR RV SULQFLSDLV SUREOHPDV DVVRFLDGRV DR VHX IXQFLRQDPHQWR�

3UHRFXSDo}HV eWLFDV H GH 3ULYDFLGDGH

$ SDU GRV GHVHQYROYLPHQWRV QR FDPSR GD ELRPHWULD VXUJHP SUHRFXSDo}HV pWLFDV H GH SULYDFL�
GDGH� HVSHFLDOPHQWH HP PpWRGRV H VLVWHPDV GHVHQKDGR SDUD XP IXQFLRQDPHQWR VXE�UHSWtFLR�
6H SRU XP ODGR D LQIRUPDomR ELRPpWULFD p ~QLFD� SHVVRDO H LQWUDQVPLVVtYHO� H XPD IRUPD GH
DXWHQWLFDomR IRUWH� SRU RXWUR ODGR VH RV GDGRV ELRPpWULFRV GH XPD SHVVRD YLHUHP D VHU FRP�
SURPHWLGRV QmR SRGHP VHU DOWHUDGRV FRPR p R FDVR GH XPD SDODYUD�FKDYH RX FyGLJR 3,1� (P
DPELHQWHV QmR�FRQWURODGRV RV LQGLYtGXRV SRGHP DLQGD HVWDU VXMHLWRV DR SURFHVVR GH UHFRQKHFL�
PHQWR PHVPR VHP TXH VH DSHUFHEDP RX KDMD R VHX FRQVHQWLPHQWR IRUPDO� OHYDQWDQGR DLQGD
PDLV TXHVW}HV�

'R SRQWR GH YLVWD GD OHJLVODomR HXURSHLD� H[LVWH XP FRQMXQWR GH SULQFtSLRV D WHU HP FRQWD TXDQGR
VH LPSOHPHQWD XP VLVWHPD ELRPpWULFR QXP FHQiULR UHDO >��� ��@�

3ULQFtSLR GD SURSRUFLRQDOLGDGH
'HYH VHU DQDOLVDGR VH D XWLOL]DomR GRV GDGRV ELRPpWULFRV p UHDOPHQWH QHFHVViULD QR FRQ�
WH[WR GD DSOLFDomR� RX VH SRGHP VHU XWLOL]DGRV SDUD R PHVPR ILP RXWURV PpWRGRV GH DX�
WHQWLFDomR TXH QmR UHFRUUDP j ELRPHWULD�

5LVFR GH GLVFULPLQDomR
2 VLVWHPD LPSOHPHQWDGR QmR GHYH GHPRQVWUDU IDOVRV SRVLWLYRV� IDOVRV QHJDWLYRV� RX IDOKDV
QR UHJLVWR GH XWLOL]DGRUHV GR VLVWHPD�

8VR LPSUySULR � ÇPELWR
2V GDGRV ELRPpWULFRV DGTXLULGRV QmR GHYHP VHU XWLOL]DGRV SDUD RXWURV ILQV DOpP GDTXHOHV
D TXH RULJLQDOPHQWH VH GHVWLQDP� $OpP GLVVR RV XWLOL]DGRUHV GHYHP FRQKHFHU TXDLV RV
ILQV D TXH RV VHXV GDGRV VH GHVWLQDP� H FRQVHQWLU GH IRUPD H[SOLFLWD D VXD XWLOL]DomR SHOR
VLVWHPD�

[[[LLL



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

2EWHQomR VXE�UHSWtFLD GH GDGRV ELRPpWULFRV H PRQLWRUL]DomR
2V XWLOL]DGRUHV GHYHP VHU LQIRUPDGRV H HVWDU FLHQWHV VHPSUH TXH D VXD LQIRUPDomR ELR�
PpWULFD HVWHMD D VHU UHFROKLGD� 3DUD TXH XP VLVWHPD IXQFLRQH VHP HVVH SUHVVXSRVWR p
QHFHVViULR TXH H[LVWD XPD GLVSHQVD OHJDO�

3URWHomR GRV GDGRV
2V GDGRV ELRPpWULFRV GHYHP VHU DGTXLULGRV GH WDO IRUPD TXH QmR SHUPLWDP D H[WUDomR GH
RXWUR WLSR GH LQIRUPDomR DOpP GD TXH VHUi XVDGD SDUD D LGHQWLILFDomR �H�J�� LQIRUPDomR
PpGLFD RX pWQLFD�� RX FDVR FRQWUiULR GHYHUi H[LVWLU XP FRQVHQWLPHQWR LQIRUPDGR�

$GLFLRQDOPHQWH� XP FRQMXQWR GH PHGLGDV 3ULYDF\ (QKDQFLQJ 7HFKQRORJLHV �3(7� IRL WRPDGR SHOR
(XURSHDQ &RPPLWWHH IRU 6WDQGDUGL]DWLRQ �&(1� DWUDYpV GD LQLFLDWLYD ,QIRUPDWLRQ 6RFLHW\ 6WDQ�
GDUGL]DWLRQ 6\VWHP �,666�� YLVDQGR D SURWHomR H SDGURQL]DomR GD SULYDFLGDGH QD (XURSD >��@�
([HPSORV GHVVDV PHGLGDV VmR� D PLQLPL]DomR GD TXDQWLGDGH GH GDGRV HP XWLOL]DomR� D VXD HQ�
FULSWDomR H UHPRomR ORJR TXH GHL[HP GH VHU QHFHVViULRV� HYLWDU D XWLOL]DomR GH EDVHV�GH�GDGRV
FHQWUDOL]DGDV� TXH HP FHUWRV SDtVHV FKHJDP PHVPR D VHU SURLELGDV �H�J�� $OHPDQKD�� HWF�

(P WRGR R FDVR� DV SHVVRDV HVWmR PDLV RX PHQRV IDPLOLDUL]DGDV FRP D XWLOL]DomR GH VLVWHPDV
GH YtGHR�YLJLOkQFLD HP ORFDLV S~EOLFRV� 2V (VWDGRV 8QLGRV GD $PpULFD VmR XP ERP H[HPSOR HP
FRPR DSHVDU GR GLUHLWR j SULYDFLGDGH HVWDU LQVWLWXtGR QD FRQVWLWXLomR� RV DWDTXHV GH �� GH 6HWHP�
EUR GH ���� DOWHUDUDP GH IRUPD PXLWR UiSLGD D SHUFHomR FLYLO GR TXH VHULD D VXD ´H[SHFWDWLYD
UD]RiYHO GH SULYDFLGDGHµ �´UHDVRQDEOH H[SHFWDWLRQ RI SULYDF\µ�� $ H[SHFWDWLYD GH SULYDFLGDGH
GDV SHVVRDV QR TXH GL] UHVSHLWR D VLQDLV ELRPpWULFRV TXH HVWHMDP QRUPDOPHQWH YLVtYHLV p PXLWR
EDL[D� H D OLEHUGDGH GH HVFROKD HP QmR SDUWLFLSDU QD FDSWXUDGD GH GDGRV SHOR VLVWHPD QHP VHP�
SUH p UD]RiYHO� 1XP DHURSRUWR� SRU H[HPSOR� XPD SHVVRD QmR LUi RSWDU SRU QmR VHU VXEPHWLGD
DRV SURFHGLPHQWRV GH VHJXUDQoD� VRE SHQD GH VHU LPSHGLGD GH YLDMDU >��@� 1HVWH FRQWH[WR� D
XWLOL]DomR GH PHFDQLVPRV GH UHFRQKHFLPHQWR QHJDWLYR �VFUHHQLQJ� SRGHUi VHU XPD DOWHUQDWLYD
PDLV EHP DFHLWH� XPD YH] TXH D LQIRUPDomR DUPD]HQDGD QD EDVH GH GDGRV FRUUHVSRQGH Vy D
LQGLYtGXRV ´VXVSHLWRVµ� H D LQIRUPDomR DGTXLULGD GXUDQWH R IXQFLRQDPHQWR GR VLVWHPD p GHVFDU�
WDGD DSyV D LGHQWLILFDomR QHJDWLYD�

(P ~OWLPD DQiOLVH� H LQGHSHQGHQWHPHQWH GDV GLUHWUL]HV H SURWRFRORV H[LVWHQWHV� SRXFDV VmR DV
JDUDQWLDV UHDLV GH TXH HVWHV SURFHGLPHQWRV VHMDP UHDOPHQWH SRVWRV HP SUiWLFD�

3ULQFLSDLV &RQFOXV}HV

(VWD WHVH SURS}H�VH D DERUGDU R SUREOHPD GR UHFRQKHFLPHQWR ELRPpWULFR HP DPELHQWHV QmR�
FRQWURODGRV� GHVFUHYHQGR R WUDEDOKR GHVHQYROYLGR QR VHQWLGR GH LPSOHPHQWDU XP VLVWHPD TXH
IXQFLRQH GH IRUPD FRPSOHWDPHQWH DXWyQRPD H QmR�VXSHUYLVLRQDGD HP DPELHQWHV DGYHUVRV�

$ HVWUDWpJLD VHJXLGD SDUD DERUGDU HVWH SUREOHPD GLYLGLX�VH HP FLQFR SDVVRV� FRPHoDPRV SRU
HVWXGDU D tULV HQTXDQWR VLQDO ELRPpWULFR� H HP SDUWLFXODU D VXD XVDELOLGDGH HP FHQiULRV QmR�
FRQWURODGRV� RQGH DV UHVWULo}HV GH DTXLVLomR VmR PHQRUHV H� FRQVHTXHQWHPHQWH� VH OLGD FRP
LQIRUPDomR PDLV GHJUDGDGD� GH VHJXLGD FRQGX]LPRV XPD DQiOLVH PDLV GHWDOKDGD VREUH FRPR
D SHUIRUPDQFH GD tULV HQTXDQWR VLQDO ELRPpWULFR p FRQGLFLRQDGD SHOD OX] QR FRPSULPHQWR GH
RQGD YLVtYHO� PDLV HVSHFLILFDPHQWH SHOR WLSR GH LOXPLQDQWH HP XWLOL]DomR� H SHOR QtYHO GH OX�
PLQkQFLD� HVWXGiPRV SRVWHULRUPHQWH RV VLQDLV ELRPpWULFRV HPHUJHQWHV� H HP SDUWLFXODU D UHJLmR
SHULRFXODU� XPD YH] TXH HVWD WHP YLQGR D DVVXPLU XP SDSHO FDGD YH] PDLV UHOHYDQWH QD OLWHUD�
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WXUD QR TXH WRFD D DPELHQWHV QmR�LGHDLV� RV PpWRGRV GH UHFRQKHFLPHQWR PDLV UHOHYDQWHV IRUDP
HQWmR LPSOHPHQWDGRV H WHVWDGRV� H FRQVWUXLX�VH XPD EDVH GH GDGRV TXH UHSOLFD RV IDWRUHV GH
UXtGR H FRQGLo}HV REVHUYDGDV HP FHQiULRV QmR�FRRSHUDWLYRV� DLQGD TXH GH IRUPD FRQWURODGD H
GHYLGDPHQWH TXDQWLILFDGD� SRU ILP� SUHWHQGtDPRV HVWXGDU D SRVVLELOLGDGH GH UHFRUUHU DR UH�
FRQKHFLPHQWR QHJDWLYR� FRQYHUJLQGR DVVLP SDUD XP FHQiULR TXH MXOJDPRV PDLV DGHTXDGR DRV
GHVDILRV DWXDLV� $LQGD TXH HVWH ~OWLPR REMHWLYR QmR WHQKD VLGR FRPSOHWDPHQWH DOFDQoDGR� OL�
QKDV FRPSOHPHQWDUHV GH SHVTXLVD IRUDP OHYDGDV D FDER H� HP XOWLPD DQDOLVH� XP VLVWHPD GH
UHFRQKHFLPHQWR ELRPpWULFR IRL SURSRVWR FDSD] GH WUDEDOKDU DXWRQRPDPHQWH VREUH FHQiULRV GH
YtGHR�YLJLOkQFLD� $ SDU FRP HVWHV REMHWLYRV� YiULDV FRQWULEXLo}HV FLHQWtILFDV IRUDP SXEOLFDGDV
HP UHYLVWDV H FRQIHUrQFLDV LQWHUQDFLRQDLV�

'XUDQWH D SHVTXLVD UHDOL]DGD VREUH D XVDELOLGDGH GD tULV� DYDOLDQGR R VHX FRPSRUWDPHQWR VRE OX]
QR FRPSULPHQWR GH RQGD YLVtYHO� IRL SRVVtYHO REVHUYDU FRPR D DSDUrQFLD GRV VHXV SDGU}HV p PXLWR
SRXFR FRQGLFLRQDGD SHOR WLSR GH LOXPLQDQWH HP XWLOL]DomR GXUDQWH D VXD DTXLVLomR� DLQGD TXH
RV QtYHLV GH OXPLQkQFLD VHMDP GH PDLRU LPSRUWkQFLD >�@� 7DO IDFWR SHUPLWH DYDQoDU FRP PDLRU
FRQILDQoD SDUD D FRQVWUXomR GH XP VLVWHPD ELRPpWULFR EDVHDGR QD tULV FDSD] GH WUDEDOKDU VRE
GLIHUHQWHV WLSRV GH OX]� TXHU QDWXUDO TXHU DUWLILFLDO� GHVGH TXH XP QtYHO DGHTXDGR GH OXPLQkQFLD
VHMD PDQWLGR� RX PHGLGDV DGLFLRQDLV VHMDP WRPDGDV SDUD FRQWRUQDU HVWD OLPLWDomR� )RL WDPEpP
SURSRVWR XP QRYR PpWRGR GH UHFRQKHFLPHQWR XWLOL]DQGR LQIRUPDomR GD tULV� FDSWXUDGD QR FRP�
SULPHQWR GH RQGD YLVtYHO� EDVHDGR QD H[WUDomR GRV GHVFULWRUHV GH FRU H IRUPD SUHVHQWHV QR
03(*�� D SDUWLU GH VXE�UHJL}HV GD tULV GHILQLGDV GH IRUPD DXWyQRPD� (VWD QRYD WpFQLFD GHPRQ�
VWURX QmR Vy QtYHLV GH SHUIRUPDQFH SUy[LPRV GRV PpWRGRV GR HVWDGR�GD�DUWH� FRPR WDPEpP XP
EDL[R QtYHO GH FRUUHODomR HP UHODomR DRV PHVPRV� VXJHULQGR TXH D VXD HYHQWXDO IXVmR SRGHUi
FRQGX]LU D XP DFUpVFLPR DGLFLRQDO QD SHUIRUPDQFH >�@�

1R kPELWR GR UHFRQKHFLPHQWR SHULRFXODU R HVWXGR GD OLWHUDWXUD UHYHORX TXH DV PDLV UHFHQWHV
SHVTXLVDV VH IRFDP QD DQiOLVH GD WH[WXUD H QD H[WUDomR GH SRQWRV�FKDYH� H TXH PHVPR DOJR�
ULWPRV PHQRV FRPSOH[RV �H�J�� WpFQLFDV EDVHDGDV HP /RFDO %LQDU\ 3DWWHUQV �/%3�� UHVXOWDP HP
QtYHLV GH SHUIRUPDQFH FRQVLGHUiYHLV� $ UHJLmR SHULRFXODU p SDUWLFXODUPHQWH IDYRUiYHO D DPEL�
HQWHV QmR�LGHDLV H QmR�FRRSHUDWLYRV� TXHU TXDQGR XWLOL]DGD SRU VL Vy� TXHU TXDQGR FRPELQDGD
FRP D tULV� H DLQGD TXH D LQIRUPDomR FRQWLGD QHVWD ~OWLPD QmR SRVVD VHU FDSWXUDGD GH IRUPD
yWLPD� 7HVWDU RV PpWRGRV GR HVWDGR�GD�DUWH FRQWUD XPD EDVH�GH�GDGRV FRPXP SHUPLWLX�QRV
DQDOLVDU FRPSDUDWLYDPHQWH DV VXDV SHUIRUPDQFHV� LGHQWLILFDQGR RV SDGU}HV TXH FRQGLFLRQDP
VLVWHPDWLFDPHQWH DV VXDV FDSDFLGDGHV >�� ��@�

7HQGR HVWDEHOHFLGR D LPSRUWkQFLD SDUD DSOLFDo}HV ELRPpWULFDV GD GHWHomR GRV FDQWRV GRV ROKRV
HP LPDJHQV GD IDFH �H�J�� GHILQLomR GD UHJLmR SHULRFXODU�� DYDOLiPRV RV PpWRGRV SUHVHQWHV QD
OLWHUDWXUD HP LPDJHQV GHJUDGDGDV� 2EVHUYDQGR TXH DV FRQGLo}HV jV TXDLV RV VXEPHWHPRV FRQGL�
FLRQDYDP GH VREUHPDQHLUD D VXD SHUIRUPDQFH� SURSXVHPRV XP QRYR PpWRGR FDSD] GH OLGDU FRP
LPDJHQV FDSWXUDGDV LQ WKH ZLOG� &RPSDUDWLYDPHQWH FRP DV WpFQLFDV GD OLWHUDWXUD� R PpWRGR SRU
QyV SURSRVWR UHYHORX�VH PDLV HILFD] WDQWR HP GDGRV VHP UXtGR� FRPR HP GDGRV GHJUDGDGRV �GHV�
IRTXH� URWDomR� GLIHUHQoDV GH HVFDOD� HWF��� 'H VDOLHQWDU DLQGD TXH HVVD HILFiFLD IRL DOFDQoDGD
VHP SHUGDV GH HILFLrQFLD FRPSXWDFLRQDO� IDWRU LPSRUWDQWH TXDQGR VH SUHWHQGH FRQVWUXLU XP VLV�
WHPD ELRPpWULFR FDSD] GH IXQFLRQDU HP WHPSR UHDO >�@� 7DPEpP SDUD XPD PHOKRU GHILQLomR GRV
OLPLWHV GD UHJLmR SHULRFXODU� PHOKRU HVWLPDWLYDV GD SRVH� H GLUHomR GR ROKDU� IRL SURSRVWD XPD
WpFQLFD GH ODEHOLQJ FDSD] GH GLVFULPLQDU VHWH FRPSRQHQWHV SULQFLSDLV GHVWD UHJLmR� $ DERUGDJHP
VHJXLGD FRQVLVWLX HP GXDV HWDSDV� LQLFLDOPHQWH XP JUXSR GH FODVVLILFDGRUHV ORFDLV UHFRUUH D GHV�

[[[Y
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FULWRUHV GH WH[WXUD SDUD GHWHUPLQDU� HP FDGD SL[HO� D SUREDELOLGDGH GH FDGD FODVVH� GH VHJXLGD�
HVWD LQIRUPDomR p FRPELQDGD FRP UHVWULo}HV JHRPpWULFDV H LQIRUPDomR VREUH D IRUPD GH FDGD
XPD GDV UHJL}HV XVDQGR 0DUNRY 5DQGRP )LHOG �05)� >�@�

&RP R REMHWLYR GH DXPHQWDU D ILDELOLGDGH GR UHFRQKHFLPHQWR QmR�FRRSHUDWLYR EDVHDGR QD tULV
VREUH GDGRV GHJUDGDGRV� SURSXVHPRV D IXVmR GH GLIHUHQWHV WpFQLFDV GH UHFRQKHFLPHQWR� GH WDO
IRUPD D TXH RV SUREOHPDV DVVRFLDGRV DR IXQFLRQDPHQWR QR FRPSULPHQWR GH RQGD YLVtYHO IRVVHP
PLQLPL]DGRV� $ FRPELQDomR GD tULV H GD UHJLmR SHULRFXODU GHPRQVWURX PHOKRUDU D SHUIRUPDQFH
JOREDO GR VLVWHPD� TXHU QR PRGR GH LGHQWLILFDomR TXHU GH YHULILFDomR� REVHUYDomR TXH IRL FRU�
URERUDGD FRP R WHUFHLUR OXJDU QR GHVDILR 1,&(�,, >�@�

8PD DERUGDJHP VLPLODU IRL OHYDGD D FDER QR 0RELOH ,ULV &+DOOHQJH (YDOXDWLRQ � 3DUW , �0,&+( ,��
GHVWD YH] WHQGR SRU EDVH R UHFRQKHFLPHQWR ELRPpWULFR HP GLVSRVLWLYRV PyYHLV� (ODERUiPRV H
WRUQiPRV S~EOLFD SDUD D FRPXQLGDGH FLHQWtILFD XPD QRYD EDVH�GH�GDGRV GD tULV H GD UHJLmR SH�
ULRFXODU ² &URVV�6HQVRU ,ULV DQG 3HULRFXODU 'DWDVHW �&6,3� ²� FRQWHQGR LPDJHQV DGTXLULGDV HP GH]
FRQILJXUDo}HV PyYHLV GLVWLQWDV H FRP RLWR IDWRUHV YLVtYHLV GH UXtGR� MXQWDPHQWH FRP DV UHVSHWLYDV
PiVFDUDV GH VHJPHQWDomR GD tULV� (VWD EDVH�GH�GDGRV SHUPLWH DYDOLDU WpFQLFDV GH VHJPHQWDomR
H GH UHFRQKHFLPHQWR GD tULV H GD UHJLmR SHULRFXODU� )RL�QRV WDPEpP SRVVtYHO LGHQWLILFDU DV GLV�
SDULGDGHV FURPiWLFDV TXH DOJXQV GLVSRVLWLYRV LQWURGX]LDP QDV LPDJHQV� SHOR TXH SURSXVHPRV D
XWLOL]DomR GH XPD WpFQLFD GH FRUUHomR GH FRU SDUD FRPSHQVDU DV GLVWRUo}HV LQHUHQWHV D FDGD
XPD GDV FRQILJXUDo}HV PyYHLV� 2V UHVXOWDGRV PRVWUDUDP HVWD DERUGDJHP FRQGX] D UHVXOWDGRV
PXLWR VDWLVIDWyULRV� HVSHFLDOPHQWH HP FRPSDUDo}HV FURVV�VHQVRU� 'HPRQVWUiPRV DLQGD FRPR D
FRPELQDomR GH HVWUDWpJLDV GH UHFRQKHFLPHQWR GD tULV H GR SHULRFXODU SRGHP VHU XVDGDV SDUD VX�
SHUDU RV SUREOHPDV DVVRFLDGRV j DTXLVLomR HP GLVSRVLWLYRV PyYHLV� $GLFLRQDOPHQWH� PRVWUiPRV
FRPR WpFQLFDV GH FRGLILFDomR PXLWR VLPSOHV H GH EDL[R FXVWR FRPSXWDFLRQDO SRGHP SURGX]LU
SHUIRUPDQFHV FRQVLGHUiYHLV� R TXH VH WRUQD SDUWLFXODUPHQWH LQWHUHVVDQWH QR FDVR GH DSOLFDo}HV
GHVHQYROYLGDV SDUD SODWDIRUPDV PyYHLV� RQGH DV OLPLWDo}HV FRPSXWDFLRQDLV VmR PDLRUHV >�@�

7HQGR HP PHQWH R REMHWLYR ILQDO GH GHVHQYROYHU XP VLVWHPD GH UHFRQKHFLPHQWR FDSD] GH OL�
GDU FRP LQIRUPDomR DGTXLULGD HP FRQGLo}HV DGYHUVDV� LGHQWLILFiPRV D QHFHVVLGDGH GH FULDU
XPD EDVH�GH�GDGRV TXH DJUHJDVVH P~OWLSORV IDWRUHV GH UXtGR GH IRUPD SHUIHLWDPHQWH TXDQ�
WLILFDGD� 1HVWH VHQWLGR� FULiPRV D EDVH�GH�GDGRV %LR+''� FRQWHQGR LQIRUPDomR GH ��� SDU�
WLFLSDQWHV DGTXLULGD DR ORQJR GH YiULDV VHVV}HV� IRWRV GH UHJLVWR GH DOWD GHILQLomR� XP ODUJR
FRQMXQWR GH LPDJHQV GHJUDGDGDV VHJXQGR GH] IDWRUHV GH UXtGR� VHTXrQFLDV GH YtGHR FRP RV SDU�
WLFLSDQWHV D SHUFRUUHU XP FHQiULR QmR�XQLIRUPH� /HYDQGR D FDER XP HVWXGR RQOLQH HP TXH VH
VLPXODYD R SURFHVVR GH LGHQWLILFDomR QR IRUPDWR ZDWFKOLVW RQGH RV SDUWLFLSDQWHV HUDP FRQYLGD�
GRV D UHDOL]DU WDUHIDV GH UHFRQKHFLPHQWR SRVLWLYR H QHJDWLYR� IRL�QRV SRVVtYHO LGHQWLILFDU TXDLV
DV FDUDFWHUtVWLFDV PDLV IUHTXHQWHPHQWH DVVRFLDGDV SHOR VHU KXPDQR DR SURFHVVR GH UHFRQKHFL�
PHQWR� 2EVHUYiPRV D FDSDFLGDGH GRV SDUWLFLSDQWHV HP OLGDU FRP LQWHQVLGDGHV GH LOXPLQDomR
DGHTXDGDV H QtYHLV PRGHUDGRV GH RFOXVmR� H R IDFWR GH WHUHP DWLQJLGR ERQV UHVXOWDGRV TXDQGR
QD SUHVHQoD GH LPDJHQV FRPSULPLGDV RX GH EDL[D�UHVROXomR VXJHUH TXH VmR HVVHQFLDOPHQWH XV�
DGDV FDUDFWHUtVWLFDV JOREDLV� &RPR SULQFLSDLV SUREOHPDV LGHQWLILFiPRV VLWXDo}HV HP TXH DV IR�
WRV GRV SDUWLFLSDQWHV IRUDP WLUDGDV FRP PDLRU LQFOLQDomR GD FDEHoD H QtYHLV VLJQLILFDWLYRV GH
RFOXVmR� R TXH SRGH VHU SDUWLFXODUPHQWH UHOHYDQWH VH SHQVDUPRV HP LQGLYtGXRV TXH WHQWHP HYL�
WDU D LGHQWLILFDomR ROKDQGR SDUD ORQJH GD FkPDUD RX FREULQGR XPD SDUWH VLJQLILFDWLYD GD IDFH�
'H HQWUH RV GHWDOKHV PDLV YH]HV LGHQWLILFDGRV FRPR FRQGLFLRQDQWHV GR UHFRQKHFLPHQWR WHPRV
LQIRUPDomR VREUH D IRUPD H FDUDFWHUtVWLFDV KROtVWLFDV� TXH SRU VXD YH] VH UHYHODUDP WDPEpP
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DV PDLV ILiYHLV� (VWH HVWXGR SHUPLWLX�QRV FRQVROLGDU D HVFROKD GD UHJLmR SHULRFXODU HQTXDQWR
FDUDFWHUtVWLFD ELRPpWULFD SULQFLSDO� QD PHGLGD HP TXH DV FDUDFWHUtVWLFDV ORFDOL]DGDV QD UHJLmR
FHQWUDO GD IDFH IRUDP DV TXH FRQGX]LUDP D PDLRU WD[D GH DFHUWRV >�@�

7HQGR SRU EDVH HVWDV GHVFREHUWDV� H SURFXUDQGR XP PHOKRU HQWHQGLPHQWR GDV IRWRV DGTXLULGDV
LQ WKH ZLOG TXH FRQWLYHVVHP D UHJLmR GD FDEHoD� SURSXVHPRV XP QRYR DOJRULWPR SDUD D GHWHomR
GH ODQGPDUNV >��@ FDSD] GH LGHQWLILFDU H ORFDOL]DU VHLV HOHPHQWRV FKDYH� HQWUH RV TXDLV D UHJLmR
SHULRFXODU� (VWH DOJRULWPR� WHQGR VLGR WHVWDGR FRQWUD XP VXE�JUXSR GD EDVH�GH�GDGRV %LR+''�
GHPRQVWURX WHU D FDSDFLGDGH GH OLGDU FRP LPDJHQV DGTXLULGDV GH P~OWLSORV kQJXORV� DSUHVHQ�
WDGR LJXDOPHQWH UREXVWH] DR QtYHO GH LQFOLQDomR GD FDEHoD GR XWLOL]DGRU�

(VWHV WUDEDOKRV GH GRXWRUDPHQWR FXOPLQDUDP FRP D FRQFHomR GH XP VLVWHPD KtEULGR GH YtGHR�
YLJLOkQFLD FRP FDSDFLGDGH GH UHFRQKHFLPHQWR ELRPpWULFR� WHQGR SRU EDVH QXP VLVWHPD GH YtGHR�
YLJLOkQFLD FDSD] GH GHWHWDU H ID]HU WUDFNLQJ GH SHVVRDV HP DPELHQWHV LQ WKH ZLOG� R PHVPR IRL
FRPSOHPHQWDGR FRP PHFDQLVPRV GH DQiOLVH GH FHQiULR H FRQWUROH GH XPD FkPDUD 3DQ�7LOW�
=RRP �37=�� DGTXLULQGR LPDJHQV PDLV GHWDOKDGDV GD UHJLmR GD FDEHoD GRV LQGLYtGXRV� 5HFRU�
UHQGR j WpFQLFD GH ODQGPDUNLQJ UHIHULGD DQWHULRUPHQWH� R VLVWHPD VHUi FDSD] GH DMXVWDU R IXQ�
FLRQDPHQWR GRV GLIHUHQWHV PyGXORV GH UHFRQKHFLPHQWR jV FDUDFWHUtVWLFDV ELRPpWULFDV TXH VH
HQFRQWUHP HIHWLYDPHQWH YLVtYHLV� GHFLGLQGR TXDLV XVDU H TXH SHVR GDU D FDGD XPD GHODV� 3RU
ILP� DSUHVHQWDPRV XPD SURRI RI FRQFHSW UHIOHWLQGR R IXQFLRQDPHQWR GHVVH PHVPR VLVWHPD QXP
FHQiULR GH YtGHR�YLJLOkQFLD >��@�

7UDEDOKR )XWXUR

$ LPSOHPHQWDomR GH XP VLVWHPD GH UHFRQKHFLPHQWR ELRPpWULFR� DXWyQRPR H FRPSOHWDPHQWH
IXQFLRQDO� FDSD] GH WUDEDOKDU GH IRUPD VXE�UHSWtFLD LQ WKH ZLOG H HP FRQGLo}HV DGYHUVDV p DLQGD
XP WUDEDOKR HP DQGDPHQWR� (PERUD R VLVWHPD Mi WHQKD VLGR GHVHQKDGR QD VXD WRWDOLGDGH� DOJXQV
PyGXORV HQFRQWUDP�VH DLQGD HP SURGXomR� 3UHWHQGHPRV OHYDU D FDER XPD FRPSOHWD YDOLGDomR
GR VLVWHPD� DYDOLDQGR D VXD SHUIRUPDQFH HP GLIHUHQWHV DPELHQWHV�

(PERUD GRLV GRV PpWRGRV SURSRVWRV WHQKDP VLGR VXEPHWLGRV D GHVDILRV LQWHUQDFLRQDLV �1,&(�,, H
0,&+( ,� H WRGDV DV FRQWULEXLo}HV WHQKDP VLGR DYDOLDGDV SHORV QRVVRV SDUHV� DFKDPRV TXH VHULD
LQWHUHVVDQWH DODUJDU RV WHVWHV UHDOL]DGRV D GLIHUHQWHV EDVHV�GH�GDGRV H GH PDLRU HVFDOD� SDUD
SRGHU DXPHQWDU DLQGD PDLV D UHOHYkQFLD HVWDWtVWLFD GRV UHVXOWDGRV DSUHVHQWDGRV�

7DO FRPR UHIHULGR QD LQWURGXomR� XP GRV REMHWLYRV GHILQLGRV LQLFLDOPHQWH SDUD HVWD WHVH GD�
ULD DLQGD OXJDU D XPD SHVTXLVD PDLV DSURIXQGDGD� QRPHDGDPHQWH R HVWXGR GR PRGR GH UHFR�
QKHFLPHQWR QHJDWLYR HQTXDQWR DOWHUQDWLYD PDLV DGHTXDGD j UHDOLGDGH DWXDO GH GHWHUPLQDGDV
DSOLFDo}HV ELRPpWULFDV� 6HU FDSD] GH JDUDQWLU FRP HOHYDGR JUDX GH FRQILDQoD TXH XP GHWHUPL�
QDGR LQGLYtGXR� GR TXDO QmR VDEHPRV D LGHQWLGDGH� QmR SHUWHQFH D XPD GHWHUPLQDGD OLVWD GH
´SHVVRDV GH LQWHUHVVHµ p XP REMHWLYR PXLWR WHQWDGRU H GH HOHYDGD DSOLFDELOLGDGH HP VHJXUDQoD
S~EOLFD H GH ODUJD HVFDOD� &RPSUHHQGHQGR WRGDV HVWDV YDQWDJHQV� PXLWDV GDV TXDLV HVWmR DLQGD
UHODFLRQDGDV D TXHVW}HV GH SULYDFLGDGH� SUHWHQGHPRV FRPSOHPHQWDU R SURWyWLSR ILQDO FRP HVWH
PRGR GH IXQFLRQDPHQWR�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

2UJDQL]DomR GD 7HVH

(VWH GRFXPHQWR HQFRQWUD�VH RUJDQL]DGR HP FDWRU]H FDStWXORV� 2V SULPHLUR H ~OWLPR FDStWXORV
VmR GHGLFDGRV UHVSHWLYDPHQWH j LQWURGXomR H FRQFOXV}HV H WUDEDOKR IXWXUR� 2 VHJXQGR FDStWXOR
GHVFUHYH RV IXQGDPHQWRV GD ELRPHWULD� H RV GHVDILRV DVVRFLDGRV D DPELHQWHV QmR�FRQWURODGRV�
2IHUHFH DLQGD GHWDOKHV VREUH D XVDELOLGDGH GD tULV QHVWH WLSR GH FHQiULR� XPD YLVmR JHUDO GRV
PpWRGRV H[LVWHQWHV H SUREOHPDV LGHQWLILFDGRV� $OpP GLVVR� LQWURGX] D UHJLmR SHULRFXODU HQ�
TXDQWR VLQDO ELRPpWULFR FRP SDUWLFXODU DSOLFDELOLGDGH HP FHQiULRV GH UHFRQKHFLPHQWR DGYHUVRV�
3RU ILP� VmR WHFLGDV DOJXPDV FRQVLGHUDo}HV VREUH TXHVW}HV pWLFDV H GH SULYDFLGDGH� &DGD XP
GRV UHVWDQWHV FDStWXORV p FRQVWLWXtGR SRU XP DUWLJR� SXEOLFDGR RX VXEPHWLGR SDUD DSUHFLDomR
MXQWR GH UHYLVWDV RX FRQIHUrQFLDV LQWHUQDFLRQDLV�
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$EVWUDFW

(YHU\ KXPDQ EHLQJ LV HQWLWOHG� E\ KLV YHU\ QDWXUH� WR D VHW RI SK\VLRORJLFDO DQG EHKDYLRUDO IHD�
WXUHV WKDW FKDUDFWHUL]H KLP� 7KH VWXG\ RI VXFK IHDWXUHV OHG WR WKH GHYHORSPHQW RI D FRQVLGHUDEOH
DPRXQW RI V\VWHPV DQG DSSOLFDWLRQV� UHIHUUHG DV ELRPHWULF V\VWHPV�

7KH XVDJH RI ELRPHWULF V\VWHPV KDV EHHQ VLJQLILFDQWO\ JURZLQJ RYHU WKH ODVW \HDUV� SDUWLFXODUO\
LQ WKH ILHOG RI VHFXULW\� DXWKHQWLFDWLRQ� DFFHVV FRQWURO� FULPLQDO LGHQWLILFDWLRQ� HWF� %HLQJ D
KLJK GHPDQGLQJ VHFWRU� LW LV WKHQ QDWXUDO WKDW JUHDWHU IRFXV LV SODFHG RQ WKH ELRPHWULF WUDLWV
WKDW DUH DEOH WR GHOLYHU KLJK GLVFULPLQDWLRQ EHWZHHQ VXEMHFWV ZKLOVW EHLQJ OHVV SURQH WR IRUJHU\�
+RZHYHU� VXFK FRQVWUDLQWV UHSUHVHQW D VLJQLILFDQW LPSDFW RQ ERWK V\VWHP·V XVDELOLW\ DQG IOH[L�
ELOLW\� UHTXLULQJ IURP WKH XVHU D VLJQLILFDQW DPRXQW RI FRRSHUDWLRQ� ,Q WKLV FRQWH[W� WKH LULV LV D
SULPRUGLDO WUDLW� 7KH H[LVWLQJ ELRPHWULF UHFRJQLWLRQ V\VWHPV EDVHG RQ WKH LULV IROORZ WKH SLRQHHU
DSSURDFK SURSRVHG E\ -RKQ 'DXJPDQ� WKDW SURYHG LWVHOI DV DQ H[FHOOHQW RSWLRQ IRU FRRSHUDWLYH
VFHQDULRV ZKHUH LPDJHV DUH DFTXLUHG LQ WKH QHDU�LQIUDUHG VSHFWUXP�

+RZHYHU� QRW LQ HYHU\ FDVH XVHU FRRSHUDWLRQ LV H[SHFWHG DQG� ZKHQ QRW� V\VWHPV ZLWK VXFK KLJK
DFTXLVLWLRQ FRQVWUDLQWV DUH RI OLWWOH RU QR XVH� 5HVHDUFK LV WKHQ IRFXVHG RQ FLUFXPYHQWLQJ WKRVH
LVVXHV� HLWKHU E\ LPSURYLQJ WKH H[LVWLQJ PHWKRGV RU ILQGLQJ QHZ DQG PRUH ILWWLQJ WUDLWV� 2Q WKH
ODWHU� WKH SHULRFXODU UHJLRQ �L�H�� WKH UHJLRQ VXUURXQGLQJ WKH H\H� LV RQH RI WKH PRVW SURPLVLQJ
FKDUDFWHULVWLFV� LW PLPLFV D QDWXUDO DQG VSRQWDQHRXV ZD\ RI UHFRJQLWLRQ HPSOR\HG E\ WKH KXPDQ
EHLQJV� KDV DQ DGYDQWDJHRXV ORFDOL]DWLRQ LQ UHODWLRQ WR WKH LULV� PDNLQJ LW HDV\ WR EH VLPXOWD�
QHRXVO\ DFTXLUHG� DQG KDV� DV FRUURERUDWHG E\ WKH OLWHUDWXUH� D VHW RI SURPLVLQJ FKDUDFWHULVWLFV
WKDW FDQ EH XVHG IRU UHFRJQLWLRQ SXUSRVHV�

7KH PDLQ REMHFWLYH RI WKLV GRFWRUDO ZRUN LV WKHQ WR HLWKHU DGDSW RU GHYHORS D QRYHO ELRPHWULF
UHFRJQLWLRQ V\VWHP� VXLWHG IRU LQ WKH ZLOG HQYLURQPHQWV� 6XFK V\VWHPV VKRXOG SUHIHUDEO\ XVH
WKH SHULRFXODU UHJLRQ DV ELRPHWULF WUDLW� GXH WR LWV IOH[LELOLW\ DQG HDVH RI DFTXLVLWLRQ LQ DGYHUVH
FRQGLWLRQV� DQG NHHS WKH RSHUDWLRQ FRQVWUDLQWV DV ORZ DV SRVVLEOH� 6XEMHFWV FDQ EH LPDJHG DW�
D�GLVWDQFH� RQ�WKH�PRYH� DQG XQGHU LUUHJXODU OLJKWLQJ FRQGLWLRQV� XVLQJ FDPHUDV ZRUNLQJ LQ WKH
YLVLEOH ZDYHOHQJWK�

7R DFFRPSOLVK VXFK JRDO� D VHW RI LQWHUPHGLDWH PLOHVWRQHV ZDV HVWDEOLVKHG� $W ILUVW� WKH LULV ZDV
VWXGLHG DV ELRPHWULF WUDLW� SD\LQJ SDUWLFXODU DWWHQWLRQ WR WKH WHFKQLTXHV DOORZLQJ LWV XVDJH RQ LQ
WKH ZLOG VFHQDULRV� 7KH HIIHFWV RI WKH YLVLEOH ZDYHOHQJWK OLJKW RQ LULV SHUIRUPDQFH IRU ELRPHWULF
SXUSRVHV VKRXOG QRW EH GLVUHJDUGHG DQG� DV VR� WKLV IDFWRU ZDV DOVR VWXGLHG� $IWHU UROOLQJ RXW
LULV XVDELOLW\ DV PDLQ GLVWLQFWLYH IHDWXUH� GLIIHUHQW HPHUJLQJ WUDLWV ZHUH DQDO\]HG� ZLWK VSHFLDO
DWWHQWLRQ EHLQJ SDLG WR WKH SHULRFXODU UHJLRQ� 7KH PRVW UHOHYDQW PHWKRGV ZHUH LPSOHPHQWHG
DQG WHVWHG DJDLQVW WKH VDPH GDWDVHW� 8OWLPDWHO\� PXOWLSOH FRQWULEXWLRQV ZHUH SURSRVHG DQG
DFFHSWHG E\ WKH VFLHQWLILF FRPPXQLW\� ZLWK DSSOLFDELOLW\ RQ GLIIHUHQW LQ WKH ZLOG HQYLURQPHQWV�
WKH ODVW RI ZKLFK LV WKH SURSRVDO RI DQ DFWXDO ELRPHWULF V\VWHP� ZRUNLQJ LQ UHDO FKDOOHQJLQJ
FRQGLWLRQV�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

.H\ZRUGV

ELRPHWULFV� GHFLVLRQ IXVLRQ� GHJUDGHG GDWD� HUURU DQDO\VLV� IHDWXUH H[WUDFWLRQ� IHDWXUH VHOHFWLRQ�
JOREDO GHVFULSWRUV� LPDJH GDWDEDVHV� LULV ELRPHWULFV� ORFDO GHVFULSWRUV� PDFKLQH OHDUQLQJ� PXOWL�
PRGDO ELRPHWULFV� RFXODU ELRPHWULFV� SHUIRUPDQFH DVVHVVPHQW� SHULRFXODU UHFRJQLWLRQ� SHUVRQ
LGHQWLILFDWLRQ� SRVH YDULDWLRQ� SULYDF\� UHFRJQLWLRQ UREXVWQHVV� UHJLRQ RI LQWHUHVW� VXSHUYLVHG
OHDUQLQJ� WH[WXUH DQDO\VLV� XQFRQVWUDLQHG ELRPHWULFV� YLVLEOH ZDYHOHQJWK VSHFWUXP� YLVLRQ�EDVHG
ELRPHWULFV� YLVXDO VXUYHLOODQFH�
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&RQWHQWV

/LVW RI 3XEOLFDWLRQV [L

5HVXPR [LLL

5HVXPR DODUJDGR [Y

$EVWUDFW [[[L[

&RQWHQWV [OYL

/LVW RI )LJXUHV O

/LVW RI 7DEOHV OLL

$FURQ\PV OLLL

� ,QWURGXFWLRQ �
��� 2YHUYLHZ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� 7KHVLV )RFXV DQG 6FRSH � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� 3UREOHP 'HILQLWLRQ DQG 5HVHDUFK 2EMHFWLYHV � � � � � � � � � � � � � � � � � � � �

��� 0DLQ &RQWULEXWLRQV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� 7KHVLV 2UJDQL]DWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� 6WDWH�RI�WKH�$UW �
��� 2YHUYLHZ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� %LRPHWULFV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� +LVWRULFDO %DFNJURXQG � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� 7KH 0DLQ 6WDJHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� 2SHUDWLRQ 0RGHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� &ODVVLILFDWLRQ DQG 3URSHUWLHV RI D %LRPHWULF 6\VWHP � � � � � � � � � � � � ��

����� 7KH %LRPHWULF 7UDLWV � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� 3HUIRUPDQFH $VVHVVPHQW � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 7RZDUGV 1RQ�&RRSHUDWLYH 6FHQDULRV � � � � � � � � � � � � � � � � � � � � � � � � ��

����� 0RELOH 6HWXSV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� 6WDJHV RI 8QFRQVWUDLQHG 5HFRJQLWLRQ 6\VWHPV � � � � � � � � � � � � � � � ��

����� 7KH LULV DV ELRPHWULF WUDLW � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� 7KH 3HULRFXODU 5HJLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 3ULYDF\ DQG (WKLFDO &RQFHUQV � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� ,ULV 5HFRJQLWLRQ� 3UHOLPLQDU\ $VVHVVPHQW DERXW WKH 'LVFULPLQDWLQJ &DSDFLW\ RI 9LVLEOH
:DYHOHQJWK 'DWD ��
��� 2YHUYLHZ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� $EVWUDFW � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,QWURGXFWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,ULV 5HFRJQLWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,PDJH $FTXLVLWLRQ )UDPHZRUN � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

��� ([SHULPHQWV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
����� 9LVXDO ,QVSHFWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� &RORU $QDO\VLV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� &RQFOXVLRQV DQG )XUWKHU :RUN � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� 5HIHUHQFHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� )XVLQJ &RORU DQG 6KDSH 'HVFULSWRUV LQ WKH 5HFRJQLWLRQ RI 'HJUDGHG ,ULV ,PDJHV $F�
TXLUHG DW 9LVLEOH :DYHOHQJWKV ��
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SLFWHG PHWKRGV ZHUH XVHG DV PRGXOHV RQ WKH EXLOGLQJ RI D IXOO\ DXWRPDWHG VXUYHLO�
ODQFH V\VWHP IRU KXPDQ UHFRJQLWLRQ SXUSRVHV RYHU YLGHR VXUYHLOODQFH VFHQDULRV >��@� �

��� 'HSLFWLRQ RI WKH %HUWLOOLRQ·V V\VWHP� � � � � � � � � � � � � � � � � � � � � � � � ��

��� %ORFN GLDJUDPV RI D ELRPHWULF V\VWHP FDUU\LQJ RXW D YHULILFDWLRQ WDVN� � � � � � � ��

��� %ORFN GLDJUDPV RI D ELRPHWULF V\VWHP FDUU\LQJ RXW DQ LGHQWLILFDWLRQ WDVN� � � � � ��

��� %ORFN GLDJUDPV RI D ELRPHWULF V\VWHP FDUU\LQJ RXW D VFUHHQLQJ WDVN� � � � � � � � ��

��� 7KH PDLQ ELRPHWULF PRGDOLWLHV� DQG VRPH H[DPSOHV RI WKH WUDLWV WKH\ XVH� � � � � ��

��� ,OOXVWUDWLRQ RI WKH PDLQ VWHSV DQG HOHPHQWV RI D ELRPHWULF UHFRJQLWLRQ V\VWHP� � � ��

��� &RPSDULVRQ EHWZHHQ WKH DSSHDUDQFH RI 1,5 DQG 9: LPDJHV � � � � � � � � � � � ��

��� 6SHFWUDO UDGLDQFH RI WKH KXPDQ LULV DFFRUGLQJ WR WKH OHYHOV RI SLJPHQWDWLRQ � � � ��

��� $FTXLVLWLRQ VHWXS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,OOXVWUDWLRQ RI WKH VWHSV WDNHQ SULRU WR YLVXDO LQVSHFWLRQ DQG FRORU DQDO\VLV � � � � ��

��� < FKDQQHO KLVWRJUDP�HTXDOL]HG VDPSOHV IRU GLIIHUHQW SLJPHQWDWLRQ OHYHOV� XQGHU
&,( '�� LOOXPLQDQW� ZLWK ��� �� DQG ��� cd/m2 � � � � � � � � � � � � � � � � � � ��

��� %HVW SHUFHLYHG OXPLQDQFH OHYHOV IRU KLJK� PHGLXP DQG ORZ SLJPHQWHG LULVHV � � � ��

��� 52& FXUYHV IRU DOO VXEMHFWV� RQ GLIIHUHQW LOOXPLQDQWV� DW �� cd/m2 � � � � � � � � ��

��� 3L[HO XVDJH SUREDELOLW\ DQG ∆̄E∗
ab YDOXHV SHU SL[HO IRU LQWUD DQG LQWHU FODVVHV � � � ��

��� &RKHVLYH SHUVSHFWLYH RI WKH SURSRVHG PHWKRG� GHVFULELQJ LWV PDMRU SKDVHV � � � � ��

��� ([DPSOHV RI GHJUDGHG 9: LULV LPDJHV DQG WKH FRUUHVSRQGLQJ QRLVH�IUHH VHJPHQ�
WDWLRQ PDVNV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 3DUDPHWUL]DWLRQ RI WKH ELRORJLFDO LULV ERXQGDULHV � � � � � � � � � � � � � � � � � ��

��� &RPSDULVRQ EHWZHHQ WKH UHJLRQV UHVXOWLQJ IURP GLIIHUHQW FOXVWHULQJ SURFHVVHV ZLWK
UHVSHFW WR ZHLJKWV JLYHQ WR HDFK IHDWXUH � � � � � � � � � � � � � � � � � � � � � ��

��� ,OOXVWUDWLRQ RI WKH VKDSH GHVFULSWRU XVHG WR FKDUDFWHUL]H HDFK LULV UHJLRQ � � � � � ��

��� &OXVWHUV JHQHUDWHG IRU WZR GLIIHUHQW KHDY\ SLJPHQWHG LULVHV� ZKHUH ORFDO FRQWUDVW
LQVLGH WKH LULV ULQJ LV KDUGO\ SHUFHLYHG E\ D KXPDQ REVHUYHU � � � � � � � � � � � � ��

��� 5REXVWQHVV WR FKDQJHV LQ VFDOH � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 5REXVWQHVV WR GHIRFXVHG GDWD � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 5REXVWQHVV WR FKDQJHV LQ URWDWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� 5REXVWQHVV WR RII�DQJOH LPDJH DFTXLVLWLRQ � � � � � � � � � � � � � � � � � � � � � ��

���� 5REXVWQHVV WR JOREDO DQG QRQXQLIRUP OLJKWLQJ FKDQJHV � � � � � � � � � � � � � � ��

���� 3UREDELOLW\ GHQVLW\ DQG FXPXODWLYH GHQVLW\ IXQFWLRQV RI IHDWXUHV VHOHFWHG IRU WKH
ELRPHWULF UHFRJQLWLRQ SURFHVV � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� &RPSDULVRQ EHWZHHQ WKH UHFHLYHG RSHUDWLQJ FKDUDFWHULVWLF FXUYHV RI WKH SURSRVHG
PHWKRGV DQG RWKHUV XVHG IRU FRQWH[WXDOL]DWLRQ SXUSRVHV � � � � � � � � � � � � � ��

���� &RPSDULVRQ EHWZHHQ WKH SHUIRUPDQFH PHDVXUHV REWDLQHG E\ WKH WHVWHG UHFRJ�
QLWLRQ VWUDWHJLHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

���� $YHUDJH FXPXODWLYH UDQN Q FXUYHV REWDLQHG E\ WKH SURSRVHG PHWKRG DQG RWKHUV
XVHG DV FRPSDULVRQ WHUPV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� &RPSDULVRQ EHWZHHQ WKH SHUIRUPDQFH REWDLQHG E\ WKH EHVW FODVVLILFDWLRQ HQVHP�
EOHV FRPSRVHG RI ��� UHFRJQLWLRQ PHWKRGV � � � � � � � � � � � � � � � � � � � � ��

���� 'HJUDGDWLRQ LQ UHFRJQLWLRQ SHUIRUPDQFH� H[SUHVVHG LQ WHUPV RI GHFLGDELOLW\ YDO�
XHV� ZLWK UHVSHFW WR YDULDWLRQV LQ GLIIHUHQW IDFWRUV � � � � � � � � � � � � � � � � ��

��� *HQHUDO 6WHSV DQG HOHPHQWV RI ELRPHWULF UHFRJQLWLRQ V\VWHPV � � � � � � � � � � ��

��� 6DPSOH LPDJHV IURP WKH FRPPRQO\ XVHG GDWDVHWV RQ HYDOXDWLQJ SHULRFXODU DOJR�
ULWKPV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,OOXVWUDWLRQ RI VLWXDWLRQV ZKHUH WKH SHULRFXODU UHJLRQ LV WKH PRVW DGYLVDEOH WUDLW � ��

��� $QDWRPLF IHDWXUHV LQ WKH YLFLQLW\ RI WKH H\H � � � � � � � � � � � � � � � � � � � � ��

��� *HQHUDO VWHSV DQG HOHPHQWV RI ELRPHWULF UHFRJQLWLRQ V\VWHPV � � � � � � � � � � ��

��� 6DPSOH LPDJHV IURP WKH PRVW FRPPRQO\ XVHG GDWDVHWV � � � � � � � � � � � � � � ��

��� ,OOXVWUDWLRQ RI WKH H[WUDFWHG ORFDO IHDWXUHV DQG 52, IRU JOREDO IHDWXUH H[WUDFWLRQ � ��

��� %ORFN GLDJUDP RI WKH 6,)7 VWHSV � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,OOXVWUDWLRQ RI WKH QRQ�LGHDO FRQGLWLRQV VLPXODWHG E\ 3DUN HW DO � � � � � � � � � � ��

��� 3VHXGR�FRGH H[DPSOH RI D *(& � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ([DPSOH RI DJLQJ VXEMHFW IURP WKH )*�1(7 GDWDEDVH � � � � � � � � � � � � � � � ��

���� 6DPSOH 1,5 SHULRFXODU LPDJHV XVHG E\ +ROOLQJVZRUWK HW DO� � � � � � � � � � � � � ��

���� =RR SORWV IRU WKH WHVWHG SHULRFXODU DOJRULWKPV � � � � � � � � � � � � � � � � � � ��

���� 6DPSOH LPDJHV IURP GDWDEDVH VXEMHFWV SRWHQWLDOO\ EHORQJLQJ WR HDFK RQH RI WKH
LGHQWLILHG DQLPDO IDPLOLHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 'DWD XVHG DV WKH LQSXW LQ DSSO\LQJ RXU PHWKRG � � � � � � � � � � � � � � � � � � ��

��� $Q LOOXVWUDWLRQ RI WKH UHJLRQV RI WKH H\H LQYROYHG LQ RXU ZRUN � � � � � � � � � � � ��

��� 6FOHUD HQKDQFHPHQW � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 7KH H\HOLG FRQWRXU GHWHUPLQHG FRUUHVSRQGV WR WKH ERXQGDU\ RI WKH UHJLRQ LQGL�
FDWHG E\ EODFN SL[HOV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� $Q DSSUR[LPDWLRQ RI WKH H\HOLG FRQWRXU DQG WKH UHJLRQV IURP ZKLFK FRUQHU FDQGL�
GDWHV DUH H[WUDFWHG � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,QWHUSRODWLQJ VHFRQG DQG WKLUG GHJUHH SRO\QRPLDOV � � � � � � � � � � � � � � � � ��

��� 6DPSOH LPDJHV IURP WKH GLIIHUHQW GDWDVHWV � � � � � � � � � � � � � � � � � � � � ��

��� 'HWHFWLRQ UDWH IRU IURQWDO LPDJHV � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 7KH GLVWDQFHV EHWZHHQ WKH SUHGLFWHG FRUQHUV DQG WKH WUXH ORFDWLRQV RQ IURQWDO
LPDJHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� 7KH UHODWLYH IUHTXHQFLHV RI WKH REVHUYHG GHYLDWLRQV EHWZHHQ WKH SUHGLFWHG DQG
WUXH SRVLWLRQV RI H\H�FRUQHUV � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� 7KH GLVWDQFH IURP WKH GLIIHUHQW PHWKRGV· RXWSXWV WR WKH DFWXDO H\H�FRUQHUV RQ
IURQWDO LPDJHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� 'HWHFWLRQ UDWH DV D IXQFWLRQ RI WKH GLVWDQFH IRU DOO LPDJH YDULDWLRQV � � � � � � � ��

���� ([WUDFWLRQ RI FDQGLGDWH SRLQWV LQ IURQWDO LPDJHV DQG LQ WKH FRUUHVSRQGLQJ EOXUUHG
YHUVLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� $Q LOOXVWUDWLRQ RI WKH UHVXOWV WLSLFDOO\ REWDLQHG LQ JD]H�GHYLDWHG LPDJHV � � � � � ��

���� 7KH UHODWLYH IUHTXHQFLHV RI WKH GHYLDWLRQV LQ FORFNZLVH URWDWHG GDWD � � � � � � � ��

��� 6WUXFWXUH RI WKH 05) WKDW VHJPHQWV WKH SHULRFXODU UHJLRQ � � � � � � � � � � � � ��
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��� ,OOXVWUDWLRQ RI WKH GLVFULPLQDWLQJ SRZHU RI WKH IHDWXUHV H[WUDFWHG� IRU WKH VHYHQ
FODVVHV FRQVLGHUHG LQ WKLV SDSHU � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ([DPSOH RI DQ LPDJH ODEHOHG E\ WKH PD[LPXP RI WKH SRVWHULRUV JLYHQ E\ WKH FODV�
VLILFDWLRQ PRGHOV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ([DPSOHV RI WKH VHJPHQWHG SHULRFXODU UHJLRQV � � � � � � � � � � � � � � � � � � ��

��� 9DULDWLRQV LQ ODEHOLQJ HUURUV ZLWK UHVSHFW WR WKH QXPEHU RI LPDJHV XVHG LQ WKH
OHDUQLQJ SKDVH RI WKH DOJRULWKP � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� ,PSURYHPHQWV LQ SHULRFXODU UHFRJQLWLRQ SHUIRUPDQFH GXH WR WKH VHPDQWLF FDWHJR�
UL]DWLRQ �ODEHOLQJ� RI HDFK SL[HO LQ WKH SHULRFXODU UHJLRQ � � � � � � � � � � � � � ��

��� 3URSRVHG PHWKRGRORJ\ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� ,OOXVWUDWLRQ RI WKH VWHSV WDNHQ GXULQJ VHJPHQWDWLRQ VWDJH � � � � � � � � � � � � � ���

��� ,OOXVWUDWLRQ RI XQVXFFHVVIXO LQQHU ERXQGDU\ GHWHFWLRQ � � � � � � � � � � � � � � � ���

��� 1RUPDOL]HG LPDJHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� :DYHOHW DQG ]HUR�FURVVLQJ UHSUHVHQWDWLRQ � � � � � � � � � � � � � � � � � � � � � ���

��� 6WHSV IRU /%3 IHDWXUH H[WUDFWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� ,OOXVWUDWLRQ RI WZR LULVFRGHV PDWFKLQJ UHVXOWV � � � � � � � � � � � � � � � � � � � ���

��� 52& FXUYHV IRU DOO PDWFKHV DQG WKHLU IXVLRQ � � � � � � � � � � � � � � � � � � � � ���

��� &0& FXUYHV IRU DOO PDWFKHV DQG WKHLU IXVLRQ � � � � � � � � � � � � � � � � � � � � ���

���� 6,)7 SHUIRUPDQFH H[DPSOHV LQ LQWUD�FODVV FRPSDULVRQV � � � � � � � � � � � � � � ���

���� 'DWDVHW SLFWXUHV DFTXLUHG IURP WZR SDUWLFLSDQWV DW DOO GLIIHUHQW VHWXSV � � � � � � ���

���� 'LDJUDP LOOXVWUDWLQJ WKH IRXU VWDJHV RI WKH SURSRVHG PHWKRGRORJ\ � � � � � � � � ���

���� ,OOXVWUDWLRQ RI WKH 52, GHILQHG IRU WKH JOREDO SHULRFXODU DQDO\VLV� WKH VHW RI SDWFKHV
XVHG RQ WKH GLVWULEXWLRQ EDVHG DQDO\VLV DQG 6,)7 GHWHFWHG IHDWXUHV � � � � � � � � ���

���� ,OOXVWUDWLRQ RI WKH 11 DUFKLWHFWXUH XVHG DW WKH VFRUH�OHYHO IXVLRQ VWDJH � � � � � � ���

���� 52& FXUYHV IRU WKH VFRUH�OHYHO IXVLRQ RI WKH VWUHVVHG LULV UHFRJQLWLRQ PHWKRGV� WKH
SHULRFXODU UHFRJQLWLRQ PHWKRGV� DQG WKH JOREDO IXVLRQ � � � � � � � � � � � � � � ���

���� ([DPSOH RI LPDJHV DFTXLUHG XVHG DV JDOOHU\ GDWD � � � � � � � � � � � � � � � � � ���

���� 6FKHPDWLF SHUVSHFWLYH RI WKH LPDJH DFTXLVLWLRQ IUDPHZRUN � � � � � � � � � � � � ���

���� ([DPSOHV RI WKH W\SH RI LPDJH GHJUDGDWLRQ IDFWRUV LQ WKH %LR+'' GDWDVHW � � � � ���

���� 6DPSOHV IRUP WKH YLGHR DFTXLVLWLRQ VWDJH � � � � � � � � � � � � � � � � � � � � � ���

���� 6DPSOH WULDO LPDJHV ZLWK GLIIHUHQW OHYHOV RI QRLVH FRPELQHG � � � � � � � � � � � ���

���� :HE LQWHUIDFH RI WKH FRQGXFWHG VXUYH\ � � � � � � � � � � � � � � � � � � � � � � ���

���� 3HU VXEMHFW VHQVLWLYLW\ DQG VSHFLILFLW\ SUREDELOLW\ GHQVLW\ IXQFWLRQV � � � � � � � � ���

���� =RR SORW IRU WKH RYHUDOO XVHU SHUIRUPDQFH � � � � � � � � � � � � � � � � � � � � � ���

���� 3UREDELOLW\ GHQVLW\ IXQFWLRQ IRU HQWURS\ YDOXHV RQ DOO VXEMHFWV RQ WKH GDWDVHW � � ���

�����52& FXUYH IRU SRVLWLYH DQG QHJDWLYH LGHQWLILFDWLRQ� XVLQJ 1H\PDQ�3HDUVRQ FUL�
WHULXP ZLWK GLIIHUHQW ODPEGD�YDOXHV � � � � � � � � � � � � � � � � � � � � � � � ���

���� ,OOXVWUDWLRQ RI WKH RSWLPDO RXWSXW IRU RXU PHWKRG � � � � � � � � � � � � � � � � � ���

���� ,OOXVWUDWLYH GLDJUDP RI WKH SURSRVHG PHWKRG � � � � � � � � � � � � � � � � � � � ���

���� 6DPSOH LPDJHV IURP WKH %LR+'' VXEVHW XVHG LQ RXU H[SHULPHQWV � � � � � � � � � ���

���� 6DPSOH RXWSXW IURP WKH SL[HO�OHYHO FODVVLILFDWLRQ VWDJH � � � � � � � � � � � � � � ���

���� 52& FXUYHV IRU WKH GHWHFWLRQ RI HDFK LQGLYLGXDO ODQGPDUN � � � � � � � � � � � � ���

���� :RUNLQJ GLDJUDP RI WKH SURSRVHG V\VWHP� DQG WKH WKUHH�OD\HU DUFKLWHFWXUH � � � ���
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

���� 9LVLEOH IDFH DQG SHULRFXODU ZLGWK DV IXQFWLRQ RI WKH V\VWHP·V ZRUNLQJ GLVWDQFH�
DQG LOOXVWUDWLRQ RI WKH DFTXLUHG GDWD IRU ERWK FDPHUDV � � � � � � � � � � � � � � ���

���� ,OOXVWUDWLRQ RI WKH SUHOLPLQDU\ UHVXOWV REWDLQHG E\ WKH SHRSOH GHWHFWLRQ DQG WUDFN�
LQJ PRGXOH � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� .H\�SRLQW GHWHFWLRQ DQG DOLJQPHQW EHWZHHQ WKH WZR FDPHUDV� SULRU WR JHRPHWULF
WUDQVIRUP HVWLPDWLRQ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� 5HFHLYHU 2SHUDWLRQJ &KDUDFWHULVWLF FXUYHV IRU WKH SHULRFXODU UHFRJQLWLRQ� IDFH
UHFRJQLWLRQ DQG JOREDO IXVLRQ� DW GLIIHUHQW ZRUNLQJ GLVWDQFHV� � � � � � � � � � � ���

$�� ([DPSOHV RI SHULRFXODU LPDJHV RI GLIIHUHQW VXEMHFWV DQG YDU\LQJ JD]HV� FRQWDLQLQJ
WKH FRUQHDO� H\HEURZV DQG VNLQ UHJLRQV � � � � � � � � � � � � � � � � � � � � � � ���

$�� 6SDUVH VLJQDO UHFRQVWUXFWLRQ ZLWK (1 DQG /$662 PRGHOV � � � � � � � � � � � � � � ���
$�� &DUWRRQ � 7H[WXUH FRPSRQHQW IRU JUD\VFDOH SHULRFXODU LPDJHV XVLQJ D ZHLJKWHG 79

PRGHO � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
$�� 'LIIHUHQW FRORU GHFRPSRVLWLRQ IRU D JLYHQ SHULRFXODU LPDJH � � � � � � � � � � � � ���
$�� 52& FXUYHV IRU SHULRFXODU LPDJHV UHFRJQLWLRQ � � � � � � � � � � � � � � � � � � � ���

%�� ,OOXVWUDWLRQ RI WZR LULVFRGH PDWFKLQJ UHVXOWV � � � � � � � � � � � � � � � � � � � � ���
%�� 52& FXUYHV IRU 8%,5,6 DQG 8%,5,6�Y� UHVSHFWLYHO\ � � � � � � � � � � � � � � � � � ���

&�� 7DUJHWHG DFWLRQ XQLWV IRU WKH HPRWLRQDO H[SUHVVLRQV FRQVLGHUHG LQ WKLV ZRUN � � � ���
&�� &RKHVLYH SHUVSHFWLYH RI RXU H[SHULPHQWV � � � � � � � � � � � � � � � � � � � � � ���
&�� 1XPEHU RI SULQFLSDO FRPSRQHQWV VHOHFWHG IRU HDFK UHJLRQ DQDO\]HG � � � � � � � ���

O



/LVW RI 7DEOHV

��� 'HWDLOV RI LPDJH DFTXLVLWLRQ VHWXS � � � � � � � � � � � � � � � � � � � � � � � � � ��
��� *HQHUDWHG LOOXPLQDQWV DQG WKHLU UHVSHFWLYH OXPLQDQFH � � � � � � � � � � � � � � ��
��� &,(/$% ∆̄E∗

ab RQ SRLQW�WR�SRLQW LPDJH FRPSDULVRQV� LQ GLIIHUHQW LOOXPLQDQWV IRU
ERWK LQWUD� DQG LQWHU� FODVVHV � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� $UHD XQGHU 52& FXUYH IRU DOO VXEMHFWV RQ GLIIHUHQW LOOXPLQDQWV� DW �� cd/m2 � � � ��

��� 3HDUVRQ·V VDPSOH FRUUHODWLRQ FRHIILFLHQWV EHWZHHQ WKH WHVWHG UHFRJQLWLRQ PHWK�
RGV DQG RXUV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� %HVW UHVXOWV REWDLQHG E\ FODVVLILFDWLRQ HQVHPEOHV DFFRUGLQJ WR WKH QXPEHU RI IXVHG
PHWKRGV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� 2YHUYLHZ RI GDWDEDVH VSHFLILFDWLRQV � � � � � � � � � � � � � � � � � � � � � � � � ��
��� 5DQN�� DFFXUDF\ IRU /%3 IXVLRQ ZLWK RWKHU PHWKRGV � � � � � � � � � � � � � � � � ��
��� 2YHUYLHZ RI WKH PRVW UHOHYDQW SHULRFXODU UHFRJQLWLRQ PHWKRGV � � � � � � � � � � ��

��� 6XPPDU\ RI GDWDVHW VSHFLILFDWLRQV � � � � � � � � � � � � � � � � � � � � � � � � ��
��� $YHUDJH DFFXUDF\ GHJUDGDWLRQ XQGHU GLIIHUHQW IDFWRUV � � � � � � � � � � � � � � ��
��� 5DQN�� DFFXUDF\ REWDLQHG IXVLQJ /%3 ZLWK RWKHU PHWKRGV � � � � � � � � � � � � � ��
��� 2YHUYLHZ RI WKH PRVW UHOHYDQW SHULRFXODU UHVHDUFK DYDLODEOH RQ WKH OLWHUDWXUH � � ��
��� 7HVWHG SHULRFXODU UHFRJQLWLRQ PHWKRGV SHUIRUPDQFH LQGLFDWRUV � � � � � � � � � � ��
��� /LQHDU FRUUHODWLRQ FRHIILFLHQW PDWUL[ IRU WKH WHVWHG SHULRFXODU UHFRJQLWLRQ PHWKRGV ��

��� $YHUDJH SL[HO ODEHOLQJ HUURUV SHU FRPSRQHQW � � � � � � � � � � � � � � � � � � � ��

��� 5HFRJQLWLRQ UDWHV RI HDFK WHVW � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� 'HWDLOV RI WKH GHYLFHV DQG VHWXSV XVHG GXULQJ WKH &6,3 GDWDVHW DFTXLVLWLRQ � � � � ���
���� ,QGLYLGXDO SHUIRUPDQFH PHWULFV IRU HDFK UHFRJQLWLRQ PHWKRG DQG WUDLW� DORQJ ZLWK

WKH RQHV IURP LULV� SHULRFXODU DQG JOREDO IXVLRQ � � � � � � � � � � � � � � � � � � ���
���� 0HWKRG IXVLRQ SHUIRUPDQFH� DIWHU FRORU FRUUHFWLRQ� IRU HDFK DFTXLVLWLRQ VHWXS � � ���

���� 2YHUYLHZ RI WKH PRVW UHOHYDQW DQG SXEOLF DYDLODEOH IDFH UHFRJQLWLRQ GDWDVHWV ZLWK
3,( YDULDWLRQV� ZLWK FRPSDULVRQ WR RXU ZRUNLQJ GDWDVHW � � � � � � � � � � � � � � ���

���� 'HWDLOV RI WKH %LR+'' DFTXLVLWLRQ GHYLFHV� LPDJH DQG YLGHR VHWWLQJV � � � � � � � ���
���� 'HWDLOV RI WKH %LR+'' VXEMHFWV WKDW RIIHUHG WKHPVHOYHV DV YROXQWHHUV WR ERWK LPDJ�

LQJ VHVVLRQV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
���� 2YHUDOO VHQVLWLYLW\� VSHFLILFLW\� DFFXUDF\ DQG 0DWKHZV FRUUHODWLRQ FRHIILFLHQW YDO�

XHV� DQG WKH VDPH VWDWLVWLFV IRU ZKHQ D QRLVH IDFWRU LV UHPRYHG � � � � � � � � � ���
���� $YHUDJH ]HWD�YDOXHV IRU DOO ]RR�SORW UHJLRQV XSRQ QRLVH UHPRYDO � � � � � � � � � ���
���� 3UREDELOLW\� VHQVLWLYLW\� VSHFLILFLW\� DFFXUDF\ DQG 0DWKHZV &RUUHODWLRQ &RHIILFLHQW

YDOXHV IRU IHDWXUH FDWHJRU\ XVDJH RQ UHFRJQLWLRQ MXVWLILFDWLRQV � � � � � � � � � � ���
���� 3UREDELOLW\� VHQVLWLYLW\� VSHFLILFLW\� DFFXUDF\ DQG 0DWKHZV &RUUHODWLRQ &RHIILFLHQW

YDOXHV IRU IHDWXUH XVDJH DV UHFRJQLWLRQ MXVWLILFDWLRQ � � � � � � � � � � � � � � � ���

���� &RQIXVLRQ PDWUL[ IRU WKH UHVXOWV REWDLQHG DW WKH SL[HO�OHYHO FODVVLILFDWLRQ VWDJH � ���
���� 'HWHFWLRQ SHUIRUPDQFH IRU HDFK LQGLYLGXDO ODQGPDUN � � � � � � � � � � � � � � � ���
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

���� 'HWHFWLRQ SHUIRUPDQFH RI WKH SURSRVHG PHWKRG� DFFRUGLQJO\ WR WKH VXEMHFW LPDJ�
LQJ DQJOH � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� 'HWHFWLRQ SHUIRUPDQFH RI WKH SURSRVHG PHWKRG� DFFRUGLQJO\ WR WKH VXEMHFWV· KHDG
SLWFK � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� 7UDFNLQJ SHUIRUPDQFH LQ RXU VXUYHLOODQFH VFHQDULR� ZKHQ XVLQJ ./7 � � � � � � � ���
���� 3HUIRUPDQFH IRU HDFK RQH RI WKH VWUHVVHG PHWKRGV� WUDLWV DQG GLVWDQFHV � � � � � ���

$�� 7\SHV RI HUURV� DFFRUGLQJ WR WKH 6&, YDOXH DQG WKH VSDUVH VLJQDO UHFRQVWUXFWLRQ
IROORZLQJ :ULJKW DQG 3LOODL HW DO� PRGHOV � � � � � � � � � � � � � � � � � � � � � ���

$�� $8& DQG ((5 YDOXHV� DV ZHOO DV WKH EHVW VHQVLWLYLW\ IRU )$5 IRU OHIW VLGH SHULRFXODU
LPDJHV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

$�� 3HDUVRQ·V VDPSOH FRUUHODWLRQ FRHIILFLHQWV EHWZHHQ WKH OHIW VLGH UHVSRQVHV JLYHQ E\
WKH UHFRJQLWLRQ DOJRULWKP XVLQJ WKH 5(1 PRGHO ZLWK YDULRXV FRPSRQHQWV VWXGLHG
KHUH � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

%�� /RJLVWLF UHJUHVVLRQ UHVXOWV IRU GLIIHUHQW GDWDVHW FRQILJXUDWLRQV � � � � � � � � � � ���
%�� &RQIXVLRQ PDWULFHV UHSUHVHQWLQJ SURSRUWLRQV RI WUXH IRU GLIIHUHQW GDWDVHW FRQILJ�

XUDWLRQV � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

&�� 'HVFULSWLRQ RI WKH SUH�SURFHVVLQJ�VL]H FKDQJHV LQ WKH LQSXW LPDJHV � � � � � � � � ���
&�� 0HGLDQ UHFRJQLWLRQ UDWHV REVHUYHG ZKHQ DWWHPSWLQJ WR UHFRJQL]H DOO IDFLDO H[SUHV�

VLRQV DQG HDFK RQH VHSDUDWHO\ � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
&�� 0HGLDO UHFRJQLWLRQ UDWHV REVHUYHG ZKHQ UHFRJQL]LQJ DOO IDFLDO H[SUHVVLRQV DQG HDFK

RQH VHSDUDWHO\ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���
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$FURQ\PV

$$0 $FWLYH $SSHDUDQFH 0RGHOV

$&& $FFXUDF\

$8& $UHD 8QGHU &XUYH

&(1 (XURSHDQ &RPPLWWHH IRU 6WDQGDUGL]DWLRQ

&,( &RPPLVVLRQ ,QWHUQDWLRQDOH GH O·(FODLUDJH

&/0 &RQVWUDLQHG /RFDO 0RGHOV

&0& &XPXODWLYH 0DWFK &KDUDFWHULVWLF

&6 FDQGLGDWH VROXWLRQV

&6,3 &URVV�6HQVRU ,ULV DQG 3HULRFXODU 'DWDVHW

'&7 'LVFUHWH &RVLQH 7UDQVIRUP

'(& 'HFLGDELOLW\

'1$ GHR[\ULERQXFOHLF DFLG

'2* 'LIIHUHQFH RI *DXVVLDQV

':7 'LVFUHWH :DYHOHW 7UDQVIRUP

(&* HOHFWUR�FDUGLRJUDP

((5 (TXDO (UURU 5DWH

(0)$&6 (PRWLRQDO )DFLDO $FWLRQ &RGLQJ 6\VWHP

)$&(6 )DFLDO ([SUHVVLRQ &RGLQJ 6\VWHP

)$&6 )DFLDO $FWLRQ &RGLQJ 6\VWHP

)$67 )DFLDO $IIHFW 6FRULQJ

)'$ )LVKHU 'LVFULPLQDQW $QDO\VLV

)(5(7 )DFLDO 5HFRJQLWLRQ 7HFKQRORJ\

)3 )DOVH 3RVLWLYHV

)35 )DOVH 3RVLWLYH 5DWH

)1 )DOVH 1HJDWLYHV

)35 )DOVH 3RVLWLYH 5DWH

)5*& )DFH 5HFRJQLWLRQ *UDQG &KDOOHQJH

)36 IUDPHV SHU VHFRQG

*(& *HQHWLF 	 (YROXWLRQDU\ &RPSXWLQJ
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

*()( *HQHWLF 	 (YROXWLRQDU\ )HDWXUH ([WUDFWLRQ

*/2+ *UDGLHQW /RFDWLRQ DQG 2ULHQWDWLRQ +LVWRJUDP

*2) JRRGQHVV RI ILW

+' +DPPLQJ 'LVWDQFH

+00 +LGGHQ 0DUNRY PRGHOV

+2* +LVWRJUDP RI 2ULHQWHG *UDGLHQWV

+69 +XH�6DWXUDWLRQ�9DOXH

,666 ,QIRUPDWLRQ 6RFLHW\ 6WDQGDUGL]DWLRQ 6\VWHP

.&)$ .HUQHO &RUUHODWLRQ )HDWXUH $QDO\VLV

./7 .DQDGH�/XFDV�7RPDVL

N11 N�1HDUHVW 1HLJKERUV

/%3 /RFDO %LQDU\ 3DWWHUQV

/'$ /LQHDU 'LVFULPLQDQW $QDO\VLV

/)'$ /RFDO )LVKHU 'LVFULPLQDQW $QDO\VLV

/): /DEHOHG )DFHV LQ WKH :LOG

/R* /DSODFLDQ RI *DXVVLDQ

/33 /RFDOO\ 3UHVHUYLQJ 3URMHFWLRQV

0%*& 0XOWL %LRPHWULF *UDQG &KDOOHQJH

0,&+( , 0RELOH ,ULV &+DOOHQJH (YDOXDWLRQ � 3DUW ,

0&& 0DWKHZV &RUUHODWLRQ &RHIILFLHQW

0,6 PLVPDWFK

0/3 0XOWL /D\HU 3HUFHSWURQ

0/5 PXOWLQRPLDO ORJLVWLF ULGJH UHJUHVVLRQ

027$ 0XOWLSOH 2EMHFW 7UDFNLQJ $FFXUDF\

0273 0XOWLSOH 2EMHFW 7UDFNLQJ 3UHFLVLRQ

05) 0DUNRY 5DQGRP )LHOG

P505 PLQLPXP�5HGXQGDQF\ 0D[LPXP 5HOHYDQFH

1,&(�, 1RLV\ ,ULV &KDOOHQJH (YDOXDWLRQ � 3DUW �

1,&(�,, 1RLV\ ,ULV &KDOOHQJH (YDOXDWLRQ � 3DUW ,,

1,5 QHDU�LQIUDUHG

11 1HXUDO 1HWZRUNV
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176& 1DWLRQDO 7HOHYLVLRQ 6\VWHP�V� &RPPLWWHH

3&$ 3ULQFLSDO &RPSRQHQW $QDO\VLV

3(7 3ULYDF\ (QKDQFLQJ 7HFKQRORJLHV

3,( 3RVH� ,OOXPLQDWLRQ DQG ([SUHVVLRQ

37= 3DQ�7LOW�=RRP

52& 5HFHLYHU 2SHUDWLQJ &KDUDFWHULVWLF

52, 5HJLRQ RI ,QWHUHVW

6,)7 6FDOH�,QYDULDQW )HDWXUH 7UDQVIRUP

63& 6SHFLILFLW\

66*$ 6WHDG\�6WDWH *HQHWLF $OJRULWKP

675 6LJQDO WR 1RLVH 5DWLR

685) 6SHHG 8S 5REXVW )HDWXUHV

690 6XSSRUW 9HFWRU 0DFKLQH

73 7UXH 3RVLWLYHV

71 7UXH 1HJDWLYHV

735 7UXH 3RVLWLYH 5DWH

8%,3U 8%, 3HULRFXODU 5HFRJQLWLRQ

8'3 XQVXSHUYLVHG GLVFULPLQDQW SURMHFWLRQ

8/%3 8QLIRUP /RFDO %LQDU\ 3DWWHUQV

86$ 8QLWHG 6WDWHV RI $PHULFD

95 9HULILFDWLRQ 5DWH

96*��� 9LVXDO 6WLPXOXV *HQHUDWRU

9: 9LVLEOH :DYHOHQJWK

:/%3 :DOVK�+DGDPDUG WUDQVIRUP HQFRGHG /RFDO %LQDU\ 3DWWHUQV

;�722/66 H;SORUDWLRQ 7RROVHW IRU 2SWLPL]DWLRQ RI /DXQFK DQG 6SDFH 6\VWHPV
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

OYL



&KDSWHU �

,QWURGXFWLRQ

��� 2YHUYLHZ

7KLV WKHVLV DGGUHVVHV WKH VXEMHFW RI ELRPHWULF UHFRJQLWLRQ LQ XQFRQVWUDLQHG HQYLURQPHQWV� %HLQJ
D UDWKHU FKDOOHQJLQJ REMHFWLYH� ZH FKRRVH WR DGRSW D GLYLGH DQG FRQTXHU DSSURDFK� $W VWDUW�
LULV XVDELOLW\ IRU ELRPHWULF UHFRJQLWLRQ LQ WKH ZLOGLV DQDO\]HG� DQG PRUH VXLWHG DOWHUQDWLYHV DUH
VRXJKW� :LWK WKH SHULRFXODU UHJLRQ EHLQJ HVWDEOLVKHG DV WKH PRVW SURPLVLQJ ELRPHWULF WUDLW
IRU WKH WDUJHWHG VFHQDULRV� D PRUH LQ GHSWK VWXG\ RI WKDW WUDLW ZDV FRQGXFWHG� 7KLV GRFWRUDO
UHVHDUFK DGGV XS WR PXOWLSOH VFLHQWLILF FRQWULEXWLRQV DQG� XOWLPDWHO\� D IXOO\ DXWRPDWHG V\VWHP
LV SURSRVHG� 7KLV FKDSWHU GHVFULEHV WKHVLV IRFXV DQG VFRSH� IROORZHG E\ SUREOHP GHILQLWLRQ DQG
REMHFWLYHV� WKH PDLQ FRQWULEXWLRQV DQG WKHVLV RUJDQL]DWLRQ�

��� 7KHVLV )RFXV DQG 6FRSH

6RFLHWLHV· LQFUHDVLQJ FRQFHUQV DERXW ERWK LQGLYLGXDO DQG JOREDO VHFXULW\ KDV SXW ELRPHWULFV DV
RQH RI WKH PRVW DFWLYHV DUHDV RI UHVHDUFK� 7KLV JURZWK WUHQG LV YLVLEOH RQ PHWKRGV� WHFKQLTXHV
DQG DSSOLFDWLRQV� EHLQJ GHSOR\HG LQ D ZLGH UDQJH RI GHYLFHV� 1RZDGD\V ZH FDQ ILQG ELRPHWULFV
EHLQJ XVHG LQ SHUVRQDO HOHFWURQLFV� VXFK DV PRELOH GHYLFHV DQG SHUVRQDO FRPSXWHUV� EXW DOVR DQG
IRUHPRVW RQ KLJK�OHYHO DFFHVV FRQWURO V\VWHPV� VXFK DV ERUGHU DFFHVV FRQWURO� 2Q WKLV ODVW JURXS
RI DSSOLFDWLRQV DQG GXH WR LWV KLJKO\ GHPDQGLQJ UHTXLUHPHQWV� PRVW RI WKH UHVHDUFK LV IRFXVHG RQ
WUDLWV DOORZLQJ KLJKHU XVHU GLVFULPLQDELOLW\ DQG ORZHU IRUJHU\ SRWHQWLDO� DW WKH FRVW RI XVDELOLW\
DQG V\VWHP IOH[LELOLW\�

$FKLHYLQJ ELRPHWULF UHFRJQLWLRQ LV LQ IDFW D SDWWHUQ UHFRJQLWLRQ SUREOHP� DV ZH DLP DW UHFRJQL]�
LQJ D VXEMHFW EDVHG RQ D VHW RI KLV SK\VLRORJLFDO RU EHKDYLRUDO IHDWXUHV� 3DWWHUQ UHFRJQLWLRQ LV
WKH VFLHQWLILF GLVFLSOLQH UHVSRQVLEOH IRU SURFHVVLQJ UDZ GDWD IURP FHUWDLQ REMHFWV� ZRUNLQJ RXW
WKH LQIRUPDWLRQ �L�H�� SDWWHUQV� QHHGHG WR VRUW WKHP LQWR FODVVHV� +DYLQJ EHHQ D WKHRUHWLFDO
VWDWLVWLFDO UHVHDUFK ILHOG XQWLO ����V� LW ZDV WKH HYROXWLRQ RI FRPSXWHU V\VWHPV WKDW SURPSWO\

�D� %HQLJQ OHVLRQ �E� 0DOLJQ OHVLRQ �FDQFHU�

)LJXUH ���� ,OOXVWUDWLRQ RI LPDJH UHJLRQV FRUUHVSRQGLQJ WR WZR GLIIHUHQW FODVVHV >�@�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

GHPDQGHG IRU D ODUJH DPRXQW RI DSSOLFDWLRQV� PDNLQJ LW D YHU\ DFWLYH ILHOG ZLWKLQ WKH PDFKLQH
OHDUQLQJ GRPDLQ� LQ SDUWLFXODU RQ PDFKLQH YLVLRQ� GDWD PLQLQJ DQG NQRZOHGJH GLVFRYHU\ >�@�

)RU LOOXVWUDWLRQ SXUSRVHV� )LJXUH ��� GHSLFWV WZR GLVWLQFW FODVVHV IURP D FODVVLFDO SDWWHUQ UHF�
RJQLWLRQ SUREOHP� IDFLQJ D GHSLFWLRQ RI D FHUWDLQ REMHFW� GHWHUPLQH WR ZKLFK FODVV LW EHORQJV�
,Q WKLV SDUWLFXODU H[DPSOH� RXU REMHFWLYH ZRXOG EH WR DQDO\]H D PHGLFDO LPDJH FRQWDLQLQJ DQ
LGHQWLILHG UHJLRQ DQG GHWHUPLQH LI LW EHORQJV WR D EHQLJQ OHVLRQ �FODVV $� RU D FDQFHU �FODVV %��
)RU LOOXVWUDWLRQ SXUSRVHV� OHWV DVVXPH ZH SRVVHVV D GDWDEDVH RI VXFK LPDJHV� DQG WKH GDWD IURP
D SDUWLFXODU FODVV LV VLPLODU�

,Q RUGHU WR VXFFHVVIXOO\ FODVVLI\ D QHZ LQVWDQFH RI GDWD� ZH ILUVW QHHG WR GHWHUPLQH ZKLFK IHDWXUHV
PDNH WKH FODVVHV GLVWLQFW� ,Q WKLV LOOXVWUDWLYH H[DPSOH� ZH FDQ SHUFHLYH IURP YLVXDO LQVSHFWLQJ WKH
LPDJHV KRZ SL[HO LQWHQVLWLHV VLJQLILFDQWO\ GLIIHU EHWZHHQ FODVVHV� 7KXV� VLPSO\ E\ FRPSXWLQJ WKH
PHDQ DQG VWDQGDUG GHYLDWLRQ YDOXHV RI WKH SL[HO LQWHQVLWLHV� ZH FDQ ZRUN RXW IURP )LJXUH ��� KRZ
HDFK FODVV RFFXSLHV D GLVWLQFW DUHD RI WKH SORW� +DYLQJ VXFK FOHDU FODVV GLVWLQFWLRQ� D FODVVLILFDWLRQ
WKUHVKROG FDQ EH XQHTXLYRFDOO\ GUDZQ �VWUDLJKW OLQH��
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FIGURE 1.2
Plot of the mean value versus the standard deviation for a number of different images originating
from class A (⃝) and class B (!). In this case, a straight line separates the two classes.

with a number of patterns, some of which are known to originate from class A and
some from class B.

The first step is to identify the measurable quantities that make these two regions
distinct from each other. Figure 1.2 shows a plot of the mean value of the inten-
sity in each region of interest versus the corresponding standard deviation around
this mean. Each point corresponds to a different image from the available database.
It turns out that class A patterns tend to spread in a different area from class B pat-
terns. The straight line seems to be a good candidate for separating the two classes.
Let us now assume that we are given a new image with a region in it and that we
do not know to which class it belongs. It is reasonable to say that we measure the
mean intensity and standard deviation in the region of interest and we plot the cor-
responding point. This is shown by the asterisk (∗) in Figure 1.2. Then it is sensible
to assume that the unknown pattern is more likely to belong to classA than class B.

The preceding artificial classification task has outlined the rationale behind a
large class of pattern recognition problems. The measurements used for the classifi-
cation,the mean value and the standard deviation in this case,are known as features.
In the more general case l features xi , i " 1, 2, . . . , l, are used, and they form the
feature vector

x " [x1, x2, . . . , xl]T

where T denotes transposition. Each of the feature vectors identifies uniquely
a single pattern (object). Throughout this book features and feature vectors will
be treated as random variables and vectors, respectively. This is natural, as the
measurements resulting from different patterns exhibit a random variation. This
is due partly to the measurement noise of the measuring devices and partly to

P

Q

)LJXUH ���� 0HDQ YDOXHV P DQG VWDQGDUG GHYLDWLRQ Q IRU LPDJHV EHORQJLQJ WR FODVVHV $ �R� DQG % ���� 7KH
REVHUYDWLRQ PDUNHG ZLWK D VWDU �
� FRUUHVSRQGV WR D QHZ REVHUYDWLRQ >�@�

:KHQ DFTXLULQJ GDWD IURP D QHZ REVHUYDWLRQ� ZH FDUU\ RQ IHDWXUH H[WUDFWLRQ WKH VDPH ZD\ DV
ZH GLG EHIRUH �P DQG Q�� 3ODFLQJ WKDW QHZ REVHUYDWLRQ RQ WKH SORW �
� ZH FDQ FODVVLI\ LW DV
EHORQJLQJ WR FODVV $� DV LW LV DERYH WKH FODVVLILFDWLRQ WKUHVKROG� 7KRVH DUH WKH JHQHUDO VWHSV WR
VROYH D SDWWHUQ FODVVLILFDWLRQ SUREOHP�

)URP WKH H[LVWLQJ ELRPHWULF WUDLWV� WKH FRPPHUFLDOO\ GHSOR\HG ELRPHWULF V\VWHPV SUHIHU WKRVH
FDSDEOH RI ORZHU HUURU UDWHV DQG� RQ WKLV VFRSH� WKH LULV SOD\V DQ LPSRUWDQW UROH� +RZHYHU� LULV
LPDJLQJ LV FRQGLWLRQHG E\ VWULFW DFTXLVLWLRQ SURWRFROV� PRVWO\ GXH WR LWV UHGXFHG VL]H DQG PRY�
LQJ SURILOH� WKXV QRW EHLQJ D VXLWDEOH WUDLW IRU FRYHUW RSHUDWLRQ RQ QRQ�FRRSHUDWLYH VFHQDULRV�
&RQWUDU\ WR WKH FODVVLFDO ELRPHWULF V\VWHPV WKDW UHTXLUH KLJK XVHU FRRSHUDWLRQ� LQ UHDO ZRUOG
DSSOLFDWLRQV WKDW LV QRW DOZD\V H[SHFWDEOH DQG� FRQWUDU\ WR SRSXODU EHOLHI� QR UHVHDUFK HIIRUWV
WR GDWH KDYH SURGXFHG D PDFKLQH DEOH WR UHFRJQL]H KXPDQ EHLQJV LQ VXFK DGYHUVH FRQGLWLRQV� ,Q
WKLV FRQWH[W� WKH SHULRFXODU UHJLRQ SUHVHQWV LWVHOI DV DQ HPHUJLQJ ELRPHWULF WUDLW� ZLWK D JURZLQJ
QXPEHU RI SXEOLFDWLRQV RQ ERWK LWV VWDQG�DORQH SRWHQWLDO DQG IXVLRQ SRVVLELOLW\ ZLWK PRUH FODV�
VLFDO ELRPHWULFV� ,Q WKH ODWHU VFHQDULR� WKH LULV LV D SDUWLFXODUO\ LQWHUHVWLQJ IXVLRQ FDQGLGDWH� DV
ERWK WUDLWV FDQ EH DFTXLUHG VLPXOWDQHRXVO\ ZLWK D VLQJOH VHQVRU�
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7KH VFLHQWLILF FRPPXQLW\ LV WKHQ IDFLQJ WZR GLIIHUHQW URDGV� �� ORZHU WKH DFTXLVLWLRQ FRQVWUDLQWV
SUHVHQW LQ WKH H[LVWLQJ V\VWHPV� DGDSWLQJ WKHP IRU XQFRQVWUDLQHG RSHUDWLRQ� �� H[SORUH WKH XV�
DELOLW\ RI QHZ WUDLWV� EHVW ILW IRU WKH GHPDQGV RI WKHVH QHZ ZRUNLQJ VFHQDULRV� 7KLV GRFWRUDO
ZRUN PHUJHV WKRVH WZR JRDOV E\ VWUHVVLQJ WKH XVDELOLW\ RI H[LVWLQJ WUDLWV �H�J�� WKH LULV� DGDSWLQJ
WKHP WR WKH UHTXLUHPHQWV RI XQFRQVWUDLQHG RSHUDWLRQ� DQG IXVLQJ WKHP ZLWK QHZ DQG HPHUJLQJ
WUDLWV� EHVW ILW IRU WKRVH VFHQDULRV IURP WKHLU FRQFHSWLRQ �H�J�� WKH SHULRFXODU UHJLRQ�� 2XU PDLQ
SXUSRVH LV WR SURSRVH D ELRPHWULF V\VWHP IRU XQFRQVWUDLQHG HQYLURQPHQWV� FDSDEOH RI GHDOLQJ
ZLWK DW�D�GLVWDQFH GDWD DFTXLVLWLRQ IURP PRYLQJ VXEMHFWV� XQGHU YDU\LQJ YLVLEOH ZDYHOHQJWK LOOX�
PLQDWLRQ VHWWLQJV� 7KLV PRWLYDWLRQ PHHWV WR DQRWKHU UHVHDUFKLQJ WUHQG� DV UHVHDUFKHUV DUH WU\LQJ
WR FRPELQH ELRPHWULFV ZLWK VXUYHLOODQFH V\VWHPV� DLPLQJ DW WKH GHSOR\PHQW RI K\EULG VROXWLRQV
FDSDEOH RI LGHQWLI\LQJ XQIULHQGO\ XVHUV LQ WKH ZLOG�

��� 3UREOHP 'HILQLWLRQ DQG 5HVHDUFK 2EMHFWLYHV

7KLV WKHVLV DGGUHVVHV WKH SUREOHP RI ELRPHWULF UHFRJQLWLRQ LQ XQFRQVWUDLQHG HQYLURQPHQWV� 8O�
WLPDWHO\� WKH FHQWUDO REMHFWLYH RI WKLV GRFWRUDO SURJUDP LV WR DGDSW RU GHYHORS D ELRPHWULF
UHFRJQLWLRQ V\VWHP VXLWHG IRU XQFRQVWUDLQHG HQYLURQPHQWV� %DVHG RQ WKH FRQGXFWHG UHVHDUFK�
WKH SHULRFXODU UHJLRQ LV WR EH SUHIHUDEO\ XVHG DV PDLQ WUDLW� GXH WR LWV IOH[LELOLW\ DQG HDVH RI
DFTXLVLWLRQ LQ QRQ�LGHDO G\QDPLF FRQGLWLRQV�

7R DFFRPSOLVK WKH SURSRVHG JRDO� D VHW RI LQWHUPHGLDWH REMHFWLYHV ZDV GHILQHG WR EHWWHU RUJDQL]H
WKH UHTXLUHG UHVHDUFK ZRUN�

�� 6WXG\ WKH LULV DV D ELRPHWULF WUDLW� ZLWK SDUWLFXODU HPSKDVLV RQ WKH QRQ�FRRSHUDWLYH PHWK�
RGV ZRUNLQJ RYHU YLVLEOH ZDYHOHQJWK GDWD� 6XFK VWXG\ VKRXOG IRFXV RQ WKH SXEOLVKHG LULV
UHFRJQLWLRQ PHWKRGV DLPHG DW ORZHULQJ WKH DFTXLVLWLRQ FRQVWUDLQWV� RU ZRUN RQ GHJUDGHG
GDWD�

�� 7KH YLVLEOH ZDYHOHQJWK OLJKW LQWURGXFHV QHZ QRLVH IDFWRUV ZLWK FRQVLGHUDEOH LPSDFW RQ WKH
UHFRJQLWLRQ SHUIRUPDQFH� :H VKRXOG WKHQ DQDO\]H LULV UHIOHFWDQFH ZKLOVW EHLQJ LOOXPLQDWHG
E\ GLIIHUHQW LOOXPLQDQWV �L�H�� ZLWK GLIIHUHQW ZDYHOHQJWKV�� VLQFH WKLV LV D FRQGLWLRQLQJ
IDFWRU ZKHQ ZRUNLQJ XQGHU WKH YLVLEOH VSHFWUXP� ,ULV GLVFULPLQDWRU\ SURSHUWLHV VKRXOG EH
DQDO\]HG RYHU WKUHH D[HV� WKH W\SH RI LOOXPLQDQW RQ WKH VFHQH� WKH OXPLQDQFH OHYHO RI VXFK
LOOXPLQDQW� DQG WKH LULV SLJPHQWDWLRQ OHYHO�

�� 6WXG\ HPHUJLQJ ELRPHWULF WUDLWV� SD\LQJ SDUWLFXODU LQWHUHVW WR WKRVH ZKR PLQLPL]H WKH
GRZQVLGH RI QRQ�LGHDO HQYLURQPHQWV �H�J�� WKH SHULRFXODU UHJLRQ�� +HQFH� WKH SHULRFXODU
UHJLRQ LV DQ DSSURSULDWH FDQGLGDWH IRU WKUHH UHDVRQV� �� LW LV D QDWXUDO ZD\ RI UHFRJQLWLRQ�
XVHG E\ WKH KXPDQ EHLQJ HYHQ ZLWKRXW LWV DZDUHQHVV� �� KDV D SULYLOHJHG ORFDWLRQ LQ UHODWLRQ
WR WKH LULV� DOORZLQJ VLPXOWDQHRXV DFTXLVLWLRQ ZLWK D VLQJOH VHQVRU� �� DV FRUURERUDWHG E\
WKH OLWHUDWXUH� KDV D VHW RI IHDWXUHV WKDW FDQ EH H[SORUHG�

�� ,PSOHPHQW DQG WHVW WKH PRVW UHOHYDQW PHWKRGV DQDO\]HG LQ WKH SUHYLRXV WRSLF� KDYLQJ LQ
PLQG WKDW WKH HYDOXDWLRQ RI WKH LPSOHPHQWHG DOJRULWKPV VKRXOG EH FRQGXFWHG RYHU WKH
VDPH GDWDVHW� 0RUHRYHU� ZH DLP DW JDWKHU D QHZ GDWDVHW� ZLWK GDWD DFTXLUHG VLPXOWD�
QHRXVO\ RYHU WKH QHDU�LQIUDUHG DQG YLVLEOH ZDYHOHQJWKV� (YHQ WKRXJK WKLV QHZ GDWDVHW LV
DFTXLUHG RQ D FRQWUROOHG HQYLURQPHQW� LW ZLOO LQWURGXFH D VHW RI QRLVH IDFWRUV WKDW UHSOLFDWH
WKRVH REVHUYHG LQ XQFRQVWUDLQHG HQYLURQPHQWV�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

�� 0RVW ELRPHWULF V\VWHPV DWWHPSW SRVLWLYH LGHQWLILFDWLRQ �RU YHULILFDWLRQ� DJDLQVW D JDOOHU\
RI HQUROOHG XVHUV EDVHG RQ D �GLV�VLPLODULW\ PHDVXUH� ,Q PDQ\ LQ WKH ZLOG DSSOLFDWLRQV
KRZHYHU� ELRPHWULF V\VWHPV PDNH PRUH VHQVH ZKHQ XVHG IURP WKH QHJDWLYH SHUVSHFWLYH�
JXDUDQWHH ZLWK HQRXJK FRQILGHQFH WKDW DQ XQNQRZQ VXEMHFW GRHV QRW EHORQJ WR D JDOOHU\
RI ´SHUVRQV�RI�LQWHUHVWµ� LQVWHDG RI DWWHPSWLQJ WR LGHQWLI\ KLP�KHU� 2Q WKDW EDVLV RXU
ODVW LQWHUPHGLDWH REMHFWLYH LV WR VWXG\ WKH VWDWH�RI�WKH�DUW RI WKH QHJDWLYH UHFRJQLWLRQ
SDUDGLJP�

)URP WKH SURSRVHG REMHFWLYHV� RQO\ WKH SRVVLELOLW\ RI VWXG\LQJ DQG SHUIRUPLQJ QHJDWLYH UHFRJ�
QLWLRQ ZDV QRW IXOO\ DFKLHYHG� EHLQJ SUHVHQWHG DV IXUWKHU ZRUN� :H XQGHUVWDQG WKH SUDFWLFDO
DGYDQWDJHV RI GHFLGLQJ LI D SDUWLFXODU VXEMHFW LV QRW RQH RI WKH XVHUV UHJLVWHUHG RQ WKH V\VWHP�
SDUWLFXODUO\ LQ V\VWHPV ZRUNLQJ FRYHUWO\� ZKLFK LV IXUWKHU VXSSRUWHG LQ RXU ZRUN >�@� +RZHYHU�
ZH GHFLGHG WR SULRULWL]H WKH FRQFHSWLRQ RI HTXDOO\ FKDOOHQJLQJ V\VWHPV� ZLWK DSSOLFDWLRQV RQ
GLIIHUHQW VFHQDULRV �H�J�� PRELOH VHWXSV >�@��

)LQDOO\� WKH ELRPHWULF V\VWHP ZH DLP DW HVWDEOLVKLQJ VKRXOG EH GHYHORSHG LQ VXFK D ZD\ WKDW FDQ
EH HDVLO\ LPSOHPHQWHG� YDOLGDWHG DQG GHEXJJHG�

��� 0DLQ &RQWULEXWLRQV

7KLV VHFWLRQ EULHIO\ GHVFULEHV WKH FRQWULEXWLRQV UHVXOWLQJ IURP WKH UHVHDUFK ZRUN GHYHORSHG LQ
WKH VFRSH RI WKLV GRFWRUDO SURJUDP� DV LOOXVWUDWHG LQ )LJXUH ����

7KH ILUVW FRQWULEXWLRQ FRQVLVWV RI D SUHOLPLQDU\ DVVHVVPHQW DERXW WKH GLVFULPLQDWLQJ FDSDELOLW\
RI WKH KXPDQ LULV ZKHQ DFTXLUHG XQGHU YLVLEOH ZDYHOHQJWK OLJKW� E\ SHUFHLYLQJ DQG TXDQWLI\LQJ
WKH FRQGLWLRQV WKDW HQDEOH LULV UHFRJQLWLRQ ZLWK HQRXJK FRQILGHQFH� 7KLV VWXG\ LV GHVFULEHG LQ
FKDSWHU �� ZKLFK FRQVLVWV RI DQ DUWLFOH SXEOLVKHG LQ WKH SURFHHGLQJV RI WKH �WK ,((( :RUNVKRS RQ
0XOWLPHGLD ,QIRUPDWLRQ 3URFHVVLQJ DQG 5HWULHYDO >�@�

7KH VHFRQG FRQWULEXWLRQ SURSRVHV D QHZ UHFRJQLWLRQ VFKHPH� EDVHG RQ WHFKQLTXHV WKDW DUH
VXEVWDQWLDOO\ GLIIHUHQW IURP WKRVH WUDGLWLRQDOO\ XVHG� 7KH PLQLPDO OHYHOV RI OLQHDU FRUUHODWLRQ
EHWZHHQ WKH RXWSXWV SURGXFHG E\ WKH SURSRVHG VWUDWHJ\ DQG RWKHU VWDWH�RI�WKH�DUW PHWKRGV
VXJJHVW WKDW WKH IXVLRQ RI ERWK UHFRJQLWLRQ VFKHPHV VLJQLILFDQWO\ LPSURYHV SHUIRUPDQFH� ZKLFK
LV UHJDUGHG DV D SRVLWLYH VWHS WRZDUGV WKH GHYHORSPHQW RI H[WUHPHO\ DPELWLRXV W\SHV RI ELRPHW�
ULF UHFRJQLWLRQ� 7KLV VWXG\ LV GHVFULEHG LQ FKDSWHU �� ZKLFK FRQVLVWV RI DQ DUWLFOH SXEOLVKHG LQ
WKH ���WK YROXPH RI &RPSXWHU 9LVLRQ DQG ,PDJH 8QGHUVWDQGLQJ >�@�

7KH WKLUG FRQWULEXWLRQ SURYLGHV D FRPSDUDWLYH RYHUYLHZ RI WKH PRVW UHOHYDQW UHVHDUFK ZRUNV LQ
WKH VFRSH RI SHULRFXODU UHFRJQLWLRQ� VXPPDUL]LQJ WKH GHYHORSHG PHWKRGV DQG HQXPHUDWLQJ WKH
FXUUHQW LVVXHV� 7KLV VWXG\ LV GHVFULEHG LQ FKDSWHU �� ZKLFK FRQVLVWV RI DQ DUWLFOH SXEOLVKHG LQ WKH
SURFHHGLQJV RI WKH ,((( 6\PSRVLXP RQ &RPSXWDWLRQDO ,QWHOOLJHQFH LQ %LRPHWULFV DQG ,GHQWLW\
0DQDJHPHQW ² &,%,0 ���� >�@�

7KH IRXUWK FRQWULEXWLRQ GHOLYHUV D PRUH GHWDLOHG FRPSDUDWLYH RYHUYLHZ RI WKH PRVW UHOHYDQW
UHVHDUFK RQ WKH VFRSH RI SHULRFXODU UHFRJQLWLRQ� ZLWK ZLGHQ GHWDLO RQ WKH XQGHUO\LQJ WHFKQLTXHV
DQG D FRPSUHKHQVLYH DQDO\VLV RI WKH VWDWH�RI�WKH�DUW UHVXOWV DJDLQVW D FRPPRQ GDWDVHW� ,W VWDUWV
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)LJXUH ���� ,OOXVWUDWLYH RYHUYLHZ RI WKH PDLQ FRQWULEXWLRQV RI RXU UHVHDUFK ZRUN� 6RPH GHSLFWHG PHWKRGV
ZHUH XVHG DV PRGXOHV RQ WKH EXLOGLQJ RI D IXOO\ DXWRPDWHG VXUYHLOODQFH V\VWHP IRU KXPDQ UHFRJQLWLRQ

SXUSRVHV RYHU YLGHR VXUYHLOODQFH VFHQDULRV >��@�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

ZLWK DQ LQWURGXFWRU\ WKUHH�IROG IUDPHZRUN� ZLWK UHODWLRQ WR WUDGLWLRQDO ELRPHWULF WUDLWV DQG V\V�
WHPV� SHULRFXODU DQDWRP\ DQG LGHQWLILHG GLIILFXOWLHV� DQG FRQFOXGHV ZLWK LQVLJKWV RQ WKH PDLQ
GHJUDGDWLRQ LVVXHV DQG GLUHFWLRQV IRU IXUWKHU LPSURYHPHQWV RQ WKLV HPHUJLQJ WUDLW� 7KLV VWXG\
LV GHVFULEHG LQ FKDSWHU �� ZKLFK FRQVLVWV RQ D SDSHU VXEPLWWHG IRU SXEOLFDWLRQ LQ WKH MRXUQDO RI
$UWLILFLDO ,QWHOOLJHQFH 5HYLHZ�

7KH ILIWK FRQWULEXWLRQ SURYLGHV DQ H\H�FRUQHU GHWHFWLRQ PHWKRG DEOH WR GHDO ZLWK GHJUDGHG
GDWD� HPSKDVL]LQJ UREXVWQHVV DQG DSSOLFDELOLW\ WR UHDO�ZRUOG FRQGLWLRQV� 2XU H[SHULPHQWV VKRZ
WKDW WKH SURSRVHG PHWKRG RXWSHUIRUPV RWKHUV LQ ERWK QRLVH�IUHH DQG GHJUDGHG GDWD �EOXUUHG
DQG URWDWHG LPDJHV DQG LPDJHV ZLWK VLJQLILFDQW YDULDWLRQV LQ VFDOH�� 7KLV VWXG\ LV GHVFULEHG LQ
FKDSWHU �� ZKLFK FRQVLVWV RQ DQ DUWLFOH SXEOLVKHG LQ WKH SURFHHGLQJV RI WKH ,((( ,QWHUQDWLRQDO
&RQIHUHQFH RQ %LRPHWULFV ² ,-&% ���� >�@�

7KH VL[WK FRQWULEXWLRQ SURYLGHV D VHJPHQWDWLRQ �ODEHOLQJ� PHWKRG IRU WKH SHULRFXODU UHJLRQ� DEOH
WR GLVFULPLQDWH EHWZHHQ VHYHQ FRPSRQHQWV LQ D VLQJOH VKRW� LULV� VFOHUD� H\HODVKHV� H\HEURZV�
KDLU� VNLQ DQG JODVVHV� +DYLQJ VXFK D ODEHOHG LPDJH DOORZV LPSURYLQJ WKH GHILQLWLRQ RI WKH SHUL�
RFXODU 5HJLRQ RI ,QWHUHVW �52,�� ZLWK EHWWHU SRVH DQG JD]H HVWLPDWLRQ� 7KLV VWXG\ LV GHVFULEHG
LQ FKDSWHU �� ZKLFK FRQVLVWV RQ D SDSHU SXEOLVKHG LQ WKH ,((( ,QWHUQDWLRQDO &RQIHUHQFH RQ %LR�
PHWULFV ² ,-&% ���� >�@�

7KH VHYHQWK FRQWULEXWLRQ SURSRVHV D QRYHO VWUDWHJ\ IXVLQJ GLIIHUHQW UHFRJQLWLRQ DSSURDFKHV� GH�
VFULELQJ KRZ LW FRQWULEXWHV WR D PRUH UHOLDEOH QRQ�FRRSHUDWLYH LULV UHFRJQLWLRQ E\ FRPSHQVDWLQJ
IRU GHJUDGHG LPDJHV FDSWXUHG LQ OHVV FRQVWUDLQHG DFTXLVLWLRQ VHWXSV DQG SURWRFROV� XQGHU YLVLEOH
ZDYHOHQJWKV DQG YDU\LQJ OLJKWLQJ FRQGLWLRQV� 7KH SURSRVHG PHWKRG ZDV WHVWHG DW WKH 1,&(�,,
FRQWHVW� ZKHUH LWV UHPDUNDEOH SHUIRUPDQFH ZDV FRUURERUDWHG E\ D WKLUG�SODFH ILQLVK� 7KLV VWXG\
LV GHVFULEHG LQ FKDSWHU �� ZKLFK FRQVLVWV RQ D SDSHU SXEOLVKHG LQ WKH ��UG LVVXH RI 3DWWHUQ 5HF�
RJQLWLRQ /HWWHUV >�@�

7KH HLJKWK FRQWULEXWLRQ IRFXV RQ ELRPHWULF UHFRJQLWLRQ RQ PRELOH HQYLURQPHQWV XVLQJ WKH LULV
DQG SHULRFXODU LQIRUPDWLRQ DV PDLQ WUDLWV� ,W DQQRXQFHV WKH DYDLODELOLW\ RI DQ LULV DQG SHULRFXODU
GDWDVHW FRQWDLQLQJ LPDJHV DFTXLUHG ZLWK �� GLIIHUHQW PRELOH VHWXSV� DORQJ ZLWK WKH FRUUHVSRQG�
LQJ LULV VHJPHQWDWLRQ GDWD� DOORZLQJ WR HYDOXDWH ERWK LULV VHJPHQWDWLRQ DQG UHFRJQLWLRQ PHWKRGV�
DQG SHULRFXODU UHFRJQLWLRQ WHFKQLTXHV DV ZHOO� )XUWKHUPRUH� LW UHSRUWV WKH RXWFRPHV RI GHYLFH�
VSHFLILF FDOLEUDWLRQ WHFKQLTXHV WKDW FRPSHQVDWH IRU WKH GLIIHUHQW FRORU SHUFHSWLRQ LQKHUHQW WR
HDFK VHWXS� DQG SURSRVHV WKH DSSOLFDWLRQ RI ZHOO�NQRZQ LULV DQG SHULRFXODU UHFRJQLWLRQ VWUDWH�
JLHV� JLYLQJ HYLGHQFH RQ KRZ WKH\ FDQ EH IXVHG WR RYHUFRPH WKH LVVXHV DVVRFLDWHG ZLWK WKH
PRELOH HQYLURQPHQWV� 7KLV VWXG\ LV GHVFULEHG LQ FKDSWHU ��� ZKLFK FRQVLVWV RQ D SDSHU SXEOLVKHG
WKH MRXUQDO 3DWWHUQ 5HFRJQLWLRQ /HWWHUV�

7KH QLQWK FRQWULEXWLRQ DOVR IRFXVHV RQ ELRPHWULF UHFRJQLWLRQ LQ H[WUHPHO\ GHJUDGHG GDWD� 7KH
DYDLODELOLW\ RI DQ DQQRWDWHG GDWDVHW FRQWDLQLQJ KLJK TXDOLW\ PXJVKRWV RI ��� VXEMHFWV� DQG ODUJH
VHWV RI SUREHV GHJUDGHG H[WUHPHO\ E\ WHQ GLIIHUHQW QRLVH IDFWRUV LV DQQRXQFHG� )XUWKHUPRUH�
LW UHSRUWV WKH UHVXOWV RI D PLPLFNHG ZDWFKOLVW LGHQWLILFDWLRQ VFKHPH� DQ RQOLQH VXUYH\ ZDV FRQ�
GXFWHG� ZKHUH SDUWLFLSDQWV ZHUH DVNHG WR SHUIRUP SRVLWLYH DQG QHJDWLYH LGHQWLILFDWLRQ RI SUREHV
DJDLQVW WKH HQUROOHG LGHQWLWLHV� $ORQJ ZLWK WKHLU DQVZHUV� YROXQWHHUV KDG WR SURYLGH WKH PDMRU
UHDVRQV WKDW VXVWDLQHG WKHLU UHVSRQVHV� 7KDW HQDEOHG XV WR SHUFHLYH WKH NLQG RI IHDWXUHV WKDW
DUH PRVW IUHTXHQWO\ DVVRFLDWHG ZLWK VXFFHVVIXO � IDLOHG KXPDQ LGHQWLILFDWLRQ SURFHVVHV� EHLQJ

�



REVHUYHG KRZ KXPDQV JUHDWO\ UHO\ RQ VKDSH LQIRUPDWLRQ DQG KROLVWLF IHDWXUHV� )LQDOO\� HYLGHQFH
LV SURYLGHG WKDW WKH SRVLWLYH KXPDQ LGHQWLILFDWLRQ RQ VXFK H[WUHPHO\ GHJUDGHG GDWD PLJKW EH
XQUHOLDEOH� ZKHUHDV QHJDWLYH LGHQWLILFDWLRQ PLJKW FRQVWLWXWH DQ LQWHUHVWLQJ DOWHUQDWLYH IRU VXFK
FDVHV� 7KLV VWXG\ LV GHVFULEHG LQ FKDSWHU ��� ZKLFK FRQVLVWV RQ D SDSHU SXEOLVKHG LQ WKH MRXUQDO
,(7 %LRPHWULFV�

7KH WHQWK FRQWULEXWLRQ FRQVLVWV RI D QRYHO ODQGPDUN GHWHFWLRQ WHFKQLTXH� DEOH WR LGHQWLI\ VL[�
NH\ HOHPHQWV RI WKH KXPDQ KHDG DQG SLQSRLQW WKHLU ORFDWLRQ UHJDUGOHVV RI WKH LPDJH DFTXLVLWLRQ
DQJOH RU KHDG·V SLWFK� $SDUW IURP WKH VFHQH XQGHUVWDQGLQJ SRLQW RI YLHZ� RQ D PXOWL�PRGDO
ELRPHWULF V\VWHP EHLQJ DEOH WR WHOO LI D SDUWLFXODU ODQGPDUN LV YLVLEOH RU QRW ZRXOG DOORZ GHFLG�
LQJ ZKLFK FODVVLILHU WR XVH� RU DGMXVW ZHLJKWV RQ D VFRUH�OHYHO IXVLRQ VFKHPH� (YDOXDWLQJ WKH
SURSRVHG WHFKQLTXH DJDLQVW VXUYHLOODQFH�OLNH GDWD VKRZHG WKDW LWV DELOLW\ WR FRSH ZLWK LPDJHV
DFTXLUHG RYHU PXOWLSOH DQJOHV FRYHULQJ D IXOO 360◦ YLHZ� HYHQ ZKHQ SDUWLFLSDQWV H[KLELWHG YDUL�
DWLRQV DORQJ WKH IXOO KHDG SLWFK UDQJH� 7KLV VWXG\ LV GHVFULEHG LQ FKDSWHU ��� ZKLFK FRQVLVWV RQ
DQ DUWLFOH VXEPLWWHG IRU WKH 8WK ,$35 ,QWHUQDWLRQDO &RQIHUHQFH RQ %LRPHWULFV�

7KH HOHYHQWK DQG ODVW FRQWULEXWLRQ LV WKH LQWURGXFWLRQ RI D QRYHO ELRPHWULF V\VWHP WKDW HIIHF�
WLYHO\ PLQLPL]HV WKH RSHUDWLRQ UHVWULFWLRQV� EULQJLQJ ELRPHWULF UHFRJQLWLRQ WR YLGHR VXUYHLOODQFH
VFHQDULRV� ,W FRQVLVWV RQ D IXOO\ DXWRPDWHG VXUYHLOODQFH V\VWHP IRU UHFRJQLWLRQ SXUSRVHV� WKDW
H[WHQGV D W\SLFDO KXPDQ GHWHFWLRQ DQG WUDFNLQJ PDFKLQH E\ IXUWKHU HQKDQFHG LW ZLWK D 37=
FDPHUD WKDW GHOLYHUV GDWD ZLWK HQRXJK TXDOLW\ WR SHUIRUP ELRPHWULF UHFRJQLWLRQ� 7KLV VWXG\ LV
GHVFULEHG LQ FKDSWHU ��� ZKLFK FRQVLVWV RQ DQ DUWLFOH VXEPLWWHG IRU WKH 8WK ,$35 ,QWHUQDWLRQDO
&RQIHUHQFH RQ %LRPHWULFV�

��� 7KHVLV 2UJDQL]DWLRQ

7KLV WKHVLV LV RUJDQL]HG LQ IRXUWHHQ FKDSWHUV� 7KH ILUVW DQG ODVW FKDSWHUV DUH GHYRWHG WR WKH
LQWURGXFWLRQ DQG FRQFOXVLRQV DQG IXUWKHU ZRUN UHVSHFWLYHO\� 7KH VHFRQG FKDSWHU LQWURGXFHV WKH
EDVLV RI ELRPHWULFV DQG WKH FKDOOHQJH RI XQFRQVWUDLQHG VFHQDULRV� IROORZHG E\ LQVLJKWV RQ LULV XV�
DELOLW\ VXFK HQYLURQPHQW� $IWHU DQ RYHUYLHZ RI WKH H[LVWLQJ PHWKRGV DQG LGHQWLILHG LVVXHV� WKH
SHULRFXODU UHJLRQ LV SUHVHQWHG DV D YDOXDEOH WUDLW IRU DGYHUVH HQYLURQPHQWV� (DFK RQH RI WKH UH�
PDLQLQJ FKDSWHUV LV IRUPHG E\ DQ DUWLFOH� SXEOLVKHG RU VXEPLWWHG IRU SXEOLFDWLRQ LQ LQWHUQDWLRQDO
MRXUQDOV RU LQGH[HG FRQIHUHQFHV�

�



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

�



&KDSWHU �

6WDWH�RI�WKH�$UW

��� 2YHUYLHZ

7KLV FKDSWHU LQWURGXFHV WKH EDVLFV RI ELRPHWULFV� LWV KLVWRULFDO EDFNJURXQG� WKH PDLQ FKDUDF�
WHULVWLFV RI D ELRPHWULF V\VWHP� DQG WUDLWV� :H IXUWKHU GHVFULEH WKH FKDOOHQJH RI XQFRQVWUDLQHG
VFHQDULRV� WKH UHODWHG LVVXHV DQG WKH HIIRUWV WRZDUGV QRQ�FRRSHUDWLYH UHFRJQLWLRQ� :H RYHUYLHZ
WKH LULV UHFRJQLWLRQ WHFKQLTXHV EHVW VXLWHG IRU WKRVH HQYLURQPHQWV� DQG LQWURGXFH WKH SHULRFXODU
UHJLRQ DV D YLDEOH DOWHUQDWLYH� ,Q WKH HQG� ZH GHVFULEH VRPH HWKLF DQG SULYDF\ FRQFHUQV�

��� %LRPHWULFV

7KH WHUP ELRPHWULFV FDPH IURP WKH *UHHN ´ELRµ � ´PHWULFVµ� DQG OLWHUDOO\ PHDQV ´WR PHDVXUH
OLIHµ� ,Q PRUH VFLHQWLILF WKHUPV� ELRPHWULFV UHIHUV WR WKH DELOLW\ WR UHFRJQL]H D VXEMHFW EDVHG RQ
D VHW RI KLV � KHU SK\VLRORJLFDO RU EHKDYLRUDO IHDWXUHV�

&RPSDUHG WR RWKHU PHDQV RI SURYLQJ D VXEMHFW·V LGHQWLW\ DV WRNHQV �H�J�� SHUVRQDO LGHQWLW\ FDUGV�
RU SDVVZRUGV �H�J�� PHPRUL]HG 3,1�� WKH XVDJH RI D ELRPHWULF V\VWHP RIIHUV QXPHURXV DGYDQ�
WDJHV� WUDLWV FDQQRW EH ORVW� VWROHQ RU IRUJRWWHQ� DUH KDUGHU WR IRUJH� DQG FDQQRW EH XVHG E\
WKLUG�SDUWLHV WKXV DVVXULQJ QRQ�UHSXGLDWLRQ�

����� +LVWRULFDO %DFNJURXQG

(YHQ ZLWKRXW UHFRUGV� ZH FDQ VDIHO\ SRLQW RXW WKH XVH RI IDFLDO IHDWXUHV DV RQH RI WKH ROGHVW H[�
DPSOHV RI ELRPHWULFV DFWXDOO\ HPSOR\HG E\ KXPDQV� (YHU\GD\ DQG HYHQ ZLWKRXW RXU DZDUHQHVV
ZH DOO XVH IDFLDO LQIRUPDWLRQ WR UHFRJQL]H HDFK RWKHU� PDNLQJ LW WKH PRVW ZLGHO\ XVHG ELRPHWULF
WUDLW�

'RFXPHQWHG XVDJH RI ELRPHWULFV GDWH EDFN WR DSSUR[LPDWHO\ ������ %�&� ZKHQ SUHKLVWRULF PHQ
XVHG KDQGSULQWV WR VLJQ WKHLU SDLQWLQJV RQ FDYHV� $URXQG ��� %�&� DQRWKHU KDQG WUDLW ZDV XVHG
E\ %DE\ORQLDQV� ZKR UHFRUGHG WKHLU WUDQVDFWLRQV LQ FOD\ WDEOHV DORQJ ZLWK WKHLU ILQJHUSULQWV�
:ULWLQJV IURP -RmR GH %DUURV �����²����� DOVR GHVFULEH &KLQHVH PHUFKDQW SUDFWLFHV LQFOXGLQJ
WKH XVDJH RI ILQJHUSULQWV WR VHWWOH EXVLQHVV DJUHHPHQWV� DQG DYRLGLQJ FKLOGUHQ EHLQJ PLVWDNHQ
E\ LPSULQWLQJ WKHLU SDOP� DQG IRRWSULQWV RQ SDSHU >��@� ,Q DQFLHQW (J\SW �����²��� %�&�� SK\VLFDO
GHVFULSWRUV ZHUH XVHG WR WHOO DSDUW WUXVWHG WUDGHUV LQ WKH PDUNHW� ,Q WKH FDQRQLFDO VFULSWXUHV
WKHUH DUH DOVR VHYHUDO VWDWHPHQWV RI FKDUDFWHUV SHUIRUPLQJ ELRPHWULF UHFRJQLWLRQ XVLQJ PXOWLSOH
WUDLWV� LQ WKH ERRN RI 7RELW ���� JDLW DQG VLOKRXHWWH DUH XVHG� ´>���@ VKH VDZ KLP DIDU RII� DQG
SUHVHQWO\ SHUFHLYHG LW ZDV KHU VRQ >���@µ� DQG LQ 6DPXHO ����� ´>���@ 6DXO UHFRJQL]HG 'DYLG·V
YRLFH >���@µ� HWF�

�



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

�D� 7KH PHDVXULQJ SURFHGXUH� �E� 7KH ´DQWURSRPHWULF FDUGµ�

)LJXUH ���� 'HSLFWLRQ RI WKH %HUWLOOLRQ·V V\VWHP� LOOXVWUDWLRQ RQ KRZ WKH PHDVXUHPHQWV ZHUH WDNHQ� DQG
WKH FDUG ZKHUH WKH LQIRUPDWLRQ ZDV VWRUHG��

0RUH UHFHQWO\� LQ ����� :LOOLDP +HUVFKHO VWDUWHG UHFRGLQJ KDQGSULQWV RQ HYHU\ FLYLO ZRUNHU FRQ�
WUDFW LQ ,QGLD� VR KH FDQ YHULI\ WKHLU LGHQWLWLHV RQ SD\GD\ >��@� 1RQHWKHOHVV� WKH ILUVW WUXH
ELRPHWULF V\VWHP ZDV VHW XS LQ ���� E\ WKH FKLHI RI WKH FULPLQDO LGHQWLILFDWLRQ GLYLVLRQ $OSKRQVH
%HUWLOOLRQ ² WKH ´DQWKURSRPHWULFDO VLJQDOPHQWµ� ,W ZDV NQRZQ WKDW UHFXUULQJ FULPLQDOV RIWHQ
GLVJXLVHG WKHPVHOYHV RU SURYLGHG IDOVH LQIRUPDWLRQ ZKHQ DUUHVWHG� %HUWLOOLRQ·V SXUSRVH ZDV WR
HVWDEOLVK D ZD\ RI LGHQWLI\ WKHP HYHQ ZLWKRXW WKHLU FRRSHUDWLRQ� E\ PHDVXULQJ LQYDULDQW SK\VLFDO
DWWULEXWHV DQG VWRULQJ WKHP IRU IXUWKHU UHIHUHQFH ² )LJXUH ���� $ WRWDO RI HOHYHQ PHDVXUHPHQWV
ZHUH WDNHQ IRU HDFK LQGLYLGXDO� LQFOXGLQJ VWDQGLQJ DQG VLWWLQJ KHLJKW� ILQJHUWLS GLVWDQFH� VL]H RI
WKH KHDG� HWF� 7KLV V\VWHP EHFDPH XVHG E\ SROLFH IRUFHV DOO DURXQG WKH ZRUOG� EXW KDG D IODZ
WKDW HYHQWXDOO\ OHG WR LWV IDFH LQ ����� WZR SHRSOH FDQ KDYH WKH VDPH PHDVXUHPHQWV�

,Q ����� )UDQFLV *DOWRQ SXEOLVKHV WKH ILUVW VWXG\ RQ ILQJHUSULQW ELRPHWULFV� GHWDLOLQJ KRZ PLQX�
WLD SRLQWV FRXOG EH XVHG IRU ELRPHWULF UHFRJQLWLRQ SXUSRVHV >��@� )LYH \HDUV ODWHU� LQ ����� WKH
XVDJH RI ILQJHUSULQW ELRPHWULFV ZDV LQWURGXFHG LQ WKH ODZ HQIRUFHPHQW� DFFRUGLQJ WR WKH VSHF�
LILFDWLRQV RI (GZDUG 5LFKDUG +HQU\ DW WKH 6FRWODQG <DUG� ZLWK WKH KHOS RI )UDQFLV *DOWRQ DQG
$]L]XO +DTXH ZKR DOVR SHUIHFWHG WKH LQGH[LQJ V\VWHP� 7KH\ XVHG WKH PLQXWLDH SRLQWV SUHVHQW LQ
WKH ILQJHUSULQWV� D WHFKQLTXH WKDW LV VWLOO LQ XVH�

2YHU WKH ODVW GHFDGHV ZH KDYH VHHQ D GUDPDWLF JURZWK LQ ELRPHWULFV� DV QHZ WUDLWV� PHWKRGV�
WHFKQLTXHV DQG DSSOLFDWLRQV HPHUJHG�

����� 7KH 0DLQ 6WDJHV

:KHQ GHYLVLQJ D ELRPHWULF V\VWHP� WKDW LV� D SDWWHUQ DQDO\VLV V\VWHP ZRUNLQJ RQ ELRPHWULF GDWD
WR GHWHUPLQH WKH LGHQWLW\ RI DQ LQGLYLGXDO� RQH PXVW FRQVLGHU IRXU PDLQ VWDJHV >��@� VHQVRU PRG�
XOH� TXDOLW\ DVVHVVPHQW DQG IHDWXUH H[WUDFWLRQ� PDWFKLQJ DQG GHFLVLRQ PDNLQJ� DQG GDWDEDVH�

�,PDJH VRXUFH�

��
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6HQVRU PRGXOH
5HVSRQVLEOH IRU DFTXLULQJ WKH ELRPHWULF WUDLW� LV WKH LQSXW LQWHUIDFH EHWZHHQ WKH LQGLYLGXDO
DQG WKH V\VWHP� 2QH FDQ FKRRVH IURP D ZLGH YDULHW\ RI VHQVRUV� GHSHQGLQJ RQ ZKLFK WUDLW
LV EHLQJ DFTXLUHG� DQG WKH FKDUDFWHULVWLFV ZH ZDQW WR FDSWXUH� 6LQFH PRVW WUDLWV XVH YLVXDO
GDWD� PRVW V\VWHPV XVH FDPHUDV IRU DFTXLVLWLRQ�

4XDOLW\ DVVHVVPHQW DQG IHDWXUH H[WUDFWLRQ
8SRQ DFTXLVLWLRQ RI WKH ELRPHWULF WUDLW� DQG DVVXULQJ WKH SURFHVV ZDV FRQGXFWHG FRUUHFWO\
DQG SURGXFHG XVDEOH GDWD� IHDWXUH H[WUDFWLRQ LV WKHQ FRQGXFWHG� 7KH UDZ FROOHFWHG LQIRU�
PDWLRQ LV SURFHVVHG VR WKDW GLVFULPLQDWRU\ IHDWXUHV FDQ EH H[WUDFWHG DQG HQFRGHG�

0DWFKLQJ DQG GHFLVLRQ PDNLQJ
$W WKLV VWDJH� WKH IHDWXUHV H[WUDFWHG IURP WKH DFTXLUHG GDWD DUH PDWFKHG DJDLQVW WKH
WHPSODWHV VWRUHG RQ WKH GDWDEDVH� 'HSHQGLQJ RQ WKH RSHUDWLRQ PRGH� WKLV FDQ EH D ��� RU
��1 PDWFKLQJ SURFHVV� DQG WKH FRUUHVSRQGLQJ GHFLVLRQ LV WDNHQ�

6\VWHP GDWDEDVH
7KLV ODVW PRGXOH LV ZKHUH DOO WKH LQIRUPDWLRQ IURP WKH XVHUV HQUROOHG LQ WKH V\VWHP LV
VWRUHG� 7KH VWRUHG LQIRUPDWLRQ LV DOUHDG\ HQFRGHG� XVLQJ WKH VDPH WHFKQLTXH HVWDEOLVKHG
DW WKH IHDWXUH H[WUDFWLRQ PRGXOH� VR WKDW LW FDQ EH GLUHFWO\ FRPSDUHG WR QHZ IHDWXUHV
H[WUDFWHG IURP IXUWKHU XVHUV� 8VXDOO\ WKH V\VWHP GDWDEDVH LV EXLOW GXULQJ DQ HQUROOPHQW
VWDJH�

����� 2SHUDWLRQ 0RGHV

7KH ELRPHWULF V\VWHP FDQ RSHUDWH LQ RQH RI WKUHH GLVWLQFW PRGHV >��@�

������� 9HULILFDWLRQ 0RGH

,Q WKH YHULILFDWLRQ PRGH WKH ELRPHWULF V\VWHP DWWHPSWV WR YDOLGDWH WKH LGHQWLW\ RI D SDUWLFXODU
LQGLYLGXDO �)LJXUH ����� 6LQFH WKH XVHU WU\LQJ WR JDLQ DFFHVV DOUHDG\ FODLPV DQ LGHQWLW\ RI KLV
RZQ� WKH V\VWHP RQO\ SHUIRUPV D ��� �RQH�WR�RQH� FRPSDULVRQ WR SURGXFH D ELQDU\ UHVXOW� HLWKHU
XVHU LGHQWLW\ LV YHULILHG RU LW LV QRW� 7KLV RSHUDWLRQ PRGH LV XVHG HYHU\GD\ RQ FRPSXWHU ORJLQV�
$70V� HWF�

Acquired photo

System Database

…

Claimed Identity

Feature Extraction

1:1 Matching

= ?

Yes / No

)LJXUH ���� %ORFN GLDJUDPV RI D ELRPHWULF V\VWHP FDUU\LQJ RXW D YHULILFDWLRQ WDVN�

��



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

������� ,GHQWLILFDWLRQ 0RGH

,Q WKH LGHQWLILFDWLRQ PRGH WKH V\VWHP WULHV WR PDWFK D SDUWLFXODU LQGLYLGXDO DJDLQVW DOO XVHUV
SUHYLRXVO\ HQUROOHG RQ WKH GDWDEDVH �)LJXUH ����� &RQWUDU\ WR WKH YHULILFDWLRQ PRGH� WKHUH
LV QR LGHQWLW\ FODLP WR VWDUW ZLWK� DQG ��1 �RQH�WR�PDQ\� FRPSDULVRQV QHHG WR EH SHUIRUPHG�
7KLV RSHUDWLRQ PRGH FDQQRW EH DSSOLHG WR WUDGLWLRQDO UHFRJQLWLRQ PHWKRGV �H�J�� WRNHQV DQG
SDVVZRUGV� DQG FDQ RQO\ EH DFKLHYHG WKURXJK ELRPHWULFV�

Acquired photo

System Database

…

Feature Extraction

1:N Matching

= ?

User Id / No Id

)LJXUH ���� %ORFN GLDJUDPV RI D ELRPHWULF V\VWHP FDUU\LQJ RXW DQ LGHQWLILFDWLRQ WDVN�

������� 1HJDWLYH�,GHQWLILFDWLRQ 0RGH

7KLV RSHUDWLRQ PRGH� DOVR GHVLJQDWHG DV VFUHHQLQJ >��@� LV DQ H[WHQVLRQ WR WKH LGHQWLILFDWLRQ
PRGH� ,WV SXUSRVH LV WR DVVXUH WKDW D SDUWLFXODU LQGLYLGXDO GRHV QRW EHORQJ WR D VXEVHW RI
XVHUV SUHYLRXVO\ HQUROOHG LQ WKH V\VWHP� E\ SHUIRUPLQJ ��1 H[FOXVLRQ�RULHQWHG FRPSDULVRQV �)LJ�
XUH ����� 7KLV ZDWFKOLVW�OLNH RSHUDWLRQ PRGH LV SDUWLFXODUO\ XVHIXO IRU DLUSRUW VHFXULW\� SXEOLF
SODFHV VHFXULW\� HWF�

Acquired photo

System Watchlist

…

Feature Extraction

1:N Matching

≠ ?

Yes / No

)LJXUH ���� %ORFN GLDJUDPV RI D ELRPHWULF V\VWHP FDUU\LQJ RXW D VFUHHQLQJ WDVN�

����� &ODVVLILFDWLRQ DQG 3URSHUWLHV RI D %LRPHWULF 6\VWHP

7KHUH LV D ZLGH UDQJH RI ELRPHWULF V\VWHPV RSHUDWLQJ QRZDGD\V� 7R EHWWHU DLG WKHLU FODVVLILFD�
WLRQ� ELRPHWULF V\VWHPV FDQ EH JURXSHG DFFRUGLQJO\ WR VL[ SHUVSHFWLYHV >��@�

2YHUW YV� &RYHUW
'HSHQGLQJ RQ WKH XVHU EHLQJ DZDUH RI V\VWHP RSHUDWLRQ RU QRW� WKH ELRPHWULF V\VWHP FDQ EH
FODVVLILHG DV RYHUW RU FRYHUW� UHVSHFWLYHO\� &RRSHUDWLYH ELRPHWULFV DUH DOZD\V DVVRFLDWHG

��



ZLWK RYHUW V\VWHPV� EXW HIIRUWV DUH EHLQJ SXW LQWR WKH H[SDQVLRQ RI FRYHUW ELRPHWULFV�
FLUFXPYHQWLQJ WKH LVVXHV DVVRFLDWHG ZLWK ERWK KLJK�FRQVWUDLQW VHWXSV DQG QRQ�FRRSHUDWLYH
XVHUV�

+DELWXDWHG YV� 1RQ�KDELWXDWHG
6\VWHPV ZLWK ZKLFK WKH XVHUV LQWHUDFW RQ D UHJXODU EDVLV DUH FDOOHG KDELWXDWHG �DIWHU VRPH
WLPH�� $OWKRXJK EHLQJ UHOHYDQW WR HVWDEOLVK WKH UHTXLUHG GHJUHH RI FRRSHUDWLRQ E\ WKH
XVHU� DQ LGHDO V\VWHP ZRXOG EH WKDW ZKHUH LQGLYLGXDOV LQWHUDFW VHDPOHVVO\ HYHQ ZLWKRXW
KDELWXDWLRQ�

$WWHQGHG YV� 1RQ�DWWHQGHG
$ ELRPHWULF V\VWHP UHTXLULQJ D VXSHUYLVRU WR FRQGXFW WKH SURFHVV LV FDOOHG DWWHQGHG� $
QRQ�DWWHQGHG V\VWHP ZRXOG EH SUHIHUUHG� WKDW LV� D V\VWHP WKH XVHU FDQ LQWHUDFW ZLWK
DORQH� ZLWKRXW DQ\ VXSHUYLVLRQ�

6WDQGDUG YV� 1RQ�VWDQGDUG HQYLURQPHQW
%LRPHWULF V\VWHPV RSHUDWLQJ XQGHU FRQWUROOHG FRQGLWLRQV� XVXDOO\ LQGRRU ZLWK UHJXODU LOOX�
PLQDWLRQ DQG FRRSHUDWLYHO\� DUH VDLG WR RSHUDWH LQ D VWDQGDUG HQYLURQPHQW� ,I WKH V\VWHP
LV GHSOR\HG RQ XQFRQWUROOHG VFHQDULRV ZKHUH WKH DFTXLVLWLRQ FRQGLWLRQV FDQ YDU\� LW LV VDLG
WR EH RQ QRQ�VWDQGDUG HQYLURQPHQWV�

3XEOLF YV� 3ULYDWH
7KLV SHUVSHFWLYH UHODWHV WR WKH W\SH RI XVHUV LQWHUDFWLQJ ZLWK WKH V\VWHP� ,I WKH V\VWHP
LV GHSOR\HG LQ D HQWHUSULVH HQYLURQPHQW� ZKHUH WKH XVHUV HQUROOHG DUH HPSOR\HHV RI WKH
FRPSDQ\� LW LV FDOOHG D SULYDWH V\VWHP� :KHQ WKH LQGLYLGXDOV EHLQJ SUHVHQW WR WKH V\VWHP
DUH MXVW FXVWRPHUV� ZLWK QR DIILOLDWLRQ WR WKH FRPSDQ\� LW LV WKHQ D SXEOLF V\VWHP�

2SHQ YV� &ORVHG
:KHQ WKH ZD\ WKH V\VWHP ZRUNV� RU WKH GDWD LW KDQGOHV LV XQNQRZQ RU SURSULHWDU\� LW LV D
FORVHG V\VWHP� 2WKHUZLVH� LW LV DQ RSHQ V\VWHP�

2Q WKH VFRSH RI WKLV WKHVLV ZH DLP DW HVWDEOLVKLQJ DQ RSHQ ELRPHWULF V\VWHP WKDW LV ERWK FRYHUW�
QRQ�KDELWXDWHG DQG QRQ�DWWHQGHG� ,W LV WR EH GHSOR\HG RQ D QRQ�VWDQGDUG DQG SXEOLF HQYLURQ�
PHQW�

:KHQ GHYHORSLQJ D ELRPHWULF V\VWHP� DQG DSDUW IURP WKH UHTXLUHPHQWV WKDW PXVW EH REVHUYHG
IRU WKH ELRPHWULF WUDLW �VHH VHFWLRQ ������� WKHUH DUH ILYH SURSHUWLHV WKDW PXVW EH UHJDUGHG >��@�

3HUIRUPDQFH
$OO WKH IDFWRUV WKDW LPSDFW ERWK SHUIRUPDQFH �H�J�� VSHHG� DQG DFFXUDF\ PXVW EH FRQ�
WHPSODWHG� EHLQJ FKRVHQ WKH IDFWRUV WKDW OHDG WR WKH DFFXUDF\ DQG VSHHG UHTXLUHG E\ WKH
FRQWH[W LW LV EHLQJ XVHG RQ�

$FFHSWDELOLW\
,W LV HVVHQWLDO WKDW WKH LQGLYLGXDOV WR ZKRVH WKH V\VWHP LV WDUJHWHG DW DUH ZLOOLQJ WR DFFHSW
WKDW WKH V\VWHP FDQ DFTXLUH WKDW WUDLW�

&LUFXPYHQWLRQ
7KH V\VWHP VKRXOG QRW EH HDVLO\ E\SDVVHG E\ IRUJHULHV RU LPSHUVRQDWLRQ DWWHPSWV�

([FHSWLRQ +DQGOLQJ
7KH V\VWHP VKRXOG KDYH PHDQV RI DFFRPSOLVKLQJ DQ DOWHUQDWLYH PDWFKLQJ �H�J�� PXOWL�
PRGDO�� LI WKH IHDWXUHV FDQ QRW EH H[WUDFWHG IURP D SDUWLFXODU XVHU�

��



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

Hand 
• Fingerprint 
• Palmprint 
• Hand Veins 

Head 
• Face 
• Ear 
• Teeth 

Ocular 
• Iris 
• Retina 
• Periocular 

Medico-
chemical 
• DNA 
• ECG 
• Odor 

Behavioural 
• Voice 
• Signature 
• Gait 

Soft 
• Gender 
• Etnicity 
• Height 

)LJXUH ���� 7KH PDLQ ELRPHWULF PRGDOLWLHV� DQG VRPH H[DPSOHV RI WKH WUDLWV WKH\ XVH�

6\VWHP &RVW
7KH FRVW DVVRFLDWHG ZLWK WKH GHYHORSPHQW� GHSOR\PHQW DQG PDLQWHQDQFH RI WKH V\VWHP
VKRXOG EH DGHTXDWH IRU WKH FRQWH[W LWV EHLQJ DSSOLHG RQ�

����� 7KH %LRPHWULF 7UDLWV

7KH IDFH DQG WKH LULV DUH DPRQJ WKH PRVW SRSXODU ELRPHWULF WUDLWV XVHG IRU UHFRJQLWLRQ SXUSRVHV
DQG� DORQJ ZLWK ILQJHUSULQW� WKH PRVW UHSRUWHG LQ WKH OLWHUDWXUH >��� ��@�

-DLQ HW DO� >��@ HVWDEOLVKHG D VHW RI IRXU UHTXLUHPHQWV IRU D SDUWLFXODU SK\VLRORJLFDO RU EHKDYLRUDO
FKDUDFWHULVWLF� VR LW FRXOG EH XVHG DV ELRPHWULF WUDLW� 7KH\ DUH DV IROORZV�

8QLYHUVDOLW\
,I DQ LQGLYLGXDO LV WR EH UHFRJQL]HG XVLQJ WKDW FKDUDFWHULVWLF� WKHQ LW KDV WR EH FRPPRQ WR
HYHU\ SHUVRQ�

'LVWLQFWLYHQHVV
,W VKRXOG EH XQDPELJXRXV HQRXJK VR WKDW WZR SHUVRQV FRXOG KDUGO\ EH PLVLGHQWLILHG�

3HUPDQHQFH
7KH FKDUDFWHULVWLF VKRXOG UHPDLQ VWDEOH RYHU D UHDVRQDEOH DPRXQW RI WLPH�

&ROOHFWDELOLW\
7KH FKDUDFWHULVWLF PXVW EH DFTXLUDEOH DQG LWV IHDWXUHV H[WUDFWHG LQ D TXDQWLWDWLYHO\ ZD\�

$FFRUGLQJO\� VHYHUDO WUDLWV DUH XVHG QRZDGD\V� HDFK RQH UHVSHFWLQJ WKRVH UHTXLUHPHQWV XS WR D
FHUWDLQ GHJUHH�

:H QRZ SUHVHQW WKH PRVW XVHG ELRPHWULF WUDLWV >��@� JURXSHG E\ WKH ERG\ UHJLRQ WKH\ DUH ORFDWHG
RQ� DV LOOXVWUDWHG LQ )LJXUH ���� 6RPH WUDLWV ZHUH QRW GHVFULEHG� DV HYHQ WKRXJK VRPH VWXGLHV
SRLQW WKHVH DV VXLWDEOH IRU ELRPHWULF UHFRJQLWLRQ IXUWKHU ODUJH VFDOH VWXGLHV DUH VWLOO UHTXLUHG�

��



������� 7KH +DQG 5HJLRQ

7KH KDQG UHJLRQ FRQWDLQV VHYHUDO WUDLWV H[SORUHG IRU WKHLU ELRPHWULF SRWHQWLDO� ILQJHUSULQW� SDOP�
SULQW� KDQG JHRPHWU\� YHLQ SDWWHUQ� ILQJHU NQXFNOH SULQW� HWF�

)LQJHUSULQW
7KH VNLQ LQ RXU ILQJHUV FRQWDLQV VPDOO LUUHJXODULWLHV� ZKHUH ULGJHV DQG IXUURZV PDNH D VHW RI
SDWWHUQV� )URP WKRVH SDWWHUQV� D VHW RI PLQXWLDH SRLQWV FDQ EH H[WUDFWHG� DQG XVHG IRU ELR�
PHWULF UHFRJQLWLRQ� $V VDLG EHIRUH WKLV ELRPHWULF WUDLW KDV EHHQ XVHG IRU VHYHUDO FHQWXULHV �VHH
VHFWLRQ ������� ZLWK FRQVLGHUDEOH JRRG DFFXUDF\� %HLQJ D ZHOO DFFHSWHG WUDLW� HDV\ WR XVH DQG
DFTXLUHG ZLWK VPDOO DQG FKHDS GHYLFHV� LW LV ZLGHO\ GHSOR\HG LQ PDQ\ VFHQDULRV� IURP DFFHVV
FRQWURO LQ ILUPV WR SHUVRQDO FRPSXWHUV�

3DOPSULQW
6LPLODU WR WKH ILQJHUSULQW� SDOPSULQW ELRPHWULFV LV EDVHG RQ VNLQ ULGJH GLVWULEXWLRQ DORQJ WKH SDOP
RI WKH KDQG� $V WKH SDOP DUHD LV VLJQLILFDQWO\ KLJKHU WKDQ ILQJHU·V� D ORW PRUH GLVWLQFWLYH SDWWHUQV
FDQ EH REVHUYHG� +RZHYHU� WKH SDOP RI WKH KDQG GRHV QRW EHFRPH LQ FRQWDFW ZLWK HYHU\GD\
VXUIDFHV DV WKH ILQJHUSULQW GRHV� ZKLFK FDQ EH D GRZQVLGH IURP WKH IRUHQVLFV SRLQW�RI�YLHZ� $V
WKH VDPH DGYDQWDJHV DQG SLWIDOOV RI WKH ILQJHUSULQWV� SOXV D ODUJHU DUHD WKXV DOVR UHTXLULQJ D
ELJJHU VHQVRU�

+DQG JHRPHWU\
7KH JHRPHWU\ RI WKH KDQG FDQ DOVR EH XVHG DV ELRPHWULF WUDLW� E\ PHDVXULQJ WKH OHQJWK DQG
ZLGWK RI WKH SDOP DQG ILQJHUV� $V WKH DGYDQWDJHV RI EHLQJ OHVV LQWUXVLYH DQG HDV\ WR DFTXLUH�
DQG QRW UHTXLULQJ H[SHQVLYH HTXLSPHQW LQ FRPSDULVRQ WR WKH RWKHU WUDLWV� +RZHYHU� WKLV LV IDU
IURP EHLQJ D KLJKO\ GLVWLQFWLYH WUDLW� DV PDQ\ SHRSOH VKDUH WKH VDPH KDQG GLPHQVLRQV�

9HLQ SDWWHUQ
7KH YDVFXODU SDWWHUQV RI DQ LQGLYLGXDO DUH XQLTXH� ,Q WKH KDQGV LQ SDUWLFXODU� WKHUH LV D FRPSOH[
YHLQ V\VWHP DOORZLQJ ELRPHWULF UHFRJQLWLRQ WR EH FDUULHG RQ� 'XH WR LWV ORFDWLRQ� KDV JRRG
DFFHSWDQFH E\ WKH XVHUV� DOWKRXJK UHTXLULQJ WKH ZKROH KDQG WR EH LQ FRQWDFW ZLWK WKH V\VWHP
ZKLOVW EHLQJ LOOXPLQDWHG E\ LQIUDUHG OLJKW VR WKDW WKH FRQWUDVW EHWZHHQ WKH YHLQV DQG WKH PXVFOHV
LV PD[LPL]HG�

.QXFNOH SULQW
7KH NQXFNOH SULQW LV H[WUDFWHG IURP WKH VNLQ QHDU WKH MRLQWV LQ WKH EDFN RI WKH ILQJHUV� $OWKRXJK
QRW VR FRPPRQO\ XVHG� WKH ILQJHU NQXFNOH VNLQ LV SDUWLFXODU ULFK LQ WH[WXUH LQIRUPDWLRQ� WKXV
KROGLQJ KLJK GLVFULPLQDWLYH FDSDELOLWLHV�

������� 7KH +HDG

2Q WKH KXPDQ KHDG WKHUH DUH DOVR VHYHUDO UHJLRQV KROGLQJ YDOXDEOH FXHV IRU ELRPHWULF UHFRJ�
QLWLRQ� IDFH� HDU VKDSH� WHHWK� HWF� 7KH RFXODU UHJLRQ LV DOVR FRQWDLQHG RQ WKH KHDG� EXW VLQFH
LW JDWKHUV D ORW RI GLIIHUHQW WUDLWV DQG DWWHQWLRQ IURP WKH VFLHQWLILF FRPPXQLW\� ZLOO EH WUHDWHG
DV D VHSDUDWH VHFWLRQ�

��



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

)DFH
7KH IDFH UHFRJQLWLRQ EHFRPH RQH RI WKH PRVW VXFFHVVIXO DSSOLFDWLRQV RI LPDJH DQDO\VLV DQG
XQGHUVWDQGLQJ� %HLQJ QRQ�LQWUXVLYH DQG DOORZLQJ FRYHU DFTXLVLWLRQ� LW EHFDPH SUHIHUDEOH RYHU
YHU\ UHOLDEOH WUDLWV ZKHQ DLPLQJ DW OHVV FRQVWUDLQHG VXEMHFW UHFRJQLWLRQ� 6HYHUDO FRPPHUFLDO
IDFH UHFRJQLWLRQ V\VWHPV DUH QRZ DYDLODEOH� DQG D ORW RI WHFKQLTXHV ZHUH GHYHORSHG IRU ERWK VWLOO
LPDJHV DQG YLGHR� XQGHU WKH 9LVLEOH :DYHOHQJWK �9:� DQG LQIUDUHG� )DFH UHFRJQLWLRQ DSSURDFKHV
DUH HLWKHU EDVHG RQ D JOREDO DQDO\VLV RI WKH ZKROH UHJLRQ DV D VHW RI SL[HO LQWHQVLWLHV� RU WKH
UHODWLRQ EHWZHHQ IDFLDO DWWULEXWHV� WKHLU ORFDWLRQ DQG VKDSH�

(DU VKDSH
7KH VKDSH RI WKH HDU FDQ EH XVHG DV D ELRPHWULF WUDLW RU� PRUH SUHFLVHO\� WKH VWUXFWXUH RI WKH
FDUWLODJH LW LV PDGH RI� ,WV SDWWHUQV FDQ HLWKHU EH LPDJHG RQ WKH 9: ZLWK UHJXODU FDPHUDV� XVLQJ
IDU�LQIUDUHG FDPHUDV WR FDSWXUH LW WKHUPDO VLJQDWXUH� RU LPSULQWLQJ LW LQ WKH IRUP RI HDUSULQWV�
7KH PDLQ LVVXH LV WKDW DOO PHWKRGV UHTXLUH XVHU FRRSHUDWLRQ XS WR D FHUWDLQ GHJUHH� DV LQ WKH
ZLOG WKH\ DUH HDVLO\ RFFOXGHG RU SRRUO\ DOLJQHG IRU SURSHU GDWD WR EH DFTXLUHG�

7HHWK
7KH GHQWDO VWUXFWXUH LV XQLTXH IRU HDFK LQGLYLGXDO� +RZHYHU� LWV DFTXLVLWLRQ HYROYHV KLJKO\ FRRS�
HUDWLYH DQG LQWUXVLYH SURFHVVHV� $V VR� WHHWK DQDO\VLV IRU UHFRJQLWLRQ SXUSRVHV LV XVHG SDUWLFXODUO\
LQ IRUHQVLF VFHQDULRV ZKHUH RWKHU WUDLWV FDQ QR ORQJHU EH DFTXLUHG�

������� 7KH 2FXODU 5HJLRQ

7KH RFXODU UHJLRQ LV RQH RI WKH PRVW H[SORUHG LQ ELRPHWU\� VLQFH QRW RQO\ LW FRQWDLQV PXOWLSOH
WUDLWV� DV WKH\ DOVR OHDG WR KLJK DFFXUDF\ V\VWHPV� 7KH WUDLWV IURP WKH RFXODU UHJLRQ XVHG IRU
ELRPHWULF UHFRJQLWLRQ DUH WKH LULV� UHWLQD� VFOHUD YHLQ SDWWHUQV� WKH SHULRFXODU UHJLRQ LWVHOI� HWF�

,ULV
7KH LULV KDV D SUHGRPLQDQWO\ UDQGRW\SLF PRUSKRJHQHVLV� XQLTXH IRU HDFK LQGLYLGXDO DQG DOORZV
YHU\ KLJK UHFRJQLWLRQ DFFXUDF\� ZKLFK MXVWLILHV WKH HIIRUWV EHLQJ KHOG RQ LULV ELRPHWULFV UHVHDUFK
DQG LWV TXLFN DVFHQW DV RQH RI WKH PRVW SRSXODU ELRPHWULF WUDLWV� %HLQJ D SURWHFWHG RUJDQ
YLVLEOH IURP WKH H[WHULRU� LW FDQ EH DFTXLUHG LQ D OHVV LQWUXVLYH ZD\� +RZHYHU� LULV SHUIRUPDQFH
DV D ELRPHWULF WUDLW LV VHYHUHO\ LPSDFWHG LQ QRQ�LGHDO VHWXSV� DQG LWV UHODWLYHO\ UHGXFHG VL]H
DQG PRYLQJ SURILOH PDNH LW GLIILFXOW WR LPDJH DW�D�GLVWDQFH DQG ZLWKRXW XVHU FRRSHUDWLRQ �VHH
6HFWLRQ �������

5HWLQD
7KH UHWLQD LV WKH LQQHUPRVW SDUW RI WKH H\H� DQG WKH EORRG YHVVHOV WKDW SDVV WKURXJK LW FDQ DOVR
EH XVHG WR XQLTXHO\ LGHQWLI\ DQ LQGLYLGXDO� 7KLV WUDLW KDV KLJK GLVWLQFWLYHQHVV� DV WKHUH DUH QR
WZR SHUVRQV ZLWK WKH VDPH YHLQ FRQILJXUDWLRQ� EXW LWV ORFDWLRQ DQV VL]H PDNH LW KDUG WR DFTXLUH�
$ KLJK OHYHO RI FRRSHUDWLRQ LV UHTXLUHG� DV WKH XVHU QHHGV WR VWDQG VWLOO DQG ORRN WKURXJK DQ
H\HSLHFH ZKLOH EHLQJ LOOXPLQDWHG ZLWK DQ LQIUDUHG EHDP� 2Q WKH RWKHU VLGH� LWV H[WUHPHO\ KDUG
WR IRUJH� DQG LV DFTXLUHG ZLWK ORZ OHYHOV RI QRLVH�

3HULRFXODU
7KH SHULRFXODU UHJLRQ UHSUHVHQWV D JRRG WUDGH�RII EHWZHHQ WKH ZKROH IDFH DQG WKH LULV DORQH�
DQG LW LV HDV\ WR DFTXLUH ZLWKRXW XVHU FRRSHUDWLRQ� QRW UHTXLULQJ D FRQVWUDLQHG FORVH FDSWXULQJ�

��



$V VR� LWV XVH DV D ELRPHWULF WUDLW KDV HPHUJHG DQG FRQVWLWXWHV QRZDGD\V D VWURQJ DOWHUQDWLYH IRU
OHVV FRQVWUDLQHG HQYLURQPHQWV �VHH VHFWLRQ �������

������� 0HGLFR�FKHPLFDO

7UDLWV UHTXLULQJ PHGLFDO�JUDGH VHQVRUV WR EH DFTXLUHG ZHUH FODVVLILHG DV PHGLFR�FKHPLFDO�
GHR[\ULERQXFOHLF DFLG �'1$�� (&*� RGRU� KHDUW VRXQG� HWF�

'1$
7KH '1$ LV D PROHFXOH FRQWDLQHG LQ HYHU\ FHOO RI WKH KXPDQ ERG\ WKDW HQFRGHV RXU JHQHWLF
LQVWUXFWLRQV� :LWK H[FHSWLRQ RI LGHQWLFDO WZLQV� HDFK SHUVRQ·V '1$ LV XQLTXH DQG FDQ EH XVHG WR
XQHTXLYRFDOO\ UHFRJQL]H DQ LQGLYLGXDO� 'HVSLWH LWV ZRUOGZLGH DFFHSWDQFH E\ IRUHQVLF H[SHUWV�
'1$ EDVHG ELRPHWULFV DUH VWLOO KLJKO\ LQWUXVLYH DQG WLPH FRQVXPLQJ� 7KH DFTXLVLWLRQ DQG KDQGOLQJ
QHHG WR EH SHUIRUPHG ZLWK H[WUHPH FDUH WR DYRLG FRQWDPLQDWLRQ� $OVR� WKHUH DUH VRPH SULYDF\
FRQFHUQV� DV '1$ DQDO\VLV FDQ UHYHDO D SHUVRQ·V SUHGLVSRVLWLRQ WR FHUWDLQ GLVHDVHV�

2GRU
7KH RGRU HPDQDWHG E\ DQ LQGLYLGXDO LV DOVR XQLTXH� DQG FDQ EH XVHG WR LGHQWLI\ KLP� ([LVWLQJ
RGRU DFTXLULQJ VHQVRUV FRQVLVW RI DUUD\V RI FKHPLFDO VHQVRUV� HDFK RQH VHQVLWLYH WR D SDUWLFXODU
IUDJUDQFH� 1RQHWKHOHVV� LW LV DIIHFWHG E\ GHRGRUDQWV� SHUIXPHV� GLHWV� PHGLFLQHV� HWF�

������� %HKDYLRUDO

%HKDYLRUDO ELRPHWULFV DUH D UDWKHU GLIIHUHQW EUDQFK RI ELRPHWULFV VLQFH WKH\ HVWDEOLVK D VXEMHFW·V
LGHQWLW\ E\ DQDO\]LQJ WKH ZD\ WKH\ EHKDYH UDWKHU WKDQ WKHLU SK\VLRORJLFDO DWWULEXWHV� 7KH PDMRU
EHKDYLRUDO WUDLWV LQ XVH DUH� YRLFH� VLJQDWXUH� JDLW� NH\VWURNH G\QDPLFV� HWF�

9RLFH
7KH KXPDQ YRLFH SOD\V DQ LPSRUWDQW UROH RQ KXPDQ UHFRJQLWLRQ� (YHQ ZLWKRXW VHHLQJ WKH LQGL�
YLGXDO� ZH FDQ LGHQWLI\ LW MXVW E\ HDULQJ KLP VSHDN� $ SHUVRQ·V YRLFH LV GHWHUPLQHG E\ VHYHUDO
SK\VLRORJLFDO IDFWRUV� OLNH WKH YRFDO WUDFWV DQG WKH PRXWK DQG QDVDO FDYLWLHV� 7KH GHSOR\HG YRLFH
DXWKHQWLFDWLRQ V\VWHPV GR QRW RIIHU HQRXJK TXDOLW\ IRU KLJK�VHFXULW\ VFHQDULRV� DV WKLV WUDLW LV
SURQH WR LQWHUIHUHQFH DQG KDUG WR DFTXLUH ZLWKRXW QRLVH HYHQ LQ VWDQGDUG HQYLURQPHQWV� 3OXV�
LW FDQ EH FRQGLWLRQHG E\ DQ LQGLYLGXDO·V HPRWLRQV RU PHGLFDO FRQGLWLRQV �H�J�� WKURDW UHODWHG
LQIHFWLRQV��

6LJQDWXUH
8VLQJ D SHUVRQ VLJQDWXUH WR YHULI\ KLV LGHQWLW\ LV FRPPRQO\ XVHG ZRUOGZLGH� DQG LWV VR GLVVHPL�
QDWHG DPRQJ XVHUV WKDW LW LV RQH RI WKH PRVW DFFHSWHG UHFRJQLWLRQ PRGDOLWLHV� +RZHYHU� QRW RQO\
WKH ZD\ DQ LQGLYLGXDO VLJQV FKDQJHV RYHU WLPH DQG LW LV LQIOXHQFHG E\ KLV HPRWLRQDO FRQGLWLRQ�
DFTXLULQJ LW UHTXLUHV VXEVWDQWLDO XVHU FRRSHUDWLRQ�

*DLW
7KH ZD\ D SHUVRQ ZDONV �JDLW� LV D EHKDYLRUDO WUDLW WKDW FDQ EH XVHG IRU ELRPHWULF UHFRJQLWLRQ
SXUSRVHV� ,W LV QRQ�LQYDVLYH� DQG FDQ EH DFTXLUHG DW�D�GLVWDQFH� 7KH PDMRULW\ RI WKH H[LVWLQJ
UHFRJQLWLRQ PHWKRGV GR QRW UHTXLUH KLJK UHVROXWLRQ GDWD� VR WKH\ FDQ UXQ RYHU VHFXULW\ FDPHUDV

��



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

ORFDWHG DW SXEOLF ORFDWLRQV� $V WKHUH DUH VRPH IDFWRUV WKDW DIIHFW WKH ZD\ SHRSOH ZDON �H�J��
DZNZDUG VKRHV RU FORWKLQJ� WKH SHUIRUPDQFH RI D JDLW UHFRJQLWLRQ V\VWHP FDQ DOVR EH DIIHFWHG�

.H\VWURNH
7KH DQDO\VLV RI WKH NH\VWURNH SDWWHUQV RI DQ LQGLYLGXDO FDQ DOVR EH XVHG WR LGHQWLI\ KLP� $PRQJ
WKH IHDWXUHV DYDLODEOH DUH W\SLQJ VSHHG� WKH SDFH EHWZHHQ GLIIHUHQW OHWWHUV DQG W\SLFDO W\SLQJ
HUURUV� 7KLV WUDLW KDV WKH DGYDQWDJH RI XVLQJ D UHJXODU NH\ERDUG DV LQSXW VHQVRU� QRW UHTXLULQJ
UDWKHU H[SHQVLYH DFTXLVLWLRQ GHYLFHV� +RZHYHU� WKH ZD\ DQ LQGLYLGXDO W\SHV RQ WKH NH\ERDUG
ODFNV LQ SHUPDQHQFH� EHLQJ DIIHFWHG E\ WKH VWDWH RI PLQG RU WKH UHOD[DWLRQ OHYHO� 3OXV� WKH
VDPH LQGLYLGXDO FDQ KDYH GLIIHUHQW SHUIRUPDQFHV ZKHQ XVLQJ GLIIHUHQW NH\ERDUGV�

������� 6RIW�ELRPHWULFV

6RIW ELRPHWULFV FKDUDFWHULVWLFV DUH QRW GLVFULPLQDWRU\ HQRXJK WR EH XVHG IRU VXEMHFW LGHQWLILFD�
WLRQ� +RZHYHU� WKH\ FDQ EH XVHG DORQJ ZLWK KDUG�ELRPHWULFV WR LPSURYH WKH UHFRJQLWLRQ UDWH
RU VSHHG XS WKH V\VWHP �H�J�� GDWD FDWHJRUL]DWLRQ�� ([DPSOHV RI VRIW�ELRPHWULFV DUH JHQGHU�
HWKQLFLW\� KHLJKW� VNLQ PDUNV �H�J�� WDWWRRV�� KDLU � H\H FRORU� HWF�

����� 3HUIRUPDQFH $VVHVVPHQW

,Q RUGHU WR HYDOXDWH WKH SHUIRUPDQFH RI D SDUWLFXODU WUDLW RU ELRPHWULF V\VWHP� VHYHUDO VWDWLVWLFDO
PHWULFV FDQ EH XVHG�

'HFLGDELOLW\ d′ ZDV LQWURGXFHG E\ 'DXJPDQ >��@� DQG TXDQWLILHV LQWUD� DQG LQWHU�FODVV VHSDUDELOLW\
E\ DQDO\]LQJ WKHLU PHDQ µ DQG VWDQGDUG GHYLDWLRQV σ ������ JLYHQ WKDW ERWK GLVWULEXWLRQV DUH
*DXVVLDQ� )RU WKH VDNH RI FODULW\� LQWUD�FODVV UHIHUV WR WKH FRPSDULVRQV ZKHUH ERWK WKH DFTXLUHG
GDWD DQG WKH PDWFKLQJ WHPSODWH EHORQJ WR WKH VDPH SHUVRQ� DQG LQWHU�FODVV RWKHUZLVH�

d′ =
||µLQWHU − µLQWUD||√

σ2
LQWHU
2 + σ2

LQWUD

�����

7KH 52& FXUYH LV DOVR D FRPPRQ SORW UHODWLQJ WKH VHQVLWLYLW\� RU 735 ZLWK WKH )35� )URP WKDW
SORW� ZH FDQ WDNH WKH $8& WR TXDQWLI\ KRZ ZHOO SDLUZLVH FRPSDULVRQV ZHUH SHUIRUPHG RQ D EL�
QDU\ FODVVLILFDWLRQ SHUVSHFWLYH� 7KLV PHWULF YDULHV LQ WKH [0, 1] LQWHUYDO� EHLQJ � WKH LGHDO VFHQDULR
ZKHUH DOO SRVLWLYH PDWFKHV DUH UDQNHG KLJKHU WKDQ WKH QHJDWLYHV� :KHQ VHWWLQJ WKH RSHUDWLQJ
WKUHVKROG WKDW GHWHUPLQHV WKH DFFHSW � UHMHFW GHFLVLRQ IRU DQ HTXDO HUURU RQ ERWK FODVVHV� ZH
REWDLQ WKH ((5�

6HQVLWLYLW\� RU 735 DQG 6SHFLILFLW\ �63&� DUH JLYHQ E\ ����� DQG ����� UHVSHFWLYHO\� DQG UHODWH WKH
FRUUHFW UHVSRQVHV WR WKH WRWDO RI SRVLWLYH �73 � )1� DQG QHJDWLYH DQVZHUV �71 � )3��

735 =
73

73+ )1
�����

63& =
71

71+ )3
�����

��



7KH $&& ����� LV XVHG WR H[SUHVV WKH RYHUDOO UDWLR RI FRUUHFWO\ FODVVLILHG PDWFKHV� ,WV PD[LPXP
YDOXH LV RQH� H[SUHVVLQJ WKH RSWLPDO VFHQDULR ZKHUH DOO FODVVHV KDYH EHHQ FRUUHFWO\ FODVVLILHG�

$&& =
73+ 71

73+ )1+ )3+ 71
�����

)RU D EDODQFHG DQDO\VLV LQ VLWXDWLRQV ZKHUH WKHUH LV DQ KLJK GLVFUHSDQF\ EHWZHHQ WKH DPRXQW RI
SRVLWLYH DQG QHJDWLYH PDWFKHV� WKH 0&& FDQ EH XVHG ������ ,W YDULHV LQ WKH [−1, 1] LQWHUYDO� EHLQJ
RQH WKH RSWLPDO YDOXH >��@�

0&& =
73 · 71− 73 · )1√

(73+ )3)(73+ )1)(71+ )3)(71+ )1)
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��� 7RZDUGV 1RQ�&RRSHUDWLYH 6FHQDULRV

6HYHUDO DXWKRUV KDYH VWUHVVHG WKH PDLQ LVVXHV DVVRFLDWHG ZLWK QRQ�FRRSHUDWLYH HQYLURQPHQWV�
)DQFRXUW HW DO� >��@ FRQFOXGHG WKDW LV SRVVLEOH WR DFTXLUH VXIILFLHQWO\ KLJK�TXDOLW\ LULV GDWD DW GLV�
WDQFHV XS WR �� PHWHUV 6PLWK HW DO� >��@ FRPSDUDWLYHO\ H[DPLQHG LULV GDWD FDSWXUHG LQ ERWK WKH
QHDU�LQIUDUHG �1,5� DQG 9: VSHFWUD� DGGUHVVLQJ WKH SRVVLELOLW\ RI FRPELQLQJ WKDW PXOWL�VSHFWUDO
GDWD WR LPSURYH UHFRJQLWLRQ SHUIRUPDQFH� ,Q RXU ZRUN >�@ ZH DGGUHVVHG LULV XVDELOLW\ IRU UHF�
RJQLWLRQ SXUSRVHV RQ WKH YLVLEOH ZDYHOHQJWK� TXDQWLI\LQJ WKH FRQGLWLRQV WKDW DOORZ WKDW SURFHVV
ZLWK HQRXJK FRQILGHQFH� :H FRQFOXGH RQ WKH VLJQLILFDQW LPSDFW RI WKH OXPLQDQFH OHYHO WKDW
VKRXOG EH QR ORZHU WKDW 120cd/m2m� LQ RSSRVLWLRQ WR WKH LOOXPLQDQW EHLQJ XVHG WKDW ZDV OHVV
UHOHYDQW� 5RVV HW DO� >��@ DGGUHVVHG WKH SUREOHP RI ELRPHWULF UHFRJQLWLRQ RYHU GHJUDGHG LULV
LPDJHV� KDYLQJ DXWKRUV FRQVLGHUHG ILYH IDFWRUV� �� QRQ�XQLIRUP LOOXPLQDWLRQ� �� PRWLRQ� �� GH�
IRFXV EOXU� �� RII�D[LV JD]H� DQG �� QRQOLQHDU GHIRUPDWLRQV� 7KH NH\ LQVLJKW IRU WKH SURSRVHG
PHWKRG LV WKDW D VLQJOH�IHDWXUH HQFRGLQJ VFKHPD GRHV QRW DSSURSULDWHO\ KDQGOH DOO WKHVH YDUL�
DWLRQV� +DYLQJ WKDW LQ PLQG� DXWKRUV SURSRVH WKUHH IHDWXUH H[WUDFWLRQ � PDWFKLQJ VWUDWHJLHV�
�� JUDGLHQW RULHQWDWLRQ KLVWRJUDPV� �� VFDOH LQYDULDQW IHDWXUH WUDQVIRUPV� DQG D �� SUREDELOLVWLF
GHIRUPDWLRQ PRGHO� 7KH LQIRUPDWLRQ H[WUDFWHG E\ HDFK GHVFULSWRU LV LQGHSHQGHQWO\ PDWFKHG�
DQG UHVXOWV DUH FRPELQHG DW WKH VFRUH OHYHO XVLQJ WKH FODVVLFDO VXP�UXOH� ([SHULPHQWV RQ WKH
)2&6 DQG )5*& GDWD VHWV HQFRXUDJH IXUWKHU ZRUN RQ WKLV NLQG RI K\EULG WHFKQLTXHV >��@� 7KH
QRLVLQJ IDFWRUV DUH IXUWKHU GHVFULEHG DQG LOOXVWUDWHG DW &KDSWHU �� 6HFWLRQ ������ DQG )LJXUH �����

7KH HIIHFWLYHQHVV RI IDFH UHFRJQLWLRQ V\VWHPV LV VLJQLILFDQWO\ GHFUHDVHG E\ VHYHUDO IDFWRUV >��@�

�� LWV �' VWUXFWXUH LQWURGXFHV VXEVWDQWLDO GLIIHUHQFHV LQ DSSHDUDQFH� ZLWK UHVSHFW WR VXEMHFW·V
SRVH�

�� ODUJH UHJLRQV RI WKH IDFH DUH RIWHQ RFFOXGHG �H�J�� QRQ�RUWKRJRQDO LPDJLQJ��

�� LWV DSSHDUDQFH LV QRWRULRXVO\ DIIHFWHG E\ IDFLDO H[SUHVVLRQ�

�� FDQ EH HDVLO\ GLVJXLVHG�

8OWLPDWHO\� XQFRQVWUDLQHG VFHQDULRV FRXOG QRW DOORZ WKH SURSHU DFTXLVLWLRQ RI WKH LULV� QRU WKH
IXOO IDFLDO SLFWXUH� $V VR� JURZLQJ DWWHQWLRQ KDV EHHQ SDLG WR RWKHU SRWHQWLDO WUDLWV� 7KH XVH RI
LQIRUPDWLRQ LQ WKH YLFLQLW\ RI WKH H\H KDV EHHQ JDLQLQJ SDUWLFXODU LQWHUHVW DQG SRSXODULW\� DV LW
UHSUHVHQWV D JRRG WUDGH�RII EHWZHHQ WKH ZKROH IDFH DQG WKH LULV DORQH >��@�

��



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

����� 0RELOH 6HWXSV

7KH XVDJH RI PRELOH GHYLFHV KDV VXEVWDQWLDOO\ JURZQ RYHU WKH ODVW \HDUV� DORQJ ZLWK WKHLU FD�
SDELOLWLHV DQG DSSOLFDWLRQV� 'HSOR\LQJ ELRPHWULF WHFKQRORJLHV WR VXFK JDGJHWV LV QRW RQO\ TXLWH
GHVLUDEOH� EXW ZRXOG DOVR UHSUHVHQW WKH DELOLW\ WR GHOLYHU RII�WKH�VKHOI VROXWLRQV IRU HYHU\GD\
FRQVXPHUV� H[WHQGLQJ ELRPHWULF UHFRJQLWLRQ HYHU\ZKHUH� DQ\WLPH� DQG WR DQ\RQH�

0RVW RI WKH DOJRULWKPV GHVLJQHG IRU LQ WKH ZLOG RSHUDWLRQ FDQ UXQ HIIRUWOHVVO\ RQ HYHU\GD\ HOHF�
WURQLFV� +RZHYHU� ZKHQ DWWHPSWLQJ WR SHUIRUP LULV RU SHULRFXODU ELRPHWULFV RQ PRELOH HQYLURQ�
PHQWV� VHYHUDO SUREOHPV DULVH� WKH ZLGH YDULHW\ RI FDPHUD VHQVRUV DQG OHQVHV PRELOH SKRQHV DQG
WDEOHWV FRPH HTXLSSHG ZLWK SURGXFH GLVFUHSDQFLHV LQ ZRUNLQJ LPDJHV� DV WKH\ DUH DFTXLUHG ZLWK
FRORU GLVWRUWLRQV� DW PXOWLSOH UHVROXWLRQV� HWF� RQ�WKH�JR DFTXLVLWLRQ E\ SRWHQWLDOO\ XQWUDLQHG
VXEMHFWV ZLOO UHVXOW LQ GHPDQGLQJ 3RVH� ,OOXPLQDWLRQ DQG ([SUHVVLRQ �3,(� FKDQJHV �H�J�� QRW DOO
XVHUV KROG WKHLU PRELOH GHYLFHV DW WKH VDPH SRVLWLRQ�� UHVXOWLQJ LQ YDU\LQJ DFTXLVLWLRQ DQJOHV DQG
VFDOHV� RU URWDWHG LPDJHV� WKH DFTXLVLWLRQ HQYLURQPHQW FDQ KDYH SRRU RU LQVXIILFLHQW OLJKWLQJ�
DQG XQFRQWUROOHG RXWGRRU GD\OLJKW ZLOO PRVW OLNHO\ SURGXFH VSHFWDFOH UHIOHFWLRQV RYHU WKH LULV
UHJLRQ� HWF�

&KDSWHU �� GHWDLOV RXU HQGHDYRUV RQ WDFNOLQJ WKRVH LVVXHV� WKH DFTXLVLWLRQ RI DQ LULV DQG SHUL�
RFXODU GDWDEDVH ZLWK �� GLIIHUHQW PRELOH VHWXSV� UHSRUWV RQ WKH DSSOLFDWLRQ RI D GHYLFH�VSHFLILF
FRORU FDOLEUDWLRQ WHFKQLTXH WKDW FRPSHQVDWH IRU WKH GLIIHUHQW FRORU SHUFHSWLRQ LQKHUHQW WR HDFK
VHWXS� DQG WKH DSSOLFDWLRQ RI ZHOO�NQRZ LULV DQG SHULRFXODU UHFRJQLWLRQ VWUDWHJLHV WR VXFK GDWD�
HYLGHQFLQJ KRZ WKH\ FDQ EH IXVHG WR DFKLHYH ELRPHWULF UHFRJQLWLRQ RYHU PRELOH VHWXSV�

����� 6WDJHV RI 8QFRQVWUDLQHG 5HFRJQLWLRQ 6\VWHPV

:KHQ GHVLJQLQJ D V\VWHP IRU XQFRQVWUDLQHG VFHQDULRV ZH FDQ H[WHQG WKH SUHYLRXVO\ PHQWLRQHG
IRXU�VWHS DSSURDFK� GHYLVLQJ D VHYHQ�VWHS V\VWHP DV GHSLFWHG LQ )LJXUH ����

�� 7UDLW DFTXLVLWLRQ 7KH DFTXLVLWLRQ VHQVRU GHSHQGV RQ ZKLFK WUDLW WKH V\VWHP LV JRLQJ WR GHDO
ZLWK� ,Q WKH VSHFLILF FDVH RI XQFRQVWUDLQHG ELRPHWULFV� ZH VKRXOG UHO\ RQ VHQVRUV WKDW GR
QRW UHTXLUH XVHU LQWHUDFWLRQ� PRVWO\ FDPHUDV� $OVR� ZKHQ DLPLQJ DW UHDO�WLPH V\VWHPV� ZH
PXVW FRQVLGHU WKH WUDGH�RII EHWZHHQ WKH ULFKQHVV LQ GHWDLO RI WKH DFTXLUHG GDWD DQG WKH
DFTXLVLWLRQ UDWH�

�� 4XDOLW\ DVVHVVPHQW (YHQ WKH PRVW WXQQHG VHQVRU VHWXS GRHV QRW DOZD\V UHWXUQ RSWLPDO
GDWD IURP ZKLFK UHOLDEOH IHDWXUHV FDQ EH H[WUDFWHG� 4XDQWLI\LQJ WKH TXDOLW\ RI WKH DF�
TXLUHG GDWD� GLVFDUGLQJ XQILW LPDJHV ZLOO GHFUHDVH ERWK WKH RYHUDOO SURFHVVLQJ WLPH� DQG
WKH V\VWHP HUURU UDWHV�

�� 6LJQDO HQKDQFHPHQW &RPSOHPHQWDU\ WR TXDOLW\ DVVHVVPHQW� WKH DFTXLUHG VLJQDO FDQ EH HQ�
KDQFHG LI LW LV NQRZQ ZKLFK SDUWLFXODU GHJUDGDWLRQ IDFWRU LV DIIHFWLQJ LW� (YHQ LI WKH RULJLQDO
VLJQDO FDQQRW EH UHVWRUHG� WKLV VWHS LV D JRRG DOWHUQDWLYH WR LQFUHDVH V\VWHP SHUIRUPDQFH�
RU WR ZKHQ IHZ TXDOLW\ GDWD LV EHLQJ DFTXLUHG�

�� 'HWHFWLRQ DQG 6HJPHQWDWLRQ 7KH DFTXLUHG WUDLW QHHGV WR EH SURSHUO\ ORFDWHG DQG VHJ�
PHQWHG� VR WKDW IHDWXUH H[WUDFWLRQ FDQ EH FDUULHG RQ HIIHFWLYHO\� $ SURSHU VHJPHQWDWLRQ
VWDJH DOORZV GLVFDUGLQJ QRLVH IDFWRUV QRW GLVFDUGHG GXULQJ VLJQDO HQKDQFHPHQW �H�J�� H\H�
ODVKHV RFFOXGLQJ WKH LULV��

��
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)LJXUH ���� ,OOXVWUDWLRQ RI WKH PDLQ VWHSV DQG HOHPHQWV RI D ELRPHWULF UHFRJQLWLRQ V\VWHP�

�� )HDWXUH H[WUDFWLRQ $ UHSUHVHQWDWLYH VHW RI IHDWXUHV QHHGV WR EH H[WUDFWHG LQ VXFK D ZD\
WKDW GLVFULPLQDQW XVHU LQIRUPDWLRQ LV FROOHFWHG� 2Q UHDO�WLPH V\VWHPV� XVHU IHDWXUHV VKRXOG
EH TXLFNO\ H[WUDFWHG DQG HQFRGHG ZLWK PLQLPXP FRPSXWDWLRQDO EXUGHQ� 'XULQJ WKH HQ�
UROOPHQW VWDJH� WKH JDWKHUHG LQIRUPDWLRQ LV VWRUHG LQ WKH V\VWHP GDWDEDVH IRU ODWHU LGHQ�
WLILFDWLRQ RU YHULILFDWLRQ RI WKHLU LGHQWLWLHV�

�� )HDWXUH PDWFKLQJ )HDWXUHV DUH WKHQ PDWFKHG DJDLQVW WKH WHPSODWHV RQ WKH GDWDEDVH� 2Q
UHDO�WLPH V\VWHPV� QRW RQO\ WKH LQIRUPDWLRQ RQ WKH GDWDEDVH VKRXOG EH RSWLPL]HG IRU IDVW
DFFHVV� EXW DOVR VRIW�ELRPHWULFV DUH XVHG WR QDUURZ WKH VHW RI LGHQWLWLHV EHLQJ PDWFKHG�

�� 'HFLVLRQ PDNLQJ %DVHG RQ WKH UHVXOWV RI IHDWXUH PDWFKLQJ VWDJHV �PXOWLSOH SRVVLEOH UHVXOWV�
LI XVLQJ PXOWLSOH WUDLWV�� D ILQDO GHFLVLRQ DERXW VXEMHFW·V LGHQWLW\ LV UHDFKHG� (YHQWXDOO\�
WKH V\VWHP FDQ EH XQDEOH WR SRVLWLYHO\ LGHQWLI\ D SDUWLFXODU VXEMHFW� EXW VWLOO EH DEOH WR
UHGXFH WKH VHW RI SRVVLEOH LGHQWLWLHV�

����� 7KH LULV DV ELRPHWULF WUDLW

7KH GDWD IURP WKH KXPDQ LULV FDQ EH DFTXLUHG FRQWDFWOHVV DW�D�GLVWDQFH� DQG LW GHOLYHUV JUHDW
SHUIRUPDQFH RQ FRQVWUDLQW HQYLURQPHQWV� PDNLQJ LW D SRWHQWLDO WUDLW IRU XQFRQVWUDLQHG VFHQDULRV
DQG MXVWLI\LQJ WKH HIIRUWV RQ ´UHOD[LQJµ LWV DFTXLVLWLRQ VHWXS >�� ��� ��@�

,ULV HIIHFWLYHQHVV DV D ELRPHWULF WUDLW KDV EHHQ SURYHQ� EHLQJ ZLGHO\ GHSOR\HG RQ TXLWH FRQ�
VWUDLQHG VFHQDULRV� VXEMHFWV DUH UHTXLUHG WR VWRS�DQG�VWDUH UHODWLYHO\ FORVH WR WKH DFTXLVLWLRQ
GHYLFH� ZKLOH WKHLU LULV LV LPDJHG RQ WKH 1,5 VOLFH RI WKH HOHFWURPDJQHWLF VSHFWUXP ���� D ���
QP�� 1,5 LOOXPLQDWLRQ HQDEOHV WKH DFTXLVLWLRQ RI JRRG TXDOLW\ GDWD� ZKLOH DYRLGLQJ PDLQ QRLVH
IDFWRUV W\SLFDOO\ DVVRFLDWHG ZLWK WKH 9: OLJKW LPDJHU\ �H�J�� UHIOHFWLRQV�� 1RQHWKHOHVV� XQFRQ�
VWUDLQHG VFHQDULRV LQYROYH LULV DFTXLVLWLRQ DW VLJQLILFDQWO\ ODUJHU GLVWDQFHV DQG RQ PRYLQJ WDUJHWV�
GHPDQGLQJ FDPHUDV ZLWK VLPXOWDQHRXVO\ KLJK I�QXPEHUV DQG VKRUW H[SRVXUH WLPHV IRU DQ DFFHSW�
DEOH GHSWK�RI�ILHOG WR EH REWDLQHG� 6LQFH WKHUH LV D GLUHFW UHODWLRQ EHWZHHQ WKRVH YDOXHV DQG
WKH DPRXQW RI WKH OLJKW RQ WKH VFHQHU\� WR RSHUDWH LQ VXFK FRQGLWLRQV WKH V\VWHP ZRXOG QHHG
VWURQJ 1,5 LOOXPLQDWLRQ� WKXV EHLQJ KD]DUGRXV DV WKH KXPDQ H\H GRHV QRW LQVWLQFWLYHO\ UHVSRQG
ZLWK LWV QDWXUDO SURWHFWLRQ PHFKDQLVPV �H�J�� EOLQNLQJ DQG SXSLO FRQWUDFWLRQ�� 7KH IHDVLELOLW\ RI
LULV UHFRJQLWLRQ LQ 9: FRQGLWLRQV UHPDLQV FRQWURYHUVLDO� LQ SDUWLFXODU IRU KLJKO\ SLJPHQWHG LULVHV
�WKH PDMRULW\ RI ZRUOG·V SRSXODWLRQ��

��



%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

������� ,ULV 6HJPHQWDWLRQ

0DQ\ LULV VHJPHQWDWLRQ WHFKQLTXHV DUH EDVHG RQ +RXJK�WUDQVIRUP SDUDPHWUL]DWLRQ�

-XQOL HW DO� >��@ GHYHORSHG D HOOLSVH ILWWLQJ WHFKQLTXH SDUWLFXODUO\ DGDSWHG WR GHJUDGHG GDWD
GXH WR LWV UREXVWQHVV WR QRLV\ HGJH�PDSV� 7KH DOJRULWKP VWDUWV E\ VHOHFWLQJ D VXEVHW RI PRUH
DFFXUDWH HGJH�SRLQWV� ZKLFK FRQWULEXWLRQ LV PDJQLILHG E\ VTXDULQJ WKH ILWWLQJ UHVLGXDOV� )LQDOO\�
VROXWLRQ LV IRXQG XVLQJ WKH FRPSXWDWLRQDOO\ HIILFLHQW LQWHULRU�SRLQW PHWKRGV�

7R DWWHQXDWH WKH LVVXHV LQKHUHQW WR LPDJHV DFTXLUHG DW ODUJH GLVWDQFHV� 7DQ DQG .LPDU >��@ SUR�
SRVH D PHWKRG EDVHG LQ WKH JURZ�FXW DOJRULWKP WKDW LV DEOH WR GLVFULPLQDWH EHWZHHQ LULV DQG
QRQ�LULV GDWD� 5HVXOWV DUH IXUWKHU UHILQHG WKURXJK� LULV FHQWHU HVWLPDWLRQ� ERXQGDU\ UHILQHPHQW�
SXSLO PDVNLQJ DQG UHILQHPHQW� H\HODVKHV DQG VKDGRZ UHPRYDO� DQG H\HOLG ORFDOL]DWLRQ� 7KH HI�
IHFWLYHQHVV RI VXFK DSSURDFK ZDV YDOLGDWHG DJDLQVW ZHOO NQRZQ GDWDVHWV �8%,5,6�Y�� )5*& DQG
&$6,$�Y� 'LVWDQFH�� ZLWK ORZHU FRPSXWDWLRQDO EXUGHQ WKDQ VLPLODU VWUDWHJLHV�

$ORQVR�)HUQDQGH] DQG %LJXQ >��@ SHUIRUP LULV VHJPHQWDWLRQ EDVHG RQ WKH *HQHUDOL]HG 6WUXFWXUH
7HQVRU DOJRULWKP� XVLQJ FRPSOH[ ILOWHUV DXWKRUV DUH DEOH WR REWDLQ ERWK PDJQLWXUH DQG RULHQ�
WDWLRQ LQIRUPDWLRQ IRU HDFK HGJH SL[HO� SURYLGLQJ DGGLWLRQDO LQIRUPDWLRQ WR EHWWHU GLVFULPLQDWH
EHWZHHQ HGJHV EHORQJLQJ WR WKH LULV ERXQGDULHV�

;LQ\X HW DO� >��@ SURSRVHV DQ DOJRULWKP DEOH WR VHJPHQW LULV RQ LPDJHV ZLWK YHU\ GLVWLQFW UHVR�
OXWLRQ �LULV GLDPHWHU IURP �� WR ��� SL[HOV�� 7KH\ VWDUW E\ GHWHFWLQJ D VHW RI HGJHV XVLQJ &DQQ\
GHWHFWRU� ZKLFK QRQ�FRQQHFWHG FRPSRQHQWV DUH XVHG DV QRGHV RI D JUDSK� 7KH\ IXUWKHU XVH WKH
QRUPDOL]HG FXWV FULWHULRQ WR GLVFULPLQDWH EHWZHHQ WKH PRVW SUREDEOH LULV ERXQGDULHV�

������� 1RLVH 'HWHFWLRQ

:KHQ GHDOLQJ ZLWK XQFRQVWUDLQHG HQYLURQPHQWV LW LV SDUWLFXODUO\ LPSRUWDQW WR KDYH D QRLVH GH�
WHFWLRQ PRGXOH� VR WKDW RQH FDQ HVWLPDWH WKH UHJLRQV RI WKH LULV WKDW DUH RFFOXGHG E\ RWKHU W\SHV
RI LQIRUPDWLRQ �H�J�� H\HOLGV� H\HODVKHV� UHIOHFWLRQV�� 7KDW ZLOO DOORZ KDQGOLQJ WKHP SULRU WR WKH
IHDWXUH HQFRGLQJ SKDVH� RWKHUZLVH LQFUHDVLQJ WKH IDOVH UHMHFWLRQ UDWHV >��@�

6HYHUDO DXWKRUV DGGUHVVHG WKLV SUREOHP� PRVW RI WKHP ZLWK UXOH�EDVHG DSSURDFKHV DQG WKXV RI
TXHVWLRQDEOH HIIHFWLYHQHVV� 2Q WKDW EDVLV� /L DQG 6DYYLGHV >��@ XVHG *DXVVLDQ 0L[WXUH 0RGHOV
WR PRGHO SUREDELOLVWLF GLVWULEXWLRQV RI QRLVH�IUHH DQG QRLVH UHJLRQV RI WKH LULVHV� DGMXVWLQJ WKH
QXPEHU RI *DXVVLDQV IRU D GLVWULEXWLRQ LQ VXFK ZD\ WKDW WKRVH QRW VXSSRUWHG E\ WKH REVHUYDWLRQV
ZHUH HOLPLQDWHG� $XWKRUV SURSRVH *DERU ILOWHUV DV EDVLF IHDWXUHV� RSWLPL]HG E\ D VLPXODWHG
DQQHDOLQJ SURFHVV�

������� 4XDOLW\ $VVHVVPHQW

,QGH[LQJ WKH TXDOLW\ RI WKH GDWD EHLQJ KDQGOHG LPSURYHV WKH SHUIRUPDQFH RI WKH ELRPHWULF UHF�
RJQLWLRQ V\VWHP� DV VKRZQ E\ =XR DQG 6FKPLG >��@ ZKR SURSRVHG WKUHH TXDOLW\ LQGH[HV�

�� TXDOLW\ RI VDPSOH� E\ DGDSWLYHO\ ILOWHULQJ WKH SUREH ELRPHWULF GDWD EDVHG RQ SUHGLFWHG
YDOXHV RI 4XDOLW\ RI 6DPSOH LQGH[ �GHILQHG KHUH DV G�SULPH��

��



�� FRQILGHQFH LQ PDWFKLQJ VFRUH� E\ DGDSWLYHO\ ILOWHULQJ WKH PDWFKLQJ VFRUHV EDVHG RQ SUH�
GLFWHG YDOXHV RI &RQILGHQFH LQ PDWFKLQJ 6FRUHV LQGH[ �GHILQHG KHUH DV G�SULPH��

�� TXDOLW\ VDPSOH DQG WHPSODWH IHDWXUHV� FRQVLGHULQJ LPDJH TXDOLW\ PHDVXUHV DV IHDWXUHV IRU
GLVFULPLQDWLQJ EHWZHHQ JHQXLQH DQG LPSRVWRU·V PDWFKLQJ VFRUHV�

7KH SURSRVHG DOJRULWKP KDV WKH DGYDQWDJH RI EHLQJ JHQHULF� DQG WKXV VXLWDEOH IRU RWKHU ELRPHWULF
PRGDOLWLHV�

������� ,ULV 5HFRJQLWLRQ

7KH LULV WH[WXUH LV FKDUDFWHUL]HG E\ WKH LUUHJXODU GLVWULEXWLRQV RI ORFDO IHDWXUHV VXFK DV IXUURZV�
FU\SWV� IUHFNOHV RU VSRWV� +HQFH� WUDGLWLRQDO DSSURDFKHV DUH WH[WXUH�EDVHG DQG GHFRPSRVH WKH
LULV GDWD LQWR D VHW RI QXPHULFDO FRHIILFLHQWV FRUUHVSRQGLQJ WR VSHFLILF RULHQWDWLRQV RU IUHTXHQ�
FLHV RI SUHGRPLQDQW SDWWHUQV�

&RPPHUFLDOO\ GHSOR\HG LULV UHFRJQLWLRQ V\VWHPV DUH EDVHG PDLQO\ RQ 'DXJPDQ·V SLRQHHULQJ DS�
SURDFK >��@� ZLWK H[WUHPHO\ KLJK SHUIRUPDQFH RYHU 1,5 GDWD� 'HVSLWH D IHZ LQQRYDWLRQV >��@ WKH
SURFHVV FRQVLVWV LQ WKH WUDQVODWLRQ RI WKH VHJPHQWHG LULV WR D SVHXGR�SRODU FRRUGLQDWH V\VWHP�
DWWDLQLQJ LQYDULDQFH WR ERWK VFDOH DQG WUDQVODWLRQ� 7KLV QRUPDOL]HG GDWD LV FRQYROYHG ZLWK D
VHW RI *DERU ILOWHUV� DW PXOWLSOH IUHTXHQFLHV DQG RULHQWDWLRQV� DQG WKHLU RXWSXW TXDQWL]HG LQWR
RQH RI IRXU TXDGUDQWV� H[WUDFWLQJ WZR ELWV RI SKDVH LQIRUPDWLRQ SHU FRQYROXWLRQ� )RU VLJQDWXUH
PDWFKLQJ WKH IDFWLRQDO +DPPLQJ GLVWDQFH LV XVHG� DQG VHYHUDO FRPSDULVRQV RI VKLIWHG GDWD DUH
SHUIRUPHG WR DFKLHYH LQYDULDQFH WR URWDWLRQ�

2WKHU FODVVLFDO LULV UHFRJQLWLRQ PHWKRGV DUH EDVHG LQ ]HUR�FURVVLQJ� DV %ROHV DQG %RDVKDVK >��@
ZKR XVH �' ZDYHOHWV RYHU GLIIHUHQW UHVROXWLRQV RI FRQFHQWULF FLUFOHV� RU LULV WH[WXUDO DQDO\VLV�
DV :LOGHV >��@ ZKRVH HQFRGLQJ ZDV EDVHG RQ WKH /DSODFLDQ S\UDPLG� 1RQHWKHOHVV� DQ\ RI WKRVH
V\VWHPV UHTXLUH KLJK XVHU FRRSHUDWLRQ�

7KH UHFRJQLWLRQ LQ OHVV FRQVWUDLQHG HQYLURQPHQWV KDV EHHQ JDLQLQJ UHOHYDQFH� EHLQJ WKH ,ULV�RQ�
WKH�0RYH SURMHFW >��@ D PDMRU H[DPSOH RI HQJLQHHULQJ DQG LPDJH DFTXLVLWLRQ V\VWHP WKDW PDNHV
LULV UHFRJQLWLRQ OHVV LQWUXVLYH IRU VXEMHFWV� 1,5 FORVH�XS LULV LPDJHV DUH DFTXLUHG DV VXEMHFWV
ZDON DW QRUPDO VSHHG WKURXJK DQ DFFHVV FRQWURO SRLQW� +RQH\ZHOO 7HFKQRORJLHV DSSOLHG IRU D
SDWHQW >��@ RQ D VLPLODU V\VWHP� ZKLFK ZDV DOVR DEOH WR UHFRJQL]H LULVHV DW D GLVWDQFH�

����� 7KH 3HULRFXODU 5HJLRQ

7KH DUHD LQ WKH YLFLQLW\ RI WKH H\H LV GHVLJQDWHG DV SHULRFXODU UHJLRQ� ,WV XVH IRU ELRPHWULF
SXUSRVHV ZDV LQVSLUHG E\ KXPDQ DELOLW\ WR UHFRJQL]H HDFK RWKHU E\ KLV H\HV� 7KLV UHJLRQ LV SDU�
WLFXODUO\ XVHIXO RQ OHVV FRQVWUDLQHG VFHQDULRV� ZKHUH LPDJH DFTXLVLWLRQ LV XQUHOLDEOH� WR DYRLG
LULV SDWWHUQ VSRRILQJ� FRPSHQVDWH IRU HQYLURQPHQWDO DGYHUVLWLHV RU FRRSHUDWLYH VXEMHFWV� 7KH
XVDJH RI SHULRFXODU LQIRUPDWLRQ KDV HYHQ SURYHQ LWVHOI WR EH RI LPSRUWDQFH LQ VFHQDULRV ZKHUH
WKH IDFH KDV EHHQ UHVKDSHG �H�J�� SODVWLF VXUJHU\�� ZLWK LQWHUHVWLQJ UHVXOWV >��� ��@� ,W GRHV QRW
UHTXLUH FRQVWUDLQHG FORVH FDSWXULQJ RU XVHU FRRSHUDWLRQ� LV UHODWLYHO\ VWDEOH �ZKHQ FRPSDUHG WR
WKH ZKROH IDFH�� DQG UDUHO\ RFFOXGHG� $OVR� KDYLQJ WKH LULV LQ LWV PLGGOH� ERWK FDQ EH DFTXLUHG
VLPXOWDQHRXVO\ ZLWK D VLQJOH FDPHUD� DQG IXVHG HLWKHU DW IHDWXUH RU VFRUH OHYHOV >��@�
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

&KDSWHUV � DQG � SURYLGH D FRPSUHKHQVLYH VXPPDU\ RI WKH PRVW UHOHYDQW UHVHDUFK FRQGXFWHG
LQ WKH VFRSH RI SHULRFXODU UHFRJQLWLRQ PHWKRGV� FRPSDULQJ WKH PDLQ IHDWXUHV RI WKH SXEOLFO\
DYDLODEOH GDWDVHWV� DQG SUHVHQWLQJ VWDWH�RI�WKH�DUW UHVXOWV DQG FXUUHQW LVVXHV RQ WKLV WRSLF�

��� 3ULYDF\ DQG (WKLFDO &RQFHUQV

$ORQJ ZLWK WKH GHYHORSPHQWV RQ ELRPHWULFV D ORW RI SULYDF\ DQG HWKLFDO FRQFHUQV DULVH� VSHFLDOO\
RQ WKH ILHOG RI FRYHUW ELRPHWULFV� ,I E\ RQH VLGH ELRPHWULFV DUH XQLTXH DQG SHUVRQDO� DQG D VWURQJ
ZD\ RI DXWKHQWLFDWLRQ� RQ WKH RWKHU VLGH LI WKDW LQIRUPDWLRQ EHFRPHV FRPSURPLVHG LW FDQQRW EH
FKDQJHG OLNH D UHJXODU SDVVZRUG RU 3,1 FRGH� :KHQ DGYDQFLQJ WR XQFRQVWUDLQHG HQYLURQPHQWV�
IXUWKHU HWKLFDO SUREOHPV DULVH� DV LQGLYLGXDOV FDQ HQJDJH RQ WKH ELRPHWULF UHFRJQLWLRQ SURFHVV
HYHQ ZLWKRXW WKHLU DFNQRZOHGJPHQW RU FRQVHQW�

)URP WKH SRLQW RI YLHZ RI WKH (XURSHDQ ODZ� WKHUH DUH ILYH SULQFLSOHV WKDW PXVW EH FRQVLGHUHG
LQ RUGHU WR GHSOR\ UHDO�ZRUOG ELRPHWULF DSSOLFDWLRQV >��� ��@�

3URSRUWLRQDOLW\ SULQFLSOH
2QH VKRXOG DVVHVV LI WKH XVH RI ELRPHWULF WUDLWV LV UHDOO\ QHFHVVDU\ RQ WKH FRQWH[W RI WKH
DSSOLFDWLRQ� RU LI RWKHU DXWKHQWLFDWLRQ PHWKRGV FDQ EH DSSOLHG WR WKH VDPH SXUSRVH� WKDW
GR QRW UHTXLUH GHDOLQJ ZLWK ELRPHWULF RU SHUVRQDO GDWD�

3RWHQWLDO 5LVN RI 'LVFULPLQDWLRQ
7KH GHSOR\HG V\VWHP VKRXOG QRW HYLGHQFH IDOVH SRVLWLYHV RU QHJDWLYHV� QRU IDLOXUH WR HQUROO�

,PSURSHU 8VH�6FRSH /LPLWDWLRQ�)XQFWLRQ &UHHS
7KH JDWKHUHG ELRPHWULF GDWD VKRXOG QRW EH SXW WR RWKHU XVHV WKDQ WKH RQH LW ZDV RULJLQDOO\
DFTXLUHG IRU� )XUWKHUPRUH� WKHUH PXVW EH DQ H[SOLFLW FRQVHQW RI WKH XVHU IRU KLV ELRPHWULF
GDWD WR EH XVHG RQ WKH V\VWHP DQG WR WKDW SXUSRVH�

3RVVLEOH FRYHUW REWDLQLQJ RI ELRPHWULF GDWD DQG PRQLWRULQJ
8VHUV VKRXOG EH LQIRUPHG DQG DZDUH WKDW WKHLU GDWD LV EHLQJ FROOHFWHG� RU RWKHUZLVH D OHJDO
SURYLVLRQ PXVW H[LVW VR WKDW WKH FROOHFWHG GDWD FDQ EH XVHG�

6SHFLILF GDWD ZDUUDQWLQJ SURWHFWLRQ
7KH DFTXLUHG ELRPHWULF GDWD VKRXOG QRW JLYH DGGLWLRQDO LQIRUPDWLRQ RWKHU WKDQ WKH RQH
XVHG IRU LGHQWLILFDWLRQ SXUSRVHV �H�J�� KHDOWK RU HWKQLF GDWD�� RU RWKHUZLVH WKDW PXVW EH
FRYHUHG E\ WKH H[SOLFLW FRQVHQW�

)XUWKHUPRUH� D VHW RI 3(7 PHDVXUHV WR SURWHFW SULYDF\ ZHUH HQIRUFHG E\ WKH &(1 WKURXJK WKH
,666 LQLWLDWLYH RQ SULYDF\ VWDQGDUGL]DWLRQ LQ (XURSH >��@� ([DPSOHV RI VXFK PHDVXUHV LQFOXGH�
WKH PLQLPL]DWLRQ RI WKH DPRXQW RI SHUVRQDO GDWD LQ XVH� LWV SURSHU HQFU\SWLRQ� DQG SURPSW GHOH�
WLRQ ZKHQ QR ORQJHU QHHGHG� DYRLG WR XVH FHQWUDO GDWDEDVHV� ZKLFK DUH DFWXDOO\ SURKLELWHG LQ
VRPH FRXQWULHV �H�J�� *HUPDQ\�� HWF�

(YHQ VR� SHRSOH DUH PRUH RU OHVV IDPLOLDU ZLWK WKH XVDJH RI YLGHR VXUYHLOODQFH V\VWHPV RQ SXEOLF
SODFHV� 7KH 8QLWHG 6WDWHV RI $PHULFD� ZKHUH WKH ULJKW WR SULYDF\ LV DOVR HVWDEOLVKHG E\ FRQ�
VWLWXWLRQ DQG ZKHUH WKH ���� DWWDFNV ZHUH D PLQG�WXUQLQJ HYHQW� LV D JRRG H[DPSOH RQ KRZ
WKH ´UHDVRQDEOH H[SHFWDWLRQ RI SULYDF\µ FDQ VKLIW RQ D YHU\ VKRUW SHULRG� 3HRSOH·V ´UHDVRQDEOH
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H[SHFWDWLRQ RI SULYDF\µ UHJDUGLQJ IHDWXUHV WKDW DUH H[SRVHG WR WKH SXEOLF DUH IRXQG WR EH FRQ�
VLGHUDEO\ ORZ� DQG WKH FKRLFH WR GR QRW EH HQJDJHG RQ ELRPHWULF SURFHGXUHV FRXOG QRW DOZD\V
EH UHDVRQDEOH� $W DQ DLUSRUW� IRU LQVWDQFH� D SHUVRQ ZLOO QRW EH DEOH WR WUDYHO LI GR QRW DJUHH
ZLWK HQJDJLQJ LQ D ELRPHWULF UHFRJQLWLRQ SURFHVV >��@� ,Q WKLV FRQWH[W� WKH XVDJH RI D QHJDWLYH
UHFRJQLWLRQ DSSURDFK �RU VFUHHQLQJ� ZRXOG EH PRUH HDVLO\ DFFHSWHG� DV WKH GDWD VWRUHG RQ WKH
GDWDEDVH LV RQO\ IURP ZURQJGRLQJ LQGLYLGXDOV DQG WKH JDWKHUHG GDWD VKRXOG QRW EH VWRUHG IRU
IXUWKHU XVDJH�
8OWLPDWHO\� DQG UHJDUGOHVV RI WKH H[LVWLQJ VHFXULW\ GLUHFWLYHV DQG SURWRFROV� QR RU IHZ JXDUDQWHHV
DUH WKDW WKRVH SURFHGXUHV ZLOO EH IROORZHG RU WKH V\VWHP ZLOO QRW EH SXW WR PLVXVH�
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Abstract—The human iris supports contactless data acquisi-
tion and can be imaged covertly. These factors give raise to the
possibility of performing biometric recognition procedure with-
out subjects’ knowledge and in uncontrolled data acquisition
scenarios. The feasibility of this type of recognition has been
receiving increasing attention, as is of particular interest in
visual surveillance, computer forensics, threat assessment, and
other security areas. In this paper we stress the role played by
the spectrum of the visible light used in the acquisition process
and assess the discriminating iris patterns that are likely to
be acquired according to three factors: type of illuminant,
it’s luminance, and levels of iris pigmentation. Our goal is
to perceive and quantify the conditions that appear to enable
the biometric recognition process with enough confidence.

Keywords-biometrics, iris recognition, visible light data, con-
trolled standard illumination

I. INTRODUCTION

Due to the effectiveness proven by the deployed iris
recognition systems, the popularity of the iris as biometric
trait has considerably grown over the last few years. A
number of reasons justify this interest: it is a naturally pro-
tected internal organ visible from the exterior, it has a near
circular and planar shape and its texture has a predominantly
randotypic chaotic appearance. The typical scenarios where
iris recognition systems were successfully deployed are quite
constrained: subjects stop-and-stare relatively close to the
acquisition device while their eyes are illuminated by a near
infrared (NIR) light source that enables the acquisition of
good quality data. Recently, several research initiatives have
sought to increase capture distance and relax constraints on
iris acquisition systems, making use of visible wavelength
(VW) light imagery to covertly perform data acquisition
(e.g. [1]), which broads the iris recognition applicability to
forensic domains where the cooperation of the subjects is
not expectable.

It is known that the VW light imagery engenders notorious
differences in the appearance of the captured data when com-
pared with the traditional NIR constrained setup (Figure 1).
However, the acquisition of iris data from significantly larger
distances and on moving targets demands simultaneously
high f-numbers and very short exposure times for the
optical system, in order to obtain acceptable depth-of-field

(a) NIR image, acquired under
highly constrained conditions
(WVU database [2]).

(b) VW image, acquired under
less constrained conditions (UBIRIS
database [3]).

Figure 1. Comparison between the appearance of NIR and VW images.

values. These are in direct proportion with the amount of
light required to proper imaging, which is a concern as
excessively strong illumination can cause permanent eye
damage. The American and European standards councils ([4]
and [5]) proposed safe irradiance limits for NIR illumination
of near 10 mW/cm2. The NIR wavelength is particularly
hazardous, because the eye does not instinctively respond
with its natural mechanisms (aversion, blinking and pupil
contraction).

The Eumelanin molecule is predominant in the human
iris pigment [6] and has most of its radiative fluorescence
under the VW light, which enables the capture of a much
higher level of detail, but also of many more noisy artifacts:
specular and diffuse reflections and shadows. Also, the
spectral radiance of the iris in respect of the levels of its
pigmentation varies much more significantly in the VW than
in the NIR (Figure 2). These biological features usually en-
gender acquired data with several other types of information
within the iris rings: eyelashes, eyelids, specular and diffuse
reflections obstruct portions of the iris texture and increase
the challenges in performing accurate recognition.

The feasibility of the VW iris recognition remains contro-
versial — specially for high pigmented irises that constitute
the majority of the world’s population — and fundamental
research remains to be done. Hence, this paper gives —
whenever possible — preliminary assessments about the
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Figure 2. Spectral radiance of the human iris according to the levels of
iris pigmentation [7].

amount of discriminating data able to be captured in such
acquisition setup, regarding the spectrum and intensity of
the used light and the levels of iris pigmentation. Also, we
report the biological structures of the iris that are most likely
to be used in discriminating between individuals in the VW
acquisition scenario.

The remainder of this paper is organized as follows:
Section II overviews mainstream iris recognition techniques
and efforts towards the reduction of the involved constrains;
Section III describes the image acquisition framework and
setup used for the purposes of this paper; Section IV reports
the performed experiments and discusses our results; Finally,
Section V concludes and points further work.

II. IRIS RECOGNITION

Deployed iris recognition systems are mainly based on
Daugman’s pioneering approach [8], and have proven their
effectiveness in relatively constrained scenarios where im-
ages are acquired in the NIR spectrum (700-900 nm).
Regardless a few innovations [9], the process consists in
the segmentation of the iris pupillary and limbic boundaries
followed by the translation into a double dimensionless
pseudo-polar coordinate system, that gives invariance to
scale and translation. This normalized data is convolved
with a set of Gabor filters at multiple frequencies and
orientations and the corresponding output quantized to one
of four quadrants, extracting two bits of phase information
per convolution. The fractional Hamming distance is used
to match iris signatures and several comparisons of shifted
data are performed to achieve invariance to rotation.

The acquisition constraints for effective recognition have
been motivating serious research efforts. The ”Iris-on-the-
move” project [10] should be emphasized: It is a major
example of engineering an image acquisition system to make
the recognition process less intrusive for subjects. The goal
is to acquire NIR close-up iris images as a subject walks

~2m

45º

B

A C

D

E

Figure 3. Acquisition setup. Subject (A) was positioned within an
acquisition scene (D) and required to look forward, towards the camera
(C) while illuminated at 45◦ by the RGB projector (B) controlled through
a Visual Stimulus Generator (E).

at normal speed through an access control point. Previously,
Fancourt et al. [11] concluded that it is possible to acquire
sufficiently high-quality images at a distance of up to 10
meters. Smith et al. [12] examined the iris information that
could be captured in the NIR and VW spectra, addressing
the possibility of using these multispectral data to improve
recognition performance.

III. IMAGE ACQUISITION FRAMEWORK

The conceived acquisition setup was the one presented at
Figure 3.

The subjects were placed in a dark acquisition scene,
with their heads steady on a chin rest, and required do
look forward towards the camera, which was placed at two
meters and aligned with their right eyes. Varying the scene
illuminant, produced by a Barco RLM G5i Performer (Barco
Corporation, Belgian) RGB projector through a Visual Stim-
ulus Generator (VSG) 2/5 (Cambridge Research Systems,
UK), images were captured by the Canon EOS 5D camera
using the configuration in Table I.

Previously, the VSG generated stimulus were verified and
calibrated using a telespectroradiometer (PR-650 Spectra-
Colorimeter TM- Photo Research, Inc., CA) and a reference
white BaSO4 sample placed on the chin rest. The maximum
errors allowed were 0, 002 illuminant chromaticities in the
Commission Internationale de l’Eclairage (CIE) 1931 (x, y)
space and 1 cd/m2 for luminance.

In order to mimic incandescent light, different phases of
the daylight and fluorescent lamps, illuminants CIE A, D
and F were picked as specified by the CIE 1931 standard
colorimetric observer (2◦) [13], [14]. Illuminants’ luminance
was also controlled, regulated in uniform steps of 20 cd/m2,

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Table I
DETAILS OF IMAGE ACQUISITION SETUP.

Image Acquisition Framework and Setup

Camera = Canon EOS 5D Format = tiff

Color Representation = sRGB F-Number = f/5.6

Shutter Speed = 1/8 sec ISO Speed = ISO-400

Focal Length = 400 mm Metering Mode = Spot

Width = 4368 pixels Height = 2912 pixels

Resolution = 240 dpi Bit Depth = 24 bit

Details of the Manually Cropped Resultant Images

Width = 800 pixels Height = 600 pixels

Format = tiff Resolution = 240 dpi

Table II
GENERATED ILLUMINANTS AND THEIR RESPECTIVE LUMINANCE.

COMBINATIONS REPRESENTED BY × WERE NOT REPRODUCED AS THEY

WERE OUT OF GAMUT ON THE RGB PROJECTOR.

Luminance (cd/m2)

20 40 60 80 100 120

Il
lu

m
in

an
t A ! ! ! × × ×

D55 ! ! ! ! ! ×
D65 ! ! ! ! ! !

D75 ! ! ! ! ! !

F11 ! ! ! ! × ×

from 20 to 120 cd/m2, producing the configurations shown
in Table II.

According to this setup, 5 samples were consecutively
acquired in each of the 24 scenarios (a specific illuminant
at a certain luminance), delivering a total of 720 images.
Such images came from 6 different subjects {S1, ..., S6},
equally divided into light, medium and heavily pigmented
irises.

IV. EXPERIMENTS

All irises were manually segmented (Figure 4a), avoiding
that eventual errors were carried on to further experimental
stages.

Both the pupillary and limbic iris boundaries were mod-
eled as circles, and data was translated into a pseudo-polar
dimensionless coordinate system (Figure 4b) in order to
obtain invariance to scale and translation.

A. Visual Inspection

When comparing to the currently deployed iris recognition
systems, there is a complexity gain in the VW image
acquisition, as data become represented along three axis
(usually Red, Green and Blue — RGB) instead of a single
one.

However, our earliest analysis did not make use of this
higher amount of information. Aiming at study the lumi-

(a) Merging of original image with manual segmentation.

(b) Normalized iris on pseudo-polar coordinates.

Figure 4. Illustration of the steps taken prior to visual inspection and color
analysis.

nance bounds that — under visual inspection — enable
the capturing of discriminating patterns in the iris data,
we found appropriate to reduce data dimensionality to the
luminance channel (Y) of the YCbCr colorspace [15]. Later,
we performed an equalization of each image histogram, so
that the iris structure could be better distinguished.

We concluded that the easiness of detecting discriminating
iris patterns varies proportionally to the illuminants’ lumi-
nance level used in the acquisition, and is almost invariant
to the type of used illuminant. For light pigmented irises, all
the luminance levels on trial appeared to be propitious (Fig-
ure 5a). Oppositely, for highly pigmented ones, the detection
of discriminating patterns has revealed as a much more
difficult task, even using 120 cd/m2 (Figure 5c). Medium
pigmented irises have intermediate behavior, and luminance
values higher than 60 cd/m2 propitiate the capturing of
discriminating iris patterns (Figure 5b). According to these
observations, we found appropriate to define relatively large
bounds for the amounts of light that enable the capturing of
discriminating iris patterns, as given in Figure 6.

Also, it should be taken into account that the quantity of
discriminating patterns able to be perceived under visual in-
spection is highly varying between different irises, although
crypts and freckles were observed to be the most likely used
to discriminate between individuals. For such, these bounds
are regarded as rough initial values, that should be finely
adjusted by further analysis.
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Table III
CIELAB ∆̄E∗

ab
ON POINT-TO-POINT IMAGE COMPARISONS, IN DIFFERENT ILLUMINANTS FOR BOTH INTRA- (I) AND INTER- (II) CLASSES, AT

60 cd/m2 . VALUES ARE PRESENTED FOR AN 95% CONFIDENCE INTERVAL.

Illum. Class
Heavy Pigmentation Light Pigmentation Medium Pigmentation

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

A
I 14,08 ± 4,01 14,15 ± 4,91 18,28 ± 4,57 17,71 ± 4,57 14,26 ± 4,20 14,19 ± 4,08
II 22,06 ± 10,32 27,29 ± 11,17 19,11 ± 8,27 18,84 ± 8,15 23,46 ± 10,23 24,68 ± 9,95

D55
I 7,44 ± 4,91 8,03 ± 5,71 8,86 ± 7,84 9,08 ± 7,59 7,62 ± 6,15 8,22 ± 6,13
II 17,51 ± 7,62 24,13 ± 9,35 27,87 ± 10,00 23,78 ± 9,79 15,42 ± 7,29 16,24 ± 7,37

D65
I 7,59 ± 5,79 8,10 ± 6,00 8,64 ± 7,90 8,55 ± 6,84 7,16 ± 5,93 7,16 ± 5,70
II 17,74 ± 7,22 24,28 ± 8,89 28,21 ± 10,05 22,36 ± 9,28 15,49 ± 7,42 16,50 ± 7,57

D75
I 8,71 ± 6,27 8,83 ± 6,37 8,44 ± 7,61 8,72 ± 7,27 7,14 ± 5,82 7,25 ± 5,70
II 17,84 ± 6,94 24,10 ± 8,66 27,77 ± 10,03 23,55 ± 9,76 15,53 ± 7,39 16,49 ± 7,54

F11
I 8,62 ± 2,64 8,46 ± 4,94 10,61 ± 1.09 10,12 ± 1,47 8,57 ± 1,72 8,43 ± 1,82
II 18,77 ± 8,71 25,59 ± 10,23 21,98 ± 8,75 19,22 ± 7,87 18,27 ± 8,89 19,18 ± 8,76

(a) Light pigmented iris.

(b) Medium pigmented iris.

(c) Heavy pigmented iris.

Figure 5. Y channel histogram-equalized samples for different pigmen-
tation levels, under CIE D65 illuminant, with 20, 60 and 120 cd/m2 (top
to bottom).
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Figure 6. Best perceived luminance levels for high (H), medium (M) and
low (L) pigmented irises.

B. Color Analysis

Normalized images were converted to the CIE 1976
(L∗a∗b∗) colorspace, also known as CIELAB, which is
device independent, partially uniform and based on the
human visual system, allowing absolute color representation
according to the illuminant. We obtained the chromatic adap-
tation matrices using projector’s CIE 1931 (x,y,Y) phosphor
coordinates and RGB coordinates of the reference white
for each illuminant. We selected the images captured at an
intermediate luminance level (60 cd/m2), and performed
a pixel-to-pixel color difference (chromatic error) between
image pairs I1 and I2 as Equation 1.

∆E∗

ab =
√

(L∗

1
− L∗

2
)2 + (a∗

1
− a∗

2
)2 + (b∗

1
− b∗

2
)2 (1)

Results were grouped into two distributions: intra-class
for comparisons between the same eye and inter-class for
different eyes, both captured in different illuminants. In-
specting those results, we observed that they fit the normal
distributions detailed at Table III, also described through the
Receiver Operator Characteristic (ROC) curves of Figure 7
and Table IV.
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Figure 7. ROC Curves for all subjects, on different illuminants, at 60 cd/m2.

Table IV
AREA UNDER ROC CURVE FOR ALL SUBJECTS ON DIFFERENT

ILLUMINANTS, AT 60 cd/m2 .

S 1 S 2 S 3 S 4 S 5 S 6
A 0, 724 0, 850 0, 501 0, 527 0, 781 0, 824

D55 0, 862 0, 926 0, 930 0, 877 0, 791 0, 795

D65 0, 855 0, 930 0, 934 0, 880 0, 808 0, 834

D75 0, 827 0, 916 0, 934 0, 884 0, 813 0, 832

F11 0, 890 0, 940 0, 892 0, 886 0, 845 0, 876

It can be seen that results obtained for the CIE D55,
D65 and D75 illuminants were very similar. The poorest
matches occurred when data captured with a CIE D is
compared to data captured with a CIE A illuminant. The
CIE F11 illuminant, with a Correlated Color Temperature
(CCT) between the ones of CIE D-Series and CIE A, is the
one with better overall performance.

The upper image of Figure 8 illustrates the pixel usage in
the obtainance of the pixel-to-pixel color distances.

Here, the darkest region at the left part of the normalized
image (which corresponds to the lower part of the cartesian
data), is the one more frequently considered as noise-free.
The brightest part by other side, commonly occluded, was

Figure 8. Pixel usage probability (top) and ∆̄E∗

ab
values per pixel for

intra (middle) and inter (bottom) classes.

rarely used for comparison purposes. The middle and bottom
images give the ∆E∗

ab
average values (∆̄E∗

ab
), enabling

us to perceive the relative contribution of each iris region
to the intra-class (middle image) and inter-class (bottom
image) distance values. Relatively homogeneous values were
obtained in both cases, with exception to the pupillary
region, where the average chromatic error values ∆̄E∗

ab
of

��



the inter-class comparisons tend to vanish close to the intra-
class values. The obtained ∆̄E∗

ab
values were 9, 82 ± 6, 36

for the intra-class and 21, 21 ± 9, 77 for the inter-class
comparisons, with a 95% confidence interval. Thus, even
an extremely simple image matching technique is able to
produce a clear separability between the two classical types
of comparisons.

V. CONCLUSIONS AND FURTHER WORK

Although preliminary, performed experiments allowed us
to conclude that the appearance of the captured iris pattern
is poorly conditioned by the type of VW illuminant used in
the acquisition, in opposition to the levels of luminance, that
play a much more significant role.

The obtained pixel-to-pixel ∆E∗

ab
values appear to con-

firm that color information contained in VW data can be
used to discriminate between different irises. Also, the CIE
F11 illuminant should be preferably used in data enrollment,
as it was the one that propitiated more compatibility between
iris patterns acquired with all the remaining illuminants.

As further work, we plan to increase the statistical
relevance of the described experiments — with both the
inclusion of more test subjects and a subsequent higher range
of pigmentation levels — and make use of more types of
illuminants, so that CCT differences between them become
more uniform and a larger area in the Planckian locus will
be covered.
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a b s t r a c t

Despite the substantial research into the development of covert iris recognition technologies, no machine
to date has been able to reliably perform recognition of human beings in real-world data. This limitation is
especially evident in the application of such technology to large-scale identification scenarios, which
demand extremely low error rates to avoid frequent false alarms. Most previously published works have
used intensity data and performed multi-scale analysis to achieve recognition, obtaining encouraging
performance values that are nevertheless far from desirable. This paper presents two key innovations.
(1) A recognition scheme is proposed based on techniques that are substantially different from those tra-
ditionally used, starting with the dynamic partition of the noise-free iris into disjoint regions from which
MPEG-7 color and shape descriptors are extracted. (2) The minimal levels of linear correlation between
the outputs produced by the proposed strategy and other state-of-the-art techniques suggest that the
fusion of both recognition techniques significantly improve performance, which is regarded as a positive
step towards the development of extremely ambitious types of biometric recognition.

! 2011 Elsevier Inc. All rights reserved.

1. Introduction

Contrary to popular belief, no research effort to date has pro-
duced a machine able to covertly recognize human beings in
real-world conditions. However, it is not difficult to anticipate the
significant potential impact of such automation on the security
and safety of modern societies (forensics and surveillance). Various
research programs have pursued biometric recognition, and most
regard the iris as the main biometric trait for three main reasons:
(1) the iris is a naturally protected internal organ that is visible
from the exterior; (2) the iris has a near-circular and planar shape
that facilitates its segmentation and parameterization; and (3) its
texture has a predominantly randotypic chaotic appearance that
appears stable over the human lifetime and is unique for each
individual.

The iris texture is characterized by the irregular distribution of
local features such as furrows, crypts, freckles or spots. Hence, tra-
ditional approaches are texture-based and decompose the iris data
into a set of numerical coefficients that correspond to specific
orientations or frequencies of predominant patterns. The recogni-
tion in less controlled environments has been gaining relevance
and was the focus of many recent proposals, among which the
‘‘Iris-on-the-move’’ project [1] should be highlighted: it is a major
example of engineering an image acquisition system to make the

recognition process less intrusive for subjects. The goal is to ac-
quire near infra-red close-up iris images as a subject walks at nor-
mal speed through an access control point. Honeywell Technologies
applied for a patent [2] on a very similar system, which was also
able to recognize irises at a distance. Previously, Fancourt et al.
[3] concluded that it is possible to acquire sufficiently high-quality
images at a distance of up to 10 m.

However, recognition in real-world data presents many chal-
lenges to the pattern recognition process, such as using images ac-
quired in the visible wavelength (VW) spectrum, at widely varying
distances (4–8 m), in uncontrolled lighting conditions, on moving
subjects and without their active participation in the acquisition
process. It becomes relatively difficult to acquire data where the
most discriminating iris patterns remain perceptible because the
pigments of the human iris (brown-black Eumelanin (over 90%)
and yellow-reddish Pheomelanin [4]) have most of their radiative
fluorescence under visible light, which significantly varies with re-
spect to the pigmentation levels of the subjects. Although previous
technology evaluation initiatives by the authors [5,6] have empir-
ically confirmed the possibility of recognizing human beings in VW
real-world data, despite achieving error rates far from those ob-
tained in constrained environments, state-of-the-art VW iris recog-
nition methods have achieved decidability indexes of 2.5 at most.
The approach that currently outperforms was developed by Tan
et al. [7] and makes use of both iris and periocular data. Global col-
or-based features and local ordinal measures were used to extract
discriminating data from the iris region, later fused to periocular
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data extracted from texton representations. Finally, fusion was
performed by the sum rule using the normalized scores generated
for the different types of features. Wang et al. [8] used an adaptive
boosting algorithm to build a strong iris classifier from a set of bi-
dimensional Gabor-based features, each corresponding to a spe-
cific orientation and scale and operating locally. Given the fact that
the pupillary boundary is especially difficult to segment in VW
data, the authors later trained two distinct classifiers: one for irises
deemed to be accurately segmented and another for cases in which
the pupillary boundary is expected to be particularly hard to seg-
ment. Li et al. [9] used a novel weighted co-occurrence phase his-
togram to represent local textural features, which is claimed to
model the distribution of both the phase angle of the image gradi-
ent and the spatial layout and overcomes the major weakness of
the traditional histogram. A matching strategy based on the Bhat-
tacharyya distance measures the goodness of match between
irises. Marsico et al. [10] proposed the use of implicit equations
to approximate both the pupillary and the limbic iris boundaries
and to perform image normalization. They exploited local feature
extraction techniques such as linear binary patterns and discrimi-
nable textons to extract information from vertical and horizontal
bands of the normalized image. Although devised for near infra-
red data, Du et al. [11] aimed at robustness and used the SIFT trans-
form and Gabor wavelets to extract iris features, which were used
for local feature point description. Then two feature region maps
were designed to locally and globally register the feature points,
building a set of deformable iris subregions that take into account
the pupil dilation/contraction and deformations due to off-angle
data acquisition.

Having empirically analyzed the performance of the above de-
scribed methods, this paper aims to propose a recognition strategy
that uses techniques that are substantially different from those tra-
ditionally used in iris recognition, making use of color and shape.
Color is a major visual feature in image and video analysis because
color features are considered robust to viewing angle, translation,
rotation and scale. Furthermore, for many situations, the shape of
image objects often provides important clues for recognition,
although shape is sensitive to geometric distortions. The proposed
method begins by partitioning the iris into coherent regions in
terms of space and color, using data self-organization techniques
that tend to compensate for global changes in data. Our method
then makes use of a set of well-known color and shape MPEG.7
descriptors to extract both global and local information from the
iris data. According to the experiments performed, two types of
conclusions are substantiated: (1) the proposed approach achieves
performance close to the state-of-the-art methods, and (2) because
the data encoding and matching techniques are radically different
from the state-of-the-art approaches, the proposed method exhib-
its low levels of linear correlation with the outputs, which allows it
to obtain significant improvements in performance when perform-
ing evidence fusion.

The remainder of this paper is organized as follows. Section 2
provides a description of the proposed recognition method. Section
3 provides and discusses the results obtained by our method and
compares them to state-of-the-art techniques. The improvements
obtained by fusion are highlighted. Finally, the overall conclusions
are given in Section 4.

2. Proposed method

A cohesive perspective of the proposed recognition strategy is
given in Fig. 1. A color constancy technique is used for regulariza-
tion purposes, and data are normalized into a Polar coordinate
system of constant dimensions, from which global MPEG.7 color
descriptors are extracted. Next, a self-organizing data technique

divides the noise-free iris data into spatially and color coherent re-
gions that feed the local color and shape MPEG.7 descriptors. Final-
ly, fusion is performed by means of a weighted sum rule.

2.1. Retinex

The original Retinex model was proposed by Land [12]. Its key
insight is that color is determined by three independent retinal–
cortical systems that use intensity information from different spec-
tral regions of the input data. Each system determines a lightness
quantity that is superimposed, yielding the output color for each
point. As detailed by Provenzi et al. [13], given an image I, jckij or-
dered chains of pixels can be obtained, starting at k and ending at i,
where j.j denotes cardinality. Let xt and xt+1 be subsequent pixels of
a chain. Let Rt be the ratio between the intensity of consecutive
pixels in the chain, Rtk ¼

IðxtÞ
Iðxtþ1Þ

, with respect to each image channel.
Lightness at position i is given by

LðiÞ ¼ 1
N

XN

k¼1

d
jcki j%1

t¼1
dkðRtk

Þ; ð1Þ

being dk given by

dkðRtk
Þ ¼

Rtk
; if 0 < Rtk

6 1% !
1; if 1% ! < Rtk

< 1þ !
Rtk
; if 1þ ! 6 Rtk

6 1þ!
a

1
a ; if Rtk

> 1þ!
a

8
>>><

>>>:
;

where ! > 0 and a ¼ 1þ!Qtk%1

mk¼0
dkðRmk Þ

.

2.2. Noise-free iris segmentation

The segmentation of the noise-free iris data acquired in uncon-
trolled setups has motivated significant research efforts. He et al.
[14] used a clustering-based scheme to roughly perform iris local-
ization followed by an integro-differential constellation method
for fine detection of each boundary, which not only accelerates
the traditional integro-differential operator but also enhances its
global convergence. Finally, parametric models were trained to
deal with eyelids and eyelashes. Du et al. [15] used a high-pass
filter to detect specular reflections inside the pupil and performed
a coarse-to-fine segmentation scheme using a least-squares
ellipse fitting strategy. A gradient-based technique detected noisy
regions that corresponded to diffuse reflections inside the iris. Li
et al. [16] used Viola and Jones’ method to roughly detect eyes
and normalized their region of interest by a K-means-based
technique. These data fed the subsequent processing combining
traditional iris segmentation methods with RANSAC-like tech-
niques. Concerned about the computational requirements of
previously published iris segmentation methods, Proença [17]
considered the sclera the most easily distinguishable part of the
eye in degraded VW images and fed a neural network with a
feature set based in the local proportion of sclera in different
directions, resulting in a process that runs in deterministically
linear time with respect to the size of the image. Regarding all
of the experiments described in this paper, it was observed that,
although with noticeably higher computational requirements, the
segmentation method of He et al. [14] outperforms the other
strategies. Because we aim to obtain performance indicators that
are as unbiased as possible, we chose to use this method as the
basis for our recognition experiments. Fig. 2 gives examples of
eye images and the corresponding noise-free iris segmentation
masks, obtained by He et al.’s [14] method.

Parameterization of iris boundaries. Subsequent to segmentation,
efficient parameterization of the iris boundaries that are behind
occlusions was a key issue, especially regarding the normalization
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of the iris data into a pseudo-polar coordinate system of constant
dimensions. As detailed in [18], this phase was divided into two
steps: (1) discriminating between the boundary segments that cor-
respond to biological iris borders and the boundary segments that
delimit noisy regions and (2) reconstructing the full biological iris
boundaries according to the former segments. The key insight in
this step is that biological boundaries can be faithfully described
by periodic signals, which justifies the use of Fourier series for such
purposes. The cumulative angular function was used as a shape
descriptor, defined as the amount of angular change from an arbi-
trary starting point:

cðtÞ ¼
Z Lt

2p

0
kðrÞdr % kð0Þ þ t ð2Þ

where t 2 [0, 2p] and k(r) describe changes in direction at point t
with respect to changes in arc length L. As illustrated in Fig. 3a
and b, biological boundaries have smoother angular descriptor val-
ues with lower energy, which leads to the following objective
function:

OðtÞ ¼ b0cðtÞ þ
X2

i¼1

bi
@icðtÞ
@ti ; ð3Þ

where bi were empirically obtained regularization constants.
Arguments of the first quartile of O(t⁄) – t⁄ regularly spaced in [0,
2p] – were deemed to belong to the biological border and their
coordinates (column and row), illustrated by the dot and cross data
points of Fig. 3b. Finally, the reconstruction of the biological border

Fig. 1. Cohesive perspective of the proposed method, describing its major phases and the corresponding sections of this paper.

Fig. 2. Examples of degraded VW iris images and the corresponding noise-free segmentation masks obtained according to the method of He et al. [14]. The binary masks
discriminate between the non-occluded pixels of the iris (white regions) and all of the remaining types of data (black regions).

Fig. 3. Parameterization of the biological iris boundaries. According to the values of (3), smoother regions with low energy of the cumulative angular descriptor (a) were
deemed to belong to the biological boundaries (cross and circular data points of b) and used to reconstruct the deemed biological border through a regression of a Fourier
series (c).
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used the selected coordinates and was regarded as a nonlinear
regression of a Fourier series of order r, with a fundamental fre-
quency constrained to x = 1, which assures closure and complete-
ness of the contour:

cðxÞ ¼ a0

2
þ
Xr

k¼1

ðakcosðxxkÞ þ arþksinðxxkÞÞ: ð4Þ

Using the deemed biological iris boundaries, in the next step we
convert data into a pseudo-polar coordinate system of fixed dimen-
sions, using the well known Daugman rubber sheet model [19].

2.3. Partitioning the iris into regions

Partitioning the iris into regions is one of the roots of the pro-
posed recognition method and aims to divide the noise-free pixels
of the iris into k disjoint sets C = {C1, . . . Ck} such that elements
within each Ci are as homogenous as possible in terms of both their
position and their color. Considering the demands of a perceptually
uniform color space and aiming to preserve the connectivity be-
tween pixels of each cluster, each element was represented by
the feature set f ¼ r; jW2 % cj; L&; a&b&

! "
, with r and c the row and

column coordinates with respect to the normalized iris image. W
is the width of the normalized image, and L⁄,a⁄b⁄ are the color coor-
dinates in the CIELAB color space, using a reference white provided
by illuminant D65, 2nd observer, as described in 1. In this 5D space,
distance corresponds to the metric:

dðf1; f2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

xiðf i
1 % f i

2Þ
2

r
; ð5Þ

where fi denotes the ith feature of f. Using a partition-based cluster-
ing scheme (fuzzy c-means [20]), partitions were found by maxi-
mizing an objective function that considered both the within and
between cluster variation:

JðCÞ ¼
Xk

i¼1

Xk

j¼1

dðCi; CjÞ %
X

j2Ci

dðCi; fjÞ
 !

ð6Þ

being d(Ci,Cj) the sum of L2 distances (5) between every combina-
tion of elements of Ci and Cj and d(Ci, f.) the sum of L2 distances
(5) between every element of C. and the feature point f..

Fig. 4 illustrates how the typical appearance of the generated
clusters would vary with respect to different xi values. Black pixels
denote regions that were classified as noisy by the segmentation
method and, as such, were not considered in the clustering process.
The remaining intensities represent the clusters assigned to each
pixel of the normalized iris data when privileging the (x1, x2)
weights (associated with spatial features) and the (x3, x4, x5)
(associated with color features) (bottom left image). The image at
the bottom illustrates clusters generated for the optimal weight
values cxi , which constitutes a trade-off between space and color,
as follows:

cxi ¼ arg min
xi

X

k

X

j

a/kðxi; fCk;jgÞ þ ðL2
k;j % 4pAk;jÞ; ð7Þ

where Lk,j and Ak,j represent the perimeter and the area of the region
delimited by the jth cluster of the kth image (Ck,j), /k corresponds to
the total of connected components in that cluster [21] and a is a
regularization term that was empirically found according to the
training data set of k images (a = 101.5, k = 100 in our experiments).
To account for the dynamic conditions that propitiate occlusions in
different regions of the irises, the clustering process was performed
using as a noise-mask the conjunction of the noise-masks of images
to be matched.

2.4. Color descriptors

Most of the MPEG.7 descriptors have compression/reconstruc-
tion purposes and – consequently – tend to focus in the lowest fre-
quency components of signals. When compared to other biometric
traits, one of the most interesting features of the iris is that most of
its discriminating information lies in the lowest and middle-low
frequency components. For such, these descriptors would intui-
tively be useful for iris recognition purposes, which constituted
the main key insight for their utilization in this work.

2.4.1. Dominant color descriptor
The dominant color descriptor summarizes the image content

by extracting the most important colors in an image or region, nat-
urally perceived as the most frequent. Let I ¼ f~xg;~x ¼ ðxj

1; x
j
2; x

j
3Þ be

a r ' c image represented in the CIELAB color space, known to more
closely fit the Euclidean difference between colors and the visual
perception of color difference. Let k be the number of colors to ex-
tract from the image. Aiming to obtain deterministic results, the k
geometric centroids (si) were used as initial values of the centers of
clusters:

si ¼
i maxf~xgþ ðkþ 1% iÞminf~xg

kþ 1
; i ¼ f1; . . . ;kg: ð8Þ

The coordinates of these centroids were updated according to the
generalized Lloyd algorithm, minimizing the objective function:

args min
Xk

s¼1

X

~x2si

k~x% sik2: ð9Þ

The iterative procedure continues until the values of si at successive
steps do not differ more than a positive value that acts as stopping
criterium (0 < !( 1), i.e., kst

i % stþ1
i k < !.

Fig. 4. Comparison between the regions resulting from different clustering
processes with respect to weights given to each feature. The image at the top
resulted from large weights (denoted by bold font) for spatial features, whereas in
the case of the second image at the top, a large weight was given exclusively for one
of those spatial features (column). The second image at the bottom resulted from
low weight values for spatial features, and clusters were formed, accounting for the
color values. The weights used in the case of the image at the bottom were obtained
by (7); this type of cluster is used in all subsequent processing phases.

1 http://www.csse.uwa.edu.au/du/Software/graphics/xyz2lab.m
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2.4.2. Color layout descriptor
This descriptor extracts the spatial distribution of the most rep-

resentative colors of visual signals according to their position on a
grid superimposed on data. Let I be an image of size r ' c expressed
in the YCbCr color space [22]. First, the most representative colors
in each n ' n region are obtained, as described in Section 2.4.1,
which yields a r/n ' c/n array that was transformed using the 1D
Discrete Cosine Transform type-II, performed first along the rows
and then along the image columns, yielding a set of 2D
components:

Xi;j ¼
Xc%1

n¼0

Xr%1

m¼0

Iðn;mÞ cos
p
r
ðmþ 0:5Þj

h i
cos

p
c
ðnþ 0:5Þi

h i
:

Finally, the X{.} coefficients were zigzag ordered [23], resulting in a
vector ~v of (r ' c)/n2 real components. Matching between vectors
v1
$! and v2

$! was performed according to the L2 norm of the vector

v1
$!% v2

$! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðr'cÞ=n2

i¼1 ðv1ðiÞ % v2ðiÞÞ2
q

.

2.4.3. Color structure descriptor
The color structure descriptor [22] generalizes a simple color

histogram and uses a structuring element that moves across data,
defining a neighborhood where the dominant color values are
analyzed and counted for each bin. In our experiments, we used
a rectangular structuring element with 1

12 of the image width and
height. Because this descriptor is very similar to an image
histogram, the same L1 based matching functions were used in
matching.

2.4.4. Scalable color descriptor
Scalable color descriptors [22] are global descriptors mainly

used for image-to-image matching. The process starts by extract-
ing a color histogram of k bins in the HSV color space, where the
hue component is usually quantized to a larger number of bins
compared to saturation and value layers. Such a histogram feeds
a dyadic decomposition process based in a pair of Haar wavelet
transforms. Let I be an image represented in the HSV color space
and let h be the corresponding normalized histogram with k bins.
The convolution between h and the low-pass kernel of the Haar
transform is equivalent to summing pairs of adjacent bins, whereas
the high frequency components are obtained by the difference in
adjacent bins. Such decomposition is repeated n times, using at
each iteration the lower frequency components previously ob-
tained. The default matching function is based on the L1 metric
(i.e., the sum of the absolute differences between corresponding
elements): S ¼

Pk
i¼1jhA½i* % hB½i*j, where k denotes the number of

extracted coefficients.

2.5. Order statistics of dominant colors

Let~c be the dominant color of the noise-free iris portion of I. Let
ci
! be the dominant color of each cluster Ci and d : R3 ' R3 ! R the
L2 norm of the vector ci

!%~c. For any pair ðci
!; cj
!Þ, we define a

pseudometric d&ðci
!; cj
!Þ given by

d&ðci
!; cj
!Þ ¼ jdðci

!;~cÞ % dðcj
!;~cÞj:

Similarly, a binary relation V on R3 ' R3 is defined by

ci
!Vcj
!() dðci

!;~cÞ > dðcj
!;~cÞ ð10Þ

. The rationale behind V is to consider as greater colors those that
are more distant from the dominant color of the iris. From this def-
inition, it is straightforward to infer that V is irreflexive, asymmet-
ric and transitive, which is particularly useful for our purposes. Let
X ¼ fx1

!; . . . ; xn
!g be a random variable that represents the distance

between the dominant colors inside each cluster and the whole iris.

According to the elementary theory of rank tests and using (10), the
kth order statistic xðkÞ

$! of a statistical sample fx1
!; . . . ; xn

!g is equal to
its kth smallest value. Let xð1Þ

$!; . . . ; xðnÞ
$! be the order statistics of a set

of independent observations, that is, xð1Þ
$! < xð2Þ

$! < . . . < xðnÞ
$!. Assum-

ing that xi
! is mutually independent, the distribution function of

xðkÞ
$! is equal to [24]:

FðkÞðyÞ ¼ PðxðkÞ$! 6 yÞ ¼
Xn

i¼k

n
i

% &
½FðyÞ*i½1% FðyÞ*n%i ð11Þ

being F(y) the cumulative distribution function of X. For a pair of
images, having two vectors with the kth, (k = {1, . . ., n}) order statis-
tics of xðkÞ

$!, matching was performed according to the L1 metric, i.e.,
the sum of the absolute differences between corresponding ele-
ments. As described in the experiments section, the kth order statis-
tics have evident discriminating information between individuals
and was often one of the features automatically selected for the
classification stage.

2.6. Linear assignment problem

The normalization of the iris data into a polar coordinate system
propitiates invariance to translation and scale of the original data,
but not to rotation, which appears as differences in translation of
the normalized data and of the resultant clusters. For this, we used
an automated method that seeks the maximal similarity between
clusters, independent of their position in the normalized data,
which was handled by a linear assignment strategy. Let G =
(U,V;E) be a bipartite graph with a separable set of vertices U and
V (jUj = jVj = n) and a set of edges E = {eij}, such that eij denotes an
edge from the ith vertex of U to the jth vertex of V. Let c(eij) denote
the cost of the edge c(eij), such that c(eij) P 0,"i,j 2 {1, . . . n}. The
linear assignment problem aims to find E⁄, a subset of E that satis-
fies the following properties: (1) the accumulated cost of its edges
is minimal, and (2) each vertex of U and V appear exactly once in E⁄.
Let /ði; jÞf:g : N'N! f0;1g be an indicator function, such that
/ði; jÞ ¼ Ifeij2E&g. The optimal correspondence between elements of
U and V is given by

min
Xn

i¼1

Xn

j¼1

/ði; jÞcðeijÞ

s:t:
Xn

i¼1

/ði; jÞ ¼ 1;8i 2 f1; . . . ;nÞ

Xn

j¼1

/ði; jÞ ¼ 1;8j 2 f1; . . . ;nÞ

ð12Þ

Due to computational concerns, the problem was regarded as a
shortest augmenting path algorithm with an implementation of
the Dijkstra’s shortest path method, which is known to run in time
O(n3). Details can be found in the work of Jonker and Volgenant
[25]. In practical terms, when matching two clustered iris images,
the relative position of each cluster center is regarded as a vertex
and included respectively in U and V. The cost (c) of edges E corre-
sponds to the Euclidean distance between elements of U and V,
which complies the above formalization.

2.7. Histogram matching

In every phase of our method where the distance between his-
tograms had to be obtained, several possibilities were tested, and
the results were evaluated in a training data set. The best results
were obtained with the cross-bin Quadratic-Chi distance histo-
gram proposed by Pele and Werman [26]: let h1 and h2 be two
non-negative bounded histograms, and let A = [aij] be a non-nega-
tive and symmetric bib-similarity matrix, such that aii P aij,"j – i.
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The Quadratic-Chi histogram distance is given by (13), where hi
f:g

denotes the histogram value at position i, and m is a regularization
factor (the best results were obtained in our experiments with 0.9).

QCðh1;h2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

ij

hi
1 % hi

2

P
c
ðhc

1 þ hc
2ÞAci

% &m

0

BBB@

1

CCCA
hj

1 % hj
2

P
c
ðhc

1 þ hc
2ÞAcj

% &m

0

BBB@

1

CCCAAij

vuuuuuut
:

ð13Þ

2.8. Shape context descriptor

Proposed by Belongie et al. [27], this descriptor provides an effi-
cient way to measure the similarity between shapes, represented
by a set of contour points {pi}. For each pi, we extract a histogram
hi of the relative coordinates of the remaining pj points (i – j) with
respect to pi and represented in a log-polar coordinate system.
Each hi histogram is defined as the shape context of pi and is used
in all subsequent processing. Let p1 and p2 be boundary points of
two shapes that are to be matched. The cost of matching p1 with
p2 uses the v2 statistic:

C12 ¼
1
2

XK

k¼1

ðh1ðkÞ % h2ðkÞÞ2

h1ðkÞ þ h2ðkÞ
; ð14Þ

where h1(k) and h2(k) denote the kth bin of the histograms of p1 and
p2. The set of all costs Cij between all pairs of points of two shapes is
regarded as the cost matrix of a bipartite graph-matching problem
and was solved as described in Section 2.6. As illustrated in Fig. 5,
this descriptor is an efficient way to extract discriminating informa-
tion about the shape of the regions resulting from the data parti-
tioning phase and is used as a soft biometric measure in the
recognition process.

2.9. Robustness to data variation factors

The basic premise of the proposed method is that the unique-
ness of each iris texture determines that pixels are grouped in a
specific way for each iris and compose clusters that are specific
in terms of their positions and shapes, although these clusters
cannot be expected to provide enough information for strong
biometric recognition. Fig. 6 illustrates such discriminating ability,
showing the clusters that result from two different heavily
pigmented irises. Here, the existence of four predominantly

horizontal clusters in the left image is in opposition to the right
image and is particularly evident in the regions delimited by the
dashed ellipses.

Due to the dynamics of the acquisition setup, it is expected that
the unoccluded regions of the iris will vary, which will affect the
clustering results. This was overcome by obtaining the conjunction
noise-mask of the pair of images to be matched (illustrated in
Fig. 7), yielding two properties: (1) multiple biometric signatures
are possible to extract from each image, depending on the other
image that it will be matched against and (2) privacy concerns
about the recognition process because it is required that the raw
iris data and the corresponding noise-mask be stored in the data-
base instead of the biometric signature.

Furthermore, it is important that the positions, sizes and shapes
of regions are not subject to sudden or extreme changes as a result
of the dynamics of the acquisition setup. Fig. 7 illustrates two
images from the same eye acquired from different distances (9
and 4 m). It can be seen that clusters remained relatively stable,
essentially due to translation into the polar coordinate system
and to the known property of invariance to color perception, as a
result of moderate changes in scale.

The acquisition of a small moving target as the iris at relatively
large and varying distances propitiates very different levels of

r
θ

Fig. 5. Illustration of the shape descriptor used to characterize each iris region. The
upper row shows two similar shapes, from which shape context descriptors were
extracted. The image at the center has a significantly different shape. Images in the
bottom row illustrate the corresponding shape descriptors at point L/4, with L being
the length of the contour and starting in the upper left pixel. Note the similarity
between the far left and the centered descriptor and their dissimilarity to the far
right image.

Fig. 6. Clusters generated for two different heavy pigmented irises, where local
contrast inside the iris ring is hardly perceived by a human observer. Even so, the
appearance of the resulting group is evidently different. Images are
‘‘C_1_S1_I12.tiff’’ and ‘‘C_101_S1_I10.tiff’’ of the UBIRIS.v2 data set.

Fig. 7. Robustness to changes in scale. Images are ‘‘C_111_S1_I4.tiff’’ and
‘‘C_111_S1_I13.tiff’’ of the UBIRIS.v2 data set.
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image focus. Fig. 8 illustrates such variations. Although the similar-
ity between the clustered images is evident, we observe that the
shape of the clusters often becomes smoother in defocused data.
If the defocus is exaggerated, the clustering process tends to aug-
ment the relevance given to spatial features, resulting in clusters
with more regular shape.

Rotations in the original Cartesian space directly correspond to
translations in the Polar coordinate system. However, significant
changes in rotation are not expected due to the natural and biolog-
ically determined position of the head with respect to the neck and
shoulders of stand-up subjects. Fig. 9 illustrates the behavior of the
clustering process for a pair of images of the same eye where one of
them was artificially rotated by p

6 (a value that is beyond the ex-
pected rotations). The relative position of clusters was shifted
approximately 1

12 of the width of the polar image. In this case,
shapes remain roughly constant and the position of corresponding
clusters varies significantly, which was handled by the Linear
Assignment process described in Section 2.6, which finds the opti-
mal correspondence between clusters according to their shape.

Off-angle images are of special interest because gaze is known
to be a primary source of error in traditional recognition strategies,
particularly when circular iris parameterization techniques intro-
duce differences in the phase of the normalized data and the bias
phase-based in encoding/matching methods. The translation into
the polar coordinate system implies that the data are sampled at
different rates with respect to the length of the iris ring at each an-
gle (a+ b in the right image of Fig. 10, but a ’ b in the left image),
which does not significantly affect the color perception of the
resultant data. This relationship was observed even in cases where
exaggerated deviations occlude portions of the iris. Furthermore,
this figure gives a typical failure situation motivated by iris seg-

mentation inaccuracies: the region delimited by the dashed ellipse
in the right figure should have been classified as noise (corresponds
to the upper part of the iris, partially occluded by eyelashes) but
was erroneously considered for the clustering process and induced
substantial differences in the resultant clusters near that region.

Lighting variations are due to the type of illuminants or to the
amount of light in the environment and constitute a problematic
factor, especially for local variations. The upper and middle row
images of Fig. 11 were acquired from the same eye under substan-
tially different lighting conditions but were mostly compensated
by the Retinex process described in Section 2.1 (compensated
images are shown in the central column). Even so, higher variabil-
ity in the shapes of the resulting clusters was observed, as high-
lighted by the regions delimited by the dashed horizontal
ellipses. Finally, local lighting variations were observed to be the
most problematic factor and to significantly bias the clustering
process. Images at the bottom row illustrate such types of varia-
tions and, as highlighted by the diagonal dashed ellipses, the Ret-
inex algorithm was not able to handle such variations, and the
resulting clusters varied significantly.

3. Experiments

According to the review of other VW iris recognition methods
given in Section 1 and to the performance that we empirically ob-
served, four methods were selected to be used as comparison
terms of our proposal: Tan et al. [7], Wang et al. [8] and Marsico
et al. [10] were the outperforming methods of a recently performed
contest about VW iris recognition, and simultaneously exhibited
the lowest levels of linear correlation. Finally, even though the ap-
proach of Du et al. [11] was devised for NIR data, it was selected for
contextualization purposes, in order to assess the adaptability of
NIR-based approaches to VW data. All these methods are our
own implementations, validated by comparing the performance
described by authors (in the NICE:II data sets) and ours.

3.1. Feature selection

In a training set of 1000 images used by the participants of the
NICE:II contest (available at2), the discriminating ability of a large
set of features was assessed, testing different values for the number
of clusters (between two and seven) and for the most relevant
parameters of the described encoding strategies, yielding a total of
112 features. Fig. 12 gives the probability density functions and
the corresponding cumulative density functions of the ten most dis-
criminating features, selected based on mutual information and the

Fig. 8. Robustness to defocused data. Images are ‘‘C_183_S2_I10.tiff’’ and
‘‘C_183_S2_I13.tiff’’ (defocused by a Gaussian kernel of r = 1.4) of the UBIRIS.v2
data set.

π
6

w
12

Fig. 9. Robustness to changes in rotation. Images are ‘‘C_171_S1_I10.tiff’’ and
‘‘C_171_S2_I10.tiff’’ (rotated by p

6) of the UBIRIS.v2 data set.

ab a
b

Fig. 10. Robustness to off-angle image acquisition. Images are ‘‘C_24_S1_I13.tiff’’
and ‘‘C_24_S1_I15.tiff’’ of the UBIRIS.v2 data set.

2 http://nice2.di.ubi.pt
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criteria of maximum dependency, maximum relevance and mini-
mum redundancy, as proposed by Peng et al. [28]. We considered
two sets of observations in a k-dimensional space, one for match
and other for non-match comparisons, assumed to be independent
and identically distributed. The probability functions f were esti-
mated by Gaussian-based kernel density estimators, as proposed
by Botev et al. [29]:

f̂ ðx; tÞ ¼ 1
n

Xn

i¼1

1ffiffiffiffiffiffiffiffi
2pt
p e%ðx%diÞ

2=ð2tÞ; ð15Þ

where the bandwidth t was determined by the analysis of the mean
integrated square error. Having assessed performance in this train-
ing set, near maximal performance was observed when selecting
more than thirty features, linearly combined to maximize perfor-
mance in that data set. Further, subsequent recognition experi-
ments were made when using this classifier.

3.2. Verification mode

fig. 13 compares the ROC curves obtained by the proposed
method and other methods selected for comparison, where each

Fig. 11. Robustness to global and nonuniform lighting changes. Images are ‘‘C_137_S1_I10.tiff’’ (top) and ‘‘C_137_S1_I7.tiff’’ (middle) and ‘‘C_137_S1_I10.tiff’’ (bottom, with a
directional artificial light effect) of the UBIRIS.v2 data set.

Dom. Color Eye Color Structure (3) Color Structure (5) Color Structure (7) Scalable Color

Color Layout Order Rank (6) Order Rank (7) Shape Context Cluster Correl.

Fig. 12. Probability density (continuous lines) and cumulative density functions (dashed lines) of the features selected for the biometric recognition process. The non-match
comparisons are represented by darker lines and the match comparisons by lighter lines.

Fig. 13. Comparison between the receiver operating characteristic curves of the
proposed methods and others used for contextualization purposes.
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data point is surrounded by two horizontal bars that denote the
best and worst values obtained at that operating point. The algo-
rithm of Tan et al. [7] outperformed others at most operating
points, whereas the proposed strategy usually performs better
than that of Wang et al. [8]. The performance of Du et al. [11]
and Marsico et al. [10] often intersect.

Another comprehensive comparison between the error rates
obtained by these methods is given in Fig. 14, which shows the

decidability index (d0) given by d0 ¼ jlE%lI jffiffiffiffiffiffiffiffiffi
r2

I
þr2

E
2

q , where lI ¼
P

i
dI

i
k and

lE ¼
P

i
dE

i
m are the means of the match/non-match distributions,

and rI ¼
P

i
ðdI

i%lIÞ
2

k%1 and rE ¼
P

i
ðdE

i %lEÞ
2

m%1 are their standard deviations.
The approximated equal error rate (EER), the area under the curve
(AUC) and the average sensitivity when operating at a FAR of
approximately 0.01 were also obtained. The results are expressed
in terms of boxplots, showing the median of the observed perfor-
mance range (horizontal solid line) and the first and third quartile
values of the observations (top and bottom of the box marks). The
upper and lower whiskers are denoted by the horizontal lines out-
side each box, and the outliers are denoted by dot points.

3.3. Identification mode

assuming a closed universe model, we tested the effectiveness
of each method when trying to answer the following question:

Fig. 14. Comparison between the performance measures obtained by the tested recognition strategies. Each column represents one recognition approach, where the
corresponding median value is represented by the horizontal line through the middle of each box. The top and bottom of the boxes denote the first and third quartile of the
observations. Outliers appear as dot data points.

Fig. 15. Average cumulative rank n curves obtained by the proposed method and
others used as comparison terms. The bottom and top horizontal lines around the
data series denote the worst and best values obtained.

Table 1
Pearson’s sample correlation coefficients between the tested recognition methods and
ours. Values are given with the corresponding 95% confidence intervals.

Proposed Tan Wang Marsico Du

Proposed 1.00 – – – –
Tan 0.38 ± 0.016 1.00 – – –
Wang 0.33 ± 0.017 0.56 ± 0.013 1.00 – –
Marsico 0.37 ± 0.016 0.56 ± 0.013 0.41 ± 0.016 1.00 –
Du 0.32 ± 0.017 0.42 ± 0.016 0.33 ± 0.017 0.30 ± 0.017 1.00
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‘‘Is the correct identity among the best k matches?’’ This type of
performance measure is usually expressed by means of rank and
cumulative rank histograms, where ranks appear in the horizontal
axis and probabilities in the vertical one. Let T ¼ fT1; . . . ; Ttg be the
set of gallery images such that i – j) id(Ti) – id(Tj) and S ¼
fS1; . . . ; Ssg the set of samples that are to be compared against T.
Each Si constitutes a query that is matched against all elements
of T, yielding a set of D = {di1, . . ., dit} dissimilarity scores, where
dij denotes the dissimilarity between the ith sample and the jth
template. Let D0 ¼ fd0i1; . . . ; d0itg be the ordered version of D, such
that d0i1 6 d0i2 6 . . . 6 d0it . Si is said to have rank k if the score dij is
in the kth position of D0 and id(Si) = id(Tj). The probability of having
rank k P (rank-k) is estimated by the ratio between the number of
sample queries with rank k and the total number of queries.
Accordingly, the probability of cumulative rank k can be calculated
as
Pk

i¼1Pðrank% iÞ. Fig. 15 gives the probability distribution of the
cumulative rank values obtained for t = 100, representing the iden-
tification performance obtained.

3.4. Correlation and fusion

The statistical correlation between the outputs given by our
method and others used as comparison terms was analyzed to

determine whether performance could be improved by fusing sev-
eral of them. It was assumed that any eventual dependence be-
tween scores would be linear, which justifies the use of the
Pearson’s correlation coefficient to analyze the strength of these
dependences. Table 1 gives the correlation r of 10,000 responses gi-

ven by each biometric system, where rðX;YÞ ¼ 1
n%1

P
i

Xi%X
rX

Yi%Y
rY

,

where Xi and Yi denote the system outputs, X;Y are the sample
means and rX,rY the standard deviations.

Table 2
Best results obtained by classification ensembles, according to the number of fused
methods.

# Fused Methods Rule Decid. d0 (Dd0)

2 {Proposed, Tan} ⁄ 2.848(+0.2629)
3 {Proposed, Tan, Marsico} ⁄ 2.860(+0.2831)
4 {Proposed, Tan, Wang, Marsico} ⁄ 2.738(+0.1609)
5 {Proposed, Tan, Wang, Marsico, Du} ⁄ 2.605(+0.0280)

Fig. 16. Comparison between the performance obtained by the best classification ensembles composed of 2–5 recognition methods.

Fig. 17. Degradation in recognition performance, expressed in terms of the
decidability values, with respect to variations in different factors. The results are
expressed in terms of boxplots, showing the median of the observed performance
range (horizontal solid line) and the first and third quartile values of the
observations (top and bottom of the box marks). The upper and lower whiskers
are denoted by the horizontal lines outside of each box, and the outliers are denoted
by dot points.
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Using the theoretical framework developed by Kittler et al. [30],
we tested all of the combinations of the recognition methods de-
scribed above according to the usual fusion rules: product (*),
sum (+), min (m) and max (M). Without any assumption of the
prior probabilities, the posterior probability that a pattern xi

! be-
longs to class wj was obtained by

Pðwjjxi
!Þ ¼ Pðxi

!jwjÞP
s

Pðxi
!jwsÞ

: ð16Þ

An input pattern is assigned to class wc if wc ¼ argj max /Pðwjjxi
!Þ,

where / denotes the combination rule. Table 2 lists the best classi-
fication ensembles obtained according to the number of fused ex-
perts (column #Fused) and the best combination rule observed.
Also, a comparison between the performance of such ensembles is
given in Fig. 16.

3.5. Degradations in performance

As a summary, Fig. 17 reports the degradation in performance of
the proposed method with respect to each of the factors discussed
previously. We show the boxplots of the decidability values ob-
tained for data sets with increasingly higher levels of variation
(from darker to lighter boxplots). For every factor where the UBI-
RIS.v2 database has enough images to perform statistically rele-
vant experiments (scale and off-angle), we compared the results
obtained in a homogenous subset of the data (represented by the
horizontal line) and in degraded data sets. For the remaining fac-
tors (blur, rotation and lighting), variations were introduced artifi-
cially, resulting in different versions of the same data sets, each
with different amounts of variation. It can be confirmed that the
proposed strategy behaves robustly to changes in scale and rota-
tion and moderately degrades for off-angle and defocused data.
The most problematic case was observed for changes in lighting
conditions, especially for non-global lighting changes, where per-
formance has degraded substantially.

4. Conclusions

Current state-of-the-art methods to perform iris recognition in
VW real-world data achieve encouraging performance values that
are, however, still far from the demands of the applications of this
technology in large-scale identification scenarios. Having analyzed
the typical strategies of these approaches, the key innovations of
this paper can be summarized in two terms: (1) we propose a rec-
ognition scheme based on autonomously defined sub-regions of
the iris from which MPEG-7 color and shape descriptors are ex-
tracted, achieving performance close to the best-known tech-
niques, and (2) minimal levels of linear correlation between the
outputs given by the proposed strategy and state-of-the-art tech-
niques were observed, which suggests that the fusion of evidence
between these techniques improved performance. The progress
described here is regarded as a positive step towards the develop-
ment of an extremely ambitious type of biometric recognition.

Regarding further directions of the work given in this paper,
some issues can be enumerated: (1) analyze how different color
contrast levels and sensor quality would affect the recognition
accuracy. Regarding this issue, it is expected that such changes
are mainly handled by the retinex phase (several contrast enhance-
ment retinex-based methods are reported in the literature), and
should yield different weights (7) for each feature used in the data
partition process; and (2) a more objective assessment about the
conditions in the environments that enable this type of recognition
with enough confidence (specification of the type of illuminants,

amount of light and angles of incidence). We are currently working
on both these issues.
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Abstract—The periocular region has recently emerged as a
promising trait for unconstrained biometric recognition, specially
on cases where neither the iris and a full facial picture can
be obtained. Previous studies concluded that the regions in
the vicinity of the human eye - the periocular region- have
surprisingly high discriminating ability between individuals, are
relatively permanent and easily acquired at large distances.
Hence, growing attention has been paid to periocular recognition
methods, on the performance levels they are able to achieve,
and on the correlation of the responses given by other. This
work overviews the most relevant research works in the scope of
periocular recognition: summarizes the developed methods, and
enumerates the current issues, providing a comparative overview.
For contextualization, a brief overview of the biometric field is
also given.

I. INTRODUCTION

Due to increasing concerns on security and safety of
modern societies, biometrics has emerged in the last decade
as a major domain of knowledge and has been motivating
significant research efforts. Considering the outstanding levels
of performance that currently deployed biometric systems
achieve, the interest now in putted in the development of
systems able to work in uncontrolled acquisition environments,
which significantly increases the challenges on reliable recog-
nition. In this setup, alternatives are sought [1] by improving
the existing algorithms, by using multi-modal systems or
exploring new traits. Despite a broad variety of traits that has
been researched, the classical traits to perform at-a-distance
recognition are the face and the iris.

The face is the most widely used biometric trait. Everyday
and even without noticing it, we all use facial information to
recognize each other. Not only that, it become one of the most
successful applications of image analysis and understanding.
Being non-intrusive and allowing cover acquisition, it became
preferable over very reliable traits like the iris or fingerprint
when aiming at less constrained subject recognition. Several
commercial face recognition systems are now available, and a
lot of techniques were developed [2] for both still images and
video. Face recognition approaches are either based on a global
analysis of the whole region as a set of pixel intensities, or the
relation between facial attributes, their location and shape.

The iris texture has a predominantly randotypic morpho-
genesis unique for each individual and allows very high
recognition accuracy, which justifies the efforts being held on
iris biometrics research [3] and its quick ascent as one of the
most popular biometric traits. While most of the commercially

deployed iris recognition systems work with constrained near-
infrared (NIR) data that favors perception of its patterns whilst
reducing the number of noise factors associated, literature
on extending this biometrics usability to “relaxed” visible
wavelength (VW) setups has broaden [4]–[6]. However, iris
performance as a biometric trait is severely impacted in non-
ideal setups, and its relatively reduced size and moving profile
make it difficult to image at-a-distance and without user
cooperation.

The periocular region represents a trade-off between the
whole face and the iris alone. Containing the eye and its
immediate vicinity, it covers eyelids and eyelashes, nearby skin
area and eyebrows. Its use as a biometric trait has emerged,
constituting nowadays a strong alternative for less constrained
environments, when image acquisition is not reliable, and to
avoid spoofing of the iris patterns. It is easy to acquire without
user cooperation and does not require a constrained close
capturing. Also, this region is not so affected by the aging
process as other facial regions are, as for instance the mouth
and cheek whose skin become loosened over time.

Periocular biometrics can be used alone or complementary
to iris recognition, considering that the use of multiple traits
might be specially important to compensate for the adversity
of the environments and uncooperative subjects. Most times,
the responses of periocular methods are fused at the score level
to the corresponding iris scores, due to their spatial proximity
and to the fact that a single camera might be able to acquire
both traits. Being relatively stable and rarely occluded, it’s
particularly useful when the subject is wearing a mask or
otherwise only exposing their eyes. Although this paper is
focused on recognition, periocular biometrics as proven to be
suitable for other purposes as well (e.g. [7], [8]).

In terms of features of the periocular region, they can be
divided into two levels, as suggested by [9]: the first level
comprise the eyelids, eye folds, and eye corners; and the
second level comprises the skin texture, wrinkles, color and
pores. Analysis of those features can be carried on based on
their geometry, texture or color.

As described by Park et al. [10], the problems that arise
from periocular recognition can be summarized as follows:
Imaging: What would be the optimal spectrum band for
periocular biometrics? Is VW, more advantageous on covert
biometrics, fit for this trait?
Region definition What are the actual “boundaries” of the
periocular region? Should iris, sclera or the eyebrows be
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included or masked/cropped?
Encoding Which features would better describe and discrim-
inate this region? How reliable would they be when relaxing
imaging conditions?
Matching What’s the best matching scheme for those features?
Will coarse classification be of any use?
Fusion What would be the benefit on fusing periocular with
other traits? Which ones, and how to fuse them?

The remainder of this paper is organized as follows: Sec-
tions II and III overview the recognition systems and existing
datasets; Section IV comparatively details the relevant methods
developed on periocular recognition; and finally Section V
present some final considerations.

II. BIOMETRIC SYSTEM

The importance of the biometric authentication system
must not be disregarded, as it will be the responsible for
carrying the whole process, from the data acquisition, to fea-
ture extraction, and matching against the database. Therefore,
designing a system that adapts to its application scenario is
most important. In a general way, a recognition system is
composed of four modules [11]:

1) Sensor Module: A wide variety of sensors are available,
depending on which biometric trait we are going to work
with. Since most of the biometric traits consist on visual data,
cameras will be used for acquisition. On real-time systems,
the balance between the richness on detail of the acquired data
and the acquisition rate is essential, and therefore choosing
a proper camera also is. This module is strictly related with
the first step of recognition systems (trait acquisition) and is
where the trade-off between the quality of the gathered data
and user cooperation is set.

2) Quality assessment and Feature extraction: Even with
an optimal sensor setup, not always the acquired data is suited
for feature extraction. Therefore, its quality is usually assessed,
and the image discarded if no minimum requirements are met,
thus saving time in additional processing. The trait needs to
be properly located and segmented (specially useful to gather
preferably “good” data), and then encoded as feature templates.

3) Matching and decision-making: In this module,
features are matched against the templates in the database,
thus deciding either to be in the presence of a genuine or
impostor comparison.

Trait 
Acquisition

Detection and
Segmentation

Quality 
Assessment

Feat. Extraction
and Encoding

Sensor Module

Matching and
Recognition

Decision MakingQuality Assessment and Feature Extraction

Database

Fig. 1. General steps and elements of biometric recognition systems.

4) System database: This module consists on the repository
of user biometrics and other identification information, which
is acquired during the enrollment stage, and used for later
identification or verification of users’ identity.

III. DATASETS

Only a few public datasets were designed for the devel-
opment of periocular recognition methods. Instead, face and
iris databases are generally used for that purpose. The most
commonly used databases for the evaluation periocular meth-
ods are now introduced1, and their specifications summarized
at Table I.

A. FERET

The Facial Recognition Technology (FERET) database [12]
was designed as a standard for developing face recognition
methods, and acquired at George Mason University over 11
sessions and a three years period (1993 to 1996). Initially
released as low resolution (256 ⇥ 384 pixels) grayscale data,
years later a high-resolution color version was also disclosed.
A total of 14051 images were gathered from 1199 different
subjects. Image acquisition protocol contemplates a semi-
controlled environment, with strict expression, pose and illu-
mination changes.

B. FRGC

Collected at the University of Notre Dame, the Face
Recognition Grand Challenge (FRGC) database [13] consists
of high resolution (⇡ 1200 ⇥ 1400 pixels) color still images,
captured on both controlled and uncontrolled environments.
The controlled subset was captured on a studio under uniform
illumination, where subjects were required to stand still while
looking straight at the camera and essay neutral and smiling
expressions. As for the uncontrolled acquisition, images were
shoot in different scenarios, disregarding both background and
illumination. Data is split into a training partition of 12776
images from 275 subjects, and a testing partition of 24042
images from 466 subjects, 6 images per session for each
subject in both partitions. Illumination is not regular, as the
illumination bursts for a short period of time, and main noise
factors are observable (eye blink, motion blur, occlusions,
reflections). Acquired data is stored on 2048⇥2048, 15 frames
per second (fps) AVI files, where iris spatial extension is about
120 pixels [14].

1Although not so common, the FC-NET database will be included by its
relevant facial aging characteristics.

(a) FERET (b) FRGC (c) MBGC (d) UBIRIS2 (e) FG-NET

Fig. 2. Sample images from the commonly used datasets on evaluating
periocular algorithms. Except from (d), data has been cropped for illustration
purposes.
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TABLE I. OVERVIEW OF DATABASE SPECIFICATIONS. VARYING
ELEMENTS ARE DISTANCE (D), EXPRESSION (E), ILLUMINATION (I),

OCCLUSION (O) AND POSE (P).

Name Images Subj. Dimensions Variations
FERET 14051 1199 512⇥ 768 E, I, P.
FRGC 36818 741 ⇡ 1200⇥ 1400 E, I.
MBGC 149 AVI 114 2048⇥ 2048 D, E, I, O, P.
UBIRIS.v2 11102 261 800⇥ 600 D, O, I.
UBIPr 10950 261 Multiple D, I, O, P.
FG-NET 1002 82 ⇡ 400⇥ 500 D, E, I, P.

C. UBIRIS.v2

The UBIRIS.v2 is a unconstrained iris database [15], cap-
tured on the VW from moving subjects, at different distances
and challenging illumination conditions, simulating realistic
acquisition issues with the associated noise factors. Data for
both eyes is separately available, as well as the surrounding
periocular data, thus being prone to stress not only robust iris
related methods for the visible spectrum, but periocular ones
and their fusion as well. The 11102 acquired images represent
a total of 261 subjects, from different ages and ethnicities.

D. UBIPr

This newly created UBI Periocular Recognition (UBIPr)
database, by Padole and Proença [16], represent a renewed
effort to advance periocular biometric research, providing new
means of evaluating robust methods, at “higher levels of
heterogeneity”.

In opposition the most common datasets used for periocular
method evaluation, noise factors were actually introduced
through acquisition setup: varying acquisition distance, irreg-
ular illumination, pose and occlusion. In addition, database
manual annotation include ROI and essential landmarks.

Dimensions vary, accordingly to the acquiring distance,
between 501⇥ 401 (8m) and 1001⇥ 801 (4m).

E. FG-NET

FG-NET is a facial aging database with around one thou-
sand images from 82 subjects, 0 to 69 years old. Captured with
different acquisition setups and many years apart, subjects have
clear changes in illumination, pose and expression. Images are
400⇥ 500 pixels in size, captured on VW, and for each one a
68 facial landmark points annotation is also provided.

IV. RELEVANT RESEARCH

In this section we will detail the relevant research on
periocular biometric recognition, providing at Table III a
summarized overview over the described methods and reported
results.

A. Park et al. [10], [17]

Park et al. pioneering approach [17] explored the recog-
nition capabilities of the periocular region. Feature extraction
is divided in two approaches: local and global, as information
concerns local regions, or is extracted from the whole image
(or, in this case, several region of interest (ROI)).

For global feature extraction images are properly aligned
using iris center and radius as reference. Although authors

acknowledge eye corners to be more fit for such task [10], they
claim that such points cannot be reliably determined. Then,
two well-known distribution-based descriptors are employed,
namely Histogram of Oriented Gradients (HOG) [18] and
Local Binary Patterns (LBP) [19], [20]. Values are computed
for a given ROI independently, and then quantized into 8-bin
histograms. The ROI are contiguous squares, where the side
equals in length the iris radius, forming a 7 by 5 grid centered
on the iris. Those histograms, combining shape and texture
information, are merged into a single-dimension array, easily
matchable to an identical one (from another image) simply by
computing the Euclidean distance.

As for the local features, Scale-Invariant Feature Transform
(SIFT) [21] allowed the detection of a set of key-points, en-
coded with their surrounding pixels information, and compared
against their counterparts from the testing image. SIFT offers
invariance to translation, scaling and rotation.

Tests were conducted over a “small” (899 images, 30
subjects, 2 sessions) database of frontal periocular images,
acquired in the VW. Although face matching achieving 100%
rank-1 recognition accuracy, the reported recognition for peri-
ocular range from 62.5% when using HOG features, to 80.8%
when fusing them with SIFT results. Curiously, combining the
three descriptors didn’t overcome those results, although joint
performance was very close: 80%.

On their later work [10], authors went further on stressing
periocular applicability for biometric recognition, analyzing
the impact of diverse factors over performance: eyebrow inclu-
sion or disguising, automatic segmentation, side information,
iris and sclera masking and expression variation.

As expected, results highlighted eyebrow information im-
portance, being more significant over SIFT where improve-
ments reached almost 19%. Nonetheless, the eyebrow inclusion
is more favorable over manual segmentation, as its perfor-
mance degraded when using automatic segmentation through
OpenCV, which was not observed on “eyebrow-less” data.
Facial side information, on the other hand, can be considered
almost irrelevant, since performance variation from both to
same side matching didn’t go behind 1% except for SIFT on
2 of the 48 test setups.

Changes in subjects’ expression significantly lowered the
performance of LBP and HOG, although on SIFT, more robust
to distortions, a slightly increase was registered. Masking the
iris and the entire eye also caused performance to decrease, this
time being SIFT the more disfavored. Top accuracy for single
classifiers was 79.49%, achieved through SIFT on unmasked
periocular images, manually segmented with the eyebrow,
when compared to an image captured from the same side and
expression. As reported in their prior paper [17], score level
fusion didn’t represent a significant performance improvement.

The authors also simulated periocular recognition over non-
ideal conditions, performing four simple tests: result com-
parison against recognition with partial (occluded) facial and
periocular images; conducting cosmetic changes on the eye-
brows; template aging; and perspective variations. For the first
step, they used FaceVACS2 face recognition system, whose
99.77% recognition accuracy on “clear” face images, dropped

2FaceVACS SDK available at: http://www.cognitec-systems.de
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to 39.55% simply by occluding the lower region. Occluding the
periocular region is also an element of concern, since relatively
low occlusions lead to significant decay on performance.
Without score fusing the feature encoding methods, 10%, 20%
and 30% periocular occlusion led to accuracies no greater than
25.97%, 20.51% and 10.12% respectively (all with SIFT).

On eyebrow modifications, the TAAZ3 tool was used to
simulate eyebrow makeover, producing a decay from 7.5%
on LBP to 10% on the other descriptors. The tests regarding
pose effect were the ones with greater impact over periocular
recognition accuracy, specially when using SIFT. Apart from
frontal images, subjects shoot with 15� and 30� rotation of
the head, produced a 35% and 45% decay on this method’s
accuracy, respectively. Finally, another concern the authors rise
is the apparent tendency of the periocular region not to be
stable over relatively small amounts of time. Images captured
3 months apart from each other have up to 15% less accuracy,
and about 30% on only half an year.

As further work, multi-spectral analysis is suggested, along
with improvements on the alignment and matching methods.
Fusion with iris or face recognition is also not discarded.

B. Miller et al. [22], [23]

Miller et al. [22] analyze periocular skin texture using
Uniform Local Binary Patterns (ULBP) alone, with some
deeper insights on each region’s impact on the recognition
process. The ULBP, as it name states, is an LBP-based method,
with “improved rotation invariance with uniform patterns and
finer quantization of the angular space” [24].

At a first stage, the periocular region is cropped proportion-
ally to the distance between the eyes, and scaled to 100⇥ 160
pixels. Then, a 7 by 4 grid of square ROIs is defined, centered
on the eye, and iris and sclera texture effects are eliminated
overlapping an elliptical neutral mask to the image. Each ROI’s
histogram is normalized, and ULBP calculated using an 8-pixel
neighborhood. As such neighborhood produces 59 different
possible results, 59-bin histograms are populated with the
result count, and then merged to produce a single-dimension
array as the final periocular signature. Manhattan distance is
used for subject identification against the database.

Experiments were conducted on subsets of the FRGC and
FERET databases, for the left and right eyes separately and
both eyes together. Recognition rates were around 84% and
71% for each eye individually, and 90 and 74% for both eyes
together, on FRGC and FERET respectively.

Further to this work, Miller et al. [23] conducted deeper
analysis on image quality impact over periocular local texture
based recognition, namely changing blur, resolution and illu-
mination, while comparing the results with similar experiments
conducted with the entire face.

As preprocessing, the periocular region was cropped from
the FRGC database in proportion to the distance between
the eyes, and then resized to a square region with 251 pixel
long sides. Upon grayscale conversion, image histogram is
equalized and the eye is masked. Texture is then encoded using
LBP over a regular block division of the image, and values

3Free virtual makeover took, available at http://www.taaz.com

used to populate an histogram, similarly to other periocular
approaches.

Image blurring was achieved through Gaussian filter convo-
lution, and results showed that even though face being far less
affected by small amounts of blur than periocular, this last trait
is slightly better at high blur levels. As for resolution, images
were down-sampled up to 40% its original size, and behavior
was similar to the one of blurred images.

Illumination variation was not simulated, since the FRGC
database already contains both controlled and uncontrolled
acquired images. The low accuracy verified when matching
pairs of images captured on uncontrolled setups suggest that
local appearance approaches like LBP are not suited for
irregular lighting conditions.

Finally, information differences from one color channel to
the others were also analyzed. Conclusions show the green
channel as the more discriminant, with accuracy levels ⇡ 23%
higher than for the red channel (which is presented as the less
discriminant). In fact, when fusing scores from all three chan-
nels, the red contribution only lowers the overall performance.
Blue channel has similar texture information as the green one.

In a general way, periocular was proven to outperform face
recognition in the stressed setups.

Further work includes conducting the same tests for differ-
ent classification methods, possibly adapting Support Vector
Machines (SVM) usage as suggested by Savvides et al. [25].

C. Adams et al. [26]

Adams et al. extended Miller’s work [22], proposing the
usage of a Genetic & Evolutionary Computing (GEC) method
to optimize the original feature set.

The first stage of feature extraction was conducted as
described by Miller et al. [22], and on the second stage the Ge-
netic & Evolutionary Feature Extraction (GEFE) chosen was
the Steady-State Genetic Algorithm (SSGA), as implemented
by the NASA’s eXploration Toolset for Optimization of Launch
and Space Systems (X-TOOLSS)4.

Reported results were about 86% accuracy for either eye
on the FRGC database, and 80% on similar experiments for
the FERET. Best results were obtained when using both eyes:
85% and 92% for those same datasets.

The usage of GEC represented an improvement of at least
10%, and only 49 ⇡ 52% of the initial features were used.
Nevertheless, the selected algorithm was not proven to be the
optimal for that specific periocular features.

D. Juefei-Xu et al. [27], [28]

Inspired by the work of Park et al. [17], the authors
decided to expand their experiments to less ideal imaging
environments, evaluating the performance of different feature
schemes over the FRGC database [27].

In addition to LBP and SIFT, both local and global
feature extraction schemes were stressed: Walsh masks [29],
Law’s masks [30], DCT [31], DWT [32] Force Fields [33],

4http://nxt.ncat.edu/
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SURF [34], Gabor Filters [35] and Laplacian of Gaussian
(LoG). The LBP itself was tested while applied over some
of the other methods (Table II). For matching, different dis-
tance metrics were tested: Normalized Cosine, Euclidian and
Manhattan.

TABLE II. RANK-1 ACCURACY FOR LBP FUSION WITH OTHER
METHODS [27].

Fused methods Accuracy
LBP + LBP 42.5%
Walsh Masks + LBP 52.9%
Laws’ Masks + LBP 51.3%
Discrete Cosine Transform (DCT) + LBP 53.1%
Discrete Wavelet Transform (DWT) + LBP 53.2%
Force Field Transform + LBP 41.7%
Gabor Filters + LBP 12.8%
LoG Filters + LBP 30.9%

Experiments shown that best results were registered when
using local descriptors, and the post-application of LBP was
translated in a performance boost (Table II). Top accuracy of
53.2% was attained with DWT + LBP, followed closely when
combining this last one with DCT (53.1%) and Walsh or Laws’
Masks (52.9% and 51.3%).

Worst outcomes were registered for SIFT and Speed Up
Robust Features (SURF), with a Verification Rate (VR) no
greater than 1%, possibly due to the low resolution of the
images.

Later on [28], they addressed the aging effect on periocular
recognition, reported to be an issue by several authors (e.g.
Park et al. [10]), even at relatively small time lapses (months).
This important issue is not trivial, as modeling the aging
process would require large datasets, and the decoding of its
dependence on external factors, as ethnicity, gender, etc. The
authors method was developed and validated on images from
the FG-NET database, taken years apart at different acquisition
setups, thus also dealing with illumination, pose and expression
issues.

Their method starts by preprocessing the periocular region:
pose is corrected through Active Appearance Models (AAM),
illumination is dealt with anisotropic diffusion model, and
region is normalized using the landmark points provided with
the database. Next step is feature extraction using Walsh-
Hadamard transform encoded LBP (WLBP), followed by
unsupervised discriminant projection (UDP) [36] application
that boosted results to very high performance levels.

Results show UDP to give better accuracy than Principal
Component Analysis (PCA) and Locally Preserving Projec-
tions (LPP) by up to 40%. As for WLBP, results were 15%
better than raw pixel intensity matching, and pose correction
resulted in a 20% improvement. Finally, the proposed method
for the tested images resulted in a complete 100% identification
accuracy.

E. Bharadwaj et al. [37]

Bharadwaj et al. propose the combination of a global
matcher (GIST) with ULBP for periocular recognition over
VW uncooperative images from UBIRIS.v2 database.

The GIST algorithm consists on combining five perceptual
dimensions, usually associated with scene description [38]:
naturalness,openness, roughness, expansion and ruggedness.

When computing the global GIST descriptor, and to
achieve local contrast normalization, the image is preprocessed
with Fourier transform. Then, the spatial envelope is computed
using a set of Gabor filters (4 scales ⇥ 8 orientations, produc-
ing a 1536 element GIST descriptor).

The ULBP is computed over the original image, sliced into
64 patches (producing a 64⇥ 256 descriptor).

For both descriptors, matching is computed using �2

distance, and min-max normalized results from both eyes are
fused simply by using a weighted sum.

Results showed that GIST overperformed ULBP, with
Rank-1 accuracy around 62% for the regions separately, and
70.82% for their fusion. The ULBP performance was around
53%, and 63.77% when fusing both region results. When
combining both descriptors, accuracy was boosted to 73.65%.

F. Woodard et al. [9], [14]

In their work, Woodard et al. [9] aimed at evaluating
periocular performance, thus determining its usability as a
biometric trait over NIR and VW data. Their analysis is
focused only on second level features (texture and color).

As pre-processing, periocular slice of images is cropped,
and an elliptical mask overlapped to the iris and sclera region
for “unbiased” periocular analysis. Cropped color images from
the FRGC are scaled down to 100 ⇥ 160, while the periocu-
lar NIR frames from the Multi Biometric Grand Challenge
(MBGC) are 601⇥ 601 pixel.

Texture features were encoded the same way for both
databases, through LBP computation over a ROI grid, which
was then quantized into histograms. As for the color informa-
tion on FRGC images, it was encoded using color histograms
for red and green channels. On this database, score level fusion
was used to combine texture and color results. Matching was
achieved using Manhattan distance for LBP and Bhattacharya
distance for color histograms.

Results suggest texture information to be more discriminant
that color, and score fusion only slightly improves overall
performance. As a comparison term, reported texture based
accuracy was around 90% and 88% on the VW, and 81%
and 87% on NIR for the left and right periocular regions
respectively.

On their later work, Woodard et al. [14] make use of
the periocular region texture information to improve iris data
reliability, aiming at overcoming the difficulties when dealing
with non-ideal imaging.

Tests were conducted over MBGC that, although being a
NIR database, is a challenging one for iris recognition due
to at-a-distance in-motion subjects and illumination variations.
Frames were treated as described above, with texture measured
computing LBP the same way. Iris processing was as of Daug-
man’s [39], except for the segmentation that was manually
performed to avoid further errors. Both methods’ results were
then normalized using min-max scheme, and combined by a
simple weighted sum.
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Results demonstrate iris’ poor accuracy (10.1% ⇡ 13.8%)
to benefit from fusing with periocular results, raising rank-1
to 96.5%.

G. Padole and Proença [16]

Padole and Proença also stressed how noise factors deteri-
orate periocular recognition, using natural images where those
factors were included by the acquisition framework instead
of simulating them: pose variation, distance of the subject,
pigmentation and occlusion.

Inspired by the work of Park et al. [17], they used the same
feature extraction techniques, except that ROI center was com-
puted with relation to eye-corners instead of iris center. This
new alignment method led to most significant improvements,
specially since in unconstrained biometrics gaze variations are
more prone to happening.

On score level fusion, linear an non-linear methods were
also tested: logistic regression [40] and Multi Layer Perceptron
(MLP) respectively. Although the last one reported to lead to
slightly better results, difference was not significant.

For the stressed covariates, interesting conclusions were
reached. Results shown that closer acquired distances didn’t
led to better performance, and neither did very large ones.
Worst results were obtained for images acquired at 4 m, and
though highest stressed distance was 8 m, top performance
was obtained at 7 m. Not surprisingly, pose variation impact
on performance was in inverse proportion: higher tilting angle
result in lower accuracy values. Same as for the occlusion.

Finally, iris pigmentation was reported to also impact
periocular recognition performance, specially on heavily pig-
mented ones which lead to lower accuracy. Best results were
obtained for medium pigmented irides.

Another interesting discovery was that subject gender af-
fects recognition rates. More precisely, female subjects are
easily identified using periocular biometrics than male ones.

H. Hollingsworth et al. [41], [42]

The human ability to use contextual information and to
“disregard” most of noise factors adapting itself to surrounding
conditions is outstanding, making it a harder task for machines
to mimic. In fact, recognition algorithms should not try to just
mimic the human perception system, but to understand its way
of working, and then seek alternate strategies to tackle the same
issues.

Hollingsworth et al. understood existing methods to have
overlapped that step. Having that in mind, they [41] established
parallelisms between human perception and automatic recog-
nition systems, identifying which ocular elements humans find
more useful for periocular recognition.

On their essay, 640⇥ 480 NIR images were acquired from
120 subjects using an iris camera (LG2200), and the iris was
completely masked to avoid biased answers. Only periocular
from eyes’ tight vicinity is visible, with some features used
by other methods partially hidden (e.g. eyebrows). 80 pairs
of images were presented to 25 human observers, who were
asked to tell if they belong to the “same person” or “different
people”, and how “certain” they were. Further to that, the

observer had to individually rate each one of the features’
helpfulness, in a three level scale. Results showed eyelashes
to be the most helpful periocular feature, closely followed by
the medial canthus and the eye shape. The observers based
themselves on eyelash clusters, density, direction, length and
intensity. To the human observers, skin was actually the less
useful. Average human accuracy was 92%.

On their later work [42], similar tests with human observers
were widen to the VW band, with a more extent study on new
factors. The algorithms suggested by Park et al. [17] were
also implemented for periocular performance comparison, and
irides were evaluated using the IrisBEE biometric system from
ICE [43].

Trial data was also widen to 210 subjects, imaged on the
same controlled fashion with a setup as above, and on the
VW using a Canon D80 camera. The amount of observers also
increased to 56, to whom 140 pairs of images were presented
for each one of the four sets of experiments built: NIR and
VW, periocular and iris images. Test subjects could then rank
their certainty of a positive match in a 5 level scale, and
for the periocular images they had to specify how helpful
individual features were (“eye shape”, “tear duct”, “outer
corner”, “eyelashes”, “skin”, “eyebrow”, “eyelid”, “color”,
“blood vessels” and “other”).

Human NIR periocular recognition accuracy dropped to
78.8%, probably due to the different pairing system and limited
observation time, and VW performance was set on 88.4%.
Machine results were similar, within a 1% difference on overall
accuracy. The features identified as fit for periocular NIR
region were similar to the ones at [41], but for VW data
changes occurred: blood vessels, skin and eye shape were
reported to be more helpful than eyelashes.

When acquiring data on VW band, differences on acquired
skin details are perceptible. Also with the LG2200 camera
illumination, being designed for iris recognition, usually causes
skin saturation. As so, VW band was found to be preferable
for periocular recognition tasks.

Human perception of iris features is greater on NIR images,
leading to 85.6% accuracy against 79.3% on VW. However,
and unlike periocular, machines recognition was 13% better,
on average, than human observers, with 100% and 90.7%
accuracy for those same bands.

V. CONCLUSIONS

The interest on the periocular region as a biometric trait has
justifiably increased over the last years, considering the pioneer
approach of Park et al. [17] a starting point. Subsequently,
even simple algorithms led to fair performance levels, and the
surprisingly good response of LBP based methods (like ULBP
and WLBP) is noteworthy.

The recently developed methods focus mainly on texture
analysis and keypoint extraction. Periocular is currently re-
garded as specially suitable for unconstrained and uncoop-
erative scenarios, where iris cannot be properly imaged and
neither a full facial picture can be obtained. Also, results
favoring VW periocular over NIR also show its fitness for
more relaxed setups and for its use based on conventional
surveillance cameras.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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TABLE III. OVERVIEW OF THE MOST RELEVANT PERIOCULAR RECOGNITION METHODS.

Approach Features Extract Classifier Dataset Accuracy

Park et al. [17]
Shape,
Texture,
Key-Points

HOG,
LBP,
SIFT

Euclidean distance,
SIFT matcher

899 VW images,
30 subjects, 2
sessions

HOG: 62.5%,
LBP: 70.0%,
SIFT: 74.2%,
Best: 80.8%

Miller et al. [22] Texture ULBP Manhattan distance FRGC,
FERET

FRGC: 89.8%,
FERET: 74.1%.

Adams et al. [26] Texture LBP +GEFE Manhattan distance FRGC,
FERET

FRGC: 92.2%,
FERET: 85.1%.

Woodard et al. [9] Color,
Texture

RG color histogram,
LBP

Bhattacharya,
Manhattan distance

FRGC,
MBGC

Left VW peri: 90%
Right VW peri: 88%
Left NIR peri: 81%
Right NIR peri: 87%

Woodard et al. [14] Texture Daugman’s irisCode,
LBP

Hamming distance,
Manhattan distance MBGC

Left Iris: 13.8%
Left Peri: 92.5%
Fusion: 96.5%
Right Iris: 10.1%
Right Peri: 88.7%
Fusion: 92.4%

Juefei-Xu et al. [27] Texture,
Key-Points

Walsh Masks, Laws’
Masks, DCT, DWT,
Force Field Trans-
form, Gabor Filters,
LBP, SIFT, SURF,

Cosine distance,
Euclidean distance,
Manhattan distance

FRGC

DWT+LBP: 53.2%
DCT+LBP: 53.1%
Walsh+LBP: 52.9%
Laws’+LBP: 51.3%
...

Juefei-Xu et al. [28] Texture WLBP+UDP Cosine distance FG-NET 100%

Bharadwaj et al. [37]

Naturalness,
Openness,
Roughness,
Expansion,
Ruggedness,
Texture

GIST, ULBP �2 distance UBIRIS.v2
GIST: 70.82%
ULBP: 63.77%
Fusion: 73.65%

Hollingsworth et al. [41] Human Human Human
NIR images,
120 subject 92%

Hollingsworth et al. [42] Human Human Human NIR and VW,
210 subjects

NIR Peri: 78.8%
VW Peri: 88.4%
NIR Iris: 85.6%
VW Iris: 79.3%

However, some issues remain to be properly addressed,
specially the about poses, occlusions and aging. Regarding the
latter, extending Juefei-Xu et al [28] work to different scenarios
should be considered.

The work of Hollingsworth et al. [41], [42] on human
perception suggests that eye shape constitutes a powerful ally
to the skin analysis methods on both spectral bands, thus
making us rethink periocular recognition, possibly taking a
leap away the overused texture methods. Eyelashes are also
pointed as a good indicator, specially for NIR, keeping in
mind that images differ from the “traditionally” used periocular
images and the close capturing of the data could have biased
the results. Those issues should be addressed in further work,
as well as a more complete and uniform study of existent
methods’ performance over the UBIPr dataset.
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Abstract The usage of ocular data for recognition pur-
poses has recently emerged, being actually one of the
most promising traits for unconstrained scenarios, or
when neither the iris nor the full face can be prop-
erly imaged. Supported by the literature is its high dis-
criminability, relative stability and acquisition simplic-
ity, making the periocular region – the region in close
vicinity of the human eye – a good trade-o↵ between the
whole face and the iris alone. Furthermore, being easily
acquired covertly without requiring constrained close
capturing, it is an e↵ective alternative when user coop-
eration is not expectable. This article o↵ers the follow-
ing contributions: 1) introductory three-fold framework
on periocular biometrics, with the relation to the classi-
cal biometric traits and systems, the anatomy of the pe-
riocular region, and identified di�culties; 2) compara-
tive overview of the most relevant research on the scope
of periocular recognition, with widen detail on the un-
derlying techniques; 3) state-of-the-art results against
a common dataset; 4) comprehensive analysis of those
results, using well-known evaluation metrics; 5) analy-
sis of the biometric menagerie underlying each method,
with insights about the main degradation issues; and,
finally, 6) directions for further improvements on this
technology.
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1 Introduction

The concept of biometrics has been evolving along with
modern societies’ increasing concern on individual and
global security. From personal computers to border ac-
cess control, everyone wish for securing their identity,
their assets and, primarily, their homeland. In order to
achieve such safety, the ability to accurately identify
subjects based on their biometric features, either bio-
logical or compartmental, is essential.

Biometric systems rely on both the accurate extrac-
tion of individuals’ distinctive features and their ade-
quate encoding, so that the essential information can be
preserved. Those requisites were traditionally assured
by high constraining acquisition setups, with subject
cooperation being a key element. However, when ac-
quisition constraints are lowered or subject cooperation
is not expectable, recognition become more challenging
and alternatives are sought [38], either by improving the
existing algorithms, resorting to multi-modal biometric
systems, or exploring new traits that could better fit
this new reality.

1.1 A leap from the traditional traits

Since biometrics emerged as a science, researchers have
established biometric recognition with a wide variety of
traits. From the most used traits, two of them are par-
ticularly related to the spring of periocular biometrics:
the face and the iris.
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(a) heavy weather
clothing

(b) balaclava (c) niqab (d) medical mask (e) helmet

Fig. 1 Illustration of situations where, due to subjects wearing severe headgear, the periocular region is the most advisable
trait .

The face is presumably the most common and widely
used biometric trait. Everyday and even without notic-
ing it we all use facial information to recognize each
other. Not only that, it became one of the most suc-
cessful applications of image analysis and understand-
ing. Several face recognition systems are commercially
deployed, with a lot of techniques accessible for both
still images and video [52]. Those methods are based
either on global analysis of the whole region (as a set
of pixel intensities), or in the relation between facial
key-elements, their location and shape. However, their
e↵ectiveness is conditioned by several factors: its 3D
structure lead to substantial di↵erences in appearance
accordingly to subject’s pose; large portions are often
occluded on non-orthogonal data acquisition; facial ex-
pressions a↵ect their appearance; and it is particularly
easy to disguise.

In opposition, the iris is known to deliver extreme
recognition accuracy in exchange for high acquisition
constraints. The high recognition performance attained
with the iris is due to its predominantly randotypic
morphogenesis unique for each individual. As so, a con-
siderable amount of e↵orts are being held on iris bio-
metrics [9], that quickly ascended as one of the most
popular biometric traits. While most of the commer-
cially deployed iris recognition systems work with con-
strained Near-Infrared (NIR) data, favoring the per-
ception of its patters whilst reducing the quantity of
inherent noise factors, literature on extending this trait
usability to “relaxed” visible wavelength (VW) setups
has broadened [42,45,39]. However, iris performance
is severely impacted in non-ideal setups, as its rela-
tively reduced size and moving profile make it di�cult
to image at-a-distance and without user cooperation.
Accordingly, growing attention has been paid to other
traits with potential application on unconstrained bio-
metric recognition.

The periocular region, being a central figure of the
face and representing a good trade-o↵ between the whole
face and the iris alone, has been receiving increased at-

tention from the scientific community. Literature shows
it to be a strong alternative on less constrained bio-
metrics, when image acquisition is otherwise unreliable,
or complementary to avoid iris pattern spoofing. It is
relatively stable, rarely occluded, and easy to acquire
covertly without requiring constrained close capturing,
being an e↵ective alternative when user cooperation is
not expectable – Figure 1. Its proximity with the iris is
definitely a surplus, as they can be imaged simultane-
ously with a single camera and fused (at feature or score
levels) compensating for environmental adversities and
uncooperative subjects.

1.2 Anatomy of the ocular region

Facial appearance is determined by both the superficial
features of the skin, and the concavities and convexities
conferred by the underlying bones and muscles. The pe-
riocular region in particular comprises many anatomic
features and landmarks fit for recognition purposes –
Figure 2.
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Fig. 2 Anatomic features in the vicinity of the eye.
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Fig. 3 General steps and elements of biometric recognition systems.

Centered on the eye, which is located on the or-
bital aperture, the periocular region has its creases and
sulcus decided essentially by four bones: 1) the frontal
bone, ending with the supra-orbital process where the
eyebrow is located and which a↵ects its appearance; 2)
the nasal bone, defining the upper part of the nose; 3)
the lacrimal bone, that forms the cavity for the tear
gland; and 4) the zygomatic bone, also known as cheek
bone.

As for the superficial features, and besides the skin
texture and landmarks, we have eyebrows, eyelids and
eyelashes. Eyebrows constitute the foundation for eye-
lids, and are straighter on men and more arched on
women. Eyebrow thickness changes accordingly to eth-
nicity and, with the aging process, their orientation and
height also change. Concerning the eyelids, their con-
tours depend on gender, ethnic group and age, and di-
mension intervals are defined in previous studies [44].
We must remark that not only this region is not so af-
fected by the aging process as other facial regions (e.g.,
mouth and cheek skin that become loosened over time),
but even when the anatomic features of the face has
been reshaped (e.g., plastic surgery), periocular data
usage for recognition purposes remains advantageous
[19,8].

Even considering the richness of ocular elements,
the features actually being used on periocular biomet-
rics algorithms are quite simple and can be divided into
two levels, as suggested by Woodard et al. [46]. The
first level comprises eyelids, eye folds, and eye corners,
and the second level comprises skin texture, wrinkles,
color and pores. This simplicity might be due to the
relative novelty of the field: having passed only a cou-
ple of years since the first relevant study on periocular
recognition, the earliest recognition algorithms firstly
employed classical techniques in the computer vision
domain-of-knowledge, before attempting more sophis-
ticated and specific methods.

1.3 Structure of a Biometric System

The importance of a biometric authentication system
as a whole must not be disregarded, as it will be the
responsible for carrying the whole process from data
acquisition to feature extraction and matching against
the database. Thus, designing a system that adapts to
its application scenario is of the most importance. A
recognition system comprises four core modules [18] –
Figure 3:

1. Sensor Module A wide variety of sensors is avail-
able, depending on which biometric trait we are go-
ing to work with. Since most of biometric traits con-
sist on visual information, cameras are more likely
to be used on data acquisition. On real-time sys-
tems (RTS) the balance between the richness on de-
tail of the acquired data and the acquisition rate is
as essential as choosing a proper camera. This mod-
ule is strictly related with the first step of recog-
nition systems (trait acquisition), and is where the
trade-o↵ between the quality of gathered data and
user cooperation is set.

2. Quality assessment and Feature extraction
Even with an optimal sensor setup, not always the
acquired data is suited for feature extraction. It is
therefore important to access its quality, discarding
images where minimum requirements are not met,
thus saving further processing time. The trait needs
to be properly located and segmented (specially use-
ful to gather preferably “good” data), and then en-
coded as feature templates.

3. Matching and decision-making In this module
features are matched against the templates on the
database, thus deciding to be facing either a genuine
or an impostor comparison.

4. System database The system database module
consists on the repository of user biometrics acquired
during the enrollment stage and used for further
identification or verification of users’ identity.
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Since the use of the periocular region as a biomet-
ric trait is relatively recent, there are a set of identi-
fied pitfalls regarding its use for recognition purposes.
These were grouped into five topics, based on criteria
suggested by Park et al. [32]. Right from the trait ac-
quisition stage, it is yet to be determined the optimal
imaging spectrum for periocular biometrics. While for-
mer research on ocular biometrics usually prefers near-
infrared data, expectation aim towards the visible wave-
length where unconstrained recognition is favored. It is
moreover expected that the fusion from data acquired
at di↵erent wavelengths, yielding multispectral infor-
mation, would result in relevant advantages. The second
concern is related with the actual boundaries of the
periocular region. Although the literature shows the in-
clusion of some traces (e.g., the eyebrows, iris or sclera)
to improve overall performance, researchers sometimes
disagree on whether those elements should rather be
masked or cropped to avoid biased results. Even for the
region itself, only recently an optimal periocular region
of interest (ROI) by balancing minimal template size
with maximal recognition accuracy was proposed by
Bakshi and Majhi [4], through an insightful study on
the impact of its proportions to both the recognition
performance and computational cost. At the feature
extraction and encoding stage, new questions arise,
as it is not yet settled which features are the most rep-
resentative when aiming at discriminating this region.
Furthermore, the heterogeneity of the components in
the periocular region may suggest that more elaborate
feature schemes are required to describe such di↵er-
ent types of information. Subsequently, a fit match-
ing scheme should be determined, taking into account
the techniques most suitable to handle data variations
inherent to the less controlled acquisition process and
how to optimally handle the variations in the tradi-
tional data variation factors. On the fusion of periocu-
lar biometrics with other traits, we must consider that
even if the use of multiple traits might be important to
compensate for acquisition adversities, and iris being
a fit candidate for score level fusion during periocular
recognition, the way of maximize the outcome of this
(or other) association is yet to be clearly established.

1.4 Datasets

Another known adversity inherent to the novelty of the
use of the periocular region as biometric trait is that
only a few public databases are available specifically
designed for periocular method development. Hence,
face and iris datasets are usually used for that pur-
pose, being the most relevant illustrated on Figure 4

and detailed through Table 1. For each dataset here in-
troduced we detail the amount of images and subjects,
image dimensions and main variability factors, essential
in evaluating the robustness of recognition algorithms.
The heterogeneity present on the datasets make them
a good mimic of non-cooperative operation conditions.

FERET1

The Facial Recognition Technology (FERET) data-
base [35] was designed as a standard for developing
face recognition methods. It was acquired at George
Manson University over eleven sessions and a three
year period, and initially released as low resolution
(256⇥ 384 pixel) grayscale data. Only later a high-
resolution color version was disclosed. It contains a
total of 14051 images, gathered from 1199 di↵erent
subjects within a semi-controlled acquisition pro-
tocol with strict expression, pose and illumination
changes.

FRGC2

Collected at the university of Notre Dame, the
Face Recognition Grand Challenge (FRGC) data-
base [34] consists of high resolution (⇠ 1200⇥ 1400
pixel) color images, captured on both controlled and
uncontrolled environments. On the controlled ac-
quisition scenario uniform studio-grade illumination
was used and subjects requested to stand still, look
straight to the camera and essay sequentially both
neutral and smiling expressions. As for the uncon-
trolled acquisition, images were shot at di↵erent sce-
narios disregarding both background and illumina-
tion.

MBGC3

The Multi Biometric Grand Challenge dataset con-
sists on 149 videos, acquired under the NIR wave-
length and introducing several noise factors: non-
uniform illumination, eye-blink, motion blur, occlu-
sions and reflexions. Videos were shot at 15 frames

1 http://www.nist.gov/itl/iad/ig/colorferet.cfm/
2 http://face.nist.gov/frgc
3 http://face.nist.gov/mbgc/

Table 1 Specification of the most commonly used databases.
Except for the MBGC, all datasets contain VW data. Vari-
ation abbreviations refer to Distance (D), Expression (E),
Illumination (I), Occlusion (O) and Pose (P).

Name Images Subjects Dimensions Variations

FERET 14051 1199 512⇥ 768 E, I, P.
FRGC 36818 741 ⇠ 1200⇥ 1400 E, I.
MBGC 149 AVI 114 2048⇥ 2048 D, E, I, O, P.
UBIRIS.v2 11102 261 800⇥ 600 D, O, I.
UBIPr 10950 261 Multiple D, I, O, P.
FG-NET 1002 82 ⇠ 400⇥ 500 D, E, I, P.
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(a) FERET

(b) FRGC

(c) MBGC

(d) UBIRIS.v2

(e) FG-NET

Fig. 4 Sample images from the most commonly used datasets. Except from (d), data was cropped for illustration purposes.

per second (fps), on 2048 ⇥ 2048 pixel frames, rep-
resenting an iris spatial extension of 120 pixel [47].

UBIRIS.v24

The UBIRIS.v2 [37] is an unconstrained iris data-
base captured on the VW from moving subjects, at
di↵erent distances and challenging illumination con-
ditions, thus simulating unconstrained acquisition
and the inherent noise factors. Data from both eyes
is available separately, along with the surrounding
periocular data, thus allowing to test both perioc-

4 http://iris.di.ubi.pt/ubiris2.html

ular methods and their fusion with iris recognition
techniques.

UBIPr5

More recently, the UBI Periocular Recognition data-
set by Padole and Proença [31] represents an e↵ort
to advance of periocular biometric research, provid-
ing data to evaluate robust methods at “higher lev-
els of heterogeneity”. Noise factors were also intro-
duced on the acquisition setup: varying acquisition
distance, irregular illumination, pose and occlusion.
Image dimensions vary accordingly to acquisition

5 http://socia-lab.di.ubi.pt/~ubipr
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6 Gil Santos, Hugo Proença

distance, ranging from 501 ⇥ 401 pixels at 8m to
1001 ⇥ 801 pixels at 4m. Manual database annota-
tion is also provided, more specifically the ROI and
essential landmarks.

FG-NET6

The FG-NET is a facial aging database that, al-
though not so commonly used, is relevant due to the
facial aging features: it contains around one thou-
sand images from 82 subjects, up to 69 years old.
Captured with di↵erent acquisition setups and many
years apart, it is clear how subjects were shot un-
der very irregular illumination, pose and expression
conditions. Images are 400⇥ 500 pixels in size, cap-
tured on the VW, and for each one a 68 landmark
points annotation is provided.

Considering that the collection of data for biomet-
ric experiments is particularly hard due to both secu-
rity and privacy concerns and the substantial amount of
required participants, Cardoso et al. [10] recently devel-
oped an algorithm for synthesizing degraded ocular im-
ages 7. They described a stochastic method able to gen-
erate a practically infinite number of iris images, simu-
lating acquisition under uncontrolled conditions. The
images generated using their technique display eight
noise factors: optical defocus, motion blur, iris occlu-
sions, gaze, pose, distance, levels of iris pigmentation
and lighting conditions.

The work presented in this paper extends the pre-
vious published work on periocular biometrics [40], by
introducing a more detailed description and a side-by-
side analysis of periocular methods on a fixed data-
set. The remainder of this article is organized in the
following manner: Section 2 comparatively details the
relevant methods developed on periocular recognition;
Section 3 presents and comparatively discusses the re-
sults of the implemented methods; and finally Section 4
states the final considerations.

2 The Most Relevant Recognition Algorithms

This section we summarize the most relevant techniques
published in the scope of biometric recognition using
information from the periocular area.

The pioneer approach on periocular biometrics dates
back to Park et al. [33], who proposed a twofold fea-
ture extraction based on local and global features, as
information relates to local regions, or the whole im-
age – Figure 5. Global feature extraction starts by im-
age alignment using as reference the iris coordinates

6 http://sting.cycollege.ac.cy/~alanitis/

fgnetaging/index.htm
7 http://iris.di.ubi.pt/NOISYRIS

(a) Local Features (b) Global Features

Fig. 5 Illustration of the a) extracted local features and b)
ROI for global feature extraction (adapted from [33]).

and its dimensions, followed by the computation of two
well-known distribution-based descriptors, Histogram
of Oriented Gradients (HOG) and Local Binary Pat-
terns (LBP), over several contiguous square ROI form-
ing a 7 ⇥ 5 grid (Figure 5(b)). Both descriptors are
sequentially computed and quantized for each ROI into
8-bin histograms, storing both shape and texture infor-
mation in a global single-dimension array. Although au-
thors identify the eye-corners as better reference points
for image alignment [32], they claim that they cannot
be reliably determined.

LBP [27,28] works in a quite simple yet e�cient
fashion, measuring pixel intensity changes in a deter-
mined neighborhood P of radius R. Taking the dif-
ference T of the P intensities I to the central pixel,
LBPP,R can be easily computed through (1), where s

denotes the signal function. The HOG descriptor [12]
is also well-known for its wide applications in computer
vision. It simply computes gradient orientation by filter-
ing the image with two kernels: [�1, 0, 1] and [�1, 0, 1]T .

LBPP,R =
P�1X

p=0

Tp.2
p (1a)

T = s(I0 � Ic), ..., s(IP�1 � Ic) (1b)

s(a� b) =

(
1, if a � b

0, otherwise
(1c)

The local features are represented by a set of key-
points, and their surrounding information extracted us-
ing Scale-Invariant Feature Transform (SIFT) [23]. Key-
points are detected in scale space using a Di↵erence of
Gaussians (DOG) function, and features extracted from
their bounding boxes (scale proportional) based on the
gradient magnitude and orientation – Figure 6. The us-
age of SIFT o↵ers invariance to translation, scaling and
rotation.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Fig. 6 Block diagram of the SIFT steps (adapted from [20]).

At the matching stage both arrays (Ha andHb) con-
taining the global features are compared using the Eu-
clidean distance, simply by applying the Pythagorean
formula (2) over their elements. The key-points repre-
senting the local features are matched using their geo-
metrical alignment to their counterparts on the testing
image.

d(Ha, Hb) =

vuut
nX

i=1

(Hai �Hbi)2 (2)

The authors conducted their tests over a “small”
(899 images, 30 subjects, 2 sessions) database of frontal
periocular images acquired in the visible wavelength
of the electromagnetic spectrum. The reported perfor-
mances range from 62.5% when using the HOG features
alone, to 80.8% when fusing them with the results from
SIFT. Curiously, combining all the three features didn’t
led to further improvements on those results, with the
joint performance being set at 80%. For that same data-
set, authors report that Rank-1 recognition accuracy
when using the whole face was 100%.

On their later work, Park et al. [32] went further on
stressing periocular recognition by analyzing the im-
pact of several factors: eyebrow inclusion or disguis-
ing, automatic segmentation, side information, iris and
sclera masking and expression variation. Their results
showed that although automatic OpenCV segmentation
exhibits better performance on “eyebrow-less” data, its
inclusion in the periocular region improves the SIFT re-
sults in almost 19%. Information about the side of the
face is almost irrelevant, with performance variations
of about 1%. From the stressed variations facial expres-
sions was the one with the most significant impact over
periocular recognition performance, except for SIFT,
which is more robust to distortion. On the other side,
the SIFT descriptor revealed itself handicapped when
facing iris or sclera occlusions. Top accuracy for the
classifiers singlehanded was 79.49%, achieved using SIFT
on manually segmented and unmasked data, including
the eyebrow, when compared to images taken from the
same side of the face and the same facial expression.

Compared to their previous work (i.e., [33]) score level
fusion did not result in significant improvements.

As recognition over non-ideal situations was also
a concern, authors compared their results with Face-
VACS8 face recognition system marks – 99.77% recogni-
tion accuracy on “clear” facial images. Significant per-
formance drops were registered, for instance, with oc-
clusions (about 60% when occluding the lower part of
the face – Figure 7(a)), and even for small occlusions
on the periocular area. Without resorting to score-level
fusion, the encoding methods led to accuracy values no
greater than 25.97%, 20.51% and 10.12% respectively
for 10%, 20% and 30% of periocular occlusion. Eyebrow
modification was also subject for testing (Figure 7(b)),
using the TAAZ9 tool to simulate makeover. The reg-
istered decay on performance was 7.5% for LBP and
10% for other descriptors. On subjects facing at 15� to

8 FaceVACS SDK available at http://www.

cognitec-systems.de
9 Free virtual makeover took, available at http://www.

taaz.com

(a) Facial occlusion

(b) Eyebrow makeover

Fig. 7 Illustration of the non-ideal conditions simulated by
Park et al: a) facial occlusion and b) eyebrow makeover
(adapted from [32]).
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Table 2 Average accuracy degradation under di↵erent fac-
tors tested by Park et al. [32].

Factor Accuracy avg. di↵.

Eyebrow inclusion +10.66%
Automatic segmentation �0.06%

Expression change �3.36%
Same side matching +0.33%

Iris masking �3.65%
Eye masking �15.95%

10% periocular occlusion �48.67%
Di↵erent sessions �25.00%

30� (i.e., head rotation), 35% to 45% performance dete-
rioration was registered, being SIFT the most a↵ected
descriptor. Finally, authors pointed out an additional
issue associated with the periocular region – its lack of
stability over time. Images captured three months apart
from each other appear to perform 15% worst, and 30%
when captured with half-year gap. Results from those
experiments [32] are summarized on Table 2. Authors
suggest several further improvements: better alignment
and matching methods; multi-spectral analysis; and the
possibility of fusion with iris (or face) recognition meth-
ods.

Miller et al. [26] analyzed the periocular skin tex-
ture by applying the Uniform Local Binary Patterns
(ULBP) method, and providing further insights on each
region’s impact on the recognition process. This LBP-
based approach is meant to achieve “improved rotation
invariance with uniform patterns and finer quantization
of the angular space” [29]: from the 2P possible binary
patterns returned from regular LBP computation (1)
over a P neighborhood, a uniformity measure U can be
calculated representing the number of bitwise changes
in that pattern (3a). Using a uniformity value of 2, users
employed the ULBP operator using equation (3b).

U(LBPP,R) = |s(IP�1 � Ic)� s(I0 � Ic)|

+
P+1X

p=1

|s(Ip � Ic)� s(Ip�1 � Ic)|
(3a)

LBPu2
P,R =

(PP�1
p=0 s(Ip � Ic), if U(LBPP,R)  2

P + 1, otherwise

(3b)

Similarly to the previous approach, the periocular
region was cropped proportionally to the intra-eye dis-
tance, scaled to 100 ⇥ 160 pixels and divided into a
7 ⇥ 4 ROI grid. To avoid that the iris and the sclera
information could possibly influencing the results, an

elliptical neutral mask was overlapped to the periocu-
lar image. After histogram normalization the ULBP is
computed for each region, using an 8-pixel neighbor-
hood and producing 59 possible results used to pop-
ulate the histogram for the periocular signature array.
Finally, the Manhattan distance (4) is used for compar-
ison at the matching stage.

d(Ha, Hb) =
nX

i=1

|Hai �Hbi| (4)

Experiments conducted on images from the FRGC and
FERET datasets, for both eyes separately and com-
bined, reported 84% and 71% and 90% and 74% recog-
nition rates respectively.

Miller et al. [25] later work addressed the impact of
image quality over three axes: blur, resolution and illu-
mination. Image was preprocessed using a similar peri-
ocular crop and resizing (251 ⇥ 251 pixels), grayscale
conversion, histogram equalization and eye masking,
but instead of the ULBP a base LBP was used. When
blurring the data by convolving it with a Gaussian fil-
ter, the periocular recognition outperformed that of the
entire face in particular for high levels of blur. A similar
conclusion was reached upon down-sampling the data
to 40% of its original size. As for uncontrolled illumi-
nation conditions (already introduced on the dataset,
i.e., not simulated), performance degrades to low levels
since local approaches (e.g., LBP) are not suited for ir-
regular lighting conditions. The authors also compared
the discriminant capabilities of each color channel, con-
cluding that the green channel is the one leading to
higher di↵erentiation (23% higher accuracy than the
red channel), and encodes the texture information in a
very similar way as the blue channel. In general, authors
concluded that performance achieved on the periocular
region was higher than when using the whole face, and
suggest the usage of di↵erent classification methods as
Support Vector Machines (SVM) [41].

Adams et al. [2] extended Miller’s work [26], by us-
ing a Genetic & Evolutionary Computing (GEC) method
to optimize the original feature set, namely the Steady-

Procedure GEC{
t =0\;
I n i t i a l i z e Pop( t ) \ ; /⇤ I n i t i a l Populat ion ⇤/
Evaluate Pop( t ) ;
whi l e (While Not Done){

dad = Se l e c t Pa r en t (Pop( t ) ) ; /⇤ Dad ⇤/
mom = Se l e c t Pa r en t (Pop( t ) ) ; /⇤ Mom ⇤/
o f f s p r i n g = Crea t e Of f sp r ing (mom, dad ) ;
Evaluate ( o f f s p r i n g ) ;
Pop( t+1) = Replace ( worst , o f f s p r i n g ) ;
t = t + 1 ;

}
}

Fig. 8 Pseudo-code example of a GEC [1].
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State Genetic Algorithm (SSGA) algorithm implemented
by eXploration Toolset for Optimization of Launch and
Space Systems (X-TOOLSS)10. The GEC algorithm com-
prehends the process of creating problem solvers, hav-
ing as basis the simulated evolution. Starting from a
randomly selected set of candidate solutions (CS), the
goodness of fit (GOF) of an evaluation function is de-
termined to select two parents and create o↵spring that
replaces the worst members of the current population
– Figure 8. Authors reported 86% accuracy for either
eye on the FRGC database, and 80% over the FERET
data, and top results of 85% and 92% when using both
eyes. Using only 49 ⇠ 52% of the original features im-
proved on, at least, 10%. Nonetheless, the chosen algo-
rithm was not proven to be the optimal for that specific
periocular features.

Inspired by Park et al. [33] work, Juefei-Xu et al [20]
expanded their experiments to less ideal imaging envi-
ronments, conducting performance analysis for di↵erent
feature schemes over the FRGC dataset. At the encod-
ing stage, and in addition to the LBP and SIFT tech-
niques, both local and global feature extraction schemes
were tested: Walsh masks, Law’s masks, DCT, DWT
Force Fields and SURF; Discrete Wavelet Transform
(DWT), Gabor Filters and Laplacian of Gaussian (LoG).
For the matching stage, the impact of di↵erent distance
metrics was also tested: Normalized Cosine (5), Euclid-
ian (2) and Manhattan (4).

d(Ha, Hb) =

Pn
i=1 Hai ⇥HbipPn

i=1(Hai)2 ⇥
pPn

i=1(Hbi)2
(5)

Walsh masks [6] are a set of filters based on the
Walsh function (6), whose convolution with the image
captures its binary characteristics in terms of contrast.
Sampling each function at the integer points, 5 vectors
(7) of size 5 are produced and, when combined in be-
tween themselves, 25 base images are obtained.

W2j+q(t) = (�1)b
2
j c+q[Wj(2t)+(�1)j+qWj(2t�1)] (6)

where b 2
j c is the integer part of j/2, and q is either 0

or 1.

8
>>>>>><

>>>>>>:

WT
0 = (1, 1, 1, 1, 1)

WT
1 = (�1,�1,�1, 1, 1)

WT
2 = (�1,�1, 1, 1,�1)

WT
3 = (1, 1,�1, 1,�1)

WT
4 = (1,�1, 1, 1,�1)

(7)

Laws filter masks [22] were pioneer techniques of
texture identification through filtering. They consist on

10 http://nxt.ncat.edu/

using a bank of 25 filters, five in each dimension, accord-
ingly to the masks from (8) and assuming the shape of
level (L), edge (E), spot (S), wave (W ) and ripple (R).

L5 = [1, 4, 6, 4, 1] (8a)

E5 = [�1,�2, 0, 2, 1] (8b)

S5 = [�1, 0, 2, 0,�1] (8c)

W5 = [�1, 2, 0,�2, 1] (8d)

R5 = [1,�4, 6,�4, 1] (8e)

Discrete Cosine Transform (DCT) [3] is a commonly
used image encoding technique with a good balance be-
tween performance and computational cost. In this par-
ticular case authors employed the 2-D DCT, transform-
ing each intensity Ix,y to the frequency domain Du,v

using (9b) over windows of size N .

Cu =

(
1/

p
2 if u = 0

1 otherwise
(9a)

Du,v =

1

4
CuCv

N�1X

x=0

N�1X

y=0

Ix,y cos

✓
u⇡

2x� 1

2N

◆
cos

✓
v⇡

2y � 1

2N

◆

(9b)

Cu and Cv are computed likewise.
The Force Field Transform [17], based on gravita-

tional force field, assumes that any pair of pixels main-
tains attraction between themselves. Every pixel gener-
ates a field that a↵ects another pixel, at position vector
rj and through the force Fi (10a). The resulting force
at a given pixel will then be the sum of all forces (10b).

Fi(rj) = I(ri)
ri � rj

|ri � rj |3
(10a)

F (rj) =
N�1X

i=0, 6=j

Fi(rj) =
N�1X

i=0, 6=j

✓
I(ri)

ri � rj
|ri � rj |3

◆
(10b)

As for DWT [24], it was computed using the wavelet
at equation 11.

 (x) =

8
><

>:

1 if 0  Ix,y < 1
2

�1 if 1
2  Ix,y < 1

0 otherwise

(11)

Gabor filters were also used to encode texture fea-
tures [11] (12) with the following parameters: wave-
length � = 8, orientations ✓ = {0�, 45�, 90�, 135�}, phase
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o↵set  = {⇡/2,�⇡/2}, sigma � = 4.5 and ellipticity
� = 1.

g(x, y;�, ✓, ,�, �) = exp

✓
�x02 + �2y02

2�2

◆
cos(2⇡

x0

�
+ )

(12a)


x0

y0

�
=


cos ✓ sin ✓

� sin ✓ cos ✓

� 
x
y

�
(12b)

The purpose of the Laplacian of Gaussian is to de-
tect edges, and can be described as a function of Gaus-
sian standard deviation � and the radial distance ⇢ (13).

� 1

⇡�4

✓
1� ⇢2

2�2

◆
e�⇢2/2�2

(13)

The main objective of Speed Up Robust Features11

[5] is to provide a faster alternative for SIFT on detect-
ing and describing local features.

The LBP itself was fused with other methods, yield-
ing the results given in Table 3.

Authors show local descriptors to register better re-
sults, with the post-application of LBP translated into
a significant performance boost. Although top accuracy
being registered for DWT + LBP (53.2%), results were
very similar when DCT and Walsh or Laws’ masks were
used. SIFT and Speed Up Robust Features (SURF) ver-
ification rate was surprisingly low (< 1%), mostly due
to low image resolution.

On a later work, Juefei-Xu et al. [21] addressed the
aging e↵ect on periocular recognition previously iden-
tified as an issue (e.g., Park et al. [32]) of no trivial
resolution due to its influence from external factors,
such as ethnicity, gender, etc. Their approach starts
by performing two type of corrections: pose, through

11 Matlab interface to OpenCV SURF package avail-
able at http://www.maths.lth.se/matematiklth/personal/

petter/surfmex.php

Table 3 Rank-1 accuracy obtained when fusing LBP with
the other methods [20].

Fused methods Accuracy

LBP + LBP 42.5%
Walsh Masks + LBP 52.9%
Laws’ Masks + LBP 51.3%
DCT + LBP 53.1%
DWT + LBP 53.2%
Force Field Transform + LBP 41.7%
Gabor Filters + LBP 12.8%
LoG Filters + LBP 30.9%

Active Appearance Models (AAM), and illumination,
through anisotropic di↵usion model. The periocular re-
gion was normalized from the provided landmark points
and features encoded using Walsh-Hadamard transform
encoded LBP (WLBP). On a final stage the unsuper-
vised discriminant projection (UDP) technique [51] was
used to boost results to very high performance levels,
using both global and local information to minimize the
local scatter matrix SL (14a) while maximizing the non-
local SN (14b) using the adjacency matrix A produced
by (14c) based on a set of xN classified instances.

SL =
1

2

NX

i=1

NX

j=1

Ai,j(xi � xj)(xi � xj)
T (14a)

SN =
1

2

NX

i=1

NX

j=1

(1�Ai,j)(xi � xj)(xi � xj)
T (14b)

Aij =

(
1 if xi, xj are mutually KNN

0 otherwise
(14c)

This method was tested on the FG-NET database,
with images taken years apart at di↵erent acquisition
setups (non-uniform illumination, pose and expression)
– Figure 9. The reported results show 20% of perfor-
mance improvement, with WLBP performing 15% bet-
ter than raw pixel intensity matching. UDP also deliv-
ers better accuracy (up to 40%) than Principal Com-
ponent Analysis (PCA) or Locally Preserving Projec-
tions (LPP). Authors report that all stages combined
result in 100% identification accuracy.

Bharadwaj et al. [7] research on periocular biomet-
rics was focused specifically on unconstrained VW cap-
tured data (UBIRIS.v2 dataset). The authors tackled
the question combining ULBP with a global matcher –
GIST – what consists in the combination of five scene
descriptors [30]: naturalness (i.e., how vertical and hor-
izontal edges are distributed); openness (i.e., the pres-
ence or lack of reference points); roughness (i.e., size
of the largest prominent object); expansion (i.e., depth
of the space gradient); and ruggedness (i.e., deviation
from the horizontal, assessed by contour orientation).
ULBP was computed over 64 patches of the original
image. Prior to the GIST analysis, local contrast nor-
malization was achieved with Fourier transform and the
special envelope computed using a set of �2 distance
(15) and min-max normalized results from both eyes
are fused by a weighted sum. GIST gave better perfor-
mance than ULBP, with 70.82% against 63.77 respec-

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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(a) 2 y.o. (b) 10 y.o. (c) 19 y.o.

(d) 35 y.o. (e) 45 y.o. (f) 42 y.o.

Fig. 9 Example of aging subject from the FG-NET database,
at ages 2 (a), 10 (b), 19 (c), 35 (d), 45 (e) and 52 (f) years
old (y.o.).

tively, and fusing both results led to 73.65% Rank-1
accuracy.

d(Ha, Hb) =
1

2

nX

i=1

(Hai �Hbi)
2

(Hai +Hbi)
(15)

To determine which slice of the electromagnetic spec-
trum would better favor the periocular recognition, Wo-
odard et al. [46] conducted a comparative analysis of
second-level features on both visible (FRGC) and NIR
(Multi Biometric Grand Challenge (MBGC)) data. As
preprocessing, and to avoid biased results, an elliptical
mask was used to remove iris and sclera information.
Then LBP was computed over a ROI grid (on both
datasets), and color information was extracted from
both the red and green channels’ histograms and fused
at score-level (on VW data). At the matching stage,
the LBP histograms were matched using Manhattan
distance, with Bhattacharya distance being chosen for
color histograms. Results suggest texture information
to be more discriminant, with only a slight improve-
ment registered after the fusion. As for the electromag-
netic spectrum, visible wavelength data delivered better
results (88 ⇠ 90% accuracy) than NIR (81 ⇠ 87%).

On their later work, Woodard et al. [47] assessed
how periocular texture information could improve iris
data reliability, thus overcoming the di�culties asso-
ciated with non-ideal imaging. Tests were conducted
over the MBGC dataset, that despite containing NIR
data, represents a challenging scenario for iris recogni-
tion. Periocular information was handled the same way

as before (i.e., [46]), and iris processing was achieved
followed Daugman’s approach [13], except with manual
segmentation. Information from both traits was com-
bined at score-level using a simple weighted sum af-
ter min-max normalization. Their work shows how iris’
low performance on such di�cult data benefits from
the fusion with periocular information, raising Rank-1
accuracy in over 80% to 95.6%. Both Woodard et al.
studies [46,47] were unified and extended, providing a
closer insight to their previous results [48].

The e↵ect of periocular information on improving
face recognition performance was stressed by Jillela &
Ross [19]. In their study, authors aimed at improving
commercially deployed face recognition software iden-
tification performance against subjects who have been
submitted to plastic surgery. Authors applied SIFT and
LBP over the periocular region, as proposed by Park et
al. [33], except for this last descriptor that was com-
puted on all color channels independently and aver-
aged at score-level. Tests were conducted over a plastic
surgery database [43] consisting of images downloaded
from plastic surgery information websites, with consid-
erable changes in resolution, scale and expression. Re-
sults showed periocular information to boost face recog-
nition software Rank-1 accuracy by 2%, attaining a top
performance of 87.4%.

On stressing noise factors’ impact on periocular recog-
nition, Padole & Proença [31] conducted a series of tests
on images with four inherent variations: subjects’ pose,
distance to the camera (4m to 8m), iris pigmentation
and occlusion. Periocular information was analyzed as
suggested by Park et al. [33], with some minor varia-
tions: the ROI definition that was based on eye-corner
position instead of iris center, which led to most sig-
nificant improvements since unconstrained biometrics
favor gaze variations; and for the fusion stage authors
tested both logistic regression and Multi Layer Percep-
tron (MLP).

The logistic regression model [16] is a weight fitting
methodology that works as a single-output neural net-
work with a logistic-activation function trained under
log loss (16), relating output weights �i with the odds

of a positive match (p/(1� p)).

log

✓
p

1� p

◆
= �0+�1xLBP +�2xHOG+�3xSIFT (16)

Interestingly, closer acquiring distances didn’t led to
better performance, as worst results came from com-
parisons between subjects imaged at 4 meters. From
the tested distances, authors found the “optimal” one
to be 7m. Not so surprising was pose variation impact
on recognition, with higher tilting angles resulting in
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(a) NIR periocular (b) VW periocular

(c) NIR iris (d) VW iris

Fig. 10 Sample NIR periocular images used by Hollings-
worth et al. (adapted from [14,15]).

lower accuracy values. Similar observations were found
for the occlusion trials. Iris pigmentation was also re-
ported to impact periocular recognition performance,
with darker eyes leading to poorer results and medium
pigmented irides the best ones. As for gender, female
were found to be more easily identified through their
periocular features.

The Human ability to use contextual information
and “disregard” most of the noise factors, adapting it-
self to surrounding conditions is outstanding, marking
it a hard task for machines to mimic. In fact, when de-
signed recognition algorithms a logic path would be to
figure out its way of working, seeking alternate strate-
gies to tackle the same issues. On that subject, Hollings-
worth et al. [14] conducted a study aimed at identi-
fying which ocular elements humans find more useful
for the periocular recognition task. Using an iris cam-
era, authors acquired NIR data from 120 subjects with
the periocular region closer to the eye visible and only
few features missing (e.g., incomplete eyebrows) – Fig-
ure 10(a). In order to avoid biased responses, iris was
completely masked with a circular patch. Eighty pairs
of images were presented to 25 human observers, who
were asked to tell apart which pairs belonged to the
same or di↵erent subjects, indicating their degree of
certainty and individually rating each feature’s helpful-
ness in a three level scale. Results pointed eyelashes to
be the most helpful periocular feature, closely followed
by the medial canthus and the eye shape. Participants
based their responses on eyelash clusters, density, di-
rection, length and intensity. To the inquired observers,
skin was actually the less useful. Average human accu-
racy on such setup was 92%.

In order to extend that analysis to the visible spec-
trum, to new factors and to a wider dataset, a second
study was conducted by Hollingsworth et al. [15]. The
human observers’ performance was compared to both
periocular (Park et al. [33]) and iris (IrisBEE biometric
system from ICE [36]) recognition algorithms. Imaging
210 subjects on a controlled environment, 140 pairs of
images were presented to 56 observers for each one of
four setups: NIR and VW, periocular and iris data. Test
subjects could then rank their certainty on a five level
scale, specifying how helpful individual features were
(eye shape, tear duct, outer corner, eyelashes, skin, eye-
brow, eyelid, color, blood vessels and other). Due to the
di↵erent pairing system and limited observation time,
NIR accuracy dropped to 78.8%, and it was set on
88.4% for the visible wavelength. Machine performance
was similar, with 1% di↵erence on overall accuracy. As
for the feature discrimination capacity, results for NIR
data were similar to the previous ones [14], with some
di↵erences on the visible spectrum where blood vessels,
skin and eye shape were reported to be more helpful
than eyelashes. Skin details were in fact more percepti-
ble on visible wavelength data, as NIR camera illumi-
nation caused frequent skin saturation. In general, the
visible light was found to be preferable for periocular
recognition tasks. Human perception of iris features is
greater on NIR images, with 85.6% accuracy against
79.3% on the visible wavelength. However, and unlike
periocular, machine performance was 13% better than
humans’, with 100% and 90.7% accuracy for those same
bands.

3 Empirical Evaluation of Algorithms

A summarized overview over the described methods
and reported results is provided at Table 4, along the
type of features extracted, the classification scheme,
and the dataset used by each author. As we can see,
the methods from the literature are focused mainly on
texture analysis and key-point extraction. Even sim-
ple algorithms (e.g., LBP based) lead to fair perfor-
mance levels, and can be improved with further refine-
ments, optimization or score-level fusion. Reported re-
sults also suggest periocular fitness for unconstrained
setups, with VW prevailing over NIR. Nonetheless, the
heterogeneity between test data renders methods’ rela-
tive performance in-between themselves di�cult to as-
sess.

To achieve a clearer performance insight, algorithms
should be tested over the same data, with results ana-
lyzed side-by-side. As most of the literature reports re-
sults against FRGC, we choose it as the most fit can-
didate for the evaluation stage. A total of 6225 im-

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Table 4 Overview of the most relevant periocular research available on the literature.

Approach Features Extract Classifier Dataset Reported Accuracy

Park
et al. [33]

Shape,
Texture,
Key-Points

HOG.
LBP,
SIFT

Euclidean
distance,
SIFT matcher

899 VW img.,
30 subject,
2 sessions

HOG: 62.5%
LBP: 70.0%
SIFT: 74.2%
Best: 80.8%

Miller
et al. [26] Texture ULBP

Manhattan
distance

FRGC,
FERET

FRGC: 89.8%
FERET: 74.1%

Adams
et al. [1] Texture LBP+GEFE Manhattan

distance
FRGC,
FERET

FRGC: 92.2%
FERET: 85.1%

Woodard
et al. [46]

Color,
Texture

RG color hist,
LBP

Bhattacharya,
Manhattan
distance

FRGC,
MBGC

Left VW peri: 90%
Right VW peri: 88%
Left NIR peri: 81%

Right NIR peri: 87%

Woodard
et al. [47] Texture

Daugman’s
iriscode,
LBP

Hamming
distance,
Manhattan
distance

MBGC

Left Iris: 13.8%
Left Peri: 92.5%

Fusion: 96.5%
Right Iris: 10.1%
Right Peri: 88.7%

Fusion: 92.4%

Juefei-Xu
et al. [20]

Texture,
Key-Points

Walsh Masks,
Laws’ Masks,
DCT, DWT,
Force Fields,
Gabor Filters,
LBP,
SIFT, SURF

Cosine
distance,
Euclidean
distance,
Manhattan
distance.

FRGC

DWT+LBP: 53.2%
DCT+LBP: 53.1%
Walsh+LBP: 52.9%
Laws’+LBP: 51.3%

...

Juefei-Xu
et al. [21] Texture WLBP+UDP

Cosine
distance

FG-NET 100%

Bharadwaj
et al. [7]

Naturalness,
Openness,
Roughness,
Expansion,
Ruggedness,
Texture

GIST,
ULBP

�2 distance UBIRIS.v2
GIST: 70.82%
ULBP: 63.77%
Fusion: 73.65%

Hollingsworth
et al. [14] Human Human Human

NIR img,
120 subject

NIR peri: 92%

Hollingsworth
et al. [15] Human Human Human

NIR &VW,
210 subject

NIR Peri: 78.8%
VW Peri: 88.4%
NIR Iris: 85.6%
VW Iris: 79.3%

ages were selected, with the right-side periocular region
manually cropped to avoid further errors, resulting in
over 250 thousand matching trials with a 1 : 2 intra-
inter-class ratio. The iris segmentation required by Wo-
odard et al. method [47] was also manually conducted.
We reproduced the presented algorithms as close as pos-
sible, choosing omitted parameters in such way that
overall performance was maximized. At score-level fu-
sion, weights were optimized using logistic regression
with 10-fold cross-validation. The results of that evalu-
ation are the ones at Table 5. As some papers reported
results from multiple setups, values may di↵er from the
ones at Table 4, as we now choose to display those best
fitting the testing conditions.

For the tested methods, registered performances are
quite similar with Rank-1 accuracy around 97%. Hav-
ing Park et al. [33] pioneering approach as comparison
term, we can see that improvements introduced by sub-
sequent algorithms rely on three di↵erent factors: dif-
ferent image preprocessing and ROI definition, more ro-

bust procedures, and bringing in new techniques. Start-
ing at this first topic, we can easily observe how chang-
ing image pre-processing and ROI definition lead to
performance discrepancies for the same descriptor over
the exact same dataset and comparisons. ULBP, for in-
stance, displays a rather good performance on Miller et
al, a better one on Woodard et al. [46], and a slightly
worse on Bharadwaj et al.. Another example is Park et
al. LBP not being over-performed by ULBP from meth-
ods [25] and [7]. Apart from that, when applied under
similar preprocessing ULBP preforms better that reg-
ular LBP (Woodard et al. [47] vs Woodard et al. [46]).
From the introduced descriptors GIST is the most note-
worthy for its surprisingly high performance, being the
feature with higher Area Under ROC Curve (AUC) and
lower Equal Error Rate (EER). As we can see on the
last two methods, classification accuracy don’t always
agree with AUC and EER about the best classifier. On
those situations, we found these last two metrics to be
more reliable indicators.
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On methods using multiple descriptors, relative in-
dividual performances are comparable to the ones au-
thors reported, except for two particular cases. The
first one is when color information is used (Woodard et
al. [46]), as we didn’t manage to reproduce such scores
even though the same database was used. Even obtain-
ing better accuracy for ULBP, fusing it with the color
descriptors didn’t led to significant improvements, as
score-level fusion optimization technique (logistic re-
gression) didn’t give color information enough weight
to make itself representative. The second one is for
iris based recognition, where we obtained higher perfor-
mance levels even with a VW dataset. We must have in
mind that the MBGC dataset was originally chosen by
authors to test their approach because of its challenging
conditions for iris biometrics.

Analyzing Pearson’s linear correlation coe�cients
between techniques – Table 6, we are able to under-
stand their pairwise dependence. This measure (⇢) re-
lates two methods (X,Y ), by analyzing the relation be-
tween their covariance (cov) and standard deviations
(�), returning values in the [�1 : 1] interval according
to (17). Total positive correlation is represented by 1,
negative correlation �1, and the absence of correlation
is then 0.

⇢(X,Y ) =
cov(X,Y )

�X�Y
(17)

As anticipated, high correlation values were regis-
tered between LBP based descriptors, particularly the
ones used on both Woodard et al. methods and Miller’s
[26]. On Park et al. pioneer approach, LBP correla-
tion with HOG was also significant. In fact, with ex-
ception of color and iris correlation values were gener-
ally high, being those the two less-dependent routines
(the ones with lower average absolute correlation coe�-
cients). The third one was SIFT. GIST descriptor, the
one with better individual performance, was actually
found to be significantly correlated with most of the
tested techniques.

3.1 Biometric Menagerie

To better understand subjects’ influence on the tested
methods, we analyzed them individually in terms of
genuine/impostor distance, classifying them accordingly
to the four biometric menagerie classes suggested by
Yager & Dunstone [49] – Figure 11(f): doves, chameleons,
phantoms and worms.

Let us define two regions for the genuine distance
distribution, GL and GH , containing the subjects be-
low the first quartile or over the third quartile respec-
tively. If we define two similar regions (IL and IH) for

the impostor distance distribution, subjects s can be
classified as one of the animal families accordingly to
(18) [50]. From Figure 11, we can see how certain sub-
jects systematically fork from the sheep group for most
of the tested periocular recognition methods.

8
>>>><

>>>>:

Dove, if s ⇢ GL \ IH

Chameleon, if s ⇢ GL \ IL

Phantom, if s ⇢ GH \ IH

Worm, if s ⇢ GH \ IL

(18)

Doves are the most favorable subjects, as they pro-
duce low distances for intra-class comparisons and high
distances for inter-class. This animal family is an exten-
sion of the herd, and the optimal group for any recogni-
tion system as it does not produce verification error. As
we can see from Figure 11, there are only two samples
who could be identified as doves: subjects A, imaged
with a slight head rotation (Figure 12(a)), and subject
B, with a significant occlusion caused by her hair (Fig-
ure 12(b)), those presumably being the causes of such
good response. As so, we were not able to generalize
which features (or conditions) best describe those sub-
jects, being the optimal for each method operation.

Chameleons are subjects who produce low distances
on both classes matches, thus being easily misidentified
as they always appear similar to others. Their false-
reject rate is low, but false-accept is extremely high.
The graphics at Figure 11 show us a considerable con-
centration of chameleons, who we assume to be the in-
dividuals with more generic features, as subjects C and
D (Figure 12(c) and 12(d)) who systematically display
that behavior for all methods.

Phantoms are associated with high matching dis-
tances on both intra- and inter-class comparisons. Con-
trary to chameleons, they are associated with high false-
reject rate, and low false-accept. As we can see from
the graphical representation, subjects on the phantom-
region are more disperse, and a larger set of subjects
recurrently belonging to this class was identified – sub-
jects E to H. Sample elements of this family are de-
picted at Figures 12(e) to 12(h). Subjects identified as
phantoms were enrolled under non-uniform lightening,
or with significant changes in their appearance – sub-
jects being captured with and without glasses.

Contrary to doves, Worms are the most problem-
atic subjects in a biometric system. They behave in
the worst possible way, yielding high distances on gen-
uine matches and low distances on impostor ones. As
pointed by Yager and Dunstone [49], in real biomet-
ric applications this group does not exist, as it would
represent a significant flaw in the matching algorithm.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Table 5 Tested periocular recognition methods performance indicators: Area Under ROC Curve (AUC), Equal Error Rate
(EER), Computed (CA) and Reported Accuracy (RA) and Original testing dataset.

Approach Features AUC EER CA(%) RA(%) Dataset

Park et al. [33] LBP 0.87 0.20 96.64 70.00 899 images,
HOG 0.85 0.22 94.32 62.50 30 subjects,
SIFT 0.86 0.19 96.38 74.20 2 sessions,
Fusion 0.89 0.17 97.16 80.80 visible wav.

Miller et al. [26] ULBP 0.85 0.21 96.64 89.90 FRGC
Woodard et al. [46] ULBP 0.87 0.18 97.16 83.80 FRGC

Color 0.63 0.40 35.66 74.20
Fusion 0.86 0.19 97.42 87.10

Woodard et al. [47] LBP 0.85 0.20 96.90 88.70 MBGC
Iriscode 0.78 0.28 75.45 10.10
Fusion 0.86 0.19 96.64 92.40

Bharadwaj et al. [7] ULBP 0.78 0.27 96.38 54.30 UBIRIS.v2
GIST 0.90 0.17 97.42 63.34
Fusion 0.92 0.15 95.61 73.65

Table 6 Linear correlation coe�cient matrix for the tested periocular recognition methods. Results refer to LBP (L), HOG
(H), SIFT (S), Fusion (F), ULBP (U), Color (C), Iriscore (I) and GIST (G).

[33] [26] [46] [47] [7]
L H S F U U C F L I F U G F

[33]

L 1
H 0.82 1
S -0.60 -0.61 1
F 0.81 0.85 -0.93 1

[26] U 0.84 0.72 -0.63 0.77 1

[46]
U 0.80 0.71 -0.65 0.77 0.96 1
C 0.20 0.20 -0.18 0.21 0.20 0.20 1
F 0.79 0.71 -0.65 0.77 0.95 0.99 0.36 1

[47]
L 0.83 0.73 -0.63 0.78 0.97 0.95 0.18 0.93 1
I 0.43 0.45 -0.49 0.53 0.45 0.47 0.10 0.46 0.46 1
F 0.79 0.73 -0.67 0.79 0.90 0.89 0.17 0.88 0.93 0.76 1

[7]
U 0.60 0.45 -0.43 0.52 0.87 0.81 0.11 0.79 0.86 0.30 0.75 1
G 0.71 0.72 -0.59 0.73 0.71 0.71 0.21 0.71 0.73 0.48 0.73 0.50 1
F 0.64 0.68 -0.55 0.68 0.57 0.59 0.21 0.59 0.60 0.45 0.63 0.31 0.98 1

Consistently, the worms were unlikely to be found on
the tested methods.

4 Conclusions

This study addressed how information in the vicinity of
the eye (periocular region) can be used to perform bio-
metric recognition, as the interest on this new biometric
trait has justifiably increased over the last years.

We identified the pioneer approach of Park et al. [33]
as the starting point, and how simple algorithms led to
fair recognition accuracies, being noteworthy the sur-
prisingly good response of LBP based methods.

The recently developed methods focus mainly on
texture analysis and key-point extraction, and present

periocular as a fit biometric trait specially for uncon-
strained and uncooperative scenarios, where iris cannot
be properly imaged and neither a full facial picture can
be obtained. Results favoring VW periocular over NIR
also show its fitness for more relaxed setups, and for its
use based on conventional surveillance cameras.

However, some issues were identified to consider-
ably impact system accuracy and should be addressed,
specially pose, minor occlusion, illumination and aging.
Regarding the later, extending Juefei-Xu et al [21] work
to di↵erent scenarios should be considered.

The work of Hollingsworth et al. [14,15] on human
perception suggest that eye shape constitutes a power-
ful ally to skin analysis methods on both spectral bands,
thus making us look at the periocular recognition task
from a di↵erent perspective, and where a leap away the
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(a) Park et al. [33]
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(b) Miller et al. [26]
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(c) Woodard et al. [46]
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Fig. 11 Zoo plots for the tested periocular algorithms: a) Park et al. [33], b) Miller et al. [26], c) Woodard et al. [46], d)
Woodard et al. [47] and e) Bharadwaj et al. [7]. Black lines represent the first and third quartiles for genuine and impostor
distance distributions. For illustration of the localization of each family, a reference chart f) is also displayed (adapted from
[49]).

(a) (b) (c) (d)

(e) (f)

(g) (h)

Fig. 12 Sample images from database subjects potentially belonging to each one of the identified animal families: doves (a
and b), chameleons (c and d) and phantoms (e to h).
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overused texture methods could be advantageous. Eye-
lashes are also point as a good indicator, specially for
NIR, but we must keep in mind that used images dif-
fer from the “traditionally” used periocular images and
the close capturing of the data could have biased the
results.
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A Robust Eye-Corner Detection Method for Real-World Data

Gil Santos and Hugo Proença

Abstract— Corner detection has motivated a great deal of
research and is particularly important in a variety of tasks
related to computer vision, acting as a basis for further stages.
In particular, the detection of eye-corners in facial images is
important in applications in biometric systems and assisted-
driving systems. We empirically evaluated the state-of-the-art
of eye-corner detection proposals and found that they achieve
satisfactory results only when dealing with high-quality data.
Hence, in this paper, we describe an eye-corner detection
method that emphasizes robustness, i.e., its ability to deal with
degraded data, and applicability to real-world conditions. Our
experiments show that the proposed method outperforms others
in both noise-free and degraded data (blurred and rotated
images and images with significant variations in scale), which
is a major achievement.

I. INTRODUCTION

A corner is defined by the intersection of at least two
edges. For decades, it was believed that most primitives
of the human visual system were based on the detection
of such points, which have well-defined positions. Corner
detection is known to have particular relevance in computer
vision, as it is often used as a starting point for other
image recognition processes. Hence, various corner detection
strategies have been emphasized in previous investigations
of image segmentation, tracking, recognition and motion
detection systems.

In this paper, we are particularly interested in the detection
of both the temporal and nasal eye-corners in facial images.
Eye-corners constitute relevant points of interest, and the
ability to accurately pinpoint them is of great value in
areas, such as biometrics, and applications, such as driv-
ing assistance systems. In biometrics, an emerging type of
recognition is called periocular, based on human recognition
by using data collected from around the eyes. The periocular
region is particularly useful when the quality of data reduces
the efficacy of other recognition strategies, such as with
uncooperative subjects, when using visible light imagery or
when acquiring data from moving subjects at a distance
(e.g., [12], [10], [9], [15]).

Among all of the points of interest that can be extracted
from the periocular region, we highlight eye-corners – the
intersections between the upper and lower eyelids – because
the position of eye corners does not vary with different
facial expressions, levels of eye closure, gaze, eyelashes
or makeup. After reviewing the state-of-the-art research on
eye-corner detection, we concluded that published methods
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lack robustness and were developed to operate successfully
only with high-quality data. We empirically determined that
the performance of these approaches tends to significantly
deteriorate with real-world data of significantly higher het-
erogeneity. Hence, this work proposes an eye-corner detec-
tion method suitable for imperfect environments, such as
uneven lighting conditions and rotated or blurred data, with
substantial differences in scale and levels of eye closure.
Our method uses a periocular image as input, segments
the iris and the sclera and defines a region of interest
from which candidate points are extracted. Then, multiple
features are linearly combined in an objective function whose
optimization determines the pair of points that constitute the
nasal and temporal eye-corners.

A. Related Works

Several approaches for the detection of eye-corners
can be found in the literature. Harris and Stephens [6]
proposed a general purpose corner detection method, which
is often used in the specific case in which eye-corners with
satisfactory results with high-quality data are available.
Zheng et al. [17] estimated an initial region of interest from
integral projections and located eye-corners according to a
bank of Gabor-based filters, convolved at five different scales
and orientations, from which averaged outputs yielded the
final detection kernel. A more in-depth description of this
strategy can be found in [18]. Khosravi and Safabakhsh [7]
localized eye-corners in gray data, starting from the center
of the iris and selecting two points on its scleric boundary
at symmetric angles. Next, they found points on the eyelids
according to local differences in brightness and used four
masks to define motion direction. Xu et al. [16] used
the approach of Harris and Stephens to select candidate
points and then parsed them, combining semantic features
using logistic regression. However, this method relies on
image edges, which are difficult to obtain in unconstrained
acquisition environments. Haiying and Gouping [5]
proposed the weighting of Harris’s response function with
the variance projection function, achieving a more robust
system for frontal images with no significant lighting
variations or rotation. The variance projection function itself
was proposed for similar purposes by Feng and Yuen [4].
More recently, Erdogmus and Dugelay [3] proposed a
method that achieves good results on frontal images but also
heavily relies on edge detection, and eye-corners result from
the interception of polynomial functions fitted to these edges.

The remainder of this paper is organized as follows: in
Section II we describe our methods in detail; Section III
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presents our experiments and discusses the obtained results,
with an emphasis on the robustness factor. Finally, Section IV
presents our conclusions.

II. PROPOSED METHOD

A. Iris Segmentation and the Definition of the Region of
Interest

(a) Eye image (b) Iris segmentation mask

Fig. 1. Data used as the input in applying our method.

As illustrated in figure 1, our method uses a periocular
image as the input, and the first step is to obtain the
corresponding noise-free iris binary segmentation mask. This
mask discriminates between the noise-free regions of the iris
and all of the remaining data and was obtained as described
by Tan et al. [14]. This method has been shown to be
effective with real-world data. In addition, this iris segmen-
tation algorithm was selected because it outperformed in the
NICE.I contest 1. The segmented iris data are represented
by the black regions of figure 1(b) and contain holes that
correspond to the pupil and occluded iris regions. These
holes were removed by zeroing out all of the regions that
were unreachable when filling out the background from the
edges of the image, as described in [13].

IP N0

M

Pu

Pl

SN1
Pt Pn

Fig. 2. An illustration of the regions of the eye involved in our work. P , I
and S correspond to the pupil, iris and sclera, respectively. Pn and Pt are
the nasal and temporal eye-corners, respectively. Pu and Pl are the vertical
extremes of the region segmented as the iris and were used by the proposed
method.

Next, we defined a region of interest (ROI) from which
subsequent processing would be completed. This region is
illustrated in figure 2 and was obtained by cropping the input
image and the segmentation mask, avoiding unnecessary

1NICE.I: Noisy Iris Challenge Evaluation - Part I http://nice1.di.
ubi.pt

regions, such as the eyebrow and the skin underneath the
eye. With an input image of dimensions M ⇥N0, this yields
regions of dimensions M ⇥ N1, according to horizontal
projection techniques. This procedure ensures that the ROI
is composed of the extreme coordinates of pixels belonging
to the iris (P

u

and P
l

of figure 2):

y
u

= max(y
p

)

y
l

= min(y
p

)

(1)

where y
p

are the row coordinates of all of the pixels that
belong to the iris.

B. Sclera Segmentation

The localization of regions that correspond to the sclera
inside the ROI is critical to our method, as both eye corners
should be adjacent to the sclera. In addition, pixels belonging
to the human sclera have particularly low levels of saturation,
which is illustrated by figure 3. The left image gives the
saturation channel of the HSV colorspace (figure 3(a)), and
the right image shows the result of the convolution with
a unidimensional horizontal median filter [8] for eyelash
attenuation, followed by data quantization and histogram
equalization (figure 3(b)). This example illustrates that the
sclera became more homogenous and had evidently lower
intensities, enabling their classification using empirically
adjusted thresholds.

(a) Saturation values (b) 12 level histogram equaliza-
tion

Fig. 3. Sclera enhancement.

C. Eye Contour Approximation

Once the iris and sclera were segmented, the next stage
involved approximating the contours of the eyelids. This was
performed in two steps: 1) a morphological dilation of the
iris segmentation mask with a horizontal structuring element,
which horizontally expands the iris regions, and 2) a point-
by-point multiplication between the dilated and the enhanced
data illustrated in figure 3(b), as described by Caselles [2].
We obtained an image similar to that illustrated in figure 4(b)
and whose boundary constitutes a close approximation of the
contours of the eyelids.

(a) Starting image (b) Result

Fig. 4. The eyelid contour determined corresponds to the boundary of the
region indicated by black pixels.
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D. The Generation of Eye-Corner Candidates

This stage involved the generation of a set of candidate
points for the positions of the eye-corners, which was per-
formed by using the approach of Harris and Stephens [6].
However, because of the high probability of producing too
many false positives, this detector was exclusively applied
inside the nasal (R

n

) and temporal (R
t

) regions, cropped
from the extremes of the major axis of the sclera mask, as
illustrated in figure 5.

Rt Rn

Fig. 5. An approximation of the eyelid contour (white snake) and the
regions from which corner candidates are extracted (represented by white
rectangles).

E. Feature Set

This stage involved finding the appropriate features to
discriminate between the set of corner candidates. We also
wanted to ensure that such a feature set would be robust
in response to differences in translation, rotation, scale,
affine-transformation and blurred data. In all subsequent
descriptions, we consider {c

i

}n
i=1, c

i

= (x
i

, y
i

) to be the
set of eye-corner candidates.

a) Harris Pixel Weight H(P
c

): Because all candidates
were generated according to the Harris and Stephens method,
it is straightforward to include the corresponding score in the
proposed feature set. This score is given by

H = |M |� k tr(M)

2 (2)

where |.| denotes the matrix determinant, tr(.) is the trace
of a matrix and M is the Hessian matrix obtained from a
blurred version of the original data:

M(x, y) =


G2

u

(x, y) G
uv

(x, y)
G

uv

(x, y) G2
v

(x, y)

�

where G(x, y) = I(x, y) ⌦ h(x, y), with h(x, y) =

1
2⇡ exp

⇣
x

2+y

2

2

⌘
and ⌦ denotes convolution.

b) Internal Angles: Let B = {b
i

}k
i=1, b

i

= (x
i

, y
i

) be
the set of pixels belonging to the eyelid boundary obtained
as described in section II-C. An ellipse fitted to B points is
parameterized as follows:

E = (x
e

, y
e

) +Q(�).


A. cos(�)
B. sin(�)

�
(3)

where (x
e

, y
e

) is the central point of the ellipse, Q(�) is a
rotation matrix and A and B are the lengths of the major and
minor axes, respectively. Two sets of pixels located along the
opposite directions of the ellipse’s minor axis are given by

b
l

=

⇣
x
e

� cos

⇣
� � ⇡

2

⌘
.B, y

e

� sin

⇣
� � ⇡

2

⌘
.B

⌘
(4a)

b
u

=

⇣
x
e

+ cos

⇣
� � ⇡

2

⌘
.B, y

e

+ sin

⇣
� � ⇡

2

⌘
.B

⌘
(4b)

For every candidate point c
i

, two vectors �!u = c
i

�b
u

and
�!u = c

i

�b
l

were obtained , and their internal angle ✓(c
i

, E)

is given by

✓1(ci, E) = arccos

✓
hu, vi

||u||.||v||

◆
(5)

where hu, vi is the dot product between u and v, and || · ||
denotes the norm of a vector.

Let m1 be the slope of the ellipse’s major axis and m2 be
the slope of the line connecting (x

e

, y
e

) and the candidate
point c

i

:

m2 =

y
e

� y
i

x
e

� x
i

(6)

Their internal angle measures the agreement between the
directions of the ellipse’s major axis and the straight line
that passes through the candidate point and the center of the
ellipse:

↵2(ci, E) = arctan

✓
m2 �m1

1 +m1.m2

◆
(7)

Finally, because we are interested in pairs of eye corners,
we found it useful to obtain a feature that relates any two
candidates as a pair rather than scoring them independently.
Let c

i1 and c
i2 be two corner candidates, one from the

temporal and the other from the nasal region, and let l12 be
the line that passes through both points. If the plausibility
of both candidates is high, the direction of l12 should be
similar to that of the major axis of the previously defined
ellipse E. Thus, according to (7), we obtained the internal
angle between these vectors (↵3(ci1, ci2, E)).

c) Positions in ROIs: A complementary feature mea-
sures the relative position of each candidate in the ROIs,
i.e., the proportion of pixels inside the ROI that are above
each candidate. This feature is given by

p(c
i

, R) =

P
N1

i=xi

P
M

j=1 I{(i,j)2R}
P

N1

i=1

P
M

j=1 I{(i,j)2R}
(8)

where I{.} is an indicator function.
d) Relative Distances: This type of feature considers

the distance between each candidate point c
i

and the center
of the ellipse:

d1(ci, E) =

q
(x

i

� x
e

)

2
+ (y

i

� y
e

)

2

A
(9)

where (x
e

, y
e

) denotes the coordinates of the center of
the ellipse and A the length of the ellipse’s major axis to
compensate for the imbalance between acquisition distance
and eye size.

Let �!v
a

be a vector with the same direction of the major
axis of the ellipse and p1 = (x1, y1) and p2 = (x2, y2) be
the antipodal points of the ellipse. Let p

tan

= (x
tan

, y
tan

)

be a point tangential to the ellipse that belongs to a line that
passes through c

i

:
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x
tan

= x1 + u(x2 � x1)

y
tan

= y1 + u(y2 � y1)
(10)

where u given by:

u =

(x
c

� x1)(x2 � x1) + (y
c

� y1)(y2 � y1)

||p2 � p1||2

The Euclidean distance between p
tan

and each candidate
c
i

(d2(ci, ptan)) was also added to the feature set.
e) The Intersection of Interpolating Polynomials: The

nasal and temporal eye corners can be regarded as the
intersections between the upper and lower eyelids. Because
of this, we parameterized two lines, each corresponding
to one eyelid. The intersections t of both polynomials are
illustrated by figure 6 and provide a rough estimate of the
nasal and temporal eye corners. Based on our observations
of the typical shape of eyelids, we used second and third
degree polynomials to fit the contours of the upper and
lower eyelids, respectively. Thus, the Euclidean distance
between each candidate and the interception point of the
corresponding ROI (d3(ci, t)) also acts as a measure of
goodness for that candidate.

Fig. 6. Interpolating second (upper eyelid) and third (lower eyelid) degree
polynomials. The interception points of both polynomials constitute an
accurate approximation of the eye corners.

F. Objective Function
According to the description given in section II-E,

the proposed feature set is composed of seven features:
F={h(c

i

), ✓1(ci, E), ✓2(ci, E), p(c
i

, R), d1(ci, E), d2(ci, E),
d2(ci, ptan), andd3(ci, t)}, which should be fused to
produce the final score. With two sets of corner candidates
(nasal and temporal), the final score for every pair of nasal
c
n

and temporal c
t

candidates is given by the weighted sum
of these features:

�(c
t

, c
n

) =

7X

i=1

�
i

f
i

+

14X

j=8

�
j

f
j�7 (11)

where {�1, . . . ,�14} are regularization terms adjusted to
maximize performance in a training set. This optimization
procedure was carried out by linear regression, and these
terms were adjusted to minimize the mean squared error
between the predicted values and the ground-truth data using
the Akaike criterion [1]:

J(c
t

, c
n

) = (�(c
t

, c
n

)� g(c
t

, c
n

))

2 (12)

where g(c
t

, c
n

)) is the sum of the Euclidean distances
between the coordinates of the candidates and the ground-
truth data.

Regularization coefficients were estimated on a sub-set of
frontal images, resampled in a ten-fold cross-validation.

III. EXPERIMENTS

A. Datasets
The performance of the proposed method was assessed

on right-eye images of the UBIRIS.v2 database [11]. The
images have dimensions of 400 ⇥ 300 pixels and were
acquired from moving subjects in visible wavelengths at
different distances and under varying lighting conditions.
Additionally, the quality of the images was degraded by
different factors, such as blur, motion, rotation and gaze.
To check the reduction in the performance of the proposed
method with respect to each factor, five dataset configurations
were used and are illustrated in figure 7:

• Frontal – includes 300 images with the subjects’ gazes
aligned toward the camera;

• Deviated Gaze – 200 images in which the subjects’
heads were deviated;

• Blur – images with an artificially made 50-pixel-length
motion blur in the ⇡/4 direction;

• Clockwise rotation (CR) – images artificially rotated by
⇡/8 clockwise;

• Counter-clockwise rotation (CCR) – the same as the
previous but with a counter-clockwise rotation.

For the Blur, CR and CCR experiments, the images
selected from the UBIRIS.v2 database were not enough,
and variations were artificially made by image processing
software, starting from the frontal subset. For all images, the
data were ground-truthed manually by different experts in
order to reduce subjectivity.

(a) Deviated Gaze (b) Motion Blur (c) Clockwise Rotation

Fig. 7. Sample images from the different datasets.

B. Results
Based on the analysis of previously published research, the

type of data used in this research and the results reported by
the authors, we compared the performance of our method
to the strategies employed by Haiying and Guoping [5]
and Erdogmus and Dugelay [3]. The methods we compare
ourselves to were implemented on the scope of this work
and, although designed for different databases, were the ones
best fitting our purposes. In addition, because we found that
one of the proposed features (the intersection of polynomials)
constitutes a strong estimator even when used alone, we also
included this feature in our comparisons (Polyfit I.). All of
the error values provided in this section correspond to the
Euclidean distance between the estimated location of the eye-
corners and the true location obtained by a manual annotation
of all the images in our datasets.
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(b) Temporal Region
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(c) Nasal Region

Fig. 8. Detection rate for frontal images.

Figure 8 gives the results obtained for frontal images,
which is the data subset that in appearance most closely
resembles the type of data the other methods are concerned
with. Figure 8(a) provides the global detection rates, and
figures 8(b) and 8(c) specify the results obtained for the
temporal and nasal eye-corners. The horizontal axes denote
the error values, and the vertical axes illustrate the proportion
of images with such error values. From the analysis, it is
evident that the proposed approach clearly outperformed
previously reported strategies in the frontal images. When the
analysis was performed separately for the nasal and temporal
corners and for the temporal region, the polynomial interpo-
lation interception was more accurate than the Erdogmus and
Dugelay method, and in most cases, it showed performance
similar o the proposed method. Regarding the nasal corners,
we observed that all three methods behave similarly for
small error values, whereas our proposal is notably better
for moderate and large error values (larger than 25 pixels).

For the sake of clarity, figure 9 compares the boxplots of
the error values observed for the proposed method and the
methods used for comparison in the temporal (black bars)
and nasal (gray bars) corners. The median of the observed
performance range (horizontal solid lines) and the first and
third quartile values of the observations (top and bottom of
the box marks) are shown. The upper and lower whiskers are
denoted by the horizontal lines outside of each box, and the
outliers are denoted by dot points. This plots highlights the
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Fig. 9. The distances between the predicted corners and the true locations
on frontal images. Black and gray represent the temporal and nasal regions,
respectively.

methods that are generally more efficient in detecting the
nasal eye-corner, with the exception of the Erdogmus and
Dugelay strategy. Again, the proposed method outperformed
the previous methods.

C. Analysis of Bias
To analyze the errors that are predominant in the outputs

of each method, for each case, we obtained a vector �!v =

(m, ✓), where m is the Euclidean distance between the
estimated (x

e

, y
e

) and true (x
t

, y
t

) corner position, and
✓ is the arctangent of (x

e

� x
t

, y
e

� y
t

). The relative
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(d) Erdogmus and Dugeley

Fig. 10. The relative frequencies of the observed deviations between
the predicted and true positions of eye-corners. The left and right images
represent the temporal and nasal corners, respectively.
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frequency of these values is illustrated in figure 10, where
the horizontal axis denotes the angle, and the vertical axis
denotes magnitude. Deviations from the proposed method
and from the polynomial interpolation interceptions are ho-
mogeneously distributed in all directions, slightly skewed
toward the [0, ⇡

2 ] interval. Considering that our datasets are
composed exclusively of right-eye images, the estimates tend
to be biased northeast of the true eye-corners. On the nasal
region, the prediction tends to be closer to the center of the
eye than the true location. This fact is especially evident for
the estimates using the Haiying and Guoping method. With
the Erdogmus and Dugeley approach, temporal deviations
were observed more rarely, with a slight predominance to
the right of the true corner. Whereas the other methods seem
to have a clear bias toward the center of the face in the
nasal region, deviations were spread in all directions with
the Erdogmus and Dugeley approach. This atypical behavior
shown by the Erdogmus and Dugeley method in both regions
probably results from the fact that, as this method is heavily
dependent on edge detection, it is also considerably affected
by data degradation. Notably, such distributions of deviations
are in concordance with the observed correlation values,
where a higher similarity between the proposed method, the
interception of the polynomials and the Haying and Guoping
methods was observed.

D. Robustness to Variations in the Data

Robustness is a key requirement for the proposed method,
and we aimed to assess the decrease in performance when
the quality of the data was degraded by different factors.
In this analysis, we decided to exclusively compare the
results obtained by the proposed method with those obtained
using the Haiying and Guoping approach, as the latter is
considered a state-of-the-art approach, and its performance
was closest to ours. Figure 11 summarizes the obtained error
values in the dataset, where the images were substanctially
degraded as a result of the corresponding factor. The black
boxplots denote the results of our method and the gray bars
those determined by the Haiying and Guoping method. The
analysis demonstrates the higher stability of the performance
of our method across the different datasets, as the average
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Fig. 11. The distance from the different methods’ outputs to the actual eye-
corners on frontal images. Black and gray represent the proposed method
and Haiying and Guoping’s method, respectively.

error values are steady and remain under 50 pixels. The
performance of the Haiying and Guoping method, in con-
trast, notably diminished when handling rotated iris data,
simultaneously increasing its variance.

Figure 12 highlights these decreases in performance and
provides the detection rates with respect to the error value (in
pixels). Here, the higher slope of our method’s performance
plots for small errors is especially evident, which may
indicate that large errors in the estimates are quite unlikely,
as opposed to the values observed for the other strategy.
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Fig. 12. Detection rate as a function of the distance for all image variations.

1) Blur: Acquiring sharp data in less controlled acquisi-
tion environments is an important issue, as slight movements
of subjects often correspond to severely blurred data, a
result of small depth-of-focus ranges. Thus, the ability to
handle blurred data is a desirable property of any robust
corner detection method. Our method only slightly decreased
in performance, whereas Haiying and Guoping’s performed
better in some circumstances (distances from 55 to 130 pixel
present an higher detection rate), with blurred data than with
the focused images. The minor degradation in performance
of our proposal occurred during the stage that defines the
ROIs, as illustrated in figure 13; the edges become less
prominent in blurred data, the region growing process stops
at different iterations and consequently, the candidate search
areas are also different. This, coupled with the fact that the
blur also degrades the performance of the method used for
the extraction of the candidates, led to a worse outcome in
our proposed method.

Fig. 13. Extraction of candidate points in frontal image and in the
corresponding blurred version.

2) Deviated Gaze: Gaze is another important factor in
less controlled acquisition environments, as it is expected that
most of the time, a subject’s head and eyes will not be aligned
with the camera. In this case, our method behaves robustly,
which was regarded as extremely positive and may indicate
good performance with this type of data. There was a typical
case in which our method performed better than the others:
when the images had a visible background or notable facial
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elements (e.g., the nasal bone). Figure 14 illustrates such
cases and highlights the robustness of the proposed method
for deviations in gaze.

Fig. 14. An illustration of the results typically obtained in gaze-deviated
images. White squares and black circles represent the outputs of our method
and Haiying and Guoping’s method, respectively.

3) Rotation: Rotation is another case of special interest,
and significant rotations in data are expected as a result of
different types of movements in an uncontrolled acquisition
scene. Again, our method showed a much more robust
behavior than the approach of Haiying and Guoping, which
had a significantly diminished performance. We believe that
this was the result of the vertical and horizontal variance
projection functions that produce different results in rotated
data and, consequently, bias further processing. This is
highlighted by figure 15(a), in which a visible predominant
bias in the opposite direction of the rotation can be seen. This
is in opposition to our method, as illustrated in figure 15(b),
in which a different behavior for each corner was observed:
in the nasal corner, vectors counteract the direction, but angle
changes are minimal. For the temporal corner, the prediction
tends to follow the rotation with a larger angle variation.
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Fig. 15. The relative frequencies of the deviations in clockwise rotated
data. The images on the left and right images are of the temporal and nasal
regions, respectively.

IV. CONCLUSIONS
Several researchers are working on eye-corner detection,

and the performances of different proposed methods have
been found to significantly diminish in response to degraded
data acquired under less controlled conditions. These short-
comings led us to propose a new method for the detection
of eye-corners in periocular images that simulate real-world

data. We compared the results obtained by our proposal
to other state-of-the-art methods and concluded that our
method consistently outperformed these methods, both when
operating with noise-free and with degraded data (rotated,
blurred, affine-transformed and with significant differences
in scale). Finally, these improvements were obtained without
significant increases in the computational demands of the
task, which is a significant asset, considering the real-
time demands that eye-corner detection techniques typically
impose.
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Abstract

Using the periocular region for biometric recognition is
an interesting possibility: this area of the human body is
highly discriminative among subjects and relatively stable
in appearance. In this paper, the main idea is that improved
solutions for defining the periocular region-of-interest and
better pose / gaze estimates can be obtained by segment-
ing (labelling) all the components in the periocular vicin-
ity. Accordingly, we describe an integrated algorithm for
labelling the periocular region, that uses a unique model
to discriminate between seven components in a single-shot:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution fuses texture / shape descriptors and geometrical
constraints to feed a two-layered graphical model (Markov
Random Field), which energy minimization provides a ro-
bust solution against uncontrolled lighting conditions and
variations in subjects pose and gaze.

1. Introduction

Motivated by the pioneering work of Park et al. [14],
the concept of periocular recognition has been gaining rel-
evance in the biometrics literature, particularly for uncon-
trolled data acquisition setups. For such cases, the idea is
that - apart the iris - additional discriminating information
can be obtained from the skin and sclera textures, and the
shape of eyelids, eyelashes and eyebrows.

Most of the relevant periocular recognition algorithms
work in a holistic way, i.e., they define a region-of-interest
(ROI) around the eye and apply a feature encoding strat-
egy independently of the biological component at each po-
sition. The exceptions (e.g., [17] and [6]) regard the iris
and the sclera components, for which specific feature en-
coding / matching algorithms are used. This observation
leads that some components (e.g., hair or glasses) might be
erroneously taken into account and bias the recognition pro-
cess.

The automatic labelling (segmentation) of the compo-
nents in the periocular region has - at least - two obvious
advantages: it enables to define better ROIs and conducts to
more accurate estimates of subjects’ pose and gaze. Hence,
this paper describes an image labelling algorithm for the
periocular region that discriminates between seven com-
ponents (iris, sclera, eyelashes, eyebrows, hair, skin and
glasses), according to a model composed of two phases:

1. seven non-linear classifiers running at the pixel level
are inferred from a training set, and provide the poste-
rior probabilities for each image position and class of
interest. Each classifier (neural network) is specialized
in detecting one component and receives local statis-
tics (texture and shape descriptors) from the input data;

2. the posteriors based on data local appearance are com-
bined with geometric constraints and components’ ad-
jacency priors, to feed a hierarchical Markov Ran-
dom Field (MRF), composed of a pixel and a com-
ponent layer. MRFs are a classical tool for vari-
ous computer vision problems, from image segmenta-
tion (e.g., [10]), image registration (e.g., [8]) to object
recognition (e.g., [5]). Among other advantages, they
provide non-causal models with isotropic behavior and
faithfully model a broad range of local dependencies.
The model proposed in this paper inherits some in-
sights from previous works that used shape priors to
constraint the final model (e.g., [3]) and multiple lay-
ered MRFs (e.g., [19]).

To illustrate the usefulness of the proposed algorithm,
we compare the effectiveness of the Park et al.’s [14] recog-
nition method, when using the ROI as originally described
and according to an improved version, that considers
the center of mass of the cornea as reference point (less
sensitive to gaze) and avoids that hair and glasses inside
the ROI are considered in feature encoding / matching. The
observed improvements in performance anticipate other
benefits that can be attained by labelling the periocular
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region before recognition: pose / gaze estimates based in
the labelled data and development of component-specific
feature encoding / matching strategies.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the most relevant periocular recognition
algorithms. Section 3 provides a description of the proposed
model. Section 4 regards the empirical evaluation and the
corresponding results. Finally, the conclusions are given in
Section 5.

2. Periocular Recognition: Literature Review
The first work in this field was published in 2009, due

to Park et al. [14]. They characterised the periocular re-
gion by local binary patterns (LBP), histograms of ori-
ented gradients (HOG) and scale-invariant feature trans-
forms (SIFT), fused at the score level. Subsequently, the
same authors [13] described additional factors that affect
performance, including segmentation inaccuracies, partial
occlusions and pose. Woodard et al. [20] observed that fus-
ing the responses from periocular and iris recognition mod-
ules improves performance with respect to each system con-
sidered individually. Bharadwaj et al. [4] fused a global
descriptor based on five perceptual dimensions (image nat-
uralness, openness, roughness, expansion and ruggedness)
to circular LBPs. The Chi-square distances from both types
of features were finally fused at the score level. Ross et
al. [16] handled challenging deformed samples, using prob-
abilistic deformation models and maximum-a-posteriori es-
timation filters. Also concerned about robustness, Woodard
et al. [21] represented the skin texture and color using sep-
arate features, that were fused in the final stage of the pro-
cessing chain. Tan et al. [18] proposed a method that got the
best performance in the NICE: Noisy Iris Challenge Evalu-
ation1. contest. This method is actually a periocular recog-
nition algorithm: texton histograms and semantic rules en-
code information from the surroundings of the eye, while
ordinal measures and color histograms encode the iris data.
Oh et al. [9] combined sclera and periocular features: direc-
tional periocular features were extracted by structured ran-
dom projections, complemented by a binary representation
of the sclera. Tan and Kumar [17] fused iris information
(encoded by Log-Gabor filters) to an over-complete repre-
sentation of the periocular region (LBP, GIST, HOG and
Leung-Malik Filters). Both representations were matched
independently and fused at the score level.

3. Proposed Method
As Fig. 1 illustrates, the proposed MRF is composed of

two layers: one works at the pixel level, with a bijection
between each image pixel and a vertex in the MRF. The

1
http://nice2.di.ubi.pt/
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Figure 1. Structure of the MRF that segments the periocular re-
gion.

second layer regards the major components in the perioc-
ular vicinity, with six vertices representing the eyebrows,
irises and corneas from both sides of the face. The insight
behind this structure is that the pixels layer mainly regards
the data appearance, while the components layer represents
the geometrical constraints in the problem and assures that
the generated solutions are biologically plausible.

Let G = (V, E) be a graph representing a MRF, com-
posed of a set of t

v

vertices V , linked by t

e

edges E . Let
t

p

be the number of vertices in the pixels layer and let t

c

be
the number of vertices in the components layer, such that
t

v

= t

p

+ t

c

. Let C(x, y) denote the biological component
at position (x, y) of an image and T

j

be the component’s
type of the jth component node: either ’iris’, ’cornea’ or
’eyebrow’.

The MRF is a representation of a discrete latent ran-
dom variable L = {L

i

}, ’i œ V , where each element
L

i

takes one value l

i

from a set of labels. Let l =

{l

1

, . . . , l

tp , l

tp+1

, . . . , l

tp+tc} be one configuration of the
MRF. In our model, every component node is directly con-
nected to each pixel node and the pixel nodes are connected
to their horizontal / vertical neighbors (4-connections).
Also, the edges between component nodes correspond to
geometrical / biological constraints in the periocular region:
the nodes representing both irises, corneas and eyebrows are
connected, as do the iris, cornea and eyebrow nodes of the
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same side of the face. Note that the proposed model does
not use high-order potentials. Even though there is a point
in Fig. 1 that joins multiple edges, it actually represents
overlapped pairwise connections between one component
and one pixel vertex.

The energy of a configuration l of the MRF is the sum of
the unary ◊

i

(l

i

) and pairwise ◊

i,j

(l

i

, l

j

) potentials:

E(l) =

ÿ

iœV
◊

i

(l

i

) +

ÿ

(i,j)œE

◊

i,j

(l

i

, l

j

). (1)

According to this formulation, labelling an image is
equivalent to infer the random variables in the MRF by min-
imizing its energy:

l̂ = arg min

l
E(l), (2)

where {ˆ

l

1

, . . . ,

ˆ

l

tp} are the labels of the pixels and
{ˆ

l

tp+1

, . . . ,

ˆ

l

tp+tc} specify the components’ parameteriza-
tions. In this paper, the MRF was optimized according to
the Loopy Belief Propagation [7] algorithm. Even though
it is not guaranteed to converge to global minimums on
loopy non-submodular graphs (such as our MRF), we con-
cluded that the algorithm provides visually pleasant solu-
tions most of the times. As future work, we plan to evaluate
the effectiveness of our model according to more sophisti-
cated energy minimization algorithms (e.g., sequential tree-
reweighed message passing [11]).

3.1. Feature Extraction

Previous works reported that the hue and saturation
channels of the HSV color space are particularly power-
ful to detect the sclera [15], whereas the red / blue chroma
values provide good separability between the skin and non-
skin pixels [1]. Also, the iris color triplets are typically dis-
tant from the remaining periocular components and there is
a higher amount of information in patches of the eyebrows
and hair regions than in the remaining components. Ac-
cordingly, a feature set at the pixel level is extracted, com-
posed of 34 elements (Fig. 2): {red, green and blue channels
(RGB); hue, saturation and value channels (HSV); red and
blue chroma (yCbCr); LBP and entropy in the value chan-
nel}, all averaged in square patches of side {3, 5, 7} around
the central pixel. Also, the convolution between the value
channel and a set of Gabor kernels G complements the fea-
ture set:

G[x, y, Ê, Ï, ‡] = exp

Ë≠x

2 ≠ y

2

‡

2

È
exp[2fiÊi�] (3)

being � = x cos(Ï) + y sin(Ï), Ê the spatial frequency, Ï

the orientation and ‡ the standard deviation of an isotropic
Gaussian kernel (Ê œ { 3

2

,

5

2

}, Ï œ {0,

fi

2

}, ‡ = 0.65Ê).

a) Saturation b) Red chroma

c) Entropy (Value ch. 3 ◊ 3) d) LBP (Value ch. 3 ◊ 3)

e) Gabor (Ê =

3
2 , Ï =

fi
2 ) f) Gabor (Ê =

5
2 , Ï = 0)

Figure 2. Illustration of the discriminating power of the features
extracted, for the seven classes considered in this paper.

3.2. Unary Potentials

Let “ : N2 æ R34 be the feature extraction func-
tion, that for each image pixel (x, y) returns a feature vec-
tor “(x, y) œ R34. Let � = [“(x

1

, y

1

), . . . , “(x

n

, y

n

)]

T

be a n ◊ 34 matrix extracted from a training set, that is
used to learn seven non-linear binary classification models,
each one specialized in detecting a component (class) Ê

i

œ
{Iris, Sclera, Eyebrows, Eyelashes, Hair, Skin, Glasses}.
Let ÷

i

: R34 æ [0, 1] be the response of the ith non-
linear model, used to obtain the likelihood of class Ê

i

:
p

1
÷

i

!
“(x, y)

"
|Ê

i

2
. According to the Bayes rule, assuming

equal priors, the posterior probability functions are given
by:

P

1
Ê

i

|÷
i

!
“(x, y)

"2
=

P

1
÷

i

!
“(x, y)

"
|Ê

i

2

q
7

j=1

P

1
÷

j

!
“(x, y)

"
|Ê

j

2
. (4)

The unary potentials of each vertex in the pixels layer are
defined as ◊

(p)

i

(l

i

) = 1 ≠ p

1
Ê

i

|÷
i

!
“(x, y)

"2
.

Each label in the components layer represents a param-
eterisation of an ellipse (found by the Random Elliptical
Hough Transform (REHT)) [2] that roughly models the eye-
brows, corneal or iris regions. Starting from images la-
belled by the index of the maximum posterior probability
I

m

(x, y) = arg max

j

p

1
Ê

j

|÷
j

!
“(x, y)

"2
(upper image in

Fig. 3), a binary version per component can be obtained
(bottom images in Fig. 3):

I

mi(x, y) =

;
1 , if I

m

(x, y) = i

0 , otherwise (5)
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The output of the REHT algorithm in I

mi(x, y) gives
the unary potential of the component vertices: ◊

(c)

i

(l

i

) =

≠ log

!
Ÿ(i)

"
, ’i œ t

p+1

, . . . , t

p+c

, being Ÿ(i) the votes re-
turned by the REHT for the ith ellipse parameterisation.

a) Im(x, y)

b) Im1 (x, y) (iris) c) Im1,2 (x, y) (cornea) d) Im3 (x, y) (eyebrow)

Figure 3. (Upper row) Example of an image labelled by the
maximum of the posteriors given by the classification models
÷i

!
“(x, y)

"
. The red ellipses in the bottom images represent the

parameterisations returned by the REHT algorithm for the left iris,
cornea and eyebrow.

3.3. Pairwise Potentials

There are three types of pairwise potentials in our model:
1) between two pixel nodes; 2) between two component
nodes; and 3) between a pixel and a component. The
pairwise potential between pixel nodes spatially adjacent
◊

(p)

i,j

(l

i

, l

j

) is defined as the prior probability of observing
labels l

i

, l

j

in adjacent positions of a training set (e.g., it is
much more probable that an ”eyebrow” pixel is adjacent to
a ”skin” pixel than to an ”iris” one):

◊

(p)

i,j

(l

i

, l

j

) =

1

–

0

+ P (C(x

Õ
, y

Õ
) = Ê

i

,C(x, y) = Ê

j

)

, (6)

where P (., .) is the joint probability, (x

Õ
, y

Õ
) and (x, y) are

4adjacent positions and –

0

œ R+ avoids infinite costs (like-
wise, all –

i

terms below are regularization terms).
The pairwise potentials between component nodes con-

sider the geometrical constraints in the periocular area, i.e.,
enforce that the irises are inside the cornea, and below
the eyebrows. Also, both irises, corneas and eyebrows
should have similar vertical coordinate and similar size. Let
(x

i

, y

i

, a

i

, b

i

, Ï

i

) be the ith parameterisation of an ellipse,
being (x

i

, y

i

) the ellipse centre, (a

i

, b

i

) its major / minor
axes and Ï

i

the rotation. For pairs of nodes of the same type
(T

i

= T
j

), similar vertical coordinates and similar sizes are
privileged:

◊

(c1)

i,j

(l

i

, l

j

) = –

1

|y
i

≠ y

j

| + –

2

|a
i

+ b

i

≠ a

j

≠ b

j

|. (8)

For edges connecting the cornea (ith node) and the eye-
brow (jth node) we privilege similar horizontal coordinates
and locations having the eyebrow above the cornea:

◊

(c2)

i,j

(l

i

, l

j

) = –

3

|x
i

≠ x

j

| + –

4

max{0, y

i

≠ y

j

}. (9)

Regarding the iris / cornea pairwise potentials, we pe-
nalize parameterizations with portions of the iris outside the
cornea:

◊

(c3)

i,j

(l

i

, l

j

) = –

5

1
1 ≠

q
xi

q
yi

Â(x

i

, y

i

, x

j

, y

j

, a

j

, b

j

, Ï

j

)

q
xi

q
yi

1

2
,

(10)

being (x
i

, y

i

) a pixel labelled as iris and
Â(x

i

, y

i

, x

j

, y

j

, a

j

, b

j

, Ï

j

) an indicator function that
verifies if that position is inside the ellipse defined by the
jth parameterisation (7). Overall, the pairwise potentials in
the components layer are defined as:

◊

(c)

i,j

(l

i

, l

j

) =

3ÿ

k=1

◊

(ck)

i,j

(l

i

, l

j

). (11)

Lastly, the pairwise potentials between pixels and com-
ponents enforce that pixels inside a component parameter-
isation are predominantly labelled by the value that cor-
responds to that type of node, whereas pixels outside that
parameterisation should have label different of the compo-
nent’s type. Let (x

jk

, y

jk

) be the coordinates of the ellipse
defined by the jth parameterization. The pairwise cost be-
tween the ith pixel node and the jth component node is
given by:

◊

(pc)

i,j
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i

, l

j

) =

Y
__________]

__________[

min

k

||(x
i

, y

i

) ≠ (x

jk

, y

jk

)||
2

, if l

i

œ T
j

and Â(x

i

, y

i

, x

j

, y

j

, a

j

, b

j

, Ï

j

) = 0

0, if l

i

/œ T
j

and Â(x

i

, y

i

, x

j

, y

j

, a

j

, b

j

, Ï

j

) = 0

0, if l

i

œ T
j

and Â(x

i

, y

i

, x

j

, y

j

, a

j

, b

j

, Ï

j

) = 1

max

k

||(x
i

, y

i

) ≠ (x

jk

, y

jk

)||
2

, if l

i

/œ T
j

and Â(x

i

, y

i
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, a

j
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, Ï
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) = 1

,

(12)
where ||.|| is the Euclidean distance.

4. Experiments
Our experiments were carried out in a data set com-

posed of 5,551 visible-light images (with resolution 800 ◊
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i
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i
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) =
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]

[
1 , if

!
cos(Ïi)(x≠xi)+sin(Ïi)(y≠yi)

"2

a

2
i

+

!
sin(Ïi)(x≠xi)+cos(Ïi)(y≠yi)

"2

b

2
i

Æ 1

0 , otherwise
(7)

300) containing the periocular regions from both sides of
the face. These images were the source for the UBIRIS.v2
dataset: they were collected in indoor unconstrained light-
ing environments and feature significant variations in scale,
subjects’ pose and gaze. For learning / evaluation purposes,
200 images were manually labelled, covering the seven
classes we aim to deal with. This set was divided into two
disjoint parts: 1) one used to learn the classification models
and to estimate the prior unary / pairwise costs of the MRF;
and 2) the complementary part served for quantitative per-
formance evaluation.

To obtain the seven classification models, we used feed-
forward neural networks with three layers and {34 : 17 : 1}
topology, with tan-sigmoid transfer functions in the input
and hidden layers and linear transfer functions in the out-
put layer. The learning sets were always balanced (ran-
dom sampling) and the Resilient Back-propagation algo-
rithm used to learn the classifiers. Regarding the MRF opti-
mization, every image was resized to 200 ◊ 75 pixels, i.e.,
t

p

= 15, 000 in our MRFs. Also, – = {0.01, 1, 2, 10, 10}.

4.1. Segmentation Performance

Fig. 4 illustrates the results typically attained by the pro-
posed model. Their visual coherence is evident, where
regions labelled as hair appear in pink, eyebrows in yel-
low, irises in green, eyelashes in black, sclera in blue and
glasses in blueberry color. Also, solutions were biologi-
cally plausible in the large majority of the cases, for vari-
ous hairstyles, and different subjects poses / gazes. A par-
ticularly interesting performance was observed for glasses,
where the algorithm attained remarkable results for various
types of frames. This was probably due to the fact that
glasses were the unique non-biological component among
the classes considered, which might had increased their dis-
similarity with respect to the remaining components.

In opposition, the most concerning cases happened when
the eyebrows and the hair were overlapped (bottom-right
image in Fig. 4) . Also, for heavily deviated gazes, the
sclera was sometimes under-segmented (typically, by non-
detecting the less visible side). In opposition, eyelashes
tended to be over-segmented, with isolated eyelashes be-
ing grouped in large eyelash regions, which might be due
to excessive pairwise cost for observing different labels in
adjacent positions of the pixels layer.

It should be noted that –

i

were found in an empirical
and independent way, i.e., no exhaustive evaluation of com-

Labeling Error NN (%) MRF (%)

Component FP FN FP FN

Iris 1.12 ± 0.29 9.06 ± 1.80 0.17 ± 0.03 2.61 ± 0.51

Sclera 1.61 ± 0.49 5.17 ± 0.83 0.19 ± 0.03 3.60 ± 0.82

Eyebrows 2.20 ± 0.40 6.93 ± 0.95 0.79 ± 0.28 2.25 ± 0.46

Eyelashes 1.47 ± 0.38 5.12 ± 1.13 0.93 ± 0.23 0.62 ± 0.53

Hair 3.16 ± 0.56 6.74 ± 1.27 1.26 ± 0.30 3.09 ± 0.88

Skin 4.10 ± 1.03 4.09 ± 0.69 2.63 ± 0.43 3.86 ± 1.01

Glasses 1.08 ± 0.22 5.03 ± 1.45 0.06 ± 0.01 0.60 ± 0.09

Table 1. Average pixel labelling errors per component, when con-
sidering exclusively the arg maxj p

1
Êj |÷j

!
“(x, y)

"2
value (NN

column) and with the proposed MRF model (MRF column).

bined configurations was carried out, nor any parameter op-
timization algorithm was used, which also points for the ro-
bustness of the proposed model against sub-optimal param-
eterizations. Table 1 gives the error rates per class, when
considering exclusively the first phase of our model (maxi-
mum of the posterior probabilities, column ”NN”) and the
full processing chain (MRF optimization, column ”MRF”).
In this table, FP stands for the false positives rate, whereas
FN refers to the false negatives rate. In all cases, it is evi-
dent that the MRF substantially lowered the labeling error
rates, essentially by imposing smoother responses and con-
straining the range of biologically acceptable solutions.

As the machine learning algorithm described in this pa-
per is supervised, it is important to perceive its variations
in performance with respect to the amount of learning data
used to create the classification models and the prior unary
/ pairwise potentials. To this end, performance was com-
pared while varying the number of images used in learn-
ing, and keeping constant the number of images used in
performance evaluation (to assure comparable bias / vari-
ance scores). Figure 5 expresses the results: the horizontal
axis gives the number of learning images used and the verti-
cal axis is the corresponding pixel classification error, with
the corresponding 95% confidence intervals. We observed
that when more than 35 images were used in learning, the
pixel classification errors tend to converge. This is evident
in terms of the absolute error values and of the narrowness
of the confidence intervals.
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Figure 4. Examples of the segmented periocular regions. ”Hair” class is represented by the pink color, ”Eyebrows” appear in yellow, ”Iris”
in green, ”Sclera” in blue, ”Glasses” in blueberry and ”Eyelashes” in gray. Pixels classified as ”Skin” are transparent.
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Figure 5. Variations in labelling errors with respect to the number
of images used in the learning phase of the algorithm.

4.2. Periocular Biometrics Performance

To exemplify the usefulness of periocular segmentation
algorithms, one all-against-all matching experiment was
designed, using the method of Park et al. [13] and two dif-
ferent strategies to define the ROI: as baseline, the iris center
was the unique reference for the ROI (upper-left image in
Fig. 6). Next, according to the labels provided by the MRF,
the center of mass of the cornea was used to define the ROI,
which is obviously less sensitive to changes in gaze. Also,
regions labelled as hair and glasses were disregarded from
the recognition phase, considering that they likely suffer of
significant variations among samples of a subject (upper-
right image in Fig. 6). The Receiver Operating Character-
istic curves for both variants are compared in the bottom

plot of Fig. 6 and turn evident the benefits attained due to
data segmentation (Equal error rate of 0.128 for the clas-
sical ROIs and 0.095 for the improved ROIs configuration).
The improvements were substantial in all regions of the per-
formance space, having at some operating points increased
the system sensitivity over 10%. It should be stressed that
no particular concerns were taken in optimizing the recog-
nition method for the used data set, meaning that the focus
was putted much more in the performance gap between both
recognition schemes than in the recognition errors in abso-
lute values, which are out of the scope of this paper.

5. Conclusions and Further Work

In this paper we have proposed an algorithm for one-
shot labelling of all the components in the periocular region:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution is composed of two major phases: 1) a group of
local classification models gives the posterior probabilities
for each pixel and class considered; 2) this appearance-
based information is fused to geometrical constraints and
shape priors to feed a two-layered MRF. One layer repre-
sents pixels, and analyzes the local data appearance while
enforcing smoothness of the solutions. The second layer
represents components, and assures that solutions are bio-
logically plausible. By minimizing the MRF energy, the
label of each pixel is found, yielding solutions that are ro-
bust against changes in scale, subjects’ pose and gaze and
dynamic lighting conditions.

As further directions for this work, our efforts are fo-
cused in estimate gaze / pose from the labelled data, in order
to compensate for deviations before the recognition process.
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Figure 6. Improvements in periocular recognition performance due
to the semantic categorization (labeling) of each pixel in the peri-
ocular region.
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a b s t r a c t

As biometrics has evolved, the iris has remained a preferred trait because its uniqueness, lifetime stability
and regular shape contribute to good segmentation and recognition performance. However, commer-
cially deployed systems are characterized by strong acquisition constraints based on active subject coop-
eration, which is not always achievable or even reasonable for extensive deployment in everyday
scenarios. Research on new techniques has been focused on lowering these constraints without signifi-
cantly impacting performance while increasing system usability, and new approaches have rapidly
emerged. Here we propose a novel fusion of different recognition approaches and describe how it can
contribute to more reliable noncooperative iris recognition by compensating for degraded images cap-
tured in less constrained acquisition setups and protocols under visible wavelengths and varying lighting
conditions. The proposed method was tested at the NICE.II (Noisy Iris Challenge Evaluation – Part 2) con-
test, and its performance was corroborated by a third-place finish.

! 2011 Elsevier B.V. All rights reserved.

1. Introduction

The use of the iris as main biometric trait has emerged as one of
the most recommended methods due not only to the possibility of
noncontact data acquisition and to its circular and planar shape that
facilitates detection, segmentation and compensation for off-angle
capture but also for its predominately randotypic appearance.
Although these factors contribute to high effectiveness in the cur-
rently deployed iris-recognition systems, their typical scenarios
are quite constrained: subjects stop and stare relatively close to
the acquisition device while their eyes are illuminated by a near-
infrared light source, enabling the acquisition of high-quality data.
As reported in the study conducted by Aton Origin for the United
Kingdom Passport Service,1 imaging constraints are a major obstacle
for themass implementationof iris-basedbiometric systems.Notably,
several researchers are currently working on minimizing the con-
straints associatedwith this process, in away often referred to as non-
cooperative iris recognition, referring to several factors that canmake
iris imagesnonideal, such as at-a-distance imagery, on-the-move sub-
jects, and high dynamic lighting variations.

In this study, we stress multiple recognition techniques, each
one based on a different rationale and exploiting different proper-
ties of the eye region. Furthermore, we show how their fusion can
increase the robustness to the degraded data typically captured in
unconstrained acquisition setups.

The recognition techniques used in our proposition can be di-
vide in two main categories. In one approach, we use wavelet-
based iris-feature-extraction methods, complemented with a
zero-crossing representation (Hoyle et al., 2010, 2009) and the
analysis of iriscode-matching bit distribution (Santos and Proença,
2010). Complementarily, we expanded the extraction of features to
the ocular region outside the iris, as recent studies (Savvides et al.,
2010; Miller et al., 2010; Park et al., 2009) have suggested using
these data, which appear to be a middle ground between iris and
face biometrics and incorporates some advantages of each.

The performance of the fusion method we propose is high-
lighted by its third-place finish at the NICE.II (Noisy Iris Challenge
Evaluation – Part 2), an international contest involving almost sev-
enty participants worldwide.

The remainder of this paper is structured as follows: Section 2
describes the steps for iris-boundary localization and normaliza-
tion, feature extraction and matching for the different approaches,
and how their outputs are joined; Section 3 details the experimen-
tal process followed by a discussion of the obtained results; finally,
Section 4 states the conclusions.

2. Proposed methodology

This section describes the five steps of our approach: iris-
boundary detection, iris normalization, feature extraction, match-
ing and decision ensemble (as schematized in Fig. 1). Furthermore,
for feature extraction and matching, five recognition techniques
are detailed.

0167-8655/$ - see front matter ! 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2011.08.017
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2.1. Iris boundaries detection

The first task was to locate the circles that best approximate iris
and pupil boundaries, a necessity in the majority of methods used
for this work. To accomplish this, we utilized a binary mask repre-
senting only parts containing iris information, created using the
method proposed by Tan et al. (2010), winner of the NICE.I contest.

The steps taken in boundary approximation (Fig. 2(h)) were as
follows:

! A contour is extracted from the segmentation mask Fig. 2(b),
created with Tan et al. method (Tan et al., 2010). A pixel is part
of such contour if it is nonzero, and connected to at least one
zero-valued pixel.

! From the contour Fig. 2(c) of the segmentation mask Fig. 2(b), a
Hough transform (Ballard, 1981) is applied to obtain the circle
best fitting the iris Fig. 2(d).

! Convert the eye image Fig. 2(a) to grayscale and enhance it
through histogram equalization Fig. 2(e).

! To the enhanced image Fig. 2(e), a Canny edge detection (Canny,
1986) is applied inside the circular region Fig. 2(f) concentric
with the iris and 2/3 its radius, producing the edges shown in
subFig. 2(g).

! Finally, a Hough transform is used on the resulting edge map
Fig. 2(g) to obtain the circle that best fits the pupil.

Although this method produces good iris-boundary approxima-
tions, the estimated pupil limits sometimes diverge from ideal con-
tours (e.g. Fig. 3). The main reason for this occurrence is poor
lighting conditions when imaging heavily pigmented irises, which
results in a low contrast ratio between the iris and the pupil.

2.2. Iris normalization

The iris-normalization process aims to obtain invariance with
respect to size, position and pupil dilatation in the segmented iris
region, which is accomplished by assigning each pixel to a pair of
real coordinates (r,h) over the double dimensionless pseudopolar
coordinate system. For this purpose, we proceeded with the rub-
ber-sheet model originally proposed by Daugman (2004).

Iðxðr; hÞ; yðr; hÞÞ ! Iðr; hÞ ð1Þ

xðr; hÞ ¼ ð1% rÞxpðhÞ þ rxsðhÞ

yðr; hÞ ¼ ð1% rÞypðhÞ þ rysðhÞ
ð2Þ

where r and h denote the radius and the angle, respectively, and
x(r,h) and y(r,h) are defined as linear combinations of both the set
of pupillary boundary points (xp(h),yp(h)) and the set of limbus

boundary points along the outer perimeter of the iris (xs(h),ys(h))
bordering the sclera.

Eqs. (1) and (2) give a transformation similar to that depicted in
Fig. 4: subfigure (a) is the normalized iris image; subfigure (b)
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Fig. 1. Proposed methodology.

Fig. 2. Illustration of the steps taken during the segmentation stage.
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represents the normalization of its mask (occlusions being the
black region); and subfigure (c) is the normalized iris image where
the occlusion has been zeroed. In either case, no interpolation was
used, being chosen the nearest pixel to fill eventual gaps.

2.3. Feature extraction

Feature extraction and representation varies according to the
employed method, as detailed herein.

2.3.1. 1-D wavelet zero-crossing representation
The representation method applied here is an extension of the

Boles method (Boles and Boashash, 1998; Boles, 1997). Other stud-
ies (Hoyle et al., 2010, 2009) have shown that the proposed exten-
sion significantly improves the recognition performance.

The starting point for iris representation is the pixel-intensity
data for the normalized iris image. In this representation, two nor-
malized images are analyzed – with and without zeroed occlusion
– as shown in the Fig. 4. Each row of the normalized images forms a
vector which is later treated as a single-period sample of a one-
dimensional periodic signal. A 1-D Gaussian wavelet transform
(Daubechies, 1992) is applied to each row vector and decomposed
into different resolution levels. The zero-crossing representation is
then calculated for each row and resolution level. Zero crossings

occur where wavelet signals have abrupt changes in signal ampli-
tude. Once the zero-crossings have been located, the average value
between each two consecutive zero-crossing points in the wavelet
output is computed.

Illustrated in Fig. 5 are wavelets for one resolution level (blue2

and red dashed lines) and the respective zero-crossing representa-
tion (blue and red solid lines) from the same row of both the nor-
malized iris (blue) and zeroed image (red), as well as the final zero-
crossing representation (black line). As shown here, these wavelets
(and their respective zero-crossing representations) differ at the
regions where occlusion has been identified (the zeroed image).
The final representation (black solid line in Fig. 5) is produced by
starting from the zero-crossing representation (solid blue line) of
the normalized iris image (Fig. 4(a)) and zeroing where it differs
from the image (red solid line) for which occlusion was considered
(Fig. 4(c)).

The values from the black solid line used in the iris representa-
tion were extracted from a 200 ' 16 pixels normalized iris image,
decomposed into three resolution levels (2, 3 and 4) for each row,
resulting in a matrix of 48 rows by 200 columns.

2.3.2. 2-D dyadic wavelet zero-crossing representation
The earlier representation method used a 1-D Gaussian wavelet

transform for each row of the normalized iris image. Here, a 2-D
Daubechies dyadic wavelet transform (Daubechies, 1992) is ap-
plied instead.

To extract features from the normalized iris image, it is first
convolved with a 2-D dyadic wavelet low-pass filter, minus the
estimated value of both normalized iris images (Figs. 4(a) and (c)).

The resulting information matrices are then processed using the
same technique for each row as detailed in Section 2.3.1, to obtain
the final zero-crossing representation (Fig. 5 – black line) and rep-
resent the iris in a 200 ' 16 matrix.

2.3.3. Periocular
New trends in biometrics (Park et al., 2009; Woodard et al.,

2010) suggest the use of periocular information as an important
addition in noncooperative biometric recognition, as information
derived from this area is less prone to degradation in visible wave-
lengths than other traits (e.g., the iris). Representing a tradeoff be-
tween facial and iris recognition techniques, this method has the
advantage of not requiring any additional equipment, as usually

Fig. 3. Illustration of unsuccessful inner boundary detection.

Fig. 4. Normalized images. Iris data are represented in grayscale.

Fig. 5. Wavelet and zero-crossing representations.

2 For interpretation of color in Figs. 4 and 5, the reader is referred to the web
version of this article.

986 G. Santos, E. Hoyle / Pattern Recognition Letters 33 (2012) 984–990

���



such information is not discarded in iris databases. This technique
is also less vulnerable to problems resulting from a lack of proper
illumination or low-resolution acquisition, motion blur and vary-
ing imaging distances.

For the purpose of this work, we used the simple yet effective
analysis suggested by Park et al. (2009).

Distribution-based descriptors. The iris location and size being
known, images were aligned and normalized for both scale and
translation as a set of regions of interest (Fig. 6) were defined
according to those parameters. As shown here, iris size is propor-
tional to the sides of each square region, and the central one is con-
centric with the iris itself.

Local Binary Pattern Pietikainen (2005) descriptors were then
extracted, as depicted in Fig. 6. Using pixel intensities in a square
window iterated over the entire region of interest, the difference
between the central pixel and its eight neighbors was computed
and its signal used to produce a binary result (thresholded values).
Converting those results to decimal, values from each region were
then quantized into eight-bin histograms, which upon concatena-
tion produce the complete 280-feature array (35 regions ' 8 bins
per region).

Scale-Invariant Feature Transform. Differing from the previ-
ous method, where features were only extracted from the region
closest to the eye, the Scale-Invariant Feature Transform (SIFT)
(Lowe, 2004) was applied to all available data, here seeking salient
regions (e.g., facial marks). SIFT is one of the most popular descrip-
tors for image point matching, as it can achieve invariance to scale
and rotation and is also robust to affine distortion. The method is
based on the extraction of key points represented by vectors
containing scale, orientation and location information. To achieve
those results, a publicly available SIFT implementation3 was used,
and its parameters optimized based on tests performed on the
training dataset.

2.3.4. Comparison maps
This approach (Santos and Proença, 2010) can be regarded as an

extension to the widely known Daugman method (Daugman,
2004), which is the most widely acknowledged, with great accep-
tance over the scientific community.

This method begins with the detection and segmentation of the
iris. For our approach, we used the procedures detailed above for
the iris-boundary detection and normalization, except for the nor-
malized iris sizes, which were 450 ' 64 pixels for both the iris
(Fig. 4(a)) and the noise mask (Fig. 4(b)).

Later, features were extracted through the convolution of the
normalized data with a bank of 2-D Gabor wavelets, followed by
a quantization stage that produced a binary iriscode, in which every
complex-valued bit h{Re,Im} depends on the sign of the 2-D integral.

We decided on the use of a very small yet optimized wavelet
bank, for which performance was optimized using the training
data. For such optimization, we parameterized the wavelets cy-
cling through a range of scales, orientations and frequencies we
found fit, searching for the configuration that maximized the
decidability (13).

2.4. Matching

In this section, the matching process is described for each one of
the feature-extraction methods.

2.4.1. 1-D and 2-D wavelet zero-crossing representation
To compute the dissimilarity between two irises, their zero-

crossing representations are compared. Boles (1997) proposed four
functions to measure the dissimilarity between the signals. In this
work, we used the dissimilarity measure defined by Eq. (3).

dlmðf ; gÞ ¼ 1%

PE%1
e¼0Zlf ðeÞ ( ZlgðeþmÞ

kZlfkkZlgk
ð3Þ

In the above equation, dlm(f,g) denotes the dissimilarity of irises
f and g associated with the lth row of their representation matrices
for a displacement m, the vectors Zlf and Zlg are the lth row of the
zero-crossing representations of irises f and g, respectively, E is the
number of elements of Zlf and Zlg and m, e 2 [0,E % 1]. The symbol
k ( k denotes the vector-norm operation. Note that dlm(f,g) is equal
to 1 minus the correlation coefficient between Zlf(e) and Zlg(e).
Thus the dissimilarity dlm(f,g) may take values between 0 and 2,
whereby 0 corresponds to a perfect match.

Eq. (3) is computed for each row of the representation matrices
and determine which mean is taken as the dissimilarity (Dm) be-
tween irises f and g for a given value of m.

This work proposes the use of a weighted mean rather than a
simple mean, whereby the weights are given by the number of
nonzeroed values in Zjf(n) and Zjg(n) according to:

Dm ¼

PL
l¼1dlmðf ; gÞ ' Kl

PL
l¼1Kl

ð4Þ

where dlm(f,g) is given by (3) and Kl is the number of nonzeroed val-
ues in the lth row of the zero-crossing representations of both
images.

It is important to notice that m in Eq. (3) represents the shifts of
the second signal. Varying m in (3) from 0 to E % 1 yields E dissim-
ilarity values (Dm). The overall dissimilarity D between irises f and
g is given by:

D ¼ minðDmÞ ð5Þ

2.4.2. Periocular
From periocular analysis, two types of results were produced.
To compute the matching between two feature vectors u and v

with n elements produced by the distribution-based descriptor, we
used a Euclidean distance (6):
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Fig. 6. Steps for LBP feature extraction.

3 VLFeat open-source library http://www.vlfeat.org/.
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dðu;vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ðui % v iÞ
2

v

u

u

t ð6Þ

As for the features extracted by the SIFT, the distance-ratio-
based matching scheme (Lowe, 2004) was applied.

2.4.3. Comparison maps
With two binary codes (codeA and codeB) and the corresponding

segmentation masks (maskA andmaskB), the Hamming distance (8)
is applied as comparison measure.

c ¼ ðcodeA) codeBÞ \maskA \maskB ð7Þ

HD ¼
kck

kmaskA \maskBk
ð8Þ

where ) is the logical XOR operation, \ is the logical AND and c is
the ‘‘comparison map’’.

Instead of using the Hamming Distance alone (which is simply
the ratio of concordant iriscode bits) as a single comparison mea-
sure, the resulting ‘‘comparison maps’’ (Fig. 7(a) and Eq. (7)) from
the similarity between iriscodes are then subjected to both spatial
and frequency-domain analysis in a search for high-concordance
areas (Fig. 7(b)).

Spatial-domain analysis. For the spatial-domain analysis, we
proceeded with a set of convolutions with Haar-based wavelets
of different sizes, which allowed us to ascertain the concordance
level of regions with different sizes.

Let c be a comparison map of M ' N dimensions. Let h be a Haar-
based mother wavelet with size s ' s. The similarity r in local
regions of c is given by:

rs ¼ hs * c; s ¼ f2kg; k ¼ 2;3; . . . ;16 ð9Þ

where ⁄ denotes the bidimensional convolution and rs has the same
dimensions of c.

Let xs = max{rs(i, j)}, i = 1, 2, . . . , N; j = 1, 2, . . . , M.
Let H be the 25-bin histogram of rw

2
where w is the maximum

size of the Haar-wavelet, such that H = {h1,h2, . . . ,h25}.
Using xi and hi values, features were produced and used as de-

tailed in the Classification subsection.
Frequency-domain analysis. For the frequency-domain analy-

sis, the Fourier transform F of the comparison map c of M ' N
dimensions was computed as follows:

Fðu;vÞ ¼
1
N

X

M

x¼0

X

N

y¼0

cðx; yÞe%j2pðux=Mþvy=NÞ ð10Þ

where j is the square root of %1 and e denotes the natural exponent.
The results were then regularly windowed in sixteen subre-

gions, and statistical features were extracted from each region.
For the central part, where the most relevant information lies,
we considered a P ' N window centered in the P 'M matrix that

contains the noticeable central shape such that P = 2M/8. Ten fea-
tures Fi are then extracted, representing the distribution of an
evenly spaced ten-bin histogram:

Ti ¼ minðAÞ þ i
DA

10
ð11aÞ

Fi ¼
X

P

m¼1

X

N

n¼1

sgnðAðm;nÞ % TiÞ ð11bÞ

with DA = max (A) %min (A) and i = 1, 2, . . . , 10.
Classification. Combining the best features (according to their

individual decidability) and performing a dimensionality reduction
through Local Fisher Discriminant Analysis (Sugiyama, 2006), a
logistic regression (Hosmer and Lemeshow, 2000) was used to
describe the function that eventually produced the final result for
this method.

2.5. Decision ensemble

With several outputs coming from the different representation
methodologies, a logistic regression model (Agresti, 2002; Cantor,
2002; Hosmer and Lemeshow, 2000) was used to describe the rela-
tionship between them and a final response. This weight fitting
methodology efficiency was verified on identical situations, with
multiple classifiers of different accuracies (Monwar and Gavrilova,
2008, 2009; Santos and Proença, 2010).

The way this logistic regression works is equivalent to a single-
output neural network with a logistic-activation function trained
under log loss; this model is described by Eq. (12):

log
p

1% p

" #

¼ b0 þ b1x1 þ b2x2 þ ( ( ( þ b5x5 ð12Þ

where the fraction p/(1 % p) is called the odds of a positive match,
that is, the ratio between that probability and its complementary.
The bi value is the weight relating the outputs xi from the previously
described methods to the odds.

3. Analysis of results

To assess the performance of the proposed method, experi-
ments were conducted using 1,000 iris images from the UBIRIS.v2
(Proença et al., 2010) database used for the NICE.II4 contest, and
their respective segmentation masks. Although this contest was
based only on identification mode (performance was ranked through
the decidability measure), our experiments were carried out in two
modes: verification mode (one-to-one matching) and identification
mode (one-to-many matching).

In verification mode, we selected the well-known receiver-
operating characteristic curves (ROC), the area under curve
(AUC), the equal-error rate (EER) and the decidability (Daugman
and Williams, 1996) index, given by Eq. (13):

d0
¼

jlinter % lintraj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
inter

þr2
intra

2

q ð13Þ

where linter and lintra denotes the means of the interclass and intra-
class comparisons and rinter and rintra are the respective standard
deviations.

The ROC curve is a graphical plot of the sensitivity, or true po-
sitive rate vs. false positive rate. The AUC can be perceived as a
measure based on pairwise comparisons between classifications
of two classes. With a perfect ranking, all positive examples are
ranked higher than the negative ones and the area equal to 1.
Any deviation from this ranking decreases the AUC. The EER of a

(a) Iriscode match sample

(b) Iriscode match with high concordance (de
limited region)

Fig. 7. Illustration of two iriscode matching results. Black pixels express concordant
bits in the correspondent biometric signatures.

4 NICE.II - http://www.nice2.di.ubi.pt.
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verification system means that the operating threshold for the ac-
cept/reject decision is adjusted so that the probability of false
acceptance and false rejection becomes equal.

In identification mode, where a subject is matched against a
database in a 1:N way, a good performance assessment is the
Cumulative Match Characteristic (CMC), as it shows the identifica-
tion probability against the N closest candidates.

The parameters specified in the method description were tuned
for best performance; here we chose those with maximal decid-
ability indices, i.e., those that maximize the average distance be-
tween distributions obtained for the two classical types of
biometric comparisons: data extracted from the same (intraclass)
and different eyes (interclass).

When applying the described methods independently on the
training dataset, we obtained the results presented in Table 1
and Figs. 8 and 9.

As shown in Table 1, with respect to decidability (which was the
criterion under consideration for the NICE.II contest), the best indi-
vidual results were with the 1-D and 2-D Wavelet methods, with
decidability (DEC) values of 1.44 and 1.29, respectively, closely fol-
lowed by comparison maps at 1.27. The same observation is valid
for the AUC values, whereas for EER the comparison maps slightly
outperform the 2-D wavelet. Periocular features, despite low indi-
vidual performance, proved to be of great help when fused with the
other methodologies. In fact, inspection of the CMC plot (Fig. 9),
where the separability between intra- and interclass distributions
is not as pronounced, shows that LBP is the best of all individual
methods, with a 56.4% rank-1 cumulative accuracy versus the
41.9% of the 1-D wavelet, beaten only by the fusion, with a 74.3%
rank-1 cumulative accuracy.

Fusing all the methods enhanced decidability to 1.74, repre-
senting an improvement of 20.8% over the best individual method.
Improvements in identification performance were even more sig-
nificant, as rank-1 was raised to 31.7%.

From these results, we can see that the entire method perfor-
mance cannot be accessed by a single operational mode. We thus
infer that, although some approaches improve recognition capabil-
ities in verification scenarios, and some others work well for iden-
tification mode, their fusion produces more suitable outcomes,
demonstrating the effectiveness of our method in both cases.

As the SIFT method uses more area for feature extraction than
the others, it is more likely to be affected by strong variations in
imaging conditions (e.g. pose or illumination; see Fig. 10(b)), thus
producing globally unsatisfactory results. However, its good per-
formance in some particular cases (e.g., Fig. 10(a)) led us to include
it, as its use improved the overall fused decidability by 4.5%.

Table 1

Recognition rates of each test.

DEC EER (%) AUC

LBP 0.99 31.87 0.76
SIFT 0.87 32.09 0.74
1-D wavelet 1.44 23.12 0.85
2-D wavelet 1.29 25.04 0.82
Comparison maps 1.27 24.99 0.82
Fusion 1.74 18.48 0.90

Fig. 8. ROC curves for all matchers and their fusion.

Fig. 9. CMC curves for all matchers and their fusion.

Fig. 10. SIFT performance examples in intraclass comparisons.
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4. Conclusions

In this study, we presented a novel fusion of different recogni-
tion approaches to address the issue of noncooperative iris recog-
nition using nonideal visible-wavelength images captured in an
unconstrained environment.

We tested several different autonomous approaches; their indi-
vidual performances were evaluated in identification and verifica-
tion modes and then the methods were fused, resulting in
improved accuracy. We also showed that combining features ex-
tracted from the iris region itself with periocular information im-
proves the overall performance in both recognition modalities.

The robustness of our approach was corroborated by indepen-
dent evaluation in the NICE.II iris-recognition contest, where our
method placed third rank among almost seventy participants from
all over the world.
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ABSTRACT

Over the last years the usage of mobile devices has substantially grown, along with their capabilities
and applications. Extending biometric technologies to such gadgets is quite desirable, as it would rep-
resent the ability to perform biometric recognition virtually anytime, anywhere, and by everyone. This
paper focus on biometric recognition on mobile environments using the iris and periocular informa-
tion as main traits, and its main contributions are three-fold: 1) announce the availability of an iris and
periocular dataset containing images acquired with 10 di↵erent mobile setups, along with the corres-
ponding iris segmentation data. Such dataset allows to evaluate both iris segmentation and recognition
methods, as well as periocular recognition techniques; 2) report the outcomes of device-specific cali-
bration techniques that compensate for the di↵erent color perception inherent to each setup; 3) propose
the application of well-known iris and periocular recognition strategies, based on classical encoding
and matching techniques, giving evidence on how they can be fused to overcome the issues associated
with mobile environments.

c� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The evolution of biometric systems over the last years is no-
torious, with the appearance of new traits and algorithms and
the refinement of the existing ones. At the same time that the
acquisition constraints are being lowered favoring in-the-wild
operation, e↵orts are being put into delivering o↵-the-shelf so-
lutions for everyday consumers, so that biometric systems can
run easily on everyday electronics. Mobile devices in particular
are preferable targets, as they comprise all the necessary com-
ponents to carry the whole process, from trait acquisition to the
final decision.

From the existing traits, the face and the iris are present in the
literature among the most popular (along with the fingerprint)
(Bowyer et al., 2008; Zhao et al., 2003). Iris usage as main bio-
metric trait has remained stable despite the evolution of biome-
trics in the last years. Being a naturally protected organ, visible
from the exterior and allowing contact-less acquisition, its cir-
cular and planar shape that favors detection and segmentation,
and its predominantly randotypic appearance that assures high
recognition e↵ectiveness. There are, however, certain scena-
rios where the iris cannot be properly imaged, and where the

⇤⇤Corresponding author: Tel.: +351-275-242081; Fax : +351-275-319899;
e-mail: gmelfe@ubi.pt (Gil Santos)

complementary use of other ocular information is regarded as a
good way to compensate for unreliable iris acquisition – peri-
ocular biometrics.

Particular useful on unconstrained scenarios, the periocular
region does not require constrained capturing or complex ima-
ging systems, being fairly easy for a mobile user to operate a
periocular identification application. The grounds for periocu-
lar recognition came from human intrinsic ability to recognize
someone just by looking at his/her eyes, which are known to
provide substantial amounts of discriminant information whilst
remaining relatively stable over large periods of time. Periocu-
lar biometrics analyze not only iris structure, but also other sur-
rounding features, such as the shape of eyelids, eyelash distri-
butions, or sclera and skin texture information. At last, both the
iris and the periocular region are imaged simultaneously with a
single camera.

1.1. Contextualization: Iris biometrics

The commercially deployed iris recognition systems are
mainly based on Daugman (1993) pioneering approach, with
great e↵ectiveness in relative constrained scenarios, and with
data acquired in the near-infrared (NIR) slice of the electro-
magnetic spectrum (700-900 nm). Even that a few innovations
were introduced later on (Daugman, 2007), the process con-
sists in a three stage approach: 1) the segmentation of the iris
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boundaries (both pupillary and limbic) followed by the transla-
tion into a double dimensionless pseudo-polar coordinate sys-
tem to achieve invariance to scale and translation; 2) the convo-
lution of this normalized data with a set of Gabor filters at mul-
tiple frequencies and orientations and the corresponding output
quantized to one of four quadrants, extracting two bits of phase
information per convolution; 3) matching of the iris signatures
using the fractional Hamming distance, with several compar-
isons of shifted data to achieve invariance to rotation.

In addition to Daugman’s phase-based approach other iris
recognition variants were introduced, mainly zero-crossing and
texture-analysis methods: Boles and Boashash (1998) com-
puted the zero-crossing representation of a 1D wavelet at dif-
ferent resolutions of concentric circles, and Wildes (1997) pro-
posed the characterization of the iris texture through a Lapla-
cian pyramid with four di↵erent levels.

E↵orts on “relaxing” the acquisition setup are also registered,
being the “iris-on-the-move” project (Matey et al., 2006) a ma-
jor example on engineering a less intrusive system for subjects:
its goal is to acquire near-field NIR iris images as the subjects
walk through an access control point.

1.2. Contextualization: Periocular biometrics

The usage of the periocular region as a biometric trait has
emerged over the last years (Santos and Proença, 2013). The
first relevant studies on periocular biometrics can be traced
back to Park et al. (2009) and their pioneering approach, fu-
sing both local and global features from the ocular area. On
global feature extraction images were aligned using iris center
as anchoring point, and a 7 ⇥ 5 region of interest (ROI) grid
defined around it. Scale invariance was achieved using iris ra-
dius as side length for the ROI. Those patches were then en-
coded applying two well known distribution-based descriptors,
Local Binary Patterns (LBP) (Ojala et al., 1994) and Histogram
of Oriented Gradients (HOG) (Dalal and Triggs, 2005), quan-
tized into 8-bin histograms. Merging those histograms into a
single-dimension array containing both texture and shape in-
formation, matching was carried o↵ simply by computing an
Euclidean distance. For the local analysis, authors employed
Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), allow-
ing sets of key-points to be extracted, encoded with their sur-
roundings, and matched, while providing translation, scaling
and rotation invariance. Reported performance was fairly good,
showing periocular fitness for recognition purposes, and further
analysis was held on noise factors impact on performance (Park
et al., 2011).

Inspiring by their work other approaches arose, either by im-
proving Park et al. approach, or by introducing new perspec-
tives. Miller et al. (2010) presented an analysis also focused
on periocular skin texture, taking advantage of Uniform Local
Binary Patterns (ULBP) to achieve “improved rotation invari-
ance with uniform patterns and finer quantization of the angular
space” (Ojala et al., 2002). Later on, their work was extended
by Adams et al. (2010), who proposed using Genetic & Evo-
lutionary Computing (GEC) to optimize feature set. Juefei-Xu
et al. (2010) stressed many local and global feature extraction
techniques (Walsh (Beer, 1981) and Laws’ masks (Laws, 1980),

Discrete Cosine Transform (DCT) (Ahmed et al., 1974), Dis-
crete Wavelet Transform (DWT) (Mallat, 1989), Force Fields
(Hurley et al., 2000), Speed-Up Robust Transform (SURF)
(Bay et al., 2008), Gabor filters (Clausi and Jernigan, 1996) and
Laplacian of Gaussian (LoG)), and on their later work (Juefei-
Xu et al., 2011) e↵orts were made to compensate aging degra-
dation e↵ects on periocular performance. The possibility of
score-level fusion with other biometric traits was also addressed
(e.g. iris (Woodard et al., 2010)).

Bharadwaj et al. (2010) proposed the fusion of ULBP with
five perceptual dimensions, usually applied as scene descrip-
tors: naturallness, openness, roughness, expansion and rugged-
ness – GIST (Oliva and Torralba, 2001). Images were pre-
processed with Fourier transform for local contrast normaliza-
tion, and then a spatial envelope computed with a set of Gabor
filters (4 scales ⇥ 8 orientations). On the final stage, �2 distance
was used to match the feature arrays, and results fused with a
weighted sum. This approach was validated against UBIRIS.v2
data (Proença et al., 2010), simulating realistic unconstrained
acquisition setups.

1.3. The Mobile Constraints
When attempting to perform iris or periocular biometrics

on mobile environments, several problems arise: the wide va-
riety of camera sensors and lenses mobile phones and tablets
come equipped with produce discrepancies in working images,
as they are acquired with color distortions, at multiple resolu-
tions, etc.; on-the-go acquisition by potentially untrained sub-
jects will result in demanding Pose, Illumination and Expres-
sion (PIE) changes, as not all users hold their mobile devices
at the same position, resulting in varying acquisition angles and
scales, or rotated images; the acquisition environment can have
poor or insu�cient lighting, and uncontrolled outdoor daylight
will most likely produce spectacle reflections over the iris re-
gion; etc.

The remainder of this paper is organized as follows: Section 2
describes the Cross-Sensor Iris and Periocular Dataset (CSIP)
database, detailing the acquisition conditions, enrolled partici-
pants and perceived noise factors; Section 3 presents the pro-
posed methodology, with details on the four main stages: image
normalization with device-specific color calibration, iris and
periocular feature encoding and matching, and score-level fu-
sion; Section 4 contains a thorough analysis of the results ob-
tained by using the proposed methodology; finally, Section 5
states some final considerations, along with further lines of
work.

2. The Cross-Sensor Iris and Periocular Dataset

The main objective of the CSIP database was to gather
images from a representative group of participants, acquired
over cross-sensor setups and varying acquisition scenarios, thus
mimicking the conditions faced on mobile application scena-
rios. Along with the data acquired with di↵erent mobile de-
vices, an iris segmentation mask is also provided, allowing as-
sessing the performance of both iris and periocular segmenta-
tion and recognition algorithms on mobile environments.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Table 1: Details of the devices and setups used during the CSIP dataset acquisition.

Device A B C D
Manufacturer Sony Ericsson Apple ThL Huawei
Model Xperia Arc S iPhone 4 W200 U8510
O.S. Android 2.3.4 iOS 7.1 Android 4.2.1 Android 4.3.3
Camera Rear Frontal Rear Frontal Rear Frontal Rear
Resolution 3264 ⇥ 2448 640 ⇥ 480 2592 ⇥ 1936 2592 ⇥ 1920 3264 ⇥ 2448 640 ⇥ 480 2048 ⇥ 1536
Flash No Yes No No Yes No No Yes No No
Setup ID AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DF0 DR0

2.1. The Imaging Setup
Considering the heterogeneity of camera sensor/lens setups

consumer mobile devices can deliver, a total of 10 di↵erent se-
tups were used during the dataset acquisition stage: four dif-
ferent devices, some of them with frontal and rear cameras and
LED flash (Table 1). Each participant was imaged at all the
considered setups.

Aiming at mimicking the variability of noise factors asso-
ciated with on-the-go recognition, participants were not ima-
ged at a single particular location, but on multiple sites, as they
were, with artificial, natural and mixed illumination conditions.
As we can see from Figure 1, there is a substantial di↵erence be-
tween each acquisition setup and surrounding conditions, even
when the same setup was used to capture images from di↵erent
subjects. From visual inspection, eight di↵erent noise factors
are distinguishable, and can a↵ect the biometric recognition
process: multiple scales; chromatic distortions; image rotation;
poor lighting; o↵-angle acquisition; out-of-focus images; devi-
ated gaze; and iris obstructions (including reflexions).

The images were acquired through the standard camera ap-
plication on mobile phone devices, using default settings for
both focus and white-balance. The corresponding files were
stored at JPEG format, with the highest possible quality and
resolution. A total of 50 participants were enrolled, all Cau-
casian and most of them male (82%), with ages comprehended
between 21 and 62 years old (31.18±9.93). All the participants
gave informed consent about the experiment.

2.2. Iris segmentation masks
For each periocular image acquired by the mobile devices,

a binary iris segmentation mask is provided with the CSIP
dataset. Those masks were automatically obtained using the
state-of-the-art iris segmentation approach proposed by Tan
et al. (2010). That approach is particularly suitable for uncon-
trolled acquisition conditions, which has been corroborated by
the first place achieved at the Noisy Iris Challenge Evaluation -
Part 1 (NICE.I)1.

At a first stage, a small ROI containing a rough estimate of
the iris location is defined. This ROI is determined using a
cascade object detector based on Viola and Jones (2001) al-
gorithm, trained for the detection of the right eye using Haar
features to encode details (Castrillón et al., 2007). A reflex-
ion removal process is applied, followed by an eight-neighbor

1http://nice1.di.ubi.pt/

connection approach for clustering, and based on the degree
of similarity between each pixel and the previously established
heterogeneous regions, a region set is established accordingly
to the degree of similarity between their elements. In order to
label the di↵erent clusters, semantic refinements are applied.
Several semantic priors like orientation and shape of each re-
gion are used to determine the iris correspondent cluster.

Further to that, iris pupillary and limbic boundaries are es-
timated using an integrodi↵erential-constellation: based on
Daugman (2007) integrodi↵erential, a constellation is built
from several integrodi↵erential rings of increasing radii, mi-
nimizing the initial method’s tendency to output local optimal

AR0 AR1 AR0 AR1

BR0 BR1 BR0 BR1

CR0 CR1 CR0 CR1

BF0 CF0 BF0 CF0

DF0 DR0 DF0 DR0

Figure 1: Dataset pictures acquired from two participant at all di↵erent setups.
Images in the left belong to the first participant, and images in the right belong
to the second participant.
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solutions. Possible localization inaccuracies are detected and
eliminated based on a threshold, estimated by the intersection
of two consecutive annular rings intensity distributions. After
iris boundaries are established, eyelid localization and shadow
subtraction are performed in order to reduce noise and occlu-
sion. The presence of eyelashes is minimized through 1-D fil-
tering, and edge-detection is applied to find the edge points cor-
responding to eyelids. Using those edge-points, the localization
of the eyelids is estimated using both an upper and lower sta-
tistically established curvature model. Ultimately, eyelash and
shadow subtraction take into account their darker appearance
when compared to the iris itself. The optimization of the classi-
fication threshold is obtained from the analysis of the intensity
histogram of small homogeneous regions, on iris and shadows
noise, and eyelash regions are removed. This technique is ex-
plained in more detail at Tan et al. (2010).

2.3. Dataset Availability

The complete CSIP dataset is public and freely available for
academic and research purposes2. Researchers are granted ac-
cess to: 1) 2004 images, acquired from 50 subjects at 10 di↵er-
ent setups; and 2) the corresponding 2004 binary iris segmen-
tation masks.

3. Proposed Methodology

In this section we describe the four main steps of our ap-
proach (Figure 2): the normalization stage, with device-specific
color correction and iris boundaries estimation for coordinate
conversion and periocular ROI definition; feature encoding,
with information from both the iris and the periocular region;
feature matching; and score-level fusion.

3.1. Image Normalization

The first stage, image normalization, will allow to compen-
sate for some of the noise factors identified in the dataset: chro-
matic distortions, varying scales and o↵-angle acquisition.

3.1.1. Device-Specific Color Correction
Having an uniform calibrated output for each sensor that

minimizes the discrepancy to colors as they really appear can
be of particular value in mobile scenarios, as a wide range of
sensor/lens setups are available.

The access to a reference image captured at a known illumi-
nant allows to estimate the color adaptation matrix that compen-
sate for the inaccurate color representation introduced by each
sensor. That adaptation matrix encodes the optimized color
channels combination to approximate color information in the
acquired image from the ones originally observed in the scene.
This section describes the device-specific color correction tech-
nique.

A Macbeth ColorChecker R� Color Rendition Chart was
placed in a dark acquisition scene, illuminated by a standard
illuminant produced by a Barco RLM G5i Performer (Barco

2http://csip.di.ubi.pt

Feature Encoding

Score-Level
Fusion

Feature 
Matching

Normalization

Periocular 
Image

Segmentation 
Mask

Device Specific 
Color Correction

Iris Boundaries 
Detection

ROI Definition Iris and Mask 
Normalization

LBP HOG ULBP GIST SIFT Iriscode

!² distance Distance-Ratio 
Based Score HD

Neural Network

Figure 2: Diagram illustrating the four stages of the proposed methodology.

Corporation, Belgium) RGB projector driven by a Visual Stimu-
lus Generator (VSG2/5) (Cambridge Research Systems, United
Kingdom). In order to mimic standard open-air conditions, the
Commission Internationale de l’Eclairage (CIE) D65 illuminant
was chosen, as specified by the CIE standard colorimetric ob-
server (2�) (on Illumination, 2004; Smith and Guild, 1931). Il-
luminants’ luminance was regulated at 100 cd/m2.

Previously, the VSG2/5 generated stimulus were verified and
calibrated using a telespectroradiometer (PR-650 SpectraCol-
orimeterTM- Photo Research, Inc., CA) and a white reference
Spectralon R� target (Labsphere, Inc., NH). The maximum er-
rors allowed were 0, 002 illuminant chromaticities in the CIE
1931 color space and 1 cd/m2 for luminance. A set of images
of the color charts was then captured at all setups (mobile de-
vices), using the standard camera application at default settings.

To obtain the estimate for the color correction matrix we app-
lied the methodology introduced by Wolf (2003), specially de-
signed for digital imaging systems. Knowing the ground-truth
red (R), green (G) and blue (B) coordinates for the 24 color
samples from the color chart under the D65 illuminant, let us
summarize it in a 24 ⇥ 3 matrix O (1). Then, from the color
chart photo acquired with the mobile device, we populate a sim-
ilar matrix P with the RGB coordinates for the same 24 color
samples.

O =

2
6666666666664

O R1 O G1 O B1
O R2 O G2 O B2
... ... ...

O R24 O G24 O B24

3
7777777777775

(1)

The initial estimate for the adaptation matrix A, that converts
the device acquired colors to an approximation Ô of the original
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ones, was then found using a least-squares solution (2) where 1
is a 24 positions column vector initialized with ones.

O ⇡ Ô = [1 P]A,
, A = ([1 P]T [1 P])�1[1 P]T O

(2)

Further optimization of the adaptation matrix was achieved
by applying the following four steps iteratively, until conver-
gence up to the fourth decimal place: 1) compute a cost vector
C based on the Euclidean distance E to the ground-truth color
information (3), where ✏ is the relative weight for misfit points;
2) normalize C for unity norm, and compute C2; 3) generate an
empty 24 ⇥ 24 matrix C2, and populate its diagonal with C2;
4) recompute the adaptation matrix, using cost-weighted least-
squares fitting (4).

C =
1

E + ✏
(3)

A = ([1 P]T C2[1 P])�1[1 P]T C2O (4)

An adaptation matrix was computed for each acquisition
setup (mobile device camera). Prior to the feature extraction
stages each one of the dataset images was color corrected, ac-
cordingly to its acquisition device and setup, using the corres-
ponding adaptation matrix followed by a non-linear transform.

3.1.2. Iris Boundaries Detection
Accurately determining the iris boundaries is a requirement

for the following steps, iris and segmentation mask conversion
to a pseudo-polar coordinate system and periocular ROI defini-
tion), as that will allow to achieve image alignment and scale
invariance.

To determine the iris boundaries, the information from both
the device acquired image and the binary segmentation mask
were combined using a three step approach (Santos and Hoyle,
2012): a) a Hough transform (Ballard and Brown, 1982) is fit
to the binary mask boundaries, determining the circle best fit-
ting iris limbic contours; b) a smaller circular ROI is defined
of the acquired image, centered in the previously located lim-
bic circle and with 2/3 its radius. Such region is converted to
grayscale, its histogram equalized, and an edge map extracted
using a Canny edge detector (Canny, 1986); c) a second circle
fit to the resulting edge map using another Hough transform,
thus approximating the pupillary boundaries.

3.1.3. Iris and Segmentation Mask Normalization
Knowing the iris boundaries, each iris pixel I was assigned

to a pair of real coordinates over a double dimensionless pseu-
dopolar coordinate system (5). We followed the rubber-sheet
model originally proposed by Daugman (2004) (6), where r
and ✓ are the radius and angle respectively, x(r, ✓) and y(r, ✓)
linear combinations of both the set of pupilar boundary points
(xp(✓), yp(✓)) and the set of boundary points (xs(✓), ys(✓)) bor-
dering the sclera.

I(x(r, ✓), y(r, ✓))) I(r, ✓) (5)

(a) Grid of individual patches (b) SIFT detected features

Figure 3: Illustration of the ROI defined for the global periocular analysis (red),
the set of patches used on the distribution-based analysis (a), and SIFT detected
features (b).

x(r, ✓) = (1 � r)xp(✓) + rxs(✓)
y(r, ✓) = (1 � r)yp(✓) + rys(✓)

(6)

3.1.4. ROI Definition
To carry on with the periocular analysis, a ROI is defined

based on the known iris spatial location (xi, yi) and radius (ri).
That ROI is composed by 35 square patches, forming a 7 ⇥ 5
grid, where each patch has an area equivalent to 1.4r2

i (Fig-
ure 3).

3.2. Feature Encoding and Matching

At the feature encoding and matching stages, information
from two di↵erent biometric traits were handled as described
below: iris and periocular. On the methods designed to work
with single channel images, RGB values were converted to
grayscale using a weighted sum (7) prior to feature extraction.
The weights in equation (7) are the ones used as standard in
National Television System(s) Committee (NTSC) colorspace
conversion for computing the e↵ective luminance of a pixel.

I(x, y) = 0.2989R(x, y) + 0.5870G(x, y) + 0.1140B(x, y) (7)

3.2.1. Periocular Feature Analysis
The periocular analysis here proposed was inspired on the

works of Park et al. (2009) and Bharadwaj et al. (2010). In the
previously defined ROI, two types of analysis were used: and a
distribution-based analysis of every patch, and a global analysis
of the whole region.

The distribution-based analysis consists in the computation
of three well-known descriptors: HOG, LBP and ULBP. Each
descriptor is computed sequentially over each patch and quan-
tized into histograms, forming a global 1-D array where shape
and texture information is stored. The HOG descriptor (Dalal
and Triggs, 2005), widely applied on computer vision, com-
putes the gradient orientation by filtering the image with two
kernels: [�1, 0, 1] and [�1, 0, 1]T . The LBP (Ojala et al., 1994)
also works in a quite simple yet e�cient fashion: pixel inten-
sity changes from an 8-neighbor region to its central pixel are
quantized (8) having the sign of their intensities’ di↵erence (9)
as reference. Ix,y denotes the intensity of the original image at
position (x, y), and In the intensity of a neighbor pixel.
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LBPx,y =

7X

n=0

sgn(In � Ix,y) 2n (8)

sgn(In � Ix,y) =

8>><
>>:

1, if In � Ix,y

0, otherwise.
(9)

The ULBP descriptor di↵ers from the LBP as it achieves “im-
proved rotation invariance with uniform patterns and finer quan-
tization of the angular space” (Ojala et al., 2002). Instead of the
2n possible binary patterns outputted from the regular LBP over
a 8-neighbor region, a uniformity measure U is calculated rep-
resenting the number of bitwise changes in that same pattern
(10). This measure can only assume 59 distinct values.

U(LBPx,y = |sgn(I7 � Ix,y) � sgn(I0 � Ix,y)|+

+

7X

n=1

|sgn(In � Ix,y) � sgn(In�1 � Ix,y)|
(10)

At the matching stage, the histogram arrays of size N con-
taining the extracted information were compared through �2

distance (11).

�2
(histA,histb) =

1
2

NX

n=1

(histAn � histBn)2

histAn + histBn
(11)

On the global analysis, feature extraction techniques were
applied not to each individual patch, but to the whole ROI.
The applied descriptors were SIFT, and GIST. At first, set of
key-points and their surrounding information is extracted us-
ing SIFT (Lowe, 2004), known to deliver invariance to transla-
tion, scale and rotation. SIFT key-points detection relies on a
Di↵erence of Gaussians (DOG) function, and features are ex-
tracted for their neighborhood based on gradient magnitude and
orientation (Figure 3). At the matching stage, their geometri-
cal alignment is used. Finally, a set of five scene descriptors
were used (GIST) as proposed by Oliva and Torralba (2001):
naturalness, that quantifies vertical and horizontal edge distri-
bution); openness, as the presence or lack of reference points;
roughness, the size of the largest prominent object; expansion,
the depth of the space gradient; and ruggedness, a quantifica-
tion of contour orientation that assesses the deviation from the
horizontal. The GIST descriptor was extracted from each color
channel individually, and at the matching stage a �2 distance
(11) was used upon min-max normalization.

3.2.2. Iris Feature Analysis
The iris information was encoded based on Daugman (1993)

approach: iris features were extracted convolving iris data in
the pseudopolar coordinate system with a bank of 2-D Gabor
wavelets, followed by a quantization stage that produced a bi-
nary iriscode accordingly to the sign of the 2-D integral. To
the purpose of iris identification on mobile environments, we
choose to use a very small yet optimized wavelet bank. Dur-
ing filter optimization a smaller representative subset of images
was used, and filter parameters cycled through a range of scales,

1

Periocular Data

LBP Score

…

HOG Score

GIST Score

2

3

…

11

1

2

…

O

6

Iris Data

Iriscode Score

…

LBP Score

GIST Score

4

Figure 4: Illustration of the NN architecture used at the score fusion stage. Each
circle represents a neuron of the network, and depicted input scores come from
the feature matching stage.

orientations and frequencies, fit for our environment. Chosen
configurations were the ones that maximized decidability (13).

At the matching stage, the similarity between two binary
codes of size N representing the two irises being compared is
assessed through a simple Hamming Distance (HD) (12).

HD =
1
N

NX

n=1

codeAn ⌦ codeBn (12)

Further to that, and as Daugman’s technique was developed
to deal with iris images captured in controlled settings, the same
techniques used to encode periocular data were also applied on
the normalized iris region as well.

3.3. Score-level fusion

With several scores resulting from the di↵erent encod-
ing/matching methodologies, an Artificial Neural Network
(NN) was trained to fuse them into a final recognition score.
NN-based methods have been widely applied on classification
problems, for their learning abilities and good generalization.

For the purpose of this work a two hidden layers NN was
trained with back-propagation (Figure 4). The architecture of
the NN was as follows: the first hidden layer had eleven neu-
rons, the same number of scores resulting from the matching
stage; the second hidden layer had six neurons; and the final
(output) layer with just one, since we are dealing with a bi-
nary classification problem. Once again, a smaller data parti-
tion was used at the training stage, and was not included on the
test phase.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Table 2: Individual performance metrics for each recognition method and trait, along with the ones from iris, periocular and global fusion. Performance metrics are
Decidability (DEC), Area Under Curve (AUC) and Equal Error Rate (EER). Top scores are marked bold.

Trait! Periocular Iris Global
Method! LBP HOG SIFT ULBP GIST Fusion Iriscode LBP HOG SIFT ULBP GIST Fusion Fusion

No color
correction

DEC 0.989 0.969 0.716 1.272 1.859 2.164 0.674 0.289 0.515 0.324 0.324 0.320 0.835 2.295
AUC 0.764 0.751 0.715 0.816 0.915 0.923 0.684 0.588 0.641 0.583 0.589 0.615 0.717 0.932
EER 0.308 0.315 0.348 0.261 0.166 0.159 0.366 0.443 0.401 0.443 0.440 0.418 0.344 0.148

Histogram
equalization

DEC 0.986 0.860 0.668 1.267 1.841 2.101 0.616 0.246 0.371 0.293 0.353 0.199 0.753 2.215
AUC 0.763 0.725 0.696 0.815 0.910 0.917 0.669 0.581 0.601 0.576 0.600 0.582 0.696 0.925
EER 0.309 0.340 0.365 0.262 0.172 0.165 0.374 0.446 0.433 0.445 0.433 0.442 0.361 0.155

Device specific
correction

DEC 0.989 1.009 0.731 1.270 1.889 2.215 0.639 0.173 0.482 0.347 0.266 0.230 0.809 2.331

AUC 0.766 0.761 0.720 0.817 0.919 0.927 0.675 0.578 0.637 0.590 0.584 0.593 0.711 0,934

EER 0.305 0.308 0.343 0.259 0.163 0.155 0.372 0.450 0.402 0.437 0.444 0.434 0.349 0,145

4. Results and Discussion

To assess our method performance, a total of 121.245 random
matches were generated, between images from any two acquisi-
tion setups, being the inter- to intra-class comparisons ratio 2:1.
Three performance measures were used: DEC, AUC and EER.
Decidability d0 was first introduced by Daugman (1993), and
quantifies intra- and inter-class separability by relating their
mean µ and standard deviation � values.

d0 =
kµinter � µintrakq

�2
inter+�

2
intra

2

(13)

The Receiver Operating Characteristic (ROC) curve relates
the sensitivity, or true positive rate (TPR) with the false positive
rate (FPR). Based in that plot, the AUC can be perceived as a
quantification of how well pairwise comparisons are performed
on a binary classification problem. On the perfect scenario, all
positive matches are ranked higher than the negative ones, and
the AUC equals one. Finally, setting the operating threshold
for the accept/reject decision so that the probability of false ac-
ceptance equals the probability of false rejection, we obtain the
EER.

The performance registered for every feature encoding and
matching technique, per trait behavior and global fusion out-
come is registered on Table 2. As we can see top results are
registered for global fusion, over device-specific color corrected
images, with a Decidability of 2.331, and an AUC of 0.934. On
quantifying the performance improvement introduced by the
sensor-specific color correction technique, we applied our pro-
posed methodology to all matches with three variations in the
normalization stage: without performing any color-correction;
with the proposed color correction; and, for comparison pur-
poses, with simple histogram equalization over all channels of
the working image. As we can see, the proposed color correc-
tion technique improves the performance over all the stressed
periocular recognition approaches, as well as on the final score
resulting from the fusion of all methods. It was a much bet-
ter approach than the commonly used histogram equalization,
whose application actually worsened five of the six periocular
approaches, as well as the score-fusion output. Even so, the im-
provement produced by the sensor-specific correction was not
so expressive as initially expected after visually inspecting the

color corrected images. A possible explanation is that some of
the used feature encoding methods were designed to work over
single-channel images, thus not implicitly taking into account
some of the chromatic features that could have been lost during
grayscale conversion.

Examining per trait performance, and paying attention to the
values obtained over color-corrected images, we can see how
the combined information extracted from the whole periocular
region is far more discriminant than the iris, in the mobile appli-
cation scenario. That is particularly visible in the ROC curves
at Figure 5, where we can see that the plot corresponding to the
periocular fusion almost overlaps the plot corresponding to the
global fusion, being the area between them of only 0.007. In
fact, we can’t say that periocular analysis does not take iris fea-
tures into account, as it was not removed nor overlapped prior
to the encoding stage.

Reviewing the individual performance of each one of the
methods that constitute the proposed periocular analysis (Fig-
ure 6a), we can see how GIST descriptors is the approach with
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Figure 5: Receiver Operating Characteristic curves for the score-level fusion of
the stressed iris recognition methods, the periocular recognition methods, and
the global fusion.
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Table 3: Method fusion performance, after color correction, for each acquisition setup.

AR0 AR1 BF0 BR0 BR1 CF0 CR0 CR1 DF0 DR0

No color
correction

DEC 2.481 2.392 2.141 2.456 2.137 2.045 2.153 2.459 2.083 2.423
AUC 0.940 0.941 0.917 0.940 0.933 0.917 0.922 0.939 0.916 0.938
EER 0.135 0.135 0.158 0.138 0.149 0.169 0.162 0.138 0.167 0.139

Device specific
correction

DEC 2.497 2.446 2.174 2.485 2.164 2.034 2.201 2.561 2.099 2.501
EER 0.941 0.943 0.921 0.942 0.935 0.917 0.927 0.945 0.917 0.943
AUC 0.134 0.132 0.156 0.138 0.145 0.165 0.155 0.130 0.166 0.131

highest benefits, followed by ULBP. LBP and HOG have very
similar performance, and SIFT was the descriptor with low-
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Figure 6: Receiver Operating Characteristic curves for the stressed periocular
(a) and iris (b) recognition methods and their fusion.

est AUC, even though it was able to achieve higher sensitivity
with lower FPR for more restrictive thresholds than most of the
stressed periocular methods. Since we are aiming at performing
biometric recognition in mobile devices, known to have more
resources constraints than regular computers, that can be re-
garded as a good indicator: since SIFT is more computationally
expensive than the other tested methods, we can choose not to
include it with less impact on the overall performance. Even if
only GIST were used, with its five scene descriptors being eas-
ily and quickly computed, we could still get an AUC of 0.919.
Nonetheless, it is remarkable how such simple feature encod-
ing techniques produce relatively good scores, considering the
constraints associated with the mobile working conditions, spe-
cially the deterioration of the acquired images. Attending at the
same methods’ performance over iris data alone (Figure 6b), we
can observe that they are not so good at discriminate its features,
being the individual method with best performance Daugman’s
iriscode analysis. We must have in mind that the CSIP acquisi-
tion setups didn’t favor the capturing of iris details.

Table 3 reports on the recognition performance for when us-
ing images acquired at the di↵erent imaging setups, with and
without performing color correction. Those values were ob-
tained selecting from the total of generated matches the ones
where at least one of the images was enrolled at that specific
setup. We can see how color correction considerably improves
the decidability values on the top performing devices. As we
can see, top performances are achieved over images taken with
rear cameras, usually without using the device flash. In fact,
choosing to use the built-in flash tends to result in performance
degradation, even that color correction impact in performance
was greater when using images acquired with the flash light on.
As for frontal cameras, they do not seem as fit for mobile bio-
metrics as rear ones. That can be particularly tough if the intuit
of the application is to verify the phone’s user identity, since its
fairly more easily obtain a good self-captured image using the
frontal camera. Despite the frontal cameras having significantly
less resolution that the rear ones, it does not seem to be a rela-
tion between that fact and their lack of performance. Device D,
for instance, is the device with lower rear sensor resolution and
its performance is almost identical to the other setups.

5. Final Considerations

This paper introduces the Cross-Sensor Iris and Periocular
Dataset (CSIP) dataset, containing images acquired under ten
di↵erent mobile setups, with eight visible noise factors. Such
particularities make it suitable to evaluate iris and periocular
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recognition methods on heterogeneous mobile conditions, and
the distribution of each image iris segmentation masks also al-
low to stress iris segmentation methods on those same condi-
tions.

Further, we identify the chromatic disparity introduced by
some devices, proposing the usage of a sensor-specific color
correction technique. Results shown that top results were ob-
tained after color correction. Being aware that application sce-
narios where the biometric recognition process is conducted
with images acquired on a single device can deliver better re-
sults, we aim at achieving higher cross-sensor performance.
That will allow to attain higher confidence on matches between
images acquired with very distinct mobile setups, or even on
comparisons against a previously stored dataset acquired with
other (or multiple) devices.

We proposed the fusion of iris and periocular information to
achieve reliable biometric identification in mobile setups, and
observed how simple feature encoding techniques deliver con-
siderably good performance. That is particularly convenient
when aiming at conduct the whole recognition performance on
mobile devices with higher computational constraints, as the
top performing methods indeed had considerably low compu-
tational cost. Ultimately, and if aiming at reducing even more
the computational cost on mobile environments, using only the
GIST classifier can be an option.

Finally, results point out that, for the tested setups, high
image resolution is not an essential requisite to mobile biome-
trics, and rear cameras are best suited for periocular recogni-
tion, preferable without flash.

5.1. Further Work
At a further stage, authors plan to expand the CSIP dataset

with a more significant amount of participants, and a wider
range of acquisition setups. We theorize that widening the
dataset to further devices and participants, and applying the pro-
posed recognition technique, would emphasize the contribution
of both color correction and the usage of iris features.

Another interesting line of work will be to conduct further
tests with di↵erent iris and periocular recognition methods, spe-
cially the ones that explicitly rely on color data, comparing the
cross-sensor performance with the performance registered for
other existing datasets.

Stressing di↵erent color correction techniques could also be
interesting, despite the one we applied in this paper having the
advantage of being computational e�cient and easy to apply, as
long as the correction matrix for the camera sensor is known.
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Abstract: Substantial efforts have been put into bridging the gap between biometrics and visual surveillance, in order to develop
automata able to recognise human beings ‘in the wild’. This study focuses on biometric recognition in extremely degraded data,
and its main contributions are three-fold: (1) announce the availability of an annotated dataset that contains high quality mugshots
of 101 subjects, and large sets of probes degraded extremely by 10 different noise factors; (2) report the results of a mimicked
watchlist identification scheme: an online survey was conducted, where participants were asked to perform positive and negative
identification of probes against the enrolled identities. Along with their answers, volunteers had to provide the major reasons that
sustained their responses, which enabled the authors to perceive the kind of features that are most frequently associated with
successful/failed human identification processes. As main conclusions, the authors observed that humans rely greatly on shape
information and holistic features. Otherwise, colour and texture-based features are almost disregarded by humans; (3) finally,
the authors give evidence that the positive human identification on such extremely degraded data might be unreliable,
whereas negative identification might constitute an interesting alternative for such cases.

1 Introduction

The evolution of the concept of biometrics over the last
decades is linked with societies’ increasing concerns about
both individual and global security. From personal
computers to border access control everyone aims at
securing their identities, their assets and, primarily, their
homeland. Such safety relies on the ability to accurately
identify subjects based on biometric features, either
biological or behavioural.
Biometric systems rely on the accurate ‘extraction’ of

individuals’ distinctive features and their proper ‘encoding’,
so that the essential information is preserved. Those
requisites are traditionally assured by high acquisition
constraints, with the subject cooperation being a
key-element. When moving to unconstrained scenarios,
those acquisition constraints are lowered and subject
cooperation is not expectable. Recognition became more
challenging and alternatives are sought [1, 2], either by: (1)
improving the existing algorithms; (2) resorting to
multi-modal biometric systems; or (3) exploring new traits
could better cope with this new reality. Despite those
efforts, no system yet exists capable of effectively dealing
with all the issues introduced by biometrics ‘in the wild’. In
fact, even biometric systems able to cope with less
constrained conditions (e.g. Iris-on-The-Move project [3])
still lack an ideal level of user abstraction.
Visual surveillance is a very active field in computer vision,

with a lot more applications other than biometrics ‘per se’ [4].

Existing automatic surveillance systems are rather focused on
activity recognition (e.g. W4 project [5]), and not many
projects are prepared to deal with surveillance scenarios
from a watchlist approach (e.g. Kamgar-Parsi et al. [6]).
Furthermore, none of the latter works from the negative
identification perspective.
Most biometric systems attempt positive identification (or

verification) against a gallery of enrolled users based on a
(dis)similarity measure. In many ‘in the wild’ applications
however, biometric systems make more sense when used
from the negative perspective: guarantee with enough
confidence that an unknown subject does not belong to a
gallery of ‘persons-of-interest’, instead of attempting to
identify him. On that basis, facing a watchlist scenario one
can aim at spotting a distinctive feature on the probe
subject, and exclude those who neither share that feature,
nor any of its possible transformations. Moreover, even if
we do not have enough distinctive features to support a
positive recognition (e.g. because of the quality of acquired
images) we can still perform reliable negative recognition.

1.1 Contextualisation: facial biometrics

The everyday use of facial cues includes recognising our
peers or unveiling their state of mind, which happens
seamlessly and unawarely. Is then easy to place face as the
most common and widely used biometric trait, and one of
the most successful applications of image analysis and
understanding. Several face recognition systems are
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commercially deployed and a lot of techniques accessible [7],
working on both still and video images. Algorithms are based
either on the global analysis of the whole image, or on the
relation between facial elements, their localisation and
shape. In either case, their effectiveness is conditioned by
several factors, which become even more evident ‘in the
wild’: its three-dimensional structure lead to substantial
differences in appearance, accordingly to the subject’s pose;
large portions are often occluded on non-orthogonal data
acquisition; facial expressions affect their appearance; and
its particularly easy to disguise.
Analysing the human ability to recognise each other,

researchers can identify the more reliable cues, valuable for
the develop well-grounded recognition methods. Previous
studies report interesting findings when exploring the
human ability to identify faces (e.g. Sinha et al. [8]),
encouraging further researching on understand how people
cope with ‘in the wild’ circumstances. In this study we do
not aim at mimicking the identification process taking place
in human vision, but rather to provide useful insights for
further research on this topic. We analyse the noise factors’
impact on human identification performance, identifying the
features people recall as basis for their judgement.

1.2 Contextualisation: similar datasets

Publicly available datasets exist for both video surveillance
[4] and face biometrics [9] research, acquired under less
constrained conditions. Although a much higher extent of
databases is available, five significant datasets must be
mentioned, which contain a more significant amount of pie
changes: FERET [10], CMU-PIE [11], CAS-PEAL [12],
Multi-PIE [13] and LFW [14] (Table 1). The latter two
datasets are presumably the most completes, each one by its
own reasons: the Multi-PIE provides facial images from
337 subjects, imaged over four sessions under 15 pose and
19 illumination variations, along with high-resolution
registration photos; the Labeled Faces in the Wild (LFW)
dataset contains a larger amount of images and subjects, 13
233 and 5749, respectively, at completely ‘in-the-wild’
conditions, and thus without uniformity among subjects.
Although not being an extensive listing of the existing
datasets, the ones we present are the most directly
comparable to the one we are now establishing.
In this paper we introduce a newly created dataset of

heavily degraded facial images, where the ‘in the wild’
conditions associated with visual surveillance systems are
closely simulated. Full 360° illumination and pose
variations are introduced, among with other realistic noise
factors at different reasonable levels, along with
ground-truth information for research validation. Despite

containing a lower amount of participants when compared
to the existing databases, this new dataset contains a wider
range of pose and illumination variations, uniform and
comparable for all subjects.
The remainder of this paper is organised as follows:

Section 2 describes the BioHDD dataset, detailing the
acquisition framework, enrolled participants and introduced
noise factors; Section 3 presents the experimental method
used in our study, with a thorough analysis of its results;
finally, Section 4 states some final considerations, along
with further lines of work.

2 BioHDD dataset

The main objective of the BioHDD database was to gather
images from a significant group of individuals, ranging
from clear frontal shots to heavily degraded facial images,
enabling to assess the feasibility of biometric recognition
‘in the wild’.

2.1 Imaging framework and setup

The imaging framework was installed in a closed lounge
without uncontrolled lightening sources. Participants were
illuminated with a single 800 W halogen projector, and a
white cloth was used as image background to avoid
contextual interferences. The acquisition process consisted
of three acquisition stages: registration, still image
acquisition and video acquisition.
At the registration stage three reference facial images of

high-quality were acquired from each participant (frontal,
left- and right-hand side – Fig. 1). The acquisition device
gathered information from the visible wavelength slice of
the electromagnetic spectrum, with the light source directly
above it. Participants were asked to essay a neutral
expression and look forward, aided by three fixation points,
so that all observers were facing the same direction during
this stage.
On a second stage images were acquired ‘simultaneously’

on both NIR and VIS, while introducing four variations:
illumination angle and intensity, subject revolution and
head-tilt – Fig. 3, columns 1–4. Changes on the
illumination angle were achieved with the halogen projector
shifting on 45° steps (Fig. 2, A–H ), while participants kept
facing the acquisition device. Additionally, participants
were asked to face eight fixation points evenly distant from
each other, introducing subject revolutions in full 360°. For
all variations, participants were imaged facing forward and
tilting their head up and down, while simulating
illumination intensity changes using the acquisition device
exposure settings.
At a final stage, subjects walked trough a corridor with

non-uniform illumination conditions whilst captured by a
VIS greyscale camera placed on a upper level. As we canTable 1 Overview of the most relevant and public available

face recognition datasets with pie variations, with comparison
to our working dataset

Dataset Subjects Sessions Pose Illumination Expression

FERET 1199 2 20 2 2
CMU-PIE 68 1 13 43 4
CAS-PEAL 1040 2 21 15 6
multi-PIE 337 4 15 19 6
LFW 5749 ? ? ? ?
BioHDD 101 2 24 72 1

Values marked with ‘?’ can not be determined because of the
nature of the dataset

Fig. 1 Example of images acquired used as gallery data: left-hand
side, frontal and right mugshots
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see from the samples at Fig. 4, surveillance-like data
acquisition was closely simulated.
Table 2 presents a complete hardware specification.

Data was gathered on two acquisition sessions with a
minimum of two weeks apart. On the first acquisition session
participants wearing glasses were required to remove them,
and the ones with longer hair were asked to tie it. Likewise,
videos acquired during that same session had participants
looking at a fixation point while walking. To increase
variability, on the second session such constraints were not
applied. No modifications were introduced on the hardware
setup or location. Attendance to both sessions was around
88%, representing a total of 101 participants. As described
on Table 3, 66 male subjects and 35 female subjects were
enrolled, most of them Caucasian. For normalisation
purposes, acquired images were manually cropped to 600 ×
600 px, while keeping the face centred. Registration images
from Stage 1 were stored with 2, 048 × 2, 048 px.

2.2 Heavily degraded data

Not all noise factors associated with recognition ‘in the wild’
were introduced during the acquisition stage. As so,
additional image degradation procedures were carried on.
A total of ten noise factors were identified and grouped in

three different sets: (1) ‘real’ noise factors introduced with the
imaging setup; (2) ‘simulated’ noise factors that although not
introduced at the acquisition stage are related with the
imaging process; and (3) noise factors associated with data
storage and transmission. Each noise agent comprises
different levels (Li), as illustrated on Fig. 3, and their
presence follows the reasoning we now describe.

Fig. 3 Examples of the types of image degradation factors in the BioHDD dataset
From left- to right-hand side: illumination angle and intensity, subject revolution, head-tilt, blur, occlusion and reverse occlusion, pixelisation, compression and
white noise
The top row corresponds to the first noise level L1, and the bottom row to the maximum noise level Lmax

On illumination intensity and head-tilt, both images represent L1, since their difficulty is similar
Although only VIS data is depicted, each image has its NIR counterpart

Fig. 2 Schematic perspective of the image acquisition framework
(over-top view)
For illumination changes, the light source alternate on positions A to H with
participants facing the camera
For rotation changes, participants were asked to align themselves with the
different reference points while the camera and light source remained
aligned at the initial position

Fig. 4 Samples from the video acquisition stage
Frames were cropped for illustration purposes
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2.2.1 Real noise factors: As previously described, this set
of noises was directly introduced at the acquisition stage.
When working in unconstrained scenarios optimal
illumination cannot be assumed. Along with the images
captured at the ‘best’ conditions (with average exposure and
having the light source directly over the acquisition device),
data was also captured varying the ‘lightening angles’ and
the ‘illumination intensities’ (low lighting and
over-exposure). The chosen angles cover all 360° degrees
(at 45, ° steps), and intensity changed from 5 to 100%. To
cover a higher amount of poses, subject ‘revolution’ was
also introduced over eight angles (similarly to illumination)
and ‘head-tilting’ in two, with participants facing up and
down. Those choices were based on the reasoning that
individuals trying to avoid detection are most likely to be
facing the ground or away from any visible cameras.

2.2.2 Simulated noise factors: To mimic acquisition
issues as the ones associated with inappropriate lens
settings, poor focus, subject movement etc, four levels of
‘blur’ were simulated applying Gaussian filters with
standard deviation raging from sL1

= 5 to sL4
= 20.

Face occlusion was simulated by overlapping a black patch
to the original image, covering oL1 = 15% to oL1 = 30%. A
different flavour of occlusion where only a small portion of
the image is left-hand side visible, !oL1 = 20% to !oL4 = 5%,
was also simulated. This noise factor can also be related
with the use of certain headgear (e.g. balaclava).
In certain scenarios we observe that the used devices are of

low or insufficient spatial resolution, or post-processing
censorship is applied to avoid detection of a particular
subject or distinctive feature that is intended to remain
anonymous. This ‘pixelisation’ effect was obtained by
downscaling the original photo: sizeL1 = 100× 100 px to
sizeL4 = 25× 25 px.

2.2.3 Storage/transmission related noise factors:
Finally, ‘compression’ degradation found on systems that
rely on digital storage or broadcasting was simulated using
a standard JPEG algorithm. Quality ranged from qL1 = 20%
to qL4 = 5%. Based on the same reasoning, inherent to data
storage on photographic film or broadcasted through
analogue channels, ‘white noise’ was simulated.
To generate probe images IP, one transformation from each

set T1, T2, T3 was randomly selected, and the corresponding
noise factor was applied to the original image at a random
level k, l, m, respectively (1). Noise application was
sequential, with the last noise transformation T3 being

applied upon T2 result, denoted by ° and T2 being applied
over T1 output. Sample probe images obtained using this
fusing technique are illustrated at Fig. 5

IP = (T3(Lm) ◦ T2(Ll) ◦ T1(Lk))(I )
= T3(Lm)(T2(Ll)(T1(Lk)(I))) (1)

2.3 Dataset availability

The complete BioHDD dataset is public and freely available
for academic and research purposes [http://biohdd.di.ubi.pt].
Researchers are granted access to: (1) 606 registration
images; (2) 27 270 probe samples with the variations
introduced during the acquisitions stage; (3) 27 270 similar
images on the NIR spectrum; (4) 2500 probe images with
combined noises; (5) 202 greyscale videos with surveillance
like data from each participant. Further probe images can be
generated ‘on-demand’, and all data comes with
ground-truth information about the associated noise levels.

3 Experiments and discussion

3.1 Experimental method

Our goals to study the human ability to identify their peers on
heavily degraded data were: (1) identify the noise factors
whose avoidance would be preferable, by associating each
one of them with a specific impact on human identification
performance; (2) pin down the regions identified as part of
the process and, if possible, even specific features; (3)
illustrate how negative recognition might still be reliable ‘in
the wild’, where the positive approach is unattainable. To
do so, a web-page was built with a custom participation
interface mimicking a watchlist recognition scenario – Fig. 6.
For this experiment, a total of 200 000 trials were

generated, combining 2500 probe images and 2500
galleries. At the begging of each test the interface was
populated with a random trial, with 3/4 probability of the
gallery containing the subject on the probe image. Each
participant was asked to do one of three actions, for each
gallery identity shown

1. mark it as green if they feel that the identity on the Q2mugshot
corresponds to the probe image (positive identification);
2. mark it red if they are certain that the identity on the
mugshot does not correspond to the query image (negative
identification);
3. leave it blank, in case of uncertainty.

In the case of identification, participants were asked to fill
the appropriate text-box to justify their answer. No time
restriction was set for image examination, and upon
finishing a new test was loaded. Each participant was free
to take as many tests as he wanted. The experiment ended
after one month, collecting a total of 3650 participations
from 45 different countries. A total of 17 438 identifications
and 1422 justifications were obtained.

Table 3 Details of the BioHDD subjects that offered
themselves as volunteers to both imaging sessions

Gender Male 65% Age [0, 20] 10.89%
Female 35% [21, 25] 44.55%

Origins European 95% [26, 30] 15.84%
African 4% [31, 35] 9.90%
Asian 1% [35, 99] 18.81%

Table 2 Details of the BioHDD acquisition devices, image and
video settings

Registration Image Acq. Video Acq.

camera Canon EOS 5D JAI AD-080GE Stingray
F504-B

lens Canon EF
100-400

NIKKOR 55-80 HR F1.4/8 mm

spectrum visible visible + NIR visible
color space RGB RGB +

greyscale
greyscale

channel
depth

8bit 8bit 8bit

frame size 4368 × 2912 px 984 × 768 px 1224 × 1028 px
cropped size 2048 × 2048 px 600 × 600 px –
format PNG PNG AVI
frame-rate – – 15 fps
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3.2 Results and discussion

Although including a third class for ‘no decision’ in our
testing interface, we simplified our problem to a binary one
by analysing the answers where participants were sure
enough of their answer to give a specific identification
(either positive or negative). To assess the identification
performance, four well-known statistical measures were
used: sensitivity (or true positive rate [TPR]), specificity
(SPC), accuracy (ACC) and Matthews correlation
coefficient (MCC). TPR and SPC, are given by (2) and (3),
respectively, and weight the correct responses by the total
of positive (true positives (TP) + false negatives (FN)) and
negative (true negatives (TN) + false positives (FP)) answers

TPR = TP
TP+ FN

(2)

SPC = TN
TN+ FP

(3)

The accuracy gives us the overall ratio of correctly classified
matches, 1 being the optimal value where all instances have
been correctly classified. For a balanced analysis we used
MCC, which takes into account the high discrepancy
between the amount of positive and negative matches. It
can be regarded as a correlation coefficient between
participants’ answers and the correct identification, and its
output ranges in the [−1, 1] interval, where 1 the optimal
value [15]

ACC = TP+ TN
TP+ FN+ FP+ TN

(4)

MCC = TP · TN− FP · FN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

√ (5)

In Fig. 7 we can see from the true positive rate and specificity
probability density functions, computed for all subjects on the
dataset. TPR is clearly more prone to variations, as positive
samples are more difficult to be found in the experimental

Fig. 6 Web interface of the conducted survey, with three major panels: (1) a probe sample from an unknown identity; (2) a set of 10 profile /
frontal mugshots, representing the gallery dataset; (3) zoomed-up perspective of each gallery sample, populated on mouse-over on region 2

Fig. 5 Sample trial images with different levels of noise combined
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setup. We should have in mind that one out of four trials could
not lead to TP, since the subject from the probe image is not in
the gallery. To stress the possible relationship between false
positives and the impossibility of making a positive match,
implying participants had attempted identification either
way, we performed a paired-sample Student’s t-test: For all
the n subjects in the database, let us define the fall-out
distributions d1 for trials where positive matches were
possible, and d2 when not. Let us then consider the null
hypothesis H0 where the difference D between d1 and d2
follows a normal distribution with mean equal to zero and
unknown variance, tested through (6)

t = XD −m0

sD/
!!
n

√ (6)

where XD and sD areD average and standard deviation values,
and μ0 the mean for the d1 distribution. Experimental data
returned a pvalue of 1.81 × 10−14, thus rejecting the null
hypothesis: the distributions are significantly different,
indicating that most participants indeed attempted to
perform a positive match, even when it was not possible.
Plotting each one of the subjects in the dataset as a function

of the TPR and SPC, we can understand their individual
propensity to correct identification – Fig. 8. Furthermore,
we can group them in four biometric menagerie classes as
suggested by Yager & Dunstone [16]: doves, chameleons,
phantoms and worms. ‘Doves’ are the most favourable
subjects and the optimal group for any recognition system,
as they do not produce verification error. High values are
observed for both TPR and SPC. ‘Chameleons’ are subjects
who are easily misidentified as they always appear similar
to others, their specificity is high, but true positive rate is
extremely low. ‘Phantoms’, in opposition to chameleons,
are associated with low SPC and high TPR. ‘Worms’,
contrary to doves, are the most critical subjects in a
biometric system. They behave in the worst possible way,
yielding low true positive rate and specificity. At a central
location we have ‘the herd’, where the most common users
(‘sheep’) are located.
To define the limits for each class, we start by defining two

regions for the true positive rate, TPRQ1 and TPRQ3,

containing the subjects below the first quartile and over the
third quartile, respectively. If we define two similar regions
(SPCQ1 and SPCQ3) for the specificity, a subject s is said to
assume a particular behaviour according to (7) [17]

Dove, if s , TPRQ3 > SPCQ3
Chameleon, if s , TPRQ1 > SPCQ3
Phantom, if s , TPRQ3 > SPCQ1
Worm, if s , TPRQ1 > SPCQ1

⎧
⎪⎪⎨

⎪⎪⎩
(7)

As we can see on Table 4, even with the degradation
introduced in the probe images participants were able to
correctly match 92% of the instances they were presented
with. To assess the effect of each noise on that performance
level, we computed the same metrics for when removing
each one of them. Additionally, we analysed how each
menagerie class relocated as a consequence of a specific
noise, as follows.
Take an initial point A(TPRa, SCPa) representing the global

recognition capabilities of an individual on the dataset, and a
point B(TPRb, SPCb) computed likewise for when a specific
noise is removed. We can then compute the global distance
to the optimal point O(1, 1) as (2), and the distance upon
noise removal db likewise.

da =
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
(1− TPRa)

2 + (1− SPCa)
2

√
(8)

Finally, the individual optimisation produced by noise
removal can be accessed through ζ→ [−1, 1], where −1
represents the worst case scenario and 1 the best
improvement possible. Zero means no performance change

z = da − db
da + db

(9)

Assessing the average ζ− values on each one of the zoo-plot
regions, we obtain the values at Table 5.

Fig. 7 Per-subject sensitivity and specificity probability density
functions

Fig. 8 Zoo plot for the overall user performance
Dashed lines represent the first and third quartiles for sensitivity and
specificity distributions
The identities on the ‘P’,’D’, ‘C’ and ‘W’ regions are more likely to assume
dove (D), chameleon (C), phantom (P) and worm-like (W) behaviour
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When a noise factor is withdrawn, one would expect the
optimisation to always be positive. However, both analyses
show only four noise factors that led to significant
improvements. The most conditioning element is the
introduction of the ‘white noise’ associated with analogue
channels, and as the opposite tendency is observed for
digital ‘compression’, we can conclude that digital channels
should be used. The second considerable constraint is the
‘illumination angle’: when the subject being identified was
not frontally lit, participants exhibited higher error rates. On
the other side, variations on the ‘lightening levels’ were not
relevant, as participants were able to accommodate to both
under- and over-exposure. We also observed their ability to
cope with ‘occlusion’ up to a certain degree, and only when
a portion of the face was visible (‘reverse occlusion’) their
performance started to degrade. Finally, participants’
performance was also significantly conditioned by
‘head-tilting’. This last observation is of special importance:
as mentioned before, individuals trying to avoid detection
are most likely to be facing the ground or away from any
visible cameras. Along with illumination intensity and
occlusion, some other noise factors’ removal did not led to
improvements in performance: ‘revolution’, indicating that
useful features can also be derived from the side of the
head, and are actively used in human identification; and
‘pixelisation’, that along with ‘compression’ lead us to infer
that global features are preferred over local and more
detailed ones.
When performing a ‘per’ species analysis, its perceptible

how sensitivity tens to decrease at an higher rate than
specificity increases. That explains the negative ζ-values for
species located over the TPR’ third quartile (doves and
phantoms), associated with a convergence to ‘the herd’. The
class that benefits the most from noise removal is ‘Worms’,

with improvements over three times greater than those
observed for ‘Sheep’.
As above stated, a set of justifications for each of the

responses given by the volunteers of our on-line survey
we’re collected. These answers are an important source of
information to perceive the type of features predominantly
used by humans in identification tasks, as well as to relate
the usability of each feature to the degree of success in the
corresponding identification. Hence, the responses were
grouped by the type of feature they mention and the facial
region, as detailed in Tables 6 and 7.
On a ‘per’ category analysis (Table 6), we can see how

almost half the justifications mention shape related features,
making it the most commonly used feature type. Colour
related features are much less used (6.04%), skin and hair
colour being the most significant ones. This is a
considerable difference, even considering that the dataset
consists mainly of young European participants. Attending
to the accuracy levels alone, one could be biased into
considering the latter to be a better feature.
To take into account both the high specificity value and the

difference in class sizes MCC was also analysed. This
measure weights the importance of TPR and SPC by the
size of each class, shows shape to be not only the most
used feature type, but also the more reliable on both
positive and negative identification. Finally, the number of
participants that used textural information is almost residual
(0.51), and usually refers to freckles and another skin signs,
tattoos and jewellery.
In Table 7 we summarise the ‘per’ region analysis. As we

can see, when looking to justify the identifications they make
participants use holistic features on almost 2/3 of the
justifications, with two most relevant cues: perception on
probe subject gender, and a broad analysis of head’s shape.
From that, special attention is paid to top regions, which can
intuitively be related to a higher amount of detail, as more
elements are present. Actually, if we analyse the weighted
accuracy average per region we can see how topmost areas
are indeed less deceiving than lower ones, which is
explained by the high volume of negative identifications
based on hairstyle. Hair related features played an important

Table 4 Overall sensitivity (TPR), specificity (SPC), accuracy
(ACC) and MCC values and the same statistics for when a noise
factor is removed

TPR SPC ACC MCC

overall 0.657 0.941 0.918 0.547
illumination angle 0.682 0.944 0.922 0.573
illumination intensity 0.633 0.938 0.913 0.518
revolution 0.641 0.941 0.916 0.537
head-tilting 0.671 0.941 0.919 0.558
Gaussian Blur 0.670 0.943 0.920 0.560
occlusion 0.641 0.939 0.914 0.532
rev. occlusion 0.675 0.942 0.920 0.558
pixelisation 0.641 0.941 0.917 0.537
compression 0.618 0.937 0.911 0.506
white noise 0.688 0.945 0.923 0.580

Table 5 Average ζ-values for all zoo-plot regions (×10−2) upon noise removal

Doves Chamel. Phant. Worms Sheep Average

illum. angle 6.66 3.78 −3.26 11.90 3.01 2.79
illum. intens. 4.48 −5.32 −6.19 −8.89 −6.82 −3.00
revolution −17.27 −0.37 8.47 1.23 −2.37 −2.51
head-tilting 4.58 0.70 −0.61 −0.13 4.64 2.17
Gaussian Blur −0.81 −0.88 4.26 −1.79 5.76 0.92
occlusion 5.26 −0.96 −6.41 −3.02 −6.73 −1.06
rev. occlusion 1.84 0.82 2.90 3.84 4.91 2.69
pixelisation −13.49 −0.03 −12.04 7.86 −3.93 −4.38
compression 13.61 −0.83 −19.47 −14.57 −3.99 −3.98
white noise −17.74 5.74 10.99 13.49 2.71 3.33
average −1.29 0.27 −2.14 0.99 0.28

Table 6 Probability (%), sensitivity TPR, specificity (SPC),
accuracy (ACC) and MCC values for feature category usage on
recognition justifications

(%) TPR SPC ACC MCC

shape 49.64 0.87 0.88 0.88 0.62
color 6.05 0.71 0.92 0.90 0.52
texture 0.51 1.00 0.50 0.71 0.55
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role as decision factor, being mentioned in almost 1/4 of the
answers. Allusions to the forehead were also mostly related
to hair-to-skin boundaries, and if we group them as ‘upper
face’ we cover 25.73% of the answers. The second most
used region was ‘mid-face’, whose observation aided on
justifying 24.28% of the identifications. Here, periocular
information was the most used (10.86%), closely followed
by the nose information. From the lower face, the most
mentioned feature is a mix of the chin/jaw shape and the
texture (the presence of facial hair).
When balancing positive and negative identifications

through MCC, we can see how the mid-face is the less
deceiving area. For the holistic features, age was the most
effective recognition factor. As most of the database
participants are young adults (academic students), the ones
older than them (academic staff) are easily spotted.

3.3 Positive against negative identification

The degree to which we can rely on positive identification
changes significantly when the decision environment
degrades. To illustrate a poor decision environment, we
computed entropy η as the single feature for subject
identification over images acquired at the first three levels
of illumination angle and subject revolution. Let I be an
image in this set and xi a pixel intensity level on the [0,
255] interval. Using histogram counts to estimate its relative
frequency P(xi), the global image entropy is given by (10).
Attending to probability densities (Fig. 9), we can verify
how that constitutes a poor decision environment for any
Bayesian classifier to perform positive identification, as
functions overlap

h(I) =
∑

i

P(xi) log2 P(xi) (10)

Yet, assuming a null hypothesis H0 corresponding to the
genuine matches, and H1 to the impostors, we can use
the Neyman-Pearson statistical test [18] to optimise the
classification decision in function of a threshold l (11)

S = 0, if P(S|H1) . lP(S|H0)
1, if P(S|H0) ≤ lP(S|H1)

{
(11)

Class density distributions P(S|H0) was estimated through î
for positive identification (12), and !̂i on the negative
approach (13), from class predictions ωi

î = argi maxP(vi|h) (12)

!̂i = argi minP(vi|h) (13)

Computing Bayes error rate (14) for both identification modes
at varying ls, we obtain the receiver operating characteristic
(ROC) curve at Fig. 10. This graphic we illustrate the
performance of both identification modes by plotting the
true positive rate against the false positive rate for various
l-values. A point closer to the origin (0, 0) corresponds to
an higher l-value and, consequently, a more restrictive
system. We can see that relaxing the parameter l makes
true positives increase at an higher rate on negative
identification than on positive identification. In the latter,
true positive never gets over 0.02, which is understandable
since we are using image entropy as the single feature.
Nonetheless, we can see how such a poor decision
environment built form a single feature, which do not
provide enough information to attain positive identification,

Table 7 Probability (%), sensitivity (TPR), specificity (SPC), accuracy (ACC) and MCC values for feature usage as recognition
justification

(%) (%) TPR SPC ACC MCC

holistic 64.29 gender 35.86 0.50 0.99 0.98 0.38
age 2.33 0.75 0.96 0.94 0.71

face/head 22.89 0.86 0.93 0.92 0.68
skin 3.21 0.60 0.90 0.86 0.43

upper face 25.73 hair 23.03 0.74 0.89 0.87 0.54
forehead 2.70 0.86 0.93 0.92 0.75

mid face 24.28 eyebrows 4.66 0.85 0.78 0.80 0.53
eyes 3.94 0.91 0.79 0.81 0.59

glasses 2.26 0.33 1.00 0.94 0.56
ears 3.43 0.93 0.67 0.74 0.54
nose 9.99 0.96 0.85 0.88 0.71

lower face 16.11 cheeks 0.36 1.00 0.50 0.60 0.41
beard/mustache 4.52 1.00 0.89 0.90 0.64

mouth 2.26 0.89 0.82 0.84 0.66
chin/jaw 6.05 0.86 0.88 0.88 0.53
neck 2.92 0.80 0.71 0.73 0.36

other 2.33 shoulders 0.15 1.00 0.00 0.50 —
clothes 2.19 0.50 0.86 0.83 0.24

Features are grouped per type/region and sub-region.

Fig. 9 Probability density function for entropy values (η) on all
subjects on the dataset
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still allows reliable negative identification

P(error|S) =
∑

vi=vmax

∫

h[Hi

P(h|vi)p(vi) dh (14)

4 Conclusions

This paper introduced the BioHDD, a new multi-session
dataset of heavily images, with two singularities that turn it
suitable for evaluating biometric recognition methods in
extremely degraded data: (1) it contains a set of profile and
frontal mugshots from 101 subjects, simulating good
quality enrolment data; (2) it contains large sets of probes
degraded under combinations of ten types of noise factors,
resulting in images that are extremely hard to classify.
Further, we conducted an extensive on-line survey on the

BioHDD data. Participants were asked to positively/
negatively identify probes against the enrolled identities,
along with a description of the major features used in their
responses. The analysis of identification performance
showed that humans have no issues cooping with
inadequate illumination intensity and moderate levels of
occlusions. Also, a notable ability to cope with
low-resolution and compressed images was observed,
suggesting that humans mostly rely on global features for
identification tasks. On the other side, probes with subjects
looking straight up or down and higher levels of occlusion
were found to be stressful elements. That is probably the
most concerning issue, as subjects trying to avoid detection
‘in the wild’ are more likely to be caring headgear or facing
down, away from visible cameras.
A second level analysis was carried out on the justifications

that participants gave for their responses: we concluded that
high-frequency information, although not latent to the
identification process, is taken into account when looking
for specific attributes than can support their decisions. In
both cases, shape related cues were the most accounted for,
and also the more reliable. On the other side, texture
information was rarely indicated as a decisive element.
Holistic features, although not the more reliable ones, were

also used on most justifications. From the identified
features, the more reliable were the ones located on the
mid-face: periocular features, the nose and the ears.
As further lines of work, authors plan to: (1) extend the

acquisition setup in order to make it even more complete at
mimicking ‘in the wild’ conditions (e.g. complement it with
different light source angles); (2) expand the BioHDD
dataset with a larger amount of participants, increasing even
more the statistical significance of the dataset. Such
improvements will be made available at the database website.
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A Dual-Step Approach to Head Landmark Detection In The Wild

Anonymous ICB 2015 submission

Abstract

The correct determination of facial and head landmarks
is of significant value in multiple computer vision do-
mains. In this paper a novel landmark detection approach
is proposed, capable of identifying the presence of six key-
elements of the human head and pinpoint their location
regardless of the image acquisition angle or head’s pitch.
For this purpose, a dual-step approach is used: 1) a pixel-
level statistical analysis assigns each image pixel into one
of seven primary components of a typical head photo-shot;
2) head landmarks are detected by fusing HOG-based fea-
tures extracted from both the acquired image and the output
from the first stage. Finally, performance evaluation of the
proposed method is carried out over surveillance-like data,
where subjects’ heads are imaged over multiple angles cov-
ering a full 360 degree view and participants exhibiting full
head pitch range.

1. Introduction

The human face is of the most importance for recogni-
tion, interaction and communication purposes. Being able
to accurately detect facial landmarks is a challenging goal
with many applications in the field of computer vision, such
as head pose estimation, expression analysis and face align-
ment for biometric recognition.

The pioneering research focused on facial landmarks
used elastic graphs matching for the detection of facial ima-
ges in cluttered scenes [11], and compensate for large ro-
tations in depth while carrying on face recognition [16].
Later on the Active Appearance Models (AAM) algorithm
was introduced [3], which is actively used nowadays on
face matching and tracking, with further improvements to
learn appearance variations of a set of templates [4]. More
recently, different approaches address the issues inherent
to unconstrained scenarios, either by using tree-structured
models to effectively handle deformation, combining face
detection, pose estimation and landmark localization [19],
SIFT-based face part detectors [1], or regression-based
models to achieve face alignment [2].

From the point of view of unconstrained biometrics,
where efforts are being held into extending robust recog-
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Figure 1. Illustration of the optimal output for our method. The
detected landmarks are 1) right eye, 2) left eye, 3) nose, 4) mouth,
5) right ear, and 6) left ear.

nition to in the wild scenarios, landmark detection is com-
monly used in early stages in order to achieve proper face
alignment. Techniques developed for such purpose seek to
find the correct location of the eye’s center and corners,
eyebrow corners, nose tip, mouth corners, etc. However,
an effective head landmark detection technique can be put
to further uses. Being able to identify which are the visi-
ble landmarks can help decide on the best recognition tech-
nique to use. In fact, being able to tell to which extent a
particular biometric trait is reliable or not, based on its visi-
bility, can be more interesting that having a close estimation
of the head’s pose, or conducting facial alignment. To this
purpose, the present work aims at detecting six landmarks
in particular: the left and right eyes, with the corresponding
periocular region; the left and right ears; the nose; and the
mouth.

The head landmarking problem is particularly challen-
ging over unconstrained, noisy or degraded data, as not only
the head is a moving imaging target, as it rotates over three
axes: pitch, roll and yaw. Furthermore, on most video-
surveillance scenarios it can be imaged from any direction,
and most of the proposed facial landmark detection meth-
ods require a frontal or near-frontal imaging of the subject
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Figure 2. Illustrative diagram of the proposed method. Apart from the acquired and labeled photos, images were scaled and mapped to a
different color-map for better perception.

to properly function. The technique presented in this paper
allows identifying which ones of the six main head land-
marks are visible (i.e. eyes, nose, mouth, and ears) and
their location in the head image, regardless of the imaging
angle and head-tilting – Figure 1. To achieve that goal, a
two-step approach is followed. At first, a pixel-level clas-
sification assigns each one of the image pixels into one of
seven key-regions representing the main elements of a head
photo-shoot: skin, hair, eyes, mouth, clothes, accessories
and background. To do so, a set of Neural-Networks (NNs)
was used, working over a group of color and textural fea-
tures. On a second stage, a Histogram of Oriented Gradi-
ents (HOG) analysis combining information from both the
acquired image and the newly obtained pixel-level classifi-
cation map is fed to another set of NNs, resulting in the final
landmark detection output.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the proposed method, with details on both
its pixel-level classification and landmark detection steps;
Section 3 details the experimental procedure, starting by re-
porting the utilized dataset, and followed by the method re-
sults. Finally, Section 4 contains some final considerations,
and further lines of work.

2. Proposed Method
The landmark detection technique proposed in this pa-

per consists in two main steps – Figure 2: 1) pixel-level
classification between seven predominant regions; 2) land-
mark detection combining both the acquired image and the
pixel-level classification.

For the purpose of this work the problem of head detec-
tion is assumed to be already solved, as literature provides a
considerable number of techniques [17, 18], among which
the widely implemented Viola and Jones detector [15].

2.1. Pixel-level Classification

At the pixel-level classification stage, each one of the
pixels is individually classified into one of seven key-
regions found to be the predominant ones in head images:
skin, hair, eyes, mouth, clothes, accessories and, for the re-
maining pixels, background. Eye pixels include the visible
elements of the ocular globe (i.e. sclera, iris and pupil), and
mouth pixels comprise the lips and, occasionally, other ele-
ments from the human mouth made visible due to subject’s
expression (e.g. teeth). For such purpose, a set of features
was extracted and fed to a NN for classification. The se-
lected features were chosen for their simplicity, and com-
putation ease, aiming at establishing a fast technique able
to work on real time.

As some identified key-regions were visually more dis-
tinct over different color-spaces, four different color rep-
resentations were used for feature extraction: RGB, Hue-
Saturation-Value (HSV), YCbCr and CIE Lab. The inten-
sity values in the RGB color-space were directly red from
the database images, and used as reference to compute the
remainder. The HSV color-space was firstly introduced by
Joblove and Greenberg [9] to represent color in a more in-
tuitive and perceptually relevant manner, by mapping the
color values to a cylinder: the “hue” value corresponds to
the angle around the cylinder axis; “saturation” the dis-
tance from that same axis; and finally the “value” is the
height, representing the perceived luminance having sat-
uration as reference. YCbCr is a color-space more com-
monly used in digital video systems, and its three compo-
nents means respectively the luminance (Y) and the blue-
difference chroma (Cb) and red-difference chroma (Cr).
Conversion was attained based on ITU-R recommendation
BT.601 [8]. The Commission Internationale de l’Eclairage
(CIE) 1976 (L⇤

a

⇤
b

⇤) color space, also known as CIE Lab, is
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partially uniform representation, based on the human visual
system and allowing absolute color characterization. Since
proper chromatic adaptation matrices were not disclosed
along with the used database, the transform was based on
the ITU-R recommendation BT.709 [7], using as reference
the CIE D65 illuminant [14].

For each pixel, and besides its own intensity, a set of
features were computed for each one of the color represen-
tations as follows. At first, the entropy was used to encode
the image texture using its randomness [6]: let I be an im-
age from the dataset, and li a pixel intensity level on the
[0.255] interval; using histogram counts to estimate its rel-
ative frequency P (li), the entropy value ⌘ is given through
(1).

⌘ =

255X

i=0

P (li) log2 P (li) (1)

This metric was computed for 8-, 35- and 224-neighbor
windows. For the same neighborhoods of N pixels xi

were also computed the average µ, standard deviation � and
range (maximum value - minimum value), asymmetry ↵ (2)
and kurtosis k (3).

↵ =

1

N

PN
i=1(xi � µ)

3

�

(2)

k =

P (xi � µ)

4

�

4
(3)

Finally, two more well known distribution-based des-
criptors were used HOG and Uniform Local Binary Pat-
terns (ULBP). The HOG descriptor [5], widely applied on
computer vision, computes the gradient orientation by filter-
ing the image with two kernels: [�1, 0, 1] and [�1, 0, 1]

T .
The ULBP descriptor differs from the regular Local Binary
Patterns (LBP) as it achieves “improved rotation invariance
with uniform patterns and finer quantization of the angu-
lar space” [12]. Instead of the 2

n possible binary patterns
outputted from the regular LBP over an 8-neighbor region, a
uniformity measure U is calculated representing the number
of bitwise changes in that same pattern (4). This measure
can only assume 59 distinct values.

ULBP = |sgn(x7 � xi)� sgn(x0 � xi)|+

+

7X

n=1

|sgn(xn � xi)� sgn(xn�1 � xi)|
(4)

As we can see, from this analysis many features were ex-
tracted, resulting in a classification problem with very large
dimensionality. As so, we choose to conduct dimensionality
reduction using the Principal Component Analysis (PCA)
technique [10], prior to the training of the NNs. NN-based

methods have been widely applied on classification prob-
lems, for their learning abilities and good generalization.
For the purpose of this work, a NN was trained to identify
each one of the identified key-regions. The architecture of
each NN was as follows: the hidden layer had fifteen neu-
rons, half the number of features resulting from the dimen-
sionality reduction stage, and the final (output) layer had a
single neuron, since we are dealing with binary classifica-
tion problems. At the classification phase of this stage, each
pixel is mapped to the key-region whose NN outputted the
greatest value in terms of cumulative density.

2.2. Landmark Detection

The second-stage combines textural information from
both the acquired image and the pixel-level classification
output to produce the final decision about the presence of
head-landmarks and their location.

At first, the acquired image is divided into multiple over-
lapping spatial blocks. Those blocks constitute the set of
detection windows that will be matched against each one of
the head landmarks. Then, the information from each one
of those windows is encoded, along with the correspondent
output from the pixel-level classification stage, simply by
using the HOG-based encoding technique detailed on the
previous section.The single use of HOG-based feature en-
coding was preferred over more complex techniques, so that
this procedure could to be carried over a large amount of de-
tection windows with a lower impact on the computational
cost.

Finally, those features fusing information from both the
acquired image and the output from the previous stage is fed
to a set NNs, previously trained to identify each one of the
landmarks. For this second stage, each NN has two hidden
layers: a first hidden layer with 100 neurons, and a second
one with ten. Once again, and since each NN was trained to
fit a single landmark, we are facing a binary classification
problem and a single output neuron was used. The output
of each NNs was analyzed against its cumulative density
function to produce the final detection decision.

3. Experimental Results
To the best of our knowledge and despite the literature

cited in the introductory section, from the published re-
search none is aimed at the same goals our method is.

3.1. Dataset

For the purpose of this work, we found that the most fit
dataset was the BioHDD [13]. The BioHDD is a database
built to test biometric methods against extremely degraded
data, gathering head images from over one hundred partic-
ipants in a full 360� view. This dataset provides images
acquired in both the near-infrared (NIR) and visible wave-
length (VW), but only the latter were used.
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Table 1. Confusion matrix for the results obtained at the pixel-level classification stage. Performance values for the three top-performing
classifiers are outlined in bold.

Predicted Class
Skin Hair Eyes Mouth Clothes Accessoires Background Total Sensitivity

A
ct

ua
lC

la
ss

Skin 1 886 583 141 688 31 298 361 551 115 075 39 893 53 905 2 629 993 0.717
Hair 370 676 5 261 177 27 794 208 666 246 236 168 670 242 134 6 525 353 0.806
Eyes 78 406 2 046 1 820 863 1 372 20 6 605 0.310
Mouth 6 584 2 096 739 21 005 1 801 1 752 365 34 342 0.612
Clothes 47 362 208 181 10 057 78 840 423 049 53 885 74 181 895 555 0.472
Accessoires 591 17 356 3 702 6 244 24 125 21 505 2 144 75 667 0.284
Background 21 554 334 266 3 407 45 338 147 108 21 554 7 259 258 7 832 485 0.927
Total 2 333 428 5 965 170 79 043 723 464 958 257 308 631 7 632 007 18 000 000
Precision 0.809 0.882 0.026 0.029 0.441 0.070 0.951

Although ten different types of noise are present in the
dataset, we have chosen a subset where variations occur
over two axes: 1) imaging angle – subjects’ heads were im-
aged from different angles, covering all 360� degrees at 45�
steps; 2) head-tilting – for each one of the imaging angles,
three variations were observable, with subjects were fac-
ing forward, or looking up or down. As we can see from
Figure 3, there is a considerable variability among the used
data. For the sake of clarification, the 0

� angle corresponds
to the subject being imaged frontally. For illustrative pur-
poses, sample images from the BioHDD subset used in our
experiments are present at Figure 3.

3.2. Evaluation Metrics

To quantify the performance of the proposed method, the
following metrics were used: for the first stage (pixel-level
classification), the confusion matrix were computed, along
with the sensitivity and precision for each key-region; for
the second stage (and global method performance) perfor-

(a) (b) (c)

(d) (e) (f)

Figure 3. Sample images from the BioHDD subset used in our
experiments: subjects’ head imaged from different angles, with
participants facing forward, looking up or down.

mance was assessed through Receiver Operating Charac-
teristic (ROC), Area Under Curve (AUC) and Equal-Error
Rate (EER).

The confusion matrix summarizes the performance of
the classifiers, counting the matches that were observed be-
tween each one of the actual classes (rows) and the pre-
dicted values (columns). That allows assessing the amount
of positive pixels that were actually classified as such (sensi-
tivity) and identify which classes are more commonly mis-
taken. The precision, on the other side, gives us the propor-
tion of positively identified classes that actually were gen-
uine.

The ROC curve relates the sensitivity, or True Positive
Rate (TPR) with the False Positive Rate (FPR). Based in
that plot, the AUC can be perceived as a quantification of
how well pairwise comparisons are performed on a binary
classification problem. On the perfect scenario, all positive
matches are ranked higher and the negative ones, and the
AUC equals one. Finally, setting the acceptance threshold
so that the probability of false acceptance equals the proba-
bility of false rejection, we obtain the EER.

During the experimental procedure all results were ver-
ified using ten-fold cross-validation: 90% of the data was
randomly selected for training, being the testing conducted
on the remaining 10%. This procedure was repeated ten
times.

3.3. Pixel-Level Classification

To train the classifiers for this stage, a subset of fifty ima-
ges from the BioHDD database was used. Although only
fifty images were used, each one has 600⇥600 pixels repre-
senting a total of eighteen million potential instances spread
between the seven classes.

In order to establish the ground-truth, images were man-
ually segmented, assigning each pixel to one of the estab-
lished key-regions. However, as the number of positive
and negative instances of each key-class were significantly
unbalanced in particular for the smaller key-regions (e.g.
eyes), we have chosen to use all positive instances for train-
ing, and randomly choose double that amount of negative
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instances.
For each selected pixel, features were then encoded as

detailed in Section 2.1. The NN classifiers results over the
10-fold cross-validation are present at Table 1 and illus-
trated at Figure 4. For a better perception of the achieved
results we choose to display the same images that were pre-
viously used to illustrate the dataset (Figure 3).

Analyzing the sensitivity values for each class, we can
see how that performance metrics appears to be directly
proportional to the total of pixels of each key-region, with
exception of the clothes and accessories. That leads to theo-
rize that the low performance of some classifiers were pos-
sibly conditioned by an insufficient number of training sam-
ples, as the ones with better performance were also the ones
with a larger training set. As for the two exceptions, visu-
ally inspecting samples from those classes we observe that
they display a much more significant variability in textural
information between the dataset participants. Without mak-
ing any considerations about this classification stage impact
over the final method’s performance, there are three key-
regions satisfactorily classified over this step: background,
hair and skin, which is further corroborated by the results
illustrated at Figure 4.

Attending to the precision of each classifier, we can ob-
serve how the eyes, mouth and accessories are effectively
problematic classes, as less that 10% of the pixels actually
classified as such were genuine positives. For the pixels
classified as eyes, 40% actually belong to the skin region,
and 35% are hair. A possible explanation is the fact that
the eye region is relatively small, and the skin and hair are
its direct neighbors. As some features were extracted over

(a) (b) (c)

(d) (e) (f)

Figure 4. Sample output from the pixel-level classification stage.
For a better perception of the achieved results, the images being
shown are the same images previously used for dataset illustration
(Figure 3).

relatively large widows, that could have misled the classi-
fiers. A similar conclusion can be drawn for the mouth and
accessories regions.

There is also a significant confusion between the clothes,
background and hair regions. That is perceptible not only
by analyzing the misclassified pixel count, but also by vi-
sually inspecting the resulting region maps at Figure 4.
The BioHDD dataset, although intended to simulate uncon-
strained conditions, were acquired on a controlled environ-
ment, where the background of each image was a regular
white sheet of fabric. As so, those regions can be assumed
to have enough similarities to mislead the classifiers.

Even if not representing an optimal classification solu-
tion for all the regions per se, the output from the pixel-level
classification stage represents a significant contribution to
the overall performance of our proposed method, as shown
on the next section.

3.4. Landmark Detection

To conduct the second and final stage of our experiments,
we randomly picked over a thousand different images from
the selected BioHDD subset (excluding the ones used for
pixel-level classification training and performance assess-
ment). Each one of those images was then manually an-
notated to provide ground-truth information about the vis-
ible landmarks and their precise locations. To delimit the
landmarks a square 120 ⇥ 120 pixel region was used and,
regardless of the imaging angle and head pitch, that region
was always unrotated and centered on the landmark. That
dimension was selected based on experimentation and at-
tending to the dataset characteristics, aiming at fitting the
whole landmark without including unnecessary surround-
ings.

To train each one of the classifiers, one genuine land-
mark and two impostors were extracted from each image.
Those two negative samples correspond to non-overlapping
regions of the same dimensions of the landmarks, randomly
located in the same database image. At the evaluation stage,
a detected landmark is considered a true positive if the real
landmark center is located within the detection window.
Likewise, any landmark left undetected is considered to be
a false negative. Once again, experiments were conducted
over a 10-fold cross-validation. For comparison purposes,
along with the feature-level fusion from the acquired image
with the output from the pixel-level classification stage, dif-
ferent classifiers were trained using the features from each
one of those sources separately. The performance assess-
ments are present at Figure 5 and Table 3. The impact of
the imaging angle and head pitch over the feature-level fu-
sion classifier are presented at Tables 2 and 4 respectively.

As we can see all landmarks exhibit relatively good de-
tection performance, considering the demanding characte-
ristics of the dataset: once again, we are stressing the pro-
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Table 2. Detection performance of the proposed method, accordingly to the subject imaging angle. The displayed performance metrics are
Area Under Curve (AUC) and Equal-Error Rate (EER). Cells with empty values represent angles where that landmark was neither detected
nor visible. Top values for each landmark are outlined in bold.

Imaging Angle ! 0

� ±45

� ±90

� ±135

�
180

�

AUC EER AUC EER AUC EER AUC EER AUC EER
Right Eye 0.948 0.114 0.865 0.183 0.782 0.264 0.801 0.268 – –
Left Eye 0.913 0.160 0.854 0.207 0.799 0.260 0.838 0.245 – –
Nose 0.850 0.206 0.841 0.223 0.816 0.239 0.828 0.222 – –
Mouth 0.919 0.132 0.872 0.172 0.806 0.254 0.306 0.695 – –
Right Ear 0.839 0.239 0.935 0.139 0.920 0.156 0.947 0.099 0.826 0.235
Left Ear 0.831 0.243 0.907 0.154 0.929 0.156 0.920 0.114 0.732 0.313

posed method against images where the subject could have
been imaged from a wide variety of angles on a full 360�
range and with variable head pitch.

At Table 3 we can observe how the features extracted
from the subject as it was imaged appear to be more dis-
criminative than when using only the features from the
pixel-level classification output. The only exceptions are
the eye landmarks. Remarkably, the eye region was one
of the key-elements of the image that presented signifi-
cant classification issues during the first stage. Nonethe-
less, feature-level fusion is always preferable: as we can see
from the ROC curves the fusion classifier is able to obtain
higher true positive rates (sensitivity) with lower false posi-
tive rates (leftmost part of the each plot). Top performed is
observed for the ear landmarks, with the right ear achieving
an AUC of 0.910 and 0.155 EER. Right after that, the eyes
landmarks attained AUC of 0.870 and 0.858, being the third
and fourth top performing landmarks. Finally, the nose and
mouth were the landmarks with lower performance: 0.835
and 0.853 for AUC, and 0.228 and 0.203 EER respectively.

Analyzing the landmark detection performance as func-
tion of the imaging angle (Table 2), we can observe that
frontal imaging of the subject lead to better performance
on detecting the right and left eyes, nose and mouth land-
marks. At that imaging angle, the average of the AUC va-
lues observed for the eyes landmarks was 0.931, followed

Table 3. Detection performance for each individual landmark,
when features were used from the acquired image, from the pixel-
level classification stage output, and from their fusion. The dis-
played performance metrics are Area Under Curve (AUC) and
Equal-Error Rate (EER). Top results for each landmark are out-
lined in bold.

Acquired Image Px-Lvl Output Fusion
AUC EER AUC EER AUC EER

Right Eye 0.843 0.228 0.870 0.210 0.863 0.190
Left Eye 0.839 0.229 0.845 0.235 0.858 0.214
Nose 0.815 0.246 0.799 0.271 0.835 0.228
Mouth 0.819 0.249 0.811 0.254 0.853 0.203
Right Ear 0.910 0.161 0.870 0.204 0.909 0.155
Left Ear 0.872 0.195 0.855 0.224 0.881 0.182

by the mouth with 0.919 and the nose with 0.850. The de-
tection performance for the ears landmarks achieved even
higher performance values, with an average top AUC of
0.938. However, those two landmarks performed better
as the subject was imaged over higher rotation angles (i.e.
sideways). When the subject is completely tuned by 180

�,
facing away from the camera, and despite four of the six
head landmarks not being visible, the ear landmarks are still
detected with relatively good performance. On those latter
conditions, 0.826 AUC was observed for the right ear, with
an EER of 0.235. Attending the facial landmark detection
techniques in the literature, we can consider that from the
stressed imaging amplitude range the most adverse to be lo-
cated between ±135

� and 180

�. As we saw, the proposed
method is able to cope with such conditions with satisfac-
tory performance.

Finally, from Table 4 we can see how our method is rela-
tively stable to variations on head’s pitch, with the detected
landmarks registering standard deviations not higher than
0.026 for the AUC and 0.031 for the EER among all the
stressed pitch ranges.

4. Final Considerations
In this paper we propose a novel algorithm for head land-

mark detection, capable of identifying and pinpoint their lo-
cation of six key-elements of the human head: right and
left eyes, nose, mouth, and right and left ears. The pre-
sented technique solution is composed of two major phases:
1) a group of locally extracted features classifies each im-

Table 4. Detection performance of the proposed method, accord-
ingly to the subjects’ head pitch. The displayed performance met-
rics are Area Under Curve (AUC) and Equal-Error Rate (EER).

Pitch ! Facing Forward Looking Up Looking Down
AUC EER AUC EER AUC EER

Right Eye 0.857 0.195 0.891 0.159 0.844 0.211
Left Eye 0.831 0.240 0.883 0.179 0.865 0.218
Nose 0.802 0.254 0.844 0.215 0.855 0.206
Mouth 0.838 0.231 0.854 0.191 0.867 0.173
Right Ear 0.915 0.152 0.910 0.148 0.899 0.174
Left Ear 0.869 0.185 0.904 0.146 0.868 0.188
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(b) Left Eye
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(e) Right Ear
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Figure 5. Receiver Operating Characteristic (ROC) curves for the detection of each individual landmark, when features were used from the
acquired image, from the pixel-level (Px-Lvl) classification stage output, and from their fusion.

age pixel into one of the seven main-regions of a head
photo-shot (skin, hair, eyes, mouth, clothes, accessories and
background); 2) HOG features are extracted from both the
acquired image and the pixel-level classification stage for
landmark detection. When tested against a database of de-
graded data that simulates surveillance-like conditions, our
method delivered relatively good performance regardless of
the subject’s imaging angle and his head pitch.

As future lines of work, further validation of the pro-
posed method is intended, not only against the full range
of noise factors provided by the BioHDD dataset, but dif-
ferent and more widely used databases as well. Another
step would be the extension of the proposed method to head
pose estimation, using as information the coordinates of the
detected landmarks.
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Abstract

Efforts in biometrics are being held into extending robust

recognition techniques to in the wild scenarios. Nonethe-

less, and despite being a very attractive goal, human identi-

fication in the surveillance context remains an open prob-

lem. In this paper main we introduce a novel biometric

system – Quis-Campi – that effectively bridges the gap be-

tween surveillance and biometric recognition while having

a minimum amount of operation restrictions. We propose

a fully automated surveillance system for human recogni-

tion purposes, attained by combining human detection and

tracking, further enhanced by a PTZ camera that delivers

data with enough quality to perform biometric recognition.

Along with the system concept, implementation details for

both hardware and software modules are provided, as well

as preliminary results over a real scenario.

1. Introduction
Biometrics is one of the most active fields in the area of

computer vision, which is justified by our societies’ increas-
ing concern about security. Biometric systems significantly
rely on the accurate extraction of individuals’ distinctive
features, which is conditioned by the acquisition environ-
ment and constraints. As such, the most reliable systems
are deployed on controlled scenarios and count on subject
cooperation. On the other side, surveillance cameras are
widely deployed and can constitute a good source of input
for biometric systems. Filling the gap between biometrics
and visual surveillance is quite a desirable goal, allowing
to produce automata capable of recognizing human beings
in the wild, without their cooperation and, possibly, even
without their awareness.

When moving to in the wild scenarios the acquisition
constraints are substantially lowered and, most of the time,
subject cooperation is not even expectable. In order to deal
with such challenging conditions alternatives are sought
over three axes [6]: 1) improve the existing algorithms so
they can handle more degraded data; 2) resort to multi-
modal biometric systems so that the usage of multiple traits
can compensate for their lack of “quality”; 3) explore new

biometric traits that could better cope with this new real-
ity. Despite the recent efforts, no system yet exists capable
of dealing effectively with all the issues introduced by in

the wild biometrics, and even those systems able to cope
with less constrained conditions (e.g. the Iris On The Move
project [11]) still lack an ideal level of user abstraction.

Despite the several applications of visual surveillance,
most of existing surveillance systems are focused on activ-
ity recognition (e.g. W 4 project [5]), and not that many
of them are prepared to handle surveillance scenarios from
a watchlist approach (e.g. Kamgar-Parsi et al. [8]). In
this paper we present a novel biometric recognition sys-
tem, designed to work covertly in a non-habituated and
non-attended fashion, over non-standard environments. Our
main goal is to conceive a system that links together both
biometrics and visual surveillance, being able to conduct
biometric recognition over typical surveillance scenarios,
with the minimum possible amount of operation restric-
tions.

The remainder of this paper is organized as follows: in
Section 2 we detail the three layers of the recognition sys-
tem, its operation premises and devised modules; in Sec-
tion 3 we present the stressed techniques for each module,
along with preliminary results of our system over a real
surveillance scenario and, finally, Section 4 states some fi-
nal considerations.

2. The Recognition System
The optimal recognition system would operate on any

environment, thus minimizing the amount of operation re-
strictions. Since we are trying to bridge biometrics with the
visual surveillance, we have developed our system in a typ-
ical surveillance scenario: a parking lot (Figure 3(a)). Such
scenario is particularly harsh for recognition purposes, for
a number of reasons: 1) it is a non-standard environment,
with irregular lighting that changes not only during the day,
but also accordingly to weather conditions, reflections, etc.;
2) complex background regions and the varying resolution
of humans poses increasing challenges for both detection
and recognition phases. 3) subjects can come from any di-
rection, and they are rarely facing the camera which is typi-
cally placed on an upper position. Furthermore, the system
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Figure 1. Working diagram of the proposed system, and the three-
layer architecture: hardware control (top), scene understanding
(middle) and recognition modules (bottom).

should run in real-time. That being said, the recognition
system we propose is devised over three main layers (Fig-
ure 1): hardware control, scene understanding, and recog-
nition modules.

2.1. Hardware Control

To mimic a surveillance scenario, a wide-view camera
was mounted on the exterior wall of a building, at a first-
floor level (approximately 5m above the ground), and point-
ing towards a parking lot. Although this kind of camera of-
fers a more complete overview of the scenery, it does not
provide enough quality for recognition methods to work at
the distances the driveway ranges from (15 to 35 meters) –
Figure 2(a).

To provide recognition methods with reasonable quality
data, a PTZ camera was added to the system. This way,
pointing and zooming over a specific region allows acquir-
ing a detailed view of detected subjects. As we can see
from Figure 2(a), there is a substantial difference in the us-
able face and periocular pixel area between the two cam-
eras as a function of the working distance. A Canon VB-
H710F was used as the wide-view camera, and a Hikvision
DS-2DE5286-AEL as the PTZ camera, with a framerate of
30 frames per second (fps) at maximum resolution. How-

0

50

100

150

200

250

300

Pe
rio

cu
la

r w
id

th
 (p

x)

10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

Working distance (m)

Fa
ce

 w
id

th
 (p

x)

 

 
PTZ Camera
Wide−view Camera

(a) Trait visibility vs distance

WIDE VIEW
PTZ VIEW

S1

(b) Illustration of the acquired data

Figure 2. Visible face and periocular width, in pixels, as function
of the system’s working distance (a), and illustration of the ac-
quired data for both cameras (b).

ever, the independence between cameras demands a camera
synchronization module able to map coordinates from the
wide-view camera referential to the Pan-Tilt-Zoom (PTZ)
coordinate system, allowing the acquisition of the high-
resolution view of a portion of the scene (Figure 2(b)).

2.2. Scene Understanding

At the scene understanding layer, the system has two
main modules: 1) people detection and tracking; and 2) fa-
cial landmark detection.

The first module is responsible for locating the people
as they enter the scene, and tracking them until they are
no longer visible. It takes as input the video feed from the
wide-view camera, and has three main steps: background
subtraction, upper-body detection and tracking, illustrated
in Figure 3.

Further to that, the second module of the scene under-
standing layer is applied to that closer view, identifying
which facial landmarks are visible, thus deciding the weight
of each recognition module. Being able to describe which
facial traits are visible and where, is far more important that
actually getting a close estimation of the head’s pose, as we
can tell to which extent the trait is reliable or not.
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(a) Wide-view Feed (b) Background subtract. (c) People tracking

Figure 3. Illustration of the preliminary results obtained by the people detection and tracking module: a) sample image acquired with the
wide-view camera; b) foreground regions attained by background subtraction; c) people tracking module results.

2.3. Recognition Modules

For recognition purposes the proposed system relies on
a multi-modal biometric approach that combines face, iris,
periocular, ear shape and gait information.

The face is not only one of the most common and widely
used biometric trait, but also one of the most successful
applications of image analysis and understanding. Several
face recognition systems are commercially deployed, and
a lot of techniques accessible [18] for both still and video
images. However, as stated by Bledsoe [2], the “great vari-
ability in head rotation and tilt, lighting intensity and angle,
facial expression and aging” make face recognition an ex-
tremely hard challenge. Since in surveillance scenarios the
impact of such factors is even more significant, it is manda-
tory to rely on robust approaches (e.g. [17]).

The ocular region is one of the most explored in biome-
try. Iris in particular is a very popular biometric trait, deliv-
ering very high recognition accuracy under controlled envi-
ronments. Although iris performance as a biometric trait be-
ing severely impacted in non-ideal setups, due essentially to
its reduced size and moving profile, researchers are putting
efforts in overcome those limitations. The periocular region
represents a good trade-off between the whole face and the
iris, being easy to acquire without user cooperation, and not
requiring a constrained close capturing. As such, is one of
the strongest candidates for the purposes of our system.

The shape of the ear can also be used as biometric trait,
as the structure of its cartilage is unique for each individ-
ual. Despite all ear recognition methods traditionally re-
quire some degree of user cooperation, if proper alignment
estimation can be established and the ear imaged with few
or no occlusion, it can be used as biometric trait in the wild.

Gait is the only trait that will be imaged from the wide-
view cam. Acquiring data about way a person walks is non-
invasive, and can be done at-a-distance. The majority of
the gait recognition methods in the literature do not require
high-resolution data, so they can run over surveillance cam-
era data.

3. Experimental Results
This section details the stressed techniques for each

module, along with preliminary results over the selected
surveillance scenario.

3.1. People Detection and Tracking

At a first stage, several state-of-the-art background sub-
traction techniques were evaluated. Visually inspecting
their performance on our surveillance scenario, we found
SOBS [10] and Mixture of Gaussians [14] to be the most
robust ones over our testing data. Using the output from the
background subtraction technique, we filtered the regions
most consistent with human presence exploiting a simple
upper body detector distributed with OpenCV using Haar
feature-based cascade classifiers [16].

After dealing with detection, the tracking phase is ini-
tialized in order to find the correspondence between the
same subjects in consecutive frames. Different features
such as motion, appearance and shape can be exploited for
that purpose. Considering the specifications of our sce-
nario, we have chosen to use motion and appearance fea-
tures, whereas shape was not considered due to high vari-
ations caused by viewpoint. We observed that although
maintaining their exterior looking while passing through
the scene, dynamic lighting and shadow interference per-
turb persons’ appearance. On the contrary, persons move
at constant speed, providing higher confidence on motion
features. Using the omega-shape (head and shoulder re-
gion) as the primary source of key-points, the Kanade-

Table 1. Tracking performance in our surveillance scenario, when
using KLT. Performance metrics are Multiple Object Tracking
Accuracy (MOTA), Multiple Object Tracking Precision (MOTP),
True Positive Rate (TPR), False Positive Rate (FPR) and mismatch
(MIS).

Scenario MOTA MOTP TPR FPR MIS
S1 0.940 0.600 0.970 0.030 0
S2 0.800 0.590 0.900 0.100 0
S3 0.745 0.336 0.862 0.138 0
S4 0.589 0.288 0.792 0.202 3
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(a) Wide-view key-points (b) PTZ key-points (c) Key-point match

Figure 4. Key-point detection and alignment between the two cameras, wide-view (a) and PTZ (b), prior to geometric transform estimation.

Lucas-Tomasi (KLT) algorithm [13] tracks the initial set of
features accordingly to motion and appearance constraints.
Since some features may be lost during the process, re-
initialization of the features is ensured by the detection
phase. Figure 3(c) exemplifies the result of KLT tracking
in our scenario. The KLT algorithm was preferred since it
assumes that a set of discriminant points of the object move
with a constant speed and maintain a constant appearance.
Based on the set of previous locations provided by the track-
ing module, a Kalman filter [7] is used to provide a coarse
estimation of the future position.

To assess the reliability of the proposed method for
tracking, we considered four simple different scenarios with
increasing level of difficulties: S1- a single person is mov-
ing away from the camera, the background subtraction mask
is of high quality (i.e. absent of noise), and there are no sig-
nificant changes in lighting conditions; S2- a single person
is moving away from the camera at a higher speed, the back-
ground subtraction result contains some noise, and there are
no significant changes in lighting conditions; S3- a single
person walks towards the camera, the is significant noise in
the background subtraction mask due to wind and signifi-
cant lighting changes; S4- three persons are moving away
from the camera, and despite the background subtraction
technique outputs little noise, one of the subjects crosses
the path of the other two. Results are present in Table 1.

To evaluate tracking performance, the CLEAR MOT
metrics [9] were used: MOTA, MOTP, TPR, FPR and MIS.
As we can see, the first scenario (S1, that represents the
best case) produces high levels of accuracy (MOTA) and
precision (MOTP). The FPR is so low that is negligible
in this first experimental trial (the high quality mask from
background subtraction leads to a very precise tracking).
Regarding scenarios S2 and S3, all MOTA, FPR and TPR
confirm encouraging levels of performance of the tracking
algorithm. The significant loss of precision obtained in S3

comparatively to S2 is strongly related to the distance that
the subject enters the scene. At long working distances, the
number of pixels in the scene that represents a person is very
small. This condition leads to a failure of the upper body
detector, which is the main cause of the loss of precision.
In the most challenging scenario (S4) the FPR increases,

along with some mismatches (mainly related to the path of
one person that crosses the path of other two). Nonetheless,
we can assert that the tracking method achieves good level
of performances.

3.2. Camera Synchronization

In order to acquire a closer view of the people being
tracked, his position needs to be converted from the wide-
view camera referential, to the PTZ one. An approximation
for this conversion was achieved by mapping key-points be-
tween the two views (wide’s and PTZ’s), and estimating a
2-D geometric transform – Figure 4. For key-point detec-
tion, feature encoding and matching, the Speeded-Up Ro-
bust Features (SURF) algorithm was used.

3.3. Biometric Recognition

To have a preliminary assessment about the recogni-
tion performance of our system, a number of participants
were imaged between distances 15 to 35 meters, using the
PTZ camera. These working distances ensure regions with
widths between 500 px and 200 px for the face, and approxi-
mately 220 px to 100 px for the periocular region. Facial re-
gion was determined using a cascade object detector based
on Viola and Jones algorithm [16], and facial features en-
coded using the Principal Component Analysis (PCA) ap-
proach [15]. Prior to encoding the periocular features, a
second Region of Interest (ROI) containing the periocular
region was defined using also a Viola and Jones based cas-
cade object detector, trained for the detection of the right
eye using Haar features to encode the details [3]. Upon that
region, five different descriptors were extracted, based on
the works of Park et al. [12] and Bharadwaj et al. [1]: His-
togram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), Scale-Invariant Feature Transform (SIFT), Uniform
Local Binary Patterns (ULBP) and GIST. The HOG, LBP
and ULBP descriptors deliver a distribution-based analysis,
and were computed over 35 non-overlapping patches of the
periocular ROI, evenly distributed on a 7⇥ 5 grid. Each de-
scriptor was computed sequentially, forming a global 1-D
array storing both shape and texture information. Finally,
two score-level fusion were also stressed: one combining
the scores from the individual periocular recognition meth-
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Table 2. Performance for each one of the stressed methods, traits and working distances. Metrics are Decidability (DEC), Area Under
Curve (AUC) and Equal Error Rate (EER).

Trait ! Periocular Face Global
Method ! LBP HOG SIFT ULBP GIST Fusion PCA Fusion

15m - 25m
DEC 0.802 0.699 0.404 1.090 0.918 1.162 1.171 1.407
AUC 0.753 0.703 0.617 0.786 0.772 0.805 0.779 0.835
EER 0.302 0.358 0.416 0.281 0.304 0.287 0.307 0.246

25m - 35m
DEC 0.677 0.641 0.341 0.972 0.808 1.033 1.173 1.267
AUC 0.697 0.674 0.598 0.744 0.755 0.771 0.772 0.810
EER 0.376 0.380 0.431 0.334 0.321 0.303 0.328 0.254

15m - 35m
DEC 0.529 0.520 0.310 0.830 0.747 0.891 0.676 1.025
AUC 0.663 0.640 0.591 0.710 0.721 0.754 0.674 0.779
EER 0.396 0.409 0.435 0.360 0.348 0.317 0.395 0.293

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

 

 

Periocular (Fusion)
Face (PCA)
Global Fusion

(a) 15m - 25m

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

 

 

Periocular (Fusion)
Face (PCA)
Global Fusion

(b) 25m - 35m

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tru
e 

po
si

tiv
e 

ra
te

 

 

Periocular (Fusion)
Face (PCA)
Global Fusion

(c) 15m - 35m

Figure 5. Receiver Operating Characteristic (ROC) curves for the periocular recognition, face recognition and global fusion, at different
working distances.

ods; and a second one combining them with the PCA re-
sults. Score fusion was achieved training Neural-Network
(NN) with two hidden layers using back-propagation. NN
based methods are widely applied on classification prob-
lems, for their learning abilities and good generalization ca-
pabilities. The architecture of the used NN consisted on a
first hidden layer with the number of neurons equaling the
number of scores to be fused, and a second hidden layer
of three neurons. The final (output) layer had one neuron,
since we were dealing with a binary classification problem.
NNs were trained with a smaller partition of the data, not
included on the test phase.

Three metrics were used to assess recognition modules’
performance: DEC [4], AUC and EER. The evaluation of
the stressed feature encoding techniques for the different
working distances and traits is registered at Table 2. For
a better interpretation of their performance, the ROC curves
are also presented in Figure 5. Results refer to a total of
69960 comparisons, performed on a 1:N fashion.

As we can see from Table 2, top recognition performance
was attained at closer working distances (15m to 25m), with

an AUC of 0.835. However, widening the working range
to the whole driveway (15m to 35m), a considerable good
performance is still achieved (AUC = 0.779). We must have
in mind that results come from a fully automated system,
operating on an adverse surveillance scenario. Furthermore,
matches were not performed against a separate dataset of
good registration images, but between different PTZ images
acquired during system operation.

As for the differences between the different stressed
traits, the periocular region seems to be less affected by
changes in distance, although further facial recognition
techniques should be stressed. Also from the ROC curves at
Figure 5, we can see how the PCA applied to the face alone
delivers lower true positive rate while introducing higher
amounts of false positives, when compared to the fusion of
methods operating on the periocular region. Nonetheless,
fusing that information with the periocular methods scores
produces a considerable improvement on the latter. Thus, if
considering deploying a more restrictive system with higher
security constraints, the face trait should not be used alone,
but can be a powerful ally to further improve its final out-
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come.

4. Final Considerations
In this paper we present the concept of a fully auto-

mated surveillance and biometric recognition system, able
to complement human detection and tracking with biomet-
ric recognition over in the wild surveillance environments.
Although further state-of-the-art techniques can be stressed
for each module, we give evidence on the feasibility of such
system, providing both tracking performance and biometric
recognition results over a real surveillance scenario.

4.1. Further Work

Although a functional system is presented, further work
should be considered over three axes: 1) a larger dataset
should be acquired, not only with a larger number of sub-
jects going through the scene, but also with the system
running over different environments (e.g. indoor lounge);
2) some modules are still to be developed, that would
increase the recognition performance even further (e.g.
head landmark detector); 3) additional state-of-the-art tech-
niques should be tested for each module, and results cross-
validated over the different scenarios. In particular, differ-
ent face recognition techniques should be stressed, along
with ear shape and iris biometrics and gait recognition.
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KRZ LULV SHUIRUPDQFH LV FRQGLWLRQHG E\ YLVLEOH ZDYHOHQJWK OLJKW� 7KLV DQDO\VLV ZDV FDUULHG RQ
RYHU WZR D[HV� WKH W\SH RI LOOXPLQDQW EHLQJ XVHG LQ WKH VFHQH� DQG WKH OHYHO RI OXPLQDQFH� ��
)XUWKHU WR WKDW� HPHUJLQJ ELRPHWULF WUDLWV ZHUH DOVR VWXGLHG� LQ SDUWLFXODU WKH SHULRFXODU UHJLRQ�
$GYDQFHV LQ UHVHDUFK VKRZ LW WR EH D ILW FDQGLGDWH WR KDQGOH WKH GRZQVLGHV RI QRQ�LGHDO HQYL�
URQPHQWV� �� :H WKHQ LPSOHPHQWHG WKH PRVW UHOHYDQW SHULRFXODU PHWKRGV� WHVWLQJ WKHP RYHU
D IL[HG GDWDVHW� $ QHZ GDWDVHW ZDV DOVR EXLOW� ZLWK D QXPEHU RI QRLVH IDFWRUV WKDW UHSOLFDWH
WKRVH REVHUYHG LQ XQFRQVWUDLQHG VFHQDULRV� LQ D TXDQWLILHG DQG FRQWUROOHG IDVKLRQ� �� $W ODVW�
VWXG\LQJ WKH SRVVLELOLW\ RI QHJDWLYH UHFRJQLWLRQ XVDJH WR EHWWHU PHW WKH UHTXLUHPHQWV RI LQ WKH
ZLOG VFHQDULRV ZDV DOVR LQWHQGHG� $OWKRXJK WKLV ODVW JRDO ZDV QRW IXOO\ PHW� DGGLWLRQDO OLQHV RI
ZRUN ZHUH FRQGXFWHG DQG� XOWLPDWHO\� D IXOO\ DXWRPDWHG ELRPHWULF V\VWHP ZDV GHYLVHG DEOH WR
ZRUN RYHU YLGHR�VXUYHLOODQFH VFHQDULRV GHOLYHULQJ ELRPHWULF UHFRJQLWLRQ�

$ORQJVLGH ZLWK WKHVH REMHFWLYHV D VHW RI VFLHQWLILF FRQWULEXWLRQV ZHUH DFKLHYHG DQG SXEOLVKHG LQ
LQWHUQDWLRQDO MRXUQDOV DQG LQGH[HG FRQIHUHQFHV�

���� &RQWULEXWLRQV DQG $FKLHYHPHQWV

:KLOVW VWXG\LQJ WKH LULV XVDELOLW\ E\ DVVHVVLQJ LWV EHKDYLRU XQGHU YLVLEOH ZDYHOHQJWK OLJKW� ZH
REVHUYHG KRZ WKH DSSHDUDQFH RI LWV SDWWHUQV LV SRRUO\ FRQGLWLRQHG E\ WKH W\SH RI LOOXPLQDQW
EHLQJ XVHG GXULQJ WKH DFTXLVLWLRQ SURFHVV� HYHQ WKRXJK WKH OXPLQDQFH OHYHO ZDV RI WKH PRVW
LPSRUWDQFH >�@� 7KDW HYLGHQFH VKRXOG VXSSRUW WKH EXLOG RI D QRQ�VWDQGDUG ELRPHWULF V\VWHP
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

EDVHG RQ WKH LULV� DEOH WR ZRUN XQGHU GLIIHUHQW W\SHV RI OLJKW� ERWK QDWXUDO RU DUWLILFLDO� DV ORQJ
DV D ILW OXPLQDQFH OHYHO LV DVVXUHG RU DGGLWLRQDO PHDVXUHV WDNHQ WR FLUFXPYHQW WKLV OLPLWDWLRQ�
$ QHZ UHFRJQLWLRQ VFKHPH IRU 9: GDWD ZDV DOVR SURSRVHG� EDVHG RQ WKH H[WUDFWLRQ RI 03(*��
FRORU DQG VKDSH GHVFULSWRUV IURP DXWRQRPRXVO\ GHILQHG LULV VXE�UHJLRQV� 7KLV QRYHO WHFKQLTXH
VKRZV QRW RQO\ SHUIRUPDQFH OHYHOV FORVH WR WKRVH RI WKH EHVW�NQRZQ WHFKQLTXHV� EXW DOVR ORZ
OHYHOV RI OLQHDU FRUUHODWLRQ LQ UHODWLRQ WR WKHP� VXJJHVWLQJ WKDW WKH\ FDQ EH IXVHG IRU IXUWKHU
SHUIRUPDQFH LPSURYHPHQWV >�@�

2Q WKH VFRSH RI SHULRFXODU ELRPHWULFV� RXU DVVHVVPHQW DERXW WKH OLWHUDWXUH VKRZHG KRZ UHFHQW
UHVHDUFK IRFXV PDLQO\ RQ WH[WXUH DQDO\VLV DQG NH\�SRLQW H[WUDFWLRQ� ZLWK HYHQ VLPSOH DOJRULWKPV
�H�J�� /%3 EDVHG WHFKQLTXHV� OHDGLQJ WR IDLU SHUIRUPDQFH OHYHOV� 3HULRFXODU LV UHJDUGHG DV SDU�
WLFXODUO\ VXLWHG IRU XQFRQVWUDLQHG DQG XQFRRSHUDWLYH VFHQDULRV� HLWKHU E\ EHLQJ XVHG DORQH RU
FRPELQHG ZLWK WKH LULV� HYHQ WKRXJK WKH ODWHU FDQ QRW EH SURSHUO\ LPDJHG XQGHU VXFK FRQVWUDLQWV�
7HVWLQJ WKH VWDWH�RI�WKH�DUW PHWKRGV DJDLQVW D FRPPRQ GDWDVHW DOORZHG XV WR FRPSDUDWLYHO\ DF�
FHVV WKHLU SHUIRUPDQFH DQG LGHQWLI\ WKH UHOHYDQW SDWWHUQV WKDW V\VWHPDWLFDOO\ FRQGLWLRQ WKHLU
FDSDFLWLHV >�� ��@�

+DYLQJ LGHQWLILHG WKH GHWHFWLRQ RI H\H�FRUQHUV LQ IDFLDO LPDJHV RI JUHDW LPSRUWDQFH LQ ELRPHWULF
DSSOLFDWLRQV �H�J�� SHULRFXODU 52, GHILQLWLRQ�� VWDWH�RI�WKH�DUW PHWKRGV IRU H\H�FRUQHU GHWHF�
WLRQ ZHUH HPSLULFDOO\ HYDOXDWHG DJDLQVW ORZ�TXDOLW\ GDWD� :H IRXQG WKDW WKHLU SHUIRUPDQFH LV
VLJQLILFDQWO\ GLPLQLVKHG LQ VXFK FRQGLWLRQV� OHDGLQJ WR WKH SURSRVLWLRQ RI D QRYHO H\H�FRUQHU GH�
WHFWLRQ PHWKRG DEOH WR GHDO ZLWK GHJUDGHG LQ WKH ZLOG LPDJHV� &RPSDULQJ RXU PHWKRG UHVXOWV
DJDLQVW VWDWH�RI�WKH�DUW WHFKQLTXHV ZH FRXOG VHH KRZ LW RXWSHUIRUPHG ERWK RQ QRLVH�IUHH DQG
GHJUDGHG GDWD �EOXUUHG� URWDWHG� ZLWK GLIIHUHQFHV LQ VFDOH� HWF��� 7KHVH LPSURYHPHQWV ZHUH
DFKLHYHG ZLWKRXW ORVV RI FRPSXWDWLRQDO HIILFLHQF\� ZKLFK LV HVVHQWLDO ZKHQ DLPLQJ DW GHSOR\LQJ
D UHDO�WLPH ELRPHWULF V\VWHP >�@� $OVR� RQ WKH VFRSH RI EHWWHU GHILQLQJ WKH SHULRFXODU 52, ZLWK
EHWWHU SRVH � JD]H HVWLPDWHV� D FRPSRQHQW ODEHOLQJ PHWKRG ZDV GHYHORSHG ZLWK WKH FDSDFLW\ WR
GLVFULPLQDWH EHWZHHQ VHYHQ NH\�HOHPHQWV XVLQJ D WZR�VWHS DSSURDFK� DW WKH ILUVW VWDJH� D JURXS
RI ORFDO FODVVLILHUV XVH WH[WXUH GHVFULSWRUV WR FRPSXWH WKH SL[HO�OHYHO SUREDELOLW\ RI HDFK FODVV�
RQ D VHFRQG VWDJH WKLV LQIRUPDWLRQ LV IXVHG ZLWK JHRPHWULFDO FRQVWUDLQWV DQG VKDSH LQIRUPDWLRQ
WR IHHG D WZR�OD\HUHG 05) >�@�

$LPLQJ DW LQFUHDVH WKH UHOLDELOLW\ RI QRQ�FRRSHUDWLYH LULV UHFRJQLWLRQ RYHU WKH GHJUDGHG GDWD ZH
HQFRXQWHU LQ WKH ZLOG� ZH SURSRVHG D QRYHO IXVLRQ RI GLIIHUHQW UHFRJQLWLRQ DSSURDFKHV LQ VXFK
D ZD\ WKDW WKH SLWIDOOV RI OHVV FRQVWUDLQHG DFTXLVLWLRQ VHWXSV XQGHU YLVLEOH ZDYHOHQJWK OLJKWLQJ
FRXOG EH PLQLPL]HG� 7KH SURSRVHG IXVLRQ RI LULV DQG SHULRFXODU IHDWXUHV ZDV VKRZQ WR LPSURYH
WKH RYHUDOO SHUIRUPDQFH RQ ERWK LGHQWLILFDWLRQ DQG YHULILFDWLRQ PRGHV� FRQFOXVLRQ WKDW ZDV IXU�
WKHU FRUURERUDWHG E\ D WKLUG SODFH RQ WKH 1RLV\ ,ULV &KDOOHQJH (YDOXDWLRQ � 3DUW ,, >�@�

$ VLPLODU DWWHPSW ZDV FRQGXFWHG DW WKH 0RELOH ,ULV &+DOOHQJH (YDOXDWLRQ � 3DUW ,� DLPHG WKLV WLPH
DW PRELOH VHWXSV� :H KDYH EXLOW DQG PDGH DYDLODEOH IRU WKH VFLHQWLILF FRPPXQLW\ D QRYHO LULV
DQG SHULRFXODU GDWDEDVH� WKH &6,3� FRQWDLQLQJ LPDJHV DFTXLUHG DW WHQ GLIIHUHQW PRELOH VHWXSV
DQG HLJKW YLVLEOH QRLVH IDFWRUV� DORQJ ZLWK JURXQG WUXWK GDWD IRU WKH LULV VHJPHQWDWLRQ� 6XFK
GDWDVHW DOORZV HYDOXDWLQJ ERWK LULV VHJPHQWDWLRQ DQG UHFRJQLWLRQ WHFKQLTXHV� DQG SHULRFXODU
UHFRJQLWLRQ PHWKRGV� :H DOVR LGHQWLILHG WKH FKURPDWLF GLVSDULW\ LQWURGXFHG E\ VRPH GHYLFHV�
DQG SURSRVHG WKH XVDJH RI D FRORU FRUUHFWLRQ WHFKQLTXH WR FRPSHQVDWH IRU WKH FRORU GLVWRUWLRQV
LQKHUHQW WR HDFK RQH RI WKH VHWXSV� 5HVXOWV VKRZHG WKLV DSSURDFK OHDGLQJ WR WRS UHVXOWV� VSH�

���



FLDOO\ RQ FURVV�VHQVRU FRPSDULVRQV� $W WKH UHFRJQLWLRQ VWDJH� ZH VKRZHG KRZ WKH VFRUH�OHYHO
IXVLRQ RI ZHOO�NQRZQ LULV DQG SHULRFXODU UHFRJQLWLRQ VWUDWHJLHV FDQ EH XVHG WR RYHUFRPH WKH
LVVXHV DVVRFLDWHG ZLWK PRELOH VHWXSV� )XUWKHUPRUH� ZH VKRZHG KRZ HYHQ VLPSOH IHDWXUH HQFRG�
LQJ WHFKQLTXHV� ZLWK ORZ FRPSXWDWLRQDO FRVW� GHOLYHU FRQVLGHUDEO\ JRRG SHUIRUPDQFH� ZKLFK LV
SDUWLFXODUO\ LQWHUHVWLQJ LI WKH DSSOLFDWLRQ LV WR EH GHSOR\HG RQ PRELOH GHYLFHV ZLWK KLJKHU FRP�
SXWDWLRQDO FRQVWUDLQWV >�@�

6HWWLQJ RXU HIIRUWV LQWR GHSOR\LQJ D IXOO\ IXQFWLRQDO V\VWHP DEOH WR GHDO ZLWK H[WUHPHO\ KDUVK
GDWD� ZH LGHQWLILHG WKH QHHG IRU D GDWDVHW WKDW JDWKHUHG PXOWLSOH QRLVH IDFWRUV RQ D SUHFLVHO\
TXDQWLILHG PDQQHU� $V VR� ZH EXLOW WKH %LR+'' GDWDVHW� FRQWDLQLQJ PXOWL�VHVVLRQ LQIRUPDWLRQ
IURP ��� VXEMHFWV� KLJK TXDOLW\ UHJLVWUDWLRQ PXJVKRWV� ODUJH VHWV RI H[WUHPHO\ GHJUDGHG SUREHV
ZLWK WHQ GLIIHUHQW QRLVH IDFWRUV� DQG YLGHR VHTXHQFHV ZLWK WKH VXEMHFWV ZDONLQJ WKURXJK D QRQ�
VWDQGDUG KDOOZD\� &RQGXFWLQJ DQ RQOLQH VXUYH\� PLPLFNLQJ D ZDWFKOLVW LGHQWLILFDWLRQ VFHQDULR
ZKHUH SDUWLFLSDQWV ZHUH DVNHG WR SHUIRUP ERWK SRVLWLYH DQG QHJDWLYH UHFRJQLWLRQ WDVNV� DOORZHG
XV WR SHUFHLYH ZKLFK IHDWXUHV KXPDQV PRVW IUHTXHQWO\ DVVRFLDWH ZLWK VXFFHVVIXO DQG IDLOHG LGHQ�
WLILFDWLRQV� :H REVHUYHG WKDW� IRU WKH KXPDQV� WR GHDO ZLWK LQDGHTXDWH LOOXPLQDWLRQ LQWHQVLW\
DQG PRGHUDWH OHYHOV RI RFFOXVLRQ LV QR LVVXH� 7KH JRRG SHUIRUPDQFH REVHUYHG RYHU ORZ�UHVROXWLRQ
DQG FRPSUHVVHG LPDJHV DOVR VXJJHVWV D VLJQLILFDQW XVDJH RI JOREDO IHDWXUHV� $V PDLQ LVVXHV ZH
SRLQW RXW VXEMHFWV ORRNLQJ XS RU GRZQ IURP WKH FDPHUD OHYHO� DQG KLJK�OHYHOV RI RFFOXVLRQ� ZKLFK
FDQ EH D VLJQLILFDQW OLPLWDWLRQ WR WKH V\VWHP DV VXEMHFWV WU\LQJ WR DYRLG GHWHFWLRQ DUH PRVW OLNHO\
WR EH IDFLQJ DZD\ IURP YLVLEOH FDPHUDV RU FDUU\ KHDGJHDU� 6KDSH LQIRUPDWLRQ DQG KROLVWLF FXHV
ZHUH ERWK WKH PRVW DFFRXQWHG IRU DQG WKH PRVW UHOLDEOH RQHV� 7KLV UHVHDUFK SDSHU DOORZHG XV
WR IXUWKHU VXSSRUW WKH XVDJH RI WKH SHULRFXODU UHJLRQ� DV IHDWXUHV ORFDWHG RQ WKH PLG�IDFH ZHUH
IRXQG WR EH WKH PRUH UHOLDEOH RQHV >�@�

)ROORZLQJ WKHVH UHVHDUFK ILQGLQJV DQG DLPLQJ DW HVWDEOLVKLQJ D ZD\ WR EHWWHU XQGHUVWDQG WKH
FRQWHQWV RI D KHDG SKRWR DFTXLUHG E\ WKH UHFRJQLWLRQ V\VWHP LQ WKH ZLOG� ZH SURSRVHG D QRYHO
DOJRULWKP IRU KHDG ODQGPDUN GHWHFWLRQ >��@ DEOH WR LGHQWLI\ DQG SLQSRLQW WKH ORFDWLRQ RI VL[ NH\�
HOHPHQWV RI WKH KXPDQ KHDG� DPRQJ ZLWFK LV WKH SHULRFXODU UHJLRQ� 7KLV DOJRULWKP ZDV WHVWHG
DJDLQVW D VXEVHW RI WKH %LR+'' GDWDEDVH DQG ZDV IRXQG WR ZRUN ZLWK UHODWLYHO\ JRRG SHUIRU�
PDQFH� EHLQJ LQYDULDQW WR WKH LPDJH DFTXLVLWLRQ DQJOH RQ D IXOO 360◦ YLHZ RI WKH VXEMHFW DQG WR
FKDQJHV LQ XVHUV· KHDG SLWFK�

$W ODVW� WKH UHVHDUFK ZRUN RI WKLV GRFWRUDO SURJUDP FXOPLQDWHG ZLWK WKH FRQFHSW RI D IXOO\ DXWR�
PDWHG VXUYHLOODQFH DQG ELRPHWULF UHFRJQLWLRQ V\VWHP� %DVHG RQ RI D YLGHR VXUYHLOODQFH V\VWHP
DEOH WR GHWHFW DQG WUDFN KXPDQ VXEMHFWV LQ WKH ZLOG� LWV VFHQH XQGHUVWDQGLQJ OD\HU ZDV HQKDQFHG
WR FRQWURO D 37= FDPHUD DOORZLQJ WKH DFTXLVLWLRQ RI KHDG�VKRWV RI WKH WUDFNHG LQGLYLGXDOV� 8VLQJ
WKH SUHYLRXVO\ PHQWLRQHG KHDG ODQGPDUNLQJ WHFKQLTXH� WKH PXOWL�PRGDO ELRPHWULF SDUW RI WKH
V\VWHP LV DEOH WR LGHQWLI\ WKH YLVLEOH WUDLWV DQG FKRVH ZKLFK UHFRJQLWLRQ PRGXOH WR XVH� 8OWL�
PDWHO\� HYLGHQFH LV JLYHQ RQ WKH IHDVLELOLW\ RI VXFK V\VWHP� ZLWK D SURRI�RI�FRQFHSW EHLQJ WHVWHG
RQ D UHDO VXUYHLOODQFH VFHQDULR >��@�

���� )XUWKHU :RUN

7KH GHSOR\PHQW RI D IXOO\ IXQFWLRQDO ELRPHWULF V\VWHP LQ WKH ZLOG DEOH WR ZRUN FRYHUWO\ LQ KDUVK
FRQGLWLRQV LV VWLOO D ZRUN LQ SURJUHVV� $OWKRXJK WKH V\VWHP KDV DOUHDG\ EHHQ IXOO\ GHYLVHG� VRPH
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PRGXOHV DUH VWLOO XQGHU SURGXFWLRQ� :H LQWHQW WR FRPSOHWHO\ YDOLGDWH DQG GHEXJ LW� FDUU\LQJ D
IXOO HYDOXDWLRQ RI LWV SHUIRUPDQFH XQGHU GLIIHUHQW HQYLURQPHQWV�

(YHQ WKRXJK WZR RI WKH SURSRVHG UHFRJQLWLRQ PHWKRGV KDYH EHHQ LQGHSHQGHQWO\ HYDOXDWHG
RQ LQWHUQDWLRQDO FRQWHVWV �1,&(�,, DQG 0,&+( ,� DQG DOO FRQWULEXWLRQV ZHUH SHHU�HYDOXDWHG� ZH
VWLOO WKLQN WKDW LW ZRXOG EH LQWHUHVWLQJ WR SHUIRUP WKHLU HYDOXDWLRQ DJDLQVW GLIIHUHQW DQG ODUJHU
GDWDVHWV� VR WKDW WKH VWDWLVWLFDO UHOHYDQFH RI WKH UHVXOWV FDQ EH HYHQ KLJKHU�

$V VWDWHG LQ WKH LQWURGXFWRU\ VHFWLRQ� RQH RI WKH REMHFWLYHV RI WKLV GRFWRUDO UHVHDUFK FRXOG KDYH
VWDUWHG D PRUH LQ�GHSWK UHVHDUFK� QDPHO\ WKH QHJDWLYH UHFRJQLWLRQ DSSURDFK DV D ILW DOWHUQDWLYH
IRU UHDO�ZRUOG VFHQDULRV� %HLQJ DEOH WR JXDUDQWHH ZLWK HQRXJK FRQILGHQFH WKDW DQ XQNQRZQ
VXEMHFW GRHV QRW EHORQJ WR D JLYHQ ZDWFKOLVW RI ´SHUVRQV�RI�LQWHUHVWµ LV D PRVW WHPSWLQJ JRDO
IRU QRZDGD\V VHFXULW\ GHPDQGV� 8QGHUVWDQGLQJ LWV SUDFWLFDO DGYDQWDJHV� PRVW RI ZKLFK EHLQJ
SULYDF\ UHODWHG� ZH LQWHQG WR FRPSOHPHQW WKH ILQDO SURWRW\SH ZLWK WKLV PRGH RI RSHUDWLRQ�
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%LEOLRJUDSK\

>�@ 6� 7KHRGRULGLV DQG .� .RXWURXPEDV� 3DWWHUQ 5HFRJQLWLRQ� �WK HG� &DOLIRUQD� 86$� $FDGHPLF
3UHVV� ����� [Y� [OYLL� �� �

>�@ *� 6DQWRV� 3� )LDGHLUR� DQG +� 3URHQoD� ´%LRKGG� D GDWDVHW IRU VWXG\LQJ ELRPHWULF LGHQWL�
ILFDWLRQ RQ KHDYLO\ GHJUDGHG GDWD�µ ,(7 %LRPHWULFV� ����� [YLL� [[[YLL� �� �� ���

>�@ *� 6DQWRV� (� *UDQFKR� 0� %HUQDUGR� DQG 3� )LDGHLUR� ´)XVLQJ LULV DQG SHULRFXODU LQIRUPDWLRQ
IRU FURVV�VHQVRU UHFRJQLWLRQ�µ 3DWWHUQ 5HFRJQLWLRQ /HWWHUV� ����� [YLLL� [[[YL� �� �� ���

>�@ *� 6DQWRV� 0� %HUQDUGR� 3� )LDGHLUR� DQG +� 3URHQoD� ´,ULV UHFRJQLWLRQ� 3UHOLPLQDU\ DVVHVV�
PHQW DERXW WKH GLVFULPLQDWLQJ FDSDFLW\ RI YLVLEOH ZDYHOHQJWK GDWD�µ LQ 3URFHHGLQJV RI WKH
�WK ,((( :RUNVKRS RQ 0XOWLPHGLD ,QIRUPDWLRQ 3URFHVVLQJ DQG 5HWULHYDO � 0,35 ·��� 7DLZDQ�
����� SS� ���²���� [YLLL� [[L[� [[[Y� �� �� ��� ���

>�@ +� 3URHQoD DQG *� 6DQWRV� ´)XVLQJ FRORU DQG VKDSH GHVFULSWRUV LQ WKH UHFRJQLWLRQ RI GH�
JUDGHG LULV LPDJHV DW YLVLEOH ZDYHOHQJWKV�µ &RPSXWHU 9LVLRQ DQG ,PDJH 8QGHUVWDQGLQJ�
YRO� ���� SS� ���²���� ����� [YLLL� [[[Y� �� �� ���

>�@ *� 6DQWRV DQG +� 3URHQoD� ´3HULRFXODU ELRPHWULFV� $Q HPHUJLQJ WHFKQRORJ\ IRU XQFRQ�
VWUDLQHG VFHQDULRV�µ LQ 3URFHHGLQJV RI WKH ,((( 6\PSRVLXP RQ &RPSXWDWLRQDO ,QWHOOLJHQFH
LQ %LRPHWULFV DQG ,GHQWLW\ 0DQDJHPHQW ² &,%,0 ����� $SULO ����� SS� ��²��� [YLLL� [[[Y� ��
�� ���

>�@ *� 6DQWRV DQG +� 3URHQoD� ´$ UREXVW H\H�FRUQHU GHWHFWLRQ PHWKRG IRU UHDO�ZRUOG GDWD�µ LQ
%LRPHWULFV �,-&%�� ���� ,QWHUQDWLRQDO -RLQW &RQIHUHQFH RQ� ����� SS� �²�� [YLLL� [[[Y� �� ��
���

>�@ +� 3URHQoD� -� 1HYHV� DQG *� 6DQWRV� ´6HJPHQWLQJ WKH SHULRFXODU UHJLRQ XVLQJ D KLHUDU�
FKLFDO JUDSKLFDO PRGHO IHG E\ WH[WXUH � VKDSH LQIRUPDWLRQ DQG JHRPHWULFDO FRQVWUDLQWV�µ
6HSWHPEHU ����� [L[� [[[YL� �� �� ���

>�@ *� 6DQWRV DQG (� +R\OH� ´$ IXVLRQ DSSURDFK WR XQFRQVWUDLQHG LULV UHFRJQLWLRQ�µ
3DWWHUQ 5HFRJQLWLRQ /HWWHUV� YRO� ��� QR� �� SS� ��� ² ���� ����� >2QOLQH@� $YDLODEOH�
KWWS���ZZZ�VFLHQFHGLUHFW�FRP�VFLHQFH�DUWLFOH�SLL�6���������������� [L[� [[[L� [[[YL�
�� �� ��� ���

>��@ 6� *DUILQNHO� 'DWDEDVH 1DWLRQ� 7KH 'HDWK RI 3ULYDF\ LQ WKH ��VW &HQWXU\� 2·5HLOO\ 0HGLD�
����� [[� �

>��@ 3� .RPDULQVN\� $XWRPDWHG )LQJHUSULQW ,GHQWLILFDWLRQ 6\VWHPV �$),6�� �VW HG� $FDGHPLF
3UHVV� ����� [[L� ��

>��@ )� *DOWRQ� )LQJHU 3ULQWV� /RQGRQ� 0DFPLOODQ DQG &R�� ����� [[L� ��

>��@ $� -DLQ� 3� )O\QQ� DQG $� 5RVV� (GV�� +DQGERRN RI ELRPHWULFV� 6SULQJHU� ����� [[L� ��

>��@ -� 8QGDU� :� 6HQJ� DQG $� $EEDVL� ´$ UHYLHZ RI ELRPHWULF WHFKQRORJ\ DORQJ ZLWK WUHQGV DQG
SURVSHFWV�µ 3DWWHUQ 5HFRJQLWLRQ� QR� ��� SS� ����²����� ����� [[LL� [[LY� ��� ��� ��
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%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

>��@ '� 'HVVLPR] DQG -� 5LFKLDUGL� ´0%LR,' PXOWLPRGDO ELRPHWULFV IRU LGHQWLW\ GRFXPHQWV�µ 8QL�
YHUVLWp GH /DXVDQQH� /DXVDQQH� 5HVHDUFK 5HSRUW 3)6 ���������� -XQH ����� [[LL� [[LLL� ���
��

>��@ .� %RZ\HU� .� +ROOLQJVZRUWK� DQG 3� )O\QQ� ´,PDJH XQGHUVWDQGLQJ IRU LULV ELRPHWULFV� $
VXUYH\�µ &RPSXW� 9LV� ,PDJH 8QGHUVW�� YRO� ���� QR� �� SS� ���²���� 0D\ ����� >2QOLQH@�
$YDLODEOH� KWWS���G[�GRL�RUJ���������M�FYLX������������ [[LY� ��

>��@ :� =KDR� 5� &KHOODSSD� 3� 3KLOOLSV� DQG $� 5RVHQIHOG� ´)DFH UHFRJQLWLRQ� $ OLWHUDWXUH VXU�
YH\�µ $&0 &RPSXWLQJ 6XUYH\V� YRO� ��� QR� �� SS� ���²���� ����� [[LY� ��
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Abstract In this paper, we propose a re-weighted elastic net (REN) model
for biometric recognition. The new model is applied to data separated into ge-
ometric and color spatial components. The geometric information is extracted
using a fast cartoon - texture decomposition model based on a dual formulation
of the total variation norm allowing us to carry information about the overall
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color spaces, namely the red-green-blue (RGB), chromaticity-brightness (CB)
and hue-saturation-value (HSV). Next, according to a Bayesian fusion-scheme,
sparse representations for classification purposes are obtained. The scheme is
numerically solved using a gradient projection (GP) algorithm. In the empir-
ical validation of the proposed model, we have chosen the periocular region,
which is an emerging trait known for its robustness against low quality data.
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2 Juan C. Moreno et al.

1 INTRODUCTION

Biometrics attempts to recognize human beings according to their physical
or behavioral features [17]. In the past, various traits were used for biomet-
ric recognition, out of which iris and face are the most popular [35,41,19,29].
The use of the periocular region is found to be useful on unconstrained scenar-
ios [38]. The exploration of the periocular region as a biometric trait started
with Park et al.’s pioneering approach [33], who performed local and global
feature extraction. Images were aligned to take advantage of iris location, in
order to define a 7 ⇥ 5 region of interest (ROI) grid. Patches were encoded
by applying two well known distribution-based descriptors, local binary pat-
ters (LBP) [26] and histogram of oriented gradients (HOG) [10], quantized into
8-bin histograms. Finally, they merged all histograms into a single-dimension
array containing both texture and shape information, and matching was car-
ried out based on the Euclidean distance. For the local analysis, authors em-
ployed Scale-Invariant Feature Transform (SIFT) [24]. The reported perfor-
mance was fairly good, showing periocular fitness for recognition purposes,
and further analysis was held on noise factors impact on performance [31].

Recently, various extensions and improvements based on Park et al work [33]
has been carried out. Miller et al. [25] presented an analysis which focused
on periocular skin texture, taking advantage of uniform local binary pat-
ters (ULBP) [27] to achieve improved rotation invariance with uniform pat-
terns and finer quantization of the angular space. Their work was extended
by Adams et al. [1], who proposed using Genetic & Evolutionary Comput-
ing (GEC) to optimize feature set. Juefei-Xu et al. [20] used multiple local
and global feature extraction techniques such as Walsh transforms and Laws’
masks, discrete cosine transform (DCT), discrete wavelet transform (DWT),
Force Fields, Speed Up Robust Transform (SURF), Gabor filters and Laplacian
of Gaussian (LoG). In their later work [21] e↵orts were made to compensate
aging degradation e↵ects on periocular performance. The possibility of score
level fusion with other biometric traits was also addressed, for example in iris
recognition [47]. Bharadwaj et al. [2] proposed the fusion of ULBP with five
perceptual dimensions, usually applied as scene descriptors: naturalness, open-
ness, roughness, expansion and ruggedness – GIST [28]. In their approach the
images were pre-processed with with Fourier transform for local contrast nor-
malization, and then a spacial envelope computed with a set of Gabor filters
(4 scales ⇥ 8 orientations). On the final stage, �2 distance was used to match
the feature arrays, and results fused with a weighted sum.

Based on the pioneering work of Wright et al. [48], the sparse representa-
tion theory is emerging as a popular method in the biometrics fields and is
considered specially suitable to handle degraded data acquired under uncon-
trolled acquisition protocols [34,40]. A query image is first sparsely coded over
the template images, and then the classification is performed. Sparse Repre-
sentation based Classification (SRC) is robust to occlusion, illumination and
noise, and achieves excellent performance.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Robust periocular recognition by fusing sparse representations 3

1.1 Sparse Representation

Model selection in high-dimensional problems has been gaining interest in
the statistical signal processing community [11,4]. Using convex optimization
models, the main problem is recovering a sparse solution x̂ 2 Rn of an under-
determined system of the form y = Ax⇤, given a vector y 2 Rm and a matrix
A 2 Rm⇥n. There is a special interest in signal recovery when the number of
predictors are much larger than the number of observations (n� m). A direct
solution to the problem is to select a signal whose measurements are equal to
those of x⇤, with smaller sparsity by solving a minimization problem based on
the `

0-norm:
min
x

kxk0 subj. to Ax = y, (1)

(kxk0 = #{i : x

i

6= 0}), being a direct approach to seek the sparsest solution.
Problem (1) is proved to be NP-hard and di�cult to approximate since it
involves non-convex minimization [5]. An alternative method is to relax the
problem (1) by means of the `

1-norm (kxk1 =
P

n

i=1 |xi

|). Hence problem (1)
can be replaced by the following `

1-minimization problem:

min
x

kxk1 subj. to Ax = y,

which can be solved by standard linear programming methods [9]. In practice,
signals are rarely exactly sparse, and may often be corrupted by noise. Under
noise, the new problem is to reconstruct a sparse signal y = Ax⇤ + , where
 2 Rm is white Gaussian noise with zero mean and variance �

2. In this case
the associated `

1-minimization problem adopts the form:

min
x

⇢
⌧kxk1 +

1

2
ky �Axk22

�
, (2)

where ⌧ is a nonnegative parameter and k · k2 denotes the `

2-norm (kxk2 =
�P

n

i=1 x
2
i

� 1
2 ). The convex minimization problem (2) is known as the least

absolute value shrinkage and selection operator (LASSO) [43].
Although sparsity of representation seems to be well established by means

of the LASSO approach, some limitations were remarked by Hastie et al. [51].
LASSO model tends to select at most m variables before it saturates and
in case predictors are highly correlated, LASSO usually selects one variable
from a group, ignoring others. In order to overcome these di�culties, Hastie et
al. [51] proposed the elastic net (EN) model as a new regulation technique
for outperforming LASSO in terms of prediction accuracy. The elastic net
is characterized by the presence of ridge regression term (`2-norm) and it is
defined by the following convex minimization problem:

min
x

⇢
⌧1kxk1 + ⌧2kxk22 +

1

2
ky �Axk22

�
, (3)

where ⌧1 and ⌧2 are non-negative parameters. An improvement for the EN
model was proposed in [52] where a combination of the `

2-penalty and an
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adaptive version of the `

1-norm have been implemented by considering the
minimization problem

min
x

(
⌧1

nX

i=1

!

i

|x
i

|+ ⌧2kxk22 +
1

2
ky �Axk22

)
, (4)

where the adaptive weights are computed using a solution given by the EN
minimization problem (3). If we let the solution of EN to be x̂(EN), then
the weights are given by the equation !

i

= 1/(|x̂
i

(EN)| + (1/m))# where #

is a positive constant. A variant of the above model was proposed in [16] by
incorporating the adaptive weight matrix W in the `

2-penalty term:

min
x

(
⌧1

nX

i=1

!

i

|x
i

|+ ⌧2

nX

i=1

!

2
i

x

2
i

+
1

2
ky �Axk22

)
. (5)

In this paper we use a re-weighted elastic net regularization model for perioc-
ular recognition application.

1.2 Summary of Contributions

The main contribution of this paper is to propose a re-weighted elastic net
(REN) regularization model, that enhances the sparsity of the solutions found.
The proposed REN model is a regularization and variable selection method
that enjoys sparsity of representation, particularly when the number of pre-
dictors are much larger than the number of observations. The weights are
computed such that larger weights will encourage small coordinates by means
of the `

1-norm, and smaller weights will encourage large coordinates due to
the `

2-norm. Our model di↵ers from the schemes in [52] and [16] (see equa-
tions (4) and (5) above), since the `1 and `

2 terms are automatically balanced
by weights which are continuously updated using !

i

= 1/(|x̂
i

| + ✏) with ✏ a
positive parameter [7]. We also provide a concise proof of the existence of a
solution for the proposed model as well as its accuracy property.

A complete presentation of the numerical implementation of the REN
model using a gradient projection (GP) method [14], seeking sparse repre-
sentations along certain gradient directions is described in this paper. We use
a reformulation of the REN model as a quadratic programming (QP) prob-
lem. As a main application of our model, we consider the periocular recognition
problem. The periocular region has been regarded as a trade-o↵ between using
the entire face or only the iris in biometrics. Periocular region is particularly
suitable for recognition under visible wavelength light and uncontrolled acqui-
sition conditions [32,46,30].

We enhance periocular recognition through the sparsity-seeking property
of our REN model over di↵erent periocular sectors, which are then fused ac-
cording to a Bayesian decision based scheme. The main idea is to benefit from
the information from each sector, which should contribute in overall recog-
nition robustness. Two di↵erent domains are considered for this purpose: (1)

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Robust periocular recognition by fusing sparse representations 5

Fig. 1 Examples of periocular images of di↵erent subjects and varying gazes, containing the
corneal, eyebrows and skin regions.

geometry and (2) color. Full geometry information is accessed by decomposing
a given image into their cartoon - texture components by means of a dual
formulation of the weighted total variation (TV) scheme [37]. For color, a key
contribution is the use of nonlinear features such as chromaticity and hue com-
ponents, which are thought to improve image geometry information according
to human perception [22]. Our methodology is inspired by two related works:
1) Wright et al. [48], which introduced the concept of sparse representation for
classification (SRC) purposes; and 2) Pillai et al. [34], that used a SRC model
for disjoint sectors of the iris and fused results at the score level, according to
a confidence score estimated from each sector.

Our experiments are carried out in periocular images of the UBIRIS.v2
data set [36]: images were acquired at visible wavelengths, from 4 to 8 meters
away from the subjects and uncontrolled acquisition conditions. Varying gazes,
poses and amounts of occlusions (due to glasses and reflections) are evident in
this data set and makes the recognition task harder, see Figure 1. The results
obtained using our model allowed us to conclude about consistent increases in
performance when compared to the classical SRC model and other important
approaches (e.g., Wright et al. [48] and Pillai et al. [34]). Also, it should be
stressed that such increase in performance were obtained without a significant
overload in the computational burden of the recognition process.

The rest of the paper is organized as follows. Section 2 summarizes the
most relevant in the scope of this work concerning penalized feature selection
for sparse representation. The re-weighted elastic net (REN) model is intro-
duced together with statistical motivation ensuring high prediction rates. An
algorithm based on gradient projection (GP) for the REN model is also in-
troduced. Section 3 describes the di↵erent geometrical information extracted
from periocular images for performing recognition based on cartoon - texture
and chromaticity features in a total variation framework. Section 4 describes
the experimental validation procedure carried out together with remarkable
comparisons. Finally, Section 5 concludes the paper.
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2 The Reweighted Elastic Net model for Classification Model

2.1 The LASSO Model for Recognition

We first briefly describe the sparse representation based classification frame-
work which is a precursor to our REN based approach. Having a set of la-
beled training samples (n

i

samples from the ith subject), they are arranged
as columns of a matrix A(i) = [v

i,1, . . . ,vi,ni ] 2 Rm⇥ni . A dictionary results
from the concatenation of all samples of all classes:

A = [A(1), . . . , A(k)] = [v1,1, · · · ,v1,n1 | . . . |vk,1, · · · ,vk,nk ].

The key insight is that any probe y can be expressed as a linear combination
of elements of A. As the data acquisition process often induces noisy samples,
it turns out to be practical to make use of the LASSO model. In this case it
is assumed that the observation model has the form y = Ax⇤ + .

Classification is based on the observation that high values of the coe�cients
in the solution x̂ are associated with the columns of A of a single class, corre-
sponding to the identity of the probe. A residual score per class

i

: Rn ! Rn

is defined: x̂ !
i

(x̂), where
i

is a indicator function that set the values of all
coe�cients to 0, except those associated to the ith class. Over this setting, the
probe y is then reconstructed by ŷ

i

= A

i

(x̂), and the minimal reconstruction
error deemed to correspond to the identity of the probe, between y and ŷ

i

:

id(y) = argmin
i

r

i

(y),

with r

i

(y) = ky � ŷ
i

k2.
In [48] a sparsity concentration index (SCI) is used to accept/reject the

response given by the LASSO model. The SCI of a coe�cient vector x̂ 2 Rn

corresponds to:

SCI(x̂) =

kmax
i

k
i

(x̂)k1
kx̂k1

� 1

k � 1
2 [0, 1].

If SCI(x̂) ⇡ 1, the computed signal x̂ is considered to be acceptably repre-
sented by samples from a single class. Otherwise, if SCI(x̂) ⇡ 0 the sparse
coe�cients spread evenly across all classes and a reliable identity for that
probe cannot be given.

The recognition model proposed by Pillai et al. [34] obtains separate sparse
representations from disjoint regions of an image and fusing them by consid-
ering a quality index from each region. Let L be the number of classes with
labels {c

i

}L
i=1. A probe y is divided into sectors, each one described by the

SRC algorithm. SCI values are obtained over each sector, allowing to reject
those with quality bellow a threshold. Let {d}

i

represent the class labels of the

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

���



Robust periocular recognition by fusing sparse representations 7

retained sectors, and P(d
i

|c) be the probability that the i-th sector returns a
label d

i

, when the true class is c:

P(d
i

|c) =

8
>>><

>>>:

t

SCI(di)
1

t

SCI(di)
1 + (L� 1)tSCI(di)

2

if d
i

= c,

t

SCI(di)
2

t

SCI(di)
1 + (L� 1)tSCI(di)

2

if d
i

6= c,

being t1 and t2 constants such that 0 > t1 > t2 > 1. According to a maximum
a posteriori (MAP) estimate of the class label, the response corresponds to
the class having the highest accumulated SCI:

c̃ = argmax
c2C

P
L

j=1 SCI(d
j

)�(d
j

= c)
P

L

j=1 SCI(d
j

)
.

2.2 The Re-weighted Elastic Net (REN) Method

The proposed REN model is a sparsity of representation approach balances
the LASSO shrinkage term (`1-norm) and the strengths of the quadratic reg-
ularization (`2-norm) coe�cients by the following minimization problem:

min
x

(
nX

i=1

!

i

|x
i

|+
nX

i=1

(1� !

i

)2x2
i

+
1

2
ky �Axk22

)
, (6)

where !1, . . . ,!n

are positive weights taking values in (0, 1). The REN-penaltyP
n

i=1 !i

|x
i

|+
P

n

i=1(1�!

i

)2x2
i

is strictly convex and it is a compromise between
the ridge regression penalty and the LASSO. The convex combination in the
REN-penalty term is natural in the sense that both the `

1 and `

2 norms
are balanced by weights controlling the amount of sparsity versus smoothness
expected from the minimization scheme. As in [7], the weights are chosen
such that they are inversely related to the computed signal according to the
equation !

i

= 1/(|x̂
i

| + ✏) with ✏ a positive parameter. Under this setting,
large weights w

i

will encourage small coordinates with respect to the REN-
penalty term, whereas small weights imply big coordinates with respect to the
REN-penalty term, respectively. Then, it is seen that the new model combines
simultaneously a continuous shrinkage and an automatic variable selection
approach. We next consider the existence of solution and the sign recovery
property of the REN model.

Next we describe an algorithm for the REN model allowing us to directly
deal with the case n � m. It turns out that our REN model can be expressed
as a quadratic program (QP), thus allowing us to apply a gradient projection
approach to perform the sparse reconstruction.
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8 Juan C. Moreno et al.

(a) Original Signal

(b) Reweighted EN Model (Proposed) (MSE = 3.499e-05)

(c) Adaptive EN Model [52] ( MSE = 5.194e-05)

(d) Adaptive EN Model [16] (MSE = 4.791e-05)

(e) LASSO Model (MSE = 1.445e-04)

Fig. 2 Sparse signal reconstruction with EN and LASSO models. (a) Sparse signal of Length
n = 4096 with k = 1024 observations. (b)-(e) Response signals computed with the proposed
reweighted elastic net, [52], [16] and LASSO, respectively.

2.3 Numerical Implementation

The algorithm that alternates between the computed signal and redefining the
weights is as follows:

1. Choose initial weights w
i

= 1/2, i = 1, . . . , n.
2. Find the solution x̂ of the problem

min
x

kWxk1 + k(1�W )xk22 +
1

2
ky �Axk22, (7)

3. Update the weights: for each i = 1, · · · , n,

w

i

=
1

|x̂
i

|+ ✏

,

where ✏ is a positive stability parameter.
4. Terminate on convergence or when a specific number of iterations is reached.

Otherwise, go to step 2.

Note that our REN problem in (7) can also be expressed as a quadratic
program [15], by splitting the variable x into its positive and negative parts.
That is, x = x+�x�, where x+ and x� are the vectors that collect the positive
and negative coe�cients of x, respectively. Then, we handle the minimization
problem,

min
z

�
Q(z) = cT z+ zTBz

 
, (8)
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where z = [x+,x�]T , wn

= [!1, . . . ,!n

]T , c = w2n + [�A

Ty;ATy]T and
B = 1

2B1 +B2 with

B1 =

✓
A

T

A �A

T

A

�A

T

A A

T

A

◆
, B2 =

✓
(1�W )2 �(1�W )2

�(1�W )2 (1�W )2

◆
.

The minimization problem (8) can then be solve using the Barzilai-Borwein
Gradient Projection Algorithm [39]. Under this approach the iterative equation
is given by,

z(k+1) = z(k) � ⇣

(k)
⌫

(k)
,

where ⇣

(k) is the step size computed as

⇣

(k) =
⇣
z(k) � ↵

(k)rQ

⇣
z(k)

⌘⌘

+
� z(k),

with

↵

(k+1) =

8
><

>:
mid

(
↵

min

,

��
⇣

(k)
��2

�
⇣

(k)
�
T

B⇣

(k)
,↵

max

)
, if

�
⇣

(k)
�
T

B⇣

(k) 6= 0

↵

max

, otherwise.

The operator mid is the define as the middle value of three scalar arguments
and ↵

min

and ↵

max

are two given parameters. The parameter ⌫ take the form

⌫

(k) =

8
><

>:
mid

(
0,

�
⇣

(k)
�
T rQ

�
z(k)

�
�
⇣

(k)
�
T

B⇣

(k)
, 1

)
, if

�
⇣

(k)
�
T

B⇣

(k) 6= 0,

1, otherwise.

The performance of the REN minimization along with comparisons is
shown is Figure 2 for a sparse signal. We want to reconstruct a length-n sparse
signal (in the canonical basis) from m observations, with m ⌧ n. The matrix
A

m⇥n

is build with independent samples of a standard Gaussian distribution
and by ortho-normalizing the rows, while the original signal x⇤ contains 160
randomly placed ±spikes and the observation is defined as y = Ax⇤ + with
 a Gaussian noise of variance �

2 = 10�4. The reconstruction of the origi-
nal signal over the REN minimization problem produces a much lower mean
squared error (MSE = (1/n)kx̂�x⇤k with x̂ been an estimate of x⇤) equal to
3.499 ⇥ 10�05, while the MSE given by the adaptive elastic model proposed
in [16], [52] and LASSO are 5.194 ⇥ 10�05, 4.791 ⇥ 10�05 and 1.445 ⇥ 10�04

respectively. Therefore, the proposed REN approach does an excellent job at
locating the spikes.

Remark 1 The iterative reweighted algorithm falls in the general class of Ma-
jorization - Minimization (MM) algorithms [23]. An interesting example of
separable iterative reweighing for sparse solutions is presented in [7] where the
selection

w

(k+1)
i

! 1���x(k+1)
i

���+ ✏

(9)
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10 Juan C. Moreno et al.

(a) Grayscale periocular images

(b) Cartoon Component with 80 iterations (c) Texture Component with 80 iterations

(d) Cartoon Component with 400 iterations (e) Texture Component with 400 iterations

Fig. 3 Cartoon - Texture component for grayscale periocular images using a weighted TV
model (3.1). (a) Grayscale periocular images. (b)-(c) Cartoon - Texture decomposition with 80
iterations. (d)-(e) Cartoon - Texture decomposition with 400 iterations.

is suggested. Here ✏ is generally chosen as a fixed, application-dependent con-
stant. In the noiseless case, it is demonstrated based on [13] that this amounts
to iteratively solving

min
x

nX

i=1

log (x
i

+ ✏) , subj. to Ax = y, (10)

and convergence to a local minimum or saddle point is guaranteed. In [45] the
reweighting

w

(k+1)
i

! 1
⇣
x

(k+1)
i

⌘2
+ ✏

���x(k+1)
i

���
, (11)

is also considered together with the case ✏ ! 0. Related with the sparse
solution of the model

min
x

⇢
⌧kxk2 + 1

2
ky �Axk22

�
, (12)

the reweighting

w

(k+1)
i

! 1
⇣
x

(k+1)
i

⌘2
+ ✏

(k+1)

(13)

is implemented in [8], where ✏

(k+1) � 0 is regularization factor the is reduced
to zero as k becomes large.
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(a) RGB periocular Image (b) HSV color decomposition

(c) CB color decomposition

Fig. 4 Di↵erent color decomposition for a given periocular image. (a) RGB color periocular
image. (b) HSV color decomposition. (c) CB color decomposition.

3 Geometric and Color Spaces for Image Decomposition

3.1 Cartoon + Texture (CT) Space

The periocular images contain cartoon (smooth) and texture parts (small scale
oscillations) which can be obtained using the total variation (TV) [37] model
e↵ectively. In this setting, the grayscale version of a periocular image is divided
into two components representing the geometrical and texture parts. The TV
based decomposition model is defined as an energy minimization problem,

min
u

⇢
E

L

1

TV

(u) =

Z

⌦

g(x)|ru| dx+ �

Z

⌦

|u� I| dx
�

where I is the input grayscale image, and g(x) = 1
1+K|rI|2 is an edge indicator

type function. Following [3] we use a splitting with an auxiliary variable v to
obtain the following relaxed minimization,

min
u,v

⇢
Ẽ

L

1

TV

(u, v) =

Z

⌦

g(x)|ru| dx+
1

2✓

Z

⌦

(u+ v � I)2 dx+ �

Z

⌦

|v| dx
�
.(14)

After a solution u is computed, it is expected to get the representation I ⇡
u+v, where the function u represents the geometric cartoon part, the function
v contains texture information, and the function g represent edges. The min-
imization (14) is achieved by solving the following alternating sub-problems
based on the dual minimization technique:

1. Fixing v, the minimization problem in u is:

min
u

⇢Z

⌦

g(x)|ru| dx+
1

2✓
ku+ v � Ik2

L

2(⌦)

�
. (15)

The solution of (15) is given by u = v� ✓divp where p = (p1, p2) satisfies
g(x)r(✓ divp� (I � v))� |r(✓divp� (I � v))|p = 0, solved using a fixed

���



12 Juan C. Moreno et al.

point method: p0 = 0 and iteratively

pn+1 =
pn + �tr(div(pn)� (I � v)/✓)

1 + �t

g(x) |r(div(pn)� (I � v)/✓)|
.

2. Fixing u, the minimization problem in v is:

min
v

⇢
1

2✓
ku+ v � Ik2

L

2(⌦) + �kvk
L

1(⌦)

�
,

and the solution is found as

v =

8
><

>:

I � u� ✓� if I � u � ✓�,

I � u+ ✓� if I � u  �✓�,

0 if |I � u|  ✓�.

Figure 3 illustrates cartoon - texture decomposition of three grayscale peri-
ocular images for di↵erent iterations. As the number of iterations we notice
that the cartoon component becomes smoother and texture component picks
up more oscillations.

3.2 Color Spaces

For color periocular images we can obtain intensity and chromaticity decom-
position which exploits color information. In computer vision there has been
increasing interest in non flat image features that live on curved manifolds
which are well suited for edge detection and enhancement in color and mul-
tichannel images [42]. The flatness concept is related to functions taking all
possible values in an open set in a linear space. The chromaticity feature of
color images is an example of non-flat features. Given a color periocular image
I : ⌦ ! R3, the RGB representation is defined by a vector with three compo-
nents I = (I1, I2, I3). From the RGB color space, the chromaticity-brightness
(CB) model arises by decomposing into the brightness component B : ⌦ ! R
computed as B = |I| and chromaticity components C = (C1, C2, C3) : ⌦ ! S2
(where S2 is the unit sphere in R3) is computed by C

i

= I

i

/B. We also make
use of the Hue-Saturation-Value (HSV) color space commonly used since it
is believed to be more natural and is related to human perception [49]. Fig-
ure 4 illustrates CB decomposition, and HSV color space conversions of a given
RGB periocular image. In our experiments we compare grayscale CT decom-
position and CB, RGB and HSV color space based decompositions along with
the proposed REN model.

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV
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Signal x̂
Optimal Non-Optimal

Signal Recovery Signal Recovery
SCI(x̂) > � ! Positive True Positive (TP) False Positive (FP)
SCI(x̂)  � ! Negative False Negative (FN) True Negative (TN)

Table 1 Types of errors, according to the SCI value and the sparse signal reconstruction following
Wright et al. [48] and Pillai et al. [34] models.

Mehtod Feature sens. far acc. thres. AUC EER

REN (Proposed)

Grayscale (SRC) 90.05 8.55 90.99 0.1553 0.9643 0.0904
Texture (SRC) 92.10 1.89 92.40 0.0756 0.9756 0.0589
CT (Fusion) 99.90 7.18 98.77 0.1641 0.9994 0.0018
CB (Fusion) 99.82 7.37 98.49 0.2333 0.9992 0.0061
RGB (Fusion) 99.83 4.11 99.31 0.1670 0.9990 0.0020
HSV (Fusion) 99.83 2.13 99.57 0.1832 0.9991 0.0019

Wright2009 Grayscale (SRC) 84.70 9.59 85.14 0.05642 0.9307 0.1529

Park2009

LBP 80.70 9.99 86.90 0.7468 0.9189 0.1553
HOG 69.29 9.99 83.11 0.6421 0.8656 0.2088
SIFT 86.00 9.36 88.96 0.0477 0.9453 0.1232
Fusion 90.58 9.99 90.21 0.1052 0.9564 0.0954

Bharadwaj2010
GIST 75.56 9.99 85.20 0.7623 0.8927 0.1846
ULBP 85.82 9.99 88.61 0.8673 0.9259 0.1311
Fusion 83.96 9.99 88.00 0.8008 0.9235 0.1386

Table 2 AUC and EER values, as well as the best sensitivity for far  10% for left side periocular
images. The Underline fonts indicate the best model observed.

4 Experiments and Discussion

4.1 Performance Measures

Images were down-sampled to 10⇥ 9 pixels and stored in “png” format. The
resulting sensitivity and specificity values were considered, obtaining the Re-
ceiver Operating Characteristic curves (ROC). In this case, given a signal x̂,
if SCI(x̂) > �, the classifier outputs a positive response (P), otherwise a neg-
ative (N) result. For a fixed �, the sensitivity corresponds to the proportion
of signals correctly detected by the SRC algorithm, whereas specificity counts
the proportion for which the corresponding SCI values are bellow �, where �

is an accepted threshold value.

sensitivity =
#TP

#TP + # FN
and specificity =

# TN

# TN + #FP
,

where TP, FP, TN and FN correspond to the True Positive, False Positive, True
Negative and False Negative, respectively. Table 1 summarizes these notions,
combining the di↵erent classes of periocular signals and their relation with the
classifier induced by the minimal reconstruction error and the accumulated SCI
value. The overall accuracy is given by:

accuracy =
# TN+# TP

# TN+# FP +# TP+# FN
.

In a ROC plot, the optimal recognition method would yield a point in the
upper-left corner, corresponding to full sensitivity (no false negatives) and full
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14 Juan C. Moreno et al.

specificity (no false positives). The statistical correlation between the outputs
given by each channels considered in our method was also assessed. Considering
that eventual dependences will be linear, the Pearson’s sample correlation was
used for that purpose. Given a pair of samples, the correlation coe�cient is
given by:

r(x̂(1)
, x̂(2)) =

1

n� 1

nX

i=1

 
x̂

(1)
i

� x̄(1)

�

x̂

(1)

! 
x̂

(2)
i

� x̄(2)

�

x̂

(2)

!
,

where x̂

(1)
i

, x̂(2)
i

denote the systems outputs, x̄(1), x̄(2) are the sample means
and �

x̂

(1) , �
x̂

(2) the standard deviations.

4.2 Results

For our first experiment, we focus on only left side periocular images. Six
samples from 150 di↵erent subjects were used, such that one image per class
was randomly chosen as probe and the remaining five samples included in the
dictionary. Experiments were repeated, changing the image used as probe (per
subject). Hence, 100 dictionaries with dimension 90⇥750 were considered, each
one tested in 150 probe samples.

Results are summarized in Table 2 in terms of true and false positive rates
where the best sensitivity (sens.) and corresponding accuracy (acc.) for far
(=1-specificity)  10% have been computed for various schemes and models
studied here. The proposed reweighed elastic net demonstrates to be superior
than the original SRC approach over grayscale impulses. In this case the area
under the curve (AUC) and the equal error rate (EER) are equal to 0.9643
and 0.0904 for our model, against 0.9307 and 0.1529 produced by the original
SRC model. The proposed models approximates more to the optimal perfor-

mance point (complement of specificity = 0, sensitivity = 1). For the REN
approach applied to the grayscale and the texture components alone the mini-
mal distance from the ROC values to the (0, 1) point was of 0.1511 and 0.0812
respectively, while the value 0.1805 was observed for the classical SRC model.
In relation to other image representation components, the minimal distance
from the ROC values to the (0, 1) point was of 0.0022 0.0106, 0.0023, 0.0019
for the CT, CB, RGB and HSV spaces.

Comparisons have been carried out by implementing the well known mod-
els of Park et al. [33] and Bharadwaj et al. [2]. Even both models make full use
of local and global periocular information to perform recognition, they have
shown not to improve better than our approach. In our experiments, we have
compared the AUC as well as the EER values in the case REN model ap-
proach uses the texture periocular components as feature extraction, against
those features used in Park et al. [33] and Bharadwaj et al. [2]. For the com-
parison models the highest AUC is equal to 0.9564 and lowest EER is equal
to 0.0954 when applying their fusion techniques. Meanwhile, using the texture
information provided by the cartoon - texture space, our model got the values

%LRPHWULF 5HFRJQLWLRQ LQ 8QFRQVWUDLQHG (QYLURQPHQWV

���



Robust periocular recognition by fusing sparse representations 15

(a) ROC curves - Left Side (b) ROC curves - Left Side (c) ROC curves - Left Side

Fig. 5 ROC curves for periocular images recognition. (a) ROC curves for the original REN
approach and the SRC model and the REN approach. (b) ROC curves for the REN approach
applied to the texture components together with di↵erent features extrated by Park et al. [33]
and Bharadwaj et al. [2]. (c) ROC curves for the REN model applied to the proposed fusion over
the di↵erent geometry and color spaces, as well as the fusion implemented in Park et al. [33] and
Bharadwaj et al. [2].

Grayscale Texture CT CB RGB HSV
Grayscale 1 0.7173 0.5331 0.4272 0.7139 0.6230
Texture - 1 0.6041 0.6285 0.9776 0.9043

CT - - 1 0.2206 0.6134 0.6146
CB - - - 1 0.6146 0.7213
RGB - - - - 1 0.9180
HSV - - - - - 1

Table 3 Pearson’s sample correlation coe�cients between the left side responses given by the
recognition algorithms using the REN model with various components studied here.

0.9756 and 0.0589 for the AUC and EER, respectively. Our fusion method
using di↵erent spaces completely describing the geometry and color periocular
feature have also shown to reached great statistical values in comparison to
those values got it by Park et al. [33] and Bharadwaj et al. [2] approaches. In
this case, the highest AUC and the lowest EER values are given by the CT
space with values 0.9994 and 0.0018, see Figure 5.

As it can be observed from Table 3, the proposed REN model applied to
grayscale in texture setting are in high correlation when compared to the sig-
nals recovered in the CT, RGB and HSV spaces. The result is due to the high
accuracy rates achieved over these image representations. Similarly the signals
recovered in the CB space are in low correlation with the signals lying in the
grayscale setting and the CT space, and in high correlation with the signals
computed over texture domain alone. This is because the chromaticity com-
ponents lying in the unit sphere S2 have the advantage of depicting nonlinear
features in di↵erent directions and therefore both strong and weak edges are
distributed and represented along chromaticity components. Also, it should be
noted the strong correlation between the outputs given by the fusion model
when using exclusively color components. This is also can be explained, as
the skin region comprises a large majority of the periocular region (see Fig-
ure 4). It is particularly interesting to observe that the positive (and small)
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16 Juan C. Moreno et al.

correlation values between the signals are obtained when using di↵erent color
spaces representation, pointing for a complementarity that might contribute
for the outperforming results of the method proposed in this paper. Although
the CT space produces good recognition rates, its computed signals are in
low correlation with respect to other signals over di↵erent domains, owing to
the fact that CT space is given by geometric information in case of cartoon
component, whereas weak and strong edges describe texture components, see
Figure 3.

5 Conclusions

This paper describes a novel re-weighted elastic net (REN) model that im-
proves the sparsity of representations in periocular regions which is an emerg-
ing biometric trait with high potential to handle data acquired under uncon-
trolled conditions. From this perspective, we have fused multiple sparse repre-
sentations, associated with various spaces from di↵erent domains in geometry
and color, which allow us to faithfully handle distortions in periocular images
such as blur and occlusions. Our experiments were carried out in the highly
challenging images of the UBIRIS.v2 dataset, and allowed us to observe con-
sistent improvements in performance, when compared to the classical sparse
representation model, and state-of-the-art periocular recognition algorithms.
In addition, theoretical existence results have been proved for the REN min-
imization problem, mainly emphasizing our approach is good in the sense it
performs as well as if the true underlying model were given in advance. As
far as numerical approximation is concerned, the REN model is expressed as
a quadratic programing (QP) expediting the implementation of the proposed
gradient projection (GP) algorithm and providing good results. Evaluating
the proposed methodology on other biometric traits (iris, face, etc.) and on
di↵erent databases are our future works.

A Existence of Solution

We state necessary and su�cient conditions for the existence of a solution for the proposed
model (6). We follow the notations used in [44,18]. Suppose that Ai = (A

1i, . . . , Ami)T ,
i = 1, · · · , n are the linear independent predictors and y = (y

1

, · · · , ym)T is the response
vector. Let A = [A

1

, · · · , An] be the predictor matrix. In terms of `1 and `2 norms, we
rewrite the minimization problem in (6) as,

min
x

⇢

mkWxk
1

+
m

2
k(1�W )xk2

2

+
1

2
ky �Axk2

2

�

. (16)

Let us denote by x

⇤ and x̂ the real and estimated solution of (16) respectively. Given
I = supp(x⇤) = {i : x⇤

i 6= 0}, we define the block-wise form matrix

AI,Ic =
1

m

0

@

AT
IAI AT

IAIc

AT
IcAI AT

IcAIc

1

A ,
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Robust periocular recognition by fusing sparse representations 17

where AI (AIc ) is a m ⇥ #I (m ⇥ #Ic) matrix formed by concatenating the columns
{Ai : i 2 I} ({Ai : i 2 Ic}) and AT

IAI is assumed to be invertible.
First we assume that there exist x̂ 2 Rn satisfying (16) and sign(x̂) = sign(x⇤). Lets

define b = WIsign(x⇤
I) together with the set,

D =

(

d 2 Rn :

(

di = bi, for x̂i 6= 0

|di|  wi, otherwise

)

.

From the Kauush-Kuhn-Tucker (KKT) conditions we obtain
(

AT
i (y �Ax̂)�m(1� wi)2x̂i = mwisign(x⇤

i ), if x̂i 6= 0
�

�AT
i (y �Ax̂)

�

�  mwi, otherwise

which can be rewritten as,

AT
i A(x̂� x

⇤)�AT
i +m(1� wi)

2x̂i +mdi = 0, (17)

for some d 2 D with components di, i = 1, . . . , n. By substituting the equality y = Ax

⇤+.
From the above Eqn. (17) the following two equations arise:

AT
IAI(x̂I � x

⇤)�
AT

I

m
+ (1�W )2x̂I = �b, (18)

AT
IcAI(x̂I � x

⇤)�
AT

Ic

m
= �dIc . (19)

Solving for xI in (18) and replacing in (19) to get b in terms of xI leave us with

x̂I =
⇣

AT
IAI + (1�W )2

⌘�1

✓

AT
IAIx

⇤
I +

AI

m
� b

◆

, (20)

AT
IcAI

 

⇣

AT
IAI + (1�W )2

⌘�1

 

AT
IAIx

⇤
I +

AT
I

m
� b

!

� x

⇤
I

!

�
AT

Ic

m
= �b. (21)

From (20) and (21), we finally get the next two equations:

sign

 

⇣

AT
IAI + (1�W )2

⌘�1

 

AT
IAIx

⇤
I +

AT
I

m
� b

!!

= sign(x⇤
I) (22)

and
�

�

�

�

�

AT
i AI

 

⇣

AT
IAI + (1�W )2

⌘�1

 

AT
IAIx

⇤
I +

AT
I

m
� b

!

� x

⇤
I

!

�
AT

i 

m

�

�

�

�

�

 wi, (23)

for i 2 Ic.
Now, let us assume that equations (22) and (23) both hold. It will be proved there exist

x̂ 2 Rn satisfying sing(x̂) = sign(x⇤). Setting x̂ 2 Rn satisfying x̂Ic = x

⇤
Ic = 0 and

xI =
⇣

AT
IAI + (1�W )2

⌘�1

 

AT
IAIx

⇤
I +

AT
I

m
� b

!

,

which guarantees the equality sign(x̂I) = sign(x⇤
I) due to (22). In the same manner, we

define d 2 Rn satisfying dI = b and

dIc = �
 

AT
IcAI

 

⇣

AT
IAI + (1�W )2

⌘�1

 

AT
IAIx

⇤
I +

AT
I

m
� b

!

� x

⇤
I

!

�
AT

Ic

m

!

,

implying from (23) the inequality |di|  wi for i 2 Ic and therefore d 2 D. From previous,
we have found a point a point x̂ 2 Rn and d 2 D satisfying (18) and (19) respectively
or equivalently (17). Moreover, we also have the equality sign(x̂) = sign(x⇤). Under these
assertions we can prove the sign recovery property of our model as illustrated next.
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18 Juan C. Moreno et al.

B Sign Recovery Property

Under some regularity conditions on the proposed REN model, we intend to give an esti-
mation for which the event sign(x̂) = sign(x⇤) is true. Following similar notations in [52,
50], we intend to prove that our model enjoys the following probabilistic property:

Pr

✓

min
i2I

|x̂i| > 0

◆

! 1. (24)

For theoretical analysis purposes, the problem (6) is written as

min
x

�

kWxk
1

+ k(1�W )xk2
2

+ ky �Axk2
2

 

.

The following regularity conditions are also assumed:

1. Denoting with ⇤
min

(S) and ⇤
max

(S) the minimum and maximum eigenvalues of a
symmetric matrix S, we assume the following inequalities hold:

✓
1

 ⇤
min

✓

1

m
ATA

◆

 ⇤
max

✓

1

m
ATA

◆

 ✓
2

,

where ✓
1

and ✓
2

are two positive constants.

2. lim
m!1

log(n)

log(m)
= ⌫ for some 0  ⌫ < 1

3. lim
m!1

r

m

n

1

maxi2I wi
= 1.

Let
x̃ = argmin

x

n

ky �Axk2
2

+ k(1�W )xk2
2

o

. (25)

By using the definitions of x̂ and x̃, the next two inequalities arise

ky �Ax̂k2
2

+ k(1�W ) x̂k2
2

� ky �Ax̃k2
2

+ k(1�W ) x̃k2
2

(26)

and

ky �Ax̃k2
2

+ k(1�W ) x̃k2
2

+
n
X

i=1

wi|x̃i| � ky �Ax̂k2
2

+ k(1�W ) x̂k2
2

+
n
X

i=1

wi|x̂i|.

(27)
The combination of equations (26) and (27) give

n
X

i=1

wi(|x̃i|� |x̂i|) � ky �Ax̂k2
2

+ k(1�W )x̂k2
2

� ky �Ax̃k2
2

� k(1�W )x̃k2
2

= (x̂� x̃)T
⇣

ATA+ (1�W )2
⌘

(x̂� x̃)

(28)

On the other hand

n
X

i=1

wi (|x̃i|� |x̂i|) 
n
X

i=1

wi |x̃i � x̂i| 

v

u

u

t

n
X

i=1

w2

i kx̃� x̂k
2

(29)

By combining equations (28) and (29) we get

⇤min

⇣⇣

ATA
⌘

+ (1�W )2
⌘

kx̂� x̃k2
2

 (x̂� x̃)T
⇣

ATA+ (1�W )2
⌘

(x̂� x̃)



v

u

u

t

n
X

i=1

w2

i kx̃� x̂k
2
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which together with the identity

0  ✓
1

 ⇤min

⇣

ATA
⌘

 ⇤min

⇣⇣

ATA
⌘

+ (1�W )2
⌘

allow us to prove

kx̂� x̃k
2



q

Pn
i=1

w2

i

⇤min (ATA)
, (30)

Let us notice that

E
⇣

kx̃� x

⇤k2
2

⌘

= E

✓

�
⇣

ATA+ (1�W )2
⌘�1

(1�W )2 x⇤ +
⇣

ATA+ (1�W )2
⌘�1

AT

◆

 2
k(1�W )x⇤k2

2

+ n⇤
max

�

ATA
�

�2

⇤
min

(ATA)
(31)

From equations (30) and (31) we conclude that

E
⇣

kx̂� x

⇤k2
2

⌘

 2
⇣

E
⇣

kx̃� x

⇤k2
2

⌘

� E
⇣

kx̂� x

⇤k2
2

⌘⌘

 4
k(1�W )x⇤k2

2

+ n⇤
max

(ATA)�2 + E
�

Pn
i=1

w2

i

�

⇤
min

(ATA)
.

(32)

Let ⌘ = mini2I |x⇤
i | and ⌘̂ = maxi2I wi. Because of (30),

kx̂I � x̃Ik2
2


p
n⌘̂

✓
1

m
.

Then

min
i2I

|x⇤
i | > min

i2I
|x̃i|�

p
n⌘̂

✓
1

m
> min

i2I
|x̂i|� kx̃I � x

⇤
Ik

2

�
p
n⌘̂

✓
1

m
. (33)

Now, we notice that p
n⌘̂

✓
1

m
= O

✓

1
p
n

◆✓

r

n

m
⌘�1

◆

(⌘̂⌘) .

Since
E
⇣

(⌘̂⌘)2
⌘

 2⌘2 + 2⌘2E
⇣

(⌘̂ � ⌘)2
⌘

 2⌘2 + 2⌘2E
⇣

kx̂� x

⇤k2
⌘

 2⌘2 + 8⌘2

�

�

�

(1�W )2 x⇤
�

�

�

2

2

+ ✓
2

nm�2 + E
�

Pn
i=1

w2

i

�

✓
1

m

and ⌘2m/n ! 1 as long as m ! 1, it follows that
p
n⌘̂�1

✓
1

m
= o

✓

1
p
n

◆

OPr(1). (34)

By using (32), we derive

E

✓

�

�

�

ˆ

x̂I � x

⇤
I

�

�

�

2

2

◆

 4
k (1�W )2 x⇤k

2

+ ✓
2

nm�2

(✓
1

m)2
=

r

n

m
OPr(1). (35)

Substituting (34) and (35) in (33) allow us to conclude that

min
i2I

|x⇤
i | > ⌘ �

r

n

m
OPr(1)� o

✓

1
p
n

◆

OPr(1).

Then (24) holds.

Remark 2 There is special interest in applying the REN model in the case the data satisfies
the condition n � m. For the LASSO model it was suggested in [6] to make use of the
Dantzig selector which can achieve the ideal estimation up to a log(n) factor. In [12] a per-
forming of the Dantzig selector called the Sure Independence Screening (SIS) was introduced
in order to reduce the ultra-high dimensionality. We remark that the SIS technique can be
combined with the REN model (6) for dealing the case n � m. Then previous computations
can be still applied to reach the sign recovery property.
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Abstract—The growth in practical applications for iris bio-
metrics has been accompanied by relevant developments in the
underlying algorithms and techniques. Efforts are being made
to minimize the tradeoff between the recognition error rates
and data quality, acquired in the visible wavelength, in less
controlled environments, over simplified acquisition protocols and
varying lighting conditions. This paper presents an approach
that can be regarded as an extension to the widely known
Daugman’s method. Its basis is the analysis of the distribution of
the concordant bits when matching iriscodes on both the spatial
and frequency domains. Our experiments show that this method
is able to improve the recognition performance over images
captured in less constrained acquisition setups and protocols.
Such conclusion was drawn upon trials conducted for multiple
datasets.

I. INTRODUCTION

The use of the iris as main biometric trait is emerging as one
of the most recommended, due not only to the possibility of
contactless data acquisition and to its circular and planar shape
that makes easy the detection, segmentation and compensation
for off-angle capturing, but also for its predominately ran-
dotypic appearance. Although these factors contribute to the
high effectiveness of the deployed iris recognition systems,
their typical scenarios are quite constrained: subjects stop-
and-stare relatively close to the acquisition device, while their
eyes are illuminated by a near-infrared light source, enabling
the acquisition of good quality data. Remarkably, several
researchers are trying to minimize the constraints associated
with this process, in a way often referred as non-cooperative
iris recognition.
Traditional iris recognition methods are based on the

statistical Pattern Recognition paradigm and regard the
biometric signatures as points of hyper-dimensional spaces.
Here, a match occurs when the distance between two
signatures is lower than a threshold. However, dealing with
degraded data might lead to huge deformations of the feature
space and significant increases of the error rates. In this
paper we propose a method that accounts for the spatial and
frequency analysis of the bits that are in agreement when
comparing two biometric signatures (iriscodes). The goal
is to increase the robustness to degraded data, captured in
unconstrained acquisition setups. The Daugman’s approach,
widely known for it’s low error rates and commercially
deployed in iris recognition systems worldwide, has proven

to perform well in different types of images and, therefore,
will be the basis of our work and our comparison term.

The remaining of this paper has the following structure:
section II overviews the iris recognition process, namely
the less constrained acquisition setup and the Daugmans’s
approach; section III describes the proposed method; section
IV describes the used datasets and discusses the obtained
results; finally, section V states the conclusions.

II. IRIS RECOGNITION
The iris recognition process starts with the segmentation

of the iris ring. Further, data is transformed into a double
dimensionless polar coordinate system, through the Daug-
man’s Rubber Sheet process. Regarding the feature extrac-
tion stage, existing approaches can be roughly divided into
three variants: phase-based [1], zero-crossing [2] and texture-
analysis methods [3]. Dauman [1] used multi-scale quadrature
wavelets to extract texture phase-based information and obtain
an iris signature with 2048 binary components. Boles and
Boashash [2] computed the zero-crossing representation of
a 1D wavelet at different resolutions of concentric circles.
Wildes [3] proposed the characterization of the iris texture
through a Laplacian pyramid with four different levels. Finally,
in the feature comparison stage, a numeric dissimilarity value
is produced, which determines the subjects identity. Here, it
is usual to apply different distance metrics (Hamming [1],
Euclidian [4] or weighted Euclidian [5]), or methods based
on signal correlation [3].
The accuracy of the deployed iris recognition systems is

remarkable, as reported by the study conduced by Daug-
man [6] and three other independent evaluations [7]–[9].
Nevertheless, recent publications emphasize the significance
of some iriscode bits [10], aiming at improving by either
masking less consistent bits [11] or condensing high discrim-
inatory information regions [12]. However, we stress that the
claimed effectiveness is conditioned to the acquisition of good
quality images, captured in stop-and-stare interfaces at reduced
imaging distances. In less constrained conditions, where a
trade-off between data acquisition constrains and recognition
accuracy is inevitable, the challenge is to maximally increase
flexibility in three axes: subjects position and movement,
imaging distances and lighting conditions. The main problem
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is the appearance of other noise factors [13] (Subsection IV-A),
that represent a substantial issue. As before stated, this area
receives growing interests from the research community and
constituted the scope of several publications [14]–[16].

A. Daugman’s Approach
The Daugman’s approach [17] to perform iris recognition

is the most widely acknowledged, with great acceptance
over the scientific community. Apart from being the unique
implemented in commercially deployed systems, it usually
acts as comparison term for alternative proposals. His method
starts by the detection and segmentation of the iris. Later, the
normalization of the segmented region is performed and fea-
tures are extracted through the convolution of the normalized
data with a bank of 2D Gabor Wavelets (1), followed by a
quantization stage that produces a binary iriscode. This code is
used in the matching stage, that applies the Hamming distance
(3) as comparison measure.

h{Re,Im} = sgn{Re,Im}

∫

ρ

∫

φ
I(ρ,φ)eiw(θ0−φ).

.e−(r0−ρ)2/α2

e−(θ0−φ)2/β2

ρdρdφ

(1)

c = (codeA⊗ codeB) ∩maskA ∩maskB (2)

HD =
∥c∥

∥maskA ∩maskB∥
(3)

where ⊗ is the logical XOR operation and ∩ the logical AND.

III. PROPOSED METHDOD

The similarity measure used by Daugman at the matching
stage simply gives the ratio of concordant iriscode bits over
the whole iris and does not take into account their spatial
and frequency distributions. In this paper, such analysis is
performed, hoping that the location of the concordant bits
and how they spread in the iriscode can provide useful
information in the discrimination between match and non-
match comparisons.

(a) Iriscodes match with regular distributed concordant bits

(b) Iriscodes match with an high concordance region (delimited by
the light gray rectangle)

Fig. 1. Illustration of two iriscode matching results. Black pixels express
concordant bits in the corresponding biometric signatures.

Figure 1 illustrates two comparisons between iriscodes,
from now on called ”comparison maps” (2), where black
pixels denote concordant bits of the corresponding biometric
signatures. Although their Hamming Distance is the same
(50% of concordant bits) we claim that - intuitively - the
comparison map from Figure 1(b) has a much higher proba-
bility of being an intra-class comparison. This is due to the

(delimited) region that gives an area where both iriscodes have
high concordance.

A. Spatial Domain Analysis
To ascertain the level of concordance in regions of different

sizes, we performed a set of convolutions with Haar-based
wavelets of different sizes. Let c be a comparison map of
M × N dimensions. Let h be a Haar-based mother wavelet
with size s× s. The similarity r in local regions of c is given
by:

rs = hs ∗ c , s = {2k}, k = 2, 3, ..., 16 (4)

where ∗ denotes the bi-dimensional convolution and rs has
the same dimensions of c.
Let ωs = max{rs(i, j)}, i = 1, 2, ..., N ; j = 1, 2, ...,M .
Let H be the 25-bin histogram of rψ

2

where ψ is
the maximum size of the Haar-wavelet, such that H =
{h1, h2, ..., h25}. All the ωi and hi values where used as
fetures for the further stages (sub-section IV-B) and give the
proportion of concordant bits across regions of different sizes
of the comparison map.

B. Frequency Domain Analysis
Together with the above described analysis we also analyzed

the frequencies spread of the concordant bits. The rationale is
that matching between inter-class iriscodes should give a dis-
tribution close to white-noise of concordant bits. Oppositely,
an intra-class comparison should present a higher amount of
low frequency components, according to the same key insight
given in the previous section.
At this stage, two modifications to the Daugman’s approach

were performed: remotion of the signal-wise binary conversion
step; and replacement of the XOR operation by the difference
between coefficients. When applying a Fourier transform to
both the binary and the differential comparison maps, we
found that the later produces more discriminating results,
which is easily justified by its higher amount of information.
Let c be a comparison map of M ×N dimensions. The 2D

Fourier transform F is given by:

F (u, v) =
1

N

M
∑

x=0

N
∑

y=0

c(x, y)e−j2π(ux/M+vy/N) (5)

where j is the square root of −1 and e denotes the natural
exponent.
Results were decomposed into sixteen sub-regions, regularly

distributed in small windows, and a set of attributes was
ascertained: minimum and maximum values, average, standard
deviation and local entropy. Since the central shape of F
(where the lower frequencies lie) might contain important
information which could not be properly processed by this
windowing, another method was used to extract specific fea-
tures from this area.
Let A be a P×N window, centered in the P×M matrix that

contains the noticeable central shape such that P = 2M/8.
Ten features Fi are then extracted as explained in the initial
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part of section (6b), representing the distribution of evenly
spaced 10-bins histogram:

Ti = min(A) + i
∆A

10
(6a)

Fi =
P
∑

m=1

N
∑

n=1

sgn
(

A(m,n) − Ti

)

(6b)

with ∆A = max(A) −min(A) and i = 1, 2, ..., 10.

IV. EXPERIMENTS

Thus, the required parameters of the Gabor wavelets (1)
were tuned for best performance, being chosen those with
maximal decidability index (7); i.e. maximizing the distance
between the distributions obtained for the two classical types
of biometric comparisons: between signatures extracted from
the same (intra-class) and different eyes (inter-class).

d′ =
|µinter − µintra|
√

σ2

inter
+σ2

intra

2

(7)

where µinter and µintra denote the means of the inter- and
intra-class comparisons and σinter and σintra the respective
standard deviations.
Regarding iris segmentation, all images were manually seg-

mented, avoiding that segmentation errors corrupt the obtained
results. A central and contiguous region was extracted from
the normalized image, free of eyelid and eyelash occlusions,
and used for the extraction of the iriscode. This option was
taken to empower the spatial and frequency domain analysis.

A. Datasets

Two different datasets were used in our experiments:
UBIRIS [18] and UBIRIS.v2 [19]. These are noisy datasets
[13] with the following factors that degrade the quality of the
data:

• Out-of-Focus - caused by subject movement allied to
imaging systems limitations (namely in the depth-of-field,
poor lightning/exposure ratio);

• Off-Angle - subject head and eye rotation or lack of
alignment;

• Rotation - tilt of the head, despite of the subject being
or not facing the camera;

• Motion blur - blurred iris images caused by eyelid
movement;

• Obstructions - various types of blocking objects can
be found, being the most commons: eyelids, eyelashes,
glasses and contact lenses;

• Reflections - generally strong reflections caused by light
sources or weak ones introduced by surroundings;

• Partial Iris - images appear where iris is not completely
visible;

• Out-of-iris - images where iris is not present at all, either
because fully occlusions or the eye not being present in
the frame.

The higher range of acquisition distances enables the capturing
of data at different scales and should make the results more
visible.
Four dataset configurations were employed:
• UBIRIS.v2 – the first one is made of 500 images from
UBIRIS.v2 without any kind of particular selection;

• UBIRIS.v2 Frontal – a second arrangement consists of
175 images, also from UBIRIS.v2, captured with the
subject looking at camera’s direction;

• UBIRIS.v2 Frontal Close – the third setup is composed
by 100 images from the same database, with the sub-
ject also looking at the camera, but at relatively closer
distances (4 to 6 meters);

• UBIRIS – the last setup include 500 images from
UBIRIS.

The number of comparisons cn is given from the number of
irises n in the database through (8), from which about 4.5%
are intra-class comparisons. In every case, we selected a group
of images that we believe to represent each dataset.

cn =
n−1
∑

i=1

i (8)

B. Feature Selection and Classification
Upon trials using different feature selection and dimension-

ality reduction techniques, carried out on frontally captured
irises, we decided to apply Logistic Regression (LR) to the best
125 features, sorted using Peng et al. method [20] - minimum-
Redundancy, Maximum Relevance, and then mapped to 15
dimensions through Local Fisher Discriminant Analysis [21].
By conducting our earliest tests in an UBIRIS.v2 sub-set of
frontal images, we avoided problems associated with others
noise factors (as gaze look), which might require specific
corrections.

C. Results and Discussion
When applied to the different datasets, the comparison of

our method and of the Daugman’s gave the results contained
in tables I and II.

TABLE I
LOGISTIC REGRESSION RESULTS FOR DIFFERENT DATASET

CONFIGURATIONS. ”HD” REPRESENTS DAGUMAN’S APPROACH
PERFORMANCE, AND ”125 FEAT” REFERS TO OUR APPROACH. AUC

STANDS FOR AREA UNDER ROC CURVE AND CA FOR CLASSIFICATION
ACCURACY

HD 125 Feat
AUC CA AUC CA

UBIRIS.v2 0.7315 0.9574 0.7598 0.9589
UBIRIS.v2 Frontal 0.8499 0.9582 0.8562 0.9590
UBIRIS.v2 Frontal Close 0.8740 0.9632 0.8897 0.9643
UBIRIS 0.9865 0.9868 0.9932 0.9897

Starting by frontal UBIRIS.v2 images, the subset our
method was initially projected on, and attending to Area Under
ROC Curve (AUC) assessment, we can observe an apparently
residual increment of 1%. However, the AUC differs from
Daugman’s approach from 1.57% on close-captured images
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to 2.83% on images without restrictions of any kind, which
is a more significative improvement. For the first version of
UBIRIS, where Daugman’s approach has a good performance
considering acquisition conditions, our method once again
presents enhancements of almost 1% (Figure 2).
For the Classification Accuracy (CA), more permeable to

class unbalancing, the most notable boost occurs for UBIRIS,
as for the second version of this database advancements are
proportional to the ones of AUC.

TABLE II
CONFUSION MATRICES REPRESENTING PROPORTIONS OF TRUE FOR

DIFFERENT DATASET CONFIGURATIONS. ”HD” REPRESENTS DAUGMAN’S
APPROACH PERFORMANCE, AND ”125 FEAT” REFERS TO OUR APPROACH.

Predicted

HD 125 Feat
0 1 0 1

UBIRIS.v2 0 1.000 0.000 0 1.000 0.000
1 0.991 0.009 1 0.950 0.050

0 1 0 1
UBIRIS.v2 0 0.997 0.003 0 0.997 0.003
Frontal 1 0.858 0.142 1 0.841 0.159

Re
al

0 1 0 1
UBIRIS.v2 0 0.997 0.003 0 0.996 0.004
Frontal Close 1 0.797 0.203 1 0.744 0.256

0 1 0 1
UBIRIS 0 0.998 0.002 0 0.998 0.002

1 0.262 0.738 1 0.194 0.806

Table II allows us to interpret the results in a more per-
spicuous way. Having in mind the priority given to lower the
False Accept Rate (FAR) as much as possible, is at the False
Reject Rate (FRR) that the improvements due to our method
can be better observed. Without jeopardizing the FAR, FRR
has a drop of about 1.7% for the subset where our method was
schemed, when compared to the information provided by HD
alone. Analyzing the other two UBIRIS.v2 datasets, this drop
became more suggestive reaching 4.1% to 5.3%, and 6.8% on
UBIRIS.

V. CONCLUSIONS
Unconstrained image acquisition setups and protocols lead

to the appearance of degraded data that significantly in-
creases the challenges in performing accurate iris biometric
recognition. In this paper we assessed the spatial and fre-
quency distributions of the agreement bits resultant of the
comparison between iriscodes having as main purpose the
increase of the robustness to data acquired in less controlled
conditions. Based in well-known feature extraction and data
mining techniques, our method is to be used together with the
traditional Daugman’s approach and consistently contributed
for an improvement in all experimented datasets.
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Abstract—Facial expressions result from movements of mus-
cular action units, in response to internal emotion states or
perceptions, and it has been shown that they decrease the
performance of face-based biometric recognition techniques. This
paper focuses in the recognition of facial expressions and has
the following purposes: 1) confirm the suitability of using dense
image descriptors widely known in biometrics research (e.g., local
binary patterns and histogram of oriented gradients) to recognize
facial expressions; 2) compare the effectiveness attained when
using different regions of the face to recognize expressions; 3)
compare the effectiveness attained when the identity of subjects
is known/unknown, before attempting to recognize their facial
expressions.

Index Terms—Facial Expressions, Biometric Recognition, Per-
formance Analysis.

I. INTRODUCTION

The recognition of facial expressions has been motivating
growing research efforts in recent years and benefited from
advances in machine learning, image processing, and human
cognition domains. Facial expressions constitute responses
to internal emotion states, intentions, or social environment.
They may be intentional or without conscious control and
are produced by the synergistic or co-operative action of
various facial muscles, as illustrated and described in Figure 1.
Another interesting property is their universality: Paul Ekman
studied the nature of facial expression and concluded that
all humans are able to identify enjoyment, surprise, sadness,
anger, fear, disgust. Also, when a set of volunteers was asked
to make facial expressions to depict various scenarios, they
were unmistakable [1].

The recognition of facial expressions is used to study facial
behavior and several observational coding systems for that pur-
pose were previously proposed, such as the Facial Affect Scor-
ing (FAST) [1], the Facial Action Coding System (FACS) [2],
the Emotional Facial Action Coding System (EMFACS) [3]
and Facial Expression Coding System (FACES) [2]. Most
of these are based in six discrete emotions: happiness/joy,
sadness, anger, fear, surprise and disgust. Also, methods due
to Matias et al. [4], Matsumoto et al. [5] and Coan and
Gottman [6] are used in infants to detect and track their facial
affect behavior.

The recognition of facial expressions mainly evolves two
types of techniques: dense appearance descriptors and sta-
tistical machine learning. In particular, local binary patterns

Neutral Angry Disgusted

Fearful Happy Sad

Surprised

Action Unit Description
1- Inner Brow Raise
2- Outer Brow Raise
4- Brow Lower
5- Upper Lid Raise
6- ChickRaise
7- Lid Tighten
9- Nose Wrinkle
10- Upper Lip Raise
12- Lip Corner Bull

14- Dimble
15- Lip Corner Depress
17- Chin Raise
20- Lip Stretch
23- Lip Tighten
24- Lip Press
25- Lip Part
26- Jaw Drop

Figure 1. Targeted action units for the emotional expressions considered in
this work, as suggested by Root and Stephens [7]

(LBP) [8], histogram of oriented gradients (HOG) [9] and
scale invariant feature transform (SIFT) [10] were successfully
applied to this problem. HOG [9] describes local object
appearances and shapes by distribution of local intensity
gradients or edge directions. LBPs [8] describe the pixels
of an image by thresholding the neighborhood of each pixel
with the value of the centre point and using these binary
numbers to construct a label. SIFT [10] is a widely used local
descriptor that starts by localizing keypoints with the local
scale-space maxima of difference-of-Gaussian (DoG), and
subsequently uses such keypoints as reference to generate a 3D
histograms of gradient locations and orientations. Also, various
classifiers were used, such as neural networks (NN) [11],
support vector machines (SVM) [12], linear discriminant anal-
ysis (LDA) [13], K-nearest neighbors (KNN), multinomial
logistic ridge regression (MLR) and Hidden Markov models
(HMM) [14].

According to the above, this paper mainly focuses in the
recognition of facial expressions, and the suitability of using
different facial regions for that task. Our work plan was
divided into three main phases: 1) we started by confirming the
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suitability of fusing dense global and local image descriptors
in the recognition of facial expressions; 2) we analyzed the
effectiveness attained when using the mouth, the periocular
region, the whole face and the mouth plus periocular region re-
gions fused at feature level was compared; and 3) we assessed
the improvements in performance that are due to knowing
subjects identity before recognizing their facial expressions.
To accomplish this plan, we start by manually defining the
regions-of-interest, and then proceed for feature encoding
according to the three feature extraction techniques. Then, for
dimensionality reduction purposes, the principal components
analysis (PCA) [13], [15] of data was carried out. Finally, feed-
forward NN [11], [12] were used for classification purposes.

The remainder of this paper is organized as follows: a
detailed description of the used dataset is given in Section II;
Section III reports our experiments and discusses the results;
and finally, Section IV presents the conclusions.

II. FACEEXPRESSUBI DATASET

The FaceExpressUBI dataset was used as main data source
for experiments. It contains 90, 160 color images acquired
using a video camera, from 184 subjects (490 per subject),
with resolution of 2056⇥2452 pixels. Each image is associated
to a text/annotation file containing the coordinates for the
face, periocular region, nose and mouth, respectively. Similarly
to the majority of similar data sets, seven facial expressions
were considered: happiness/joy, sadness, anger, fear, surprise
and disgust plus the neutral expression. The dataset contains
material from two imaging sessions, volunteers were 10 to
48 years of age, 35% female, 93% Caucasian European, 3%
Latin-American, 3% African and 1% Asian. The number of
participants wearing eyeglasses were 21 (12%). Furthermore,
each expression was recorded during 5 seconds with a rate
frame of 7 fps. For any given subject on the dataset, acquisition
sessions were separated by at least two weeks. Also, from
the first to the second session, location and orientation of the
acquisition device and the artificial light sources were changed
in order to increase the heterogeneity.

III. EXPERIMENTS AND DISCUSSION

In our experiments 2, 652 images of the FaceExpressUBI
dataset were used. They include seven facial expressions and
were selected according to the evidence of the facial expres-
sions they correspond to. According to the annotation files, the
regions-of-interest that comprise the mouth, periocular region
and face were cropped and normalized for a constant size using
bi-cubic interpolation techniques. Then, due to the intrinsic
properties of two of the feature encoding techniques used
(LBPs and HOG), data was sub-divided into square patches,
as detailed in Table I.

The cohesive perspective of our experiments is given in
Figure 2. We used the LBP, HOG and SIFT descriptors to
extract features from each region-of-interest (ROI). Then, PCA
was used for dimensionality reduction and a feed forward
neural network used for classification purposes. In this case,
the problem was regarded as a binary classification task: for

Table I
DESCRIPTION OF THE PRE-PROCESSING/SIZE CHANGES IN THE INPUT

IMAGES.

Anatomic Regions Resize Number of Blocks Block Size
Mouth 45 ⇥ 54 5 ⇥ 6 9 ⇥ 9

Periocular 36 ⇥ 45 4 ⇥ 5 9 ⇥ 9
Face 54 ⇥ 54 6 ⇥ 6 9 ⇥ 9

each pair of images regarding the same facial expression, a
positive response from the neural network should be given;
whereas pairs of images that regard different facial expressions
should output a negative response.

Input

Input

Input

Input

HOG, LBP, SIFT

HOG, LBP, SIFT

HOG, LBP, SIFT

HOG, LBP, SIFT

HOG, LBP, SIFT

HOG, LBP, SIFT

HOG, LBP, SIFT

HOG, LBP, SIFT

PCA

PCA

PCA

PCA

Figure 2. Cohesive perspective of our experiments, in order to assess
the discriminating ability of each region of the face to recognize facial
expressions: a) using exclusively the periocular region; b) using the whole
face; c) using mouth; and d) using mouth and periocular region fused at the
feature level.

The used feature encoding strategies projected each ROI
into feature spaces of dimension: 961 for the mouth, 641 for
the periocular region, 1, 153 for the face, and 1, 602 for mouth
+ periocular region. Then, as above stated, PCA was used
for dimensionality reduction purposes, enabling projections to
hyper-spaces of dimension 500, 330, 600, and 800 components
respectively for the mouth, periocular, face, and mouth +
periocular regions. The number of components used per region
corresponds to the set that explained at least 98% of the
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information in the initial set (Figure 3).

(a) Mouth (b) Face

(c) Periocular (d) Mouth + Periocular

Figure 3. Number of principal components selected for each region analyzed.

Finally, in the classification phase, data was divided into
three disjoint subsets: training (70%), validation (15%) and
test (15%). A set of feed-forward NN with three layers was
created, using Levenberg-Marquardt back-propagation, and
varying the number of neurons in the hidden layer (between
50% and 200% of the dimension of the feature space). As
stoping criterium for the learning process, a maximum number
of 50 validation checks was used. Due to the non-deterministic
property of neural networks, the best observed configuration
was repeated twenty times for every ROI and the median error
rate taken.

In order to perceive the variance in performance when the
identity of subjects is known / unknown, experiments were
repeated in two different setups: 1) at first, only comparisons
between facial expressions of the same subject were consi-
dered, corresponding to the setup where the identity of the
subjects is known before attempting to recognize their facial
expressions; 2) then, the identity constraint was relaxed, and
comparison between facial expressions of different subjects
were also considered.

A. Setup 1: Knowing Subjects’ Identity

By selecting the data frames where facial expressions are
most evident in our dataset, 33, 306 pair wise image compar-
isons were considered, from which 5, 124 were randomly sam-
pled. This step was due to the computational burden of neural
networks to learn in such high dimensional hyper-spaces and
to the observation that results tend to maintain relatively stable
when more than a few thousand of comparisons were used in
the learning processes. Classes were balanced, meaning that
the number of pair wise comparisons that regard the same
facial expressions is equal to the number of comparisons that
regard different facial expressions. Also, in order to perceive

the discriminability of each facial region per expression, this
experiment was repeated when considering all facial expres-
sions together and each one separately, yielding seven variants
of the experiment. At first, we attempted to recognize any
facial expressions and then, exclusively attempted to recognize
one at a time (among happy, anger, sad, surprise, disgust and
fear). Results are given in Table II and the most interesting
conclusions highlighted in bold font: the mouth outperformed
in the recognition of the Happy expression, which is not too
surprising due to the action units evolved in that expression.
The whole face obtained the best error rates only twice:
when considering all facial expressions, and for the Anger
expression. Interestingly, the fusion at the feature level of
mouth + periocular attained the best results most times (three).
In opposition, a surprising observation was the low levels of
performance attained by mouth + periocular when attempting
to recognize all facial expressions, which was explained due
to the sparsity of instances in the feature space of higher
dimension when compared to the remaining ROIs. It should be
stressed that in this experiment, only comparisons regarding
facial expressions from the same subjects were selected,
corresponding to the scenario where a biometric recognition
system performs before the facial expression.

Table II
MEDIAN RECOGNITION RATES OBSERVED, WHEN ATTEMPTING TO

RECOGNIZE ALL FACIAL EXPRESSIONS (ALL COLUMN) AND EACH ONE
SEPARATELY. IN THIS CASE, THE IDENTITY OF THE SUBJECTS IS ASSUMED

TO BE KNOWN BEFORE ATTEMPTING TO RECOGNIZE THEIR FACIAL
EXPRESSIONS.

Region All Happy Sad Surprise Fear Anger Disgust

Mouth 86.5 95.5 93.5 95.1 94.2 92.7 94.4

Periocular 90.0 94.8 93.9 91.8 88.7 91.1 89.8

Face 90.1 94.9 92.9 94.8 93.7 94.7 94.3

Mouth + Periocular 69.6 94.8 94.0 95.0 94.3 94.6 94.2

B. Setup 2: Unknowing Subjects Identity

This section regards an empirical setup similar to the
described above, with the exception that this time the identity
of subjects was not known, meaning that pair wise image
comparisons between different subjects were also considered.
In this case, starting from an initial number of 6, 561, 282 pair
wise comparisons, 5, 124 were randomly selected in order to
obtain confidence intervals similar to the previous experiment.
Table III gives the results, where the best recognition rate
was obtained for the face region and happy expression (95%).
Overall, a slight decrease in the effectiveness (around 3 ⇡ 4%)
was observed when attempting to recognize facial expres-
sions separately. The most notorious decreases in performance
occurred when all facial expressions were considered, in
some circumstances up to 50% of the performance observed
for the knowing identity setup. This leaded us to conclude
that biometric recognition techniques contribute for consistent
improvements in the analysis of subjects facial expressions.

In summary, based on the observed error rates, we con-
cluded that positive expressions (happy and surprise) are easier
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to recognize than negative expressions (sad, anger, fear and
disgust). Also, for most cases, the fusion at the feature level
of both the mouth and periocular region did not contributed
for consistent improvements in performance. Even though,
using exclusively sub-parts of the face (as the mouth) led to
performance levels similar to the attained when the whole face
is considered.

Table III
MEDIAN RECOGNITION RATES OBSERVED, WHEN RECOGNIZING ALL

FACIAL EXPRESSIONS (ALL COLUMN) AND EACH ONE SEPARATELY. IN
THIS CASE, THE IDENTITY OF THE SUBJECTS IS NOT KNOWN WHEN

ATTEMPTING TO RECOGNIZE THEIR FACIAL EXPRESSIONS.

Region All Happy Sad Surprise Fear Anger Disgust
Mouth 61.4 94.3 89.9 92.1 88.3 88.0 89.1
Periocular 58.4 93.4 87.1 86.7 84.4 82.1 84.1
Face 63.1 95.0 91.5 93.3 89.7 90.1 89.3
Mouth + Periocular 65.2 92.3 91.9 91.0 91.0 91.0 90.7

IV. CONCLUSIONS

This paper mainly focused on two types of analysis: 1) we
compared the discriminating ability of regions of the face to
the attained by using the whole face; and 2) compared the
results obtained when subjects identity is previously known,
in opposition to unknown identities. A dataset of seven facial
expressions was used and a set of ROIs cropped, comprising
the whole face, the mouth and the periocular region. Then,
LBPs, HOGs and SIFTs were used for feature encoding
purposes and PCA for dimensionality reduction. Finally, for
each pairs of images, a feed-forward NN binary discriminated
between those that regard the same facial expression or not.
This experimental setup was repeated in two different variants:
at first, we assumed that the identity of subjects is previously
known and only facial expressions that regard the same
subject were considered; then, this constraint was relaxed and
facial expressions from different subjects were also taken into
account.

Accordingly, our main conclusions are: 1) LBP, HOG and
SIFT are effective methods for feature encoding purposes in
this specific scenario; 2) fusing the mouth and periocular
regions at the feature level does not lead to performance
improvements when compared to when each region is used
separately; 3) the use of the whole face in the recognition of
most facial expressions does not provide better results than
using exclusively regions of the face, such as the mouth and
periocular region (exceptions are the happy and surprise); and
4) by knowing subjects’ identity, consistent improvements in
recognizing their facial expressions are attained, giving support
to the use of biometric recognition methods before attempting
to recognize facial expressions.
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