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Resumo

Ao ser humano esta associado, pela sua natureza, um conjunto de caracteristicas fisicas e com-
portamentais que o caracterizam. O estudo dessas caracteristicas permitiu o desenvolvimento
de um consideravel nimero de sistemas e aplicacoes - sistemas biométricos.

A utilizacao de sistemas biométricos tem vindo a aumentar ao longo dos ultimos anos, princi-
palmente na area da seguranca: autenticacdo, controlo de acesso, identificacdo criminal, etc.
Sendo um sector de elevada exigéncia, € natural que se dé maior destaque as caracteristicas
biométricas que permitam atingir uma maior discriminacdo entre os sujeitos, ao mesmo tempo
que sdo menos propicias a falsificacdo. Contudo, estas restricdes acarretam um impacto signi-
ficativo tanto na usabilidade do sistema como na sua flexibilidade, necessitando de um elevado
grau de cooperacdo por parte do utilizador. E neste contexto que a iris se apresenta como a ca-
racteristica biométrica por exceléncia. Os sistemas de reconhecimento biométrico que utilizam
a iris como caracteristica principal baseiam-se essencialmente na abordagem pioneira proposta
por John Daugman. Esta demonstrou ser uma excelente opcédo para cenarios de reconhecimento
cooperativo em que as imagens possam ser adquiridas no infravermelho.

Contudo, nem sempre a cooperacao por parte dos individuos € expectavel e, nesses casos,
sistemas com elevadas restricoes na aquisicao deixam de ser viaveis. Linhas de investigacao
mais recentes tentam entdo contornar esta problematica seguindo duas possiveis abordagens:
adaptando os métodos existentes aos novos cenarios e desafios, ou encontrando novas carac-
teristicas biométricas que melhores se adaptem a esta realidade. Nesta Gltima abordagem, a
regido periocular (i.e., o olho e a regiao circundante) é uma das caracteristicas mais promis-
soras: aproxima-se do método de reconhecimento usado naturalmente e de forma espontanea
pelo ser humano; tem uma localizacao privilegiada em relacao a iris, facilitando a aquisicao
simultanea de ambas as caracteristicas; e tem, tal como corroborado pela literatura, um con-
junto de caracteristicas promissoras que podem ser usadas para efeitos de reconhecimento.

O objetivo principal destes trabalhos de doutoramento é entao adaptar ou desenvolver um sis-
tema de reconhecimento biométrico, especialmente adequado para ambientes nao-controlados
(in the wild). Esse sistema, pelos seus requisitos e especificidades, devera usar a regiao peri-
ocular como caracteristica preferencial de reconhecimento, dado que esta permite uma maior
flexibilidade e facilidade na aquisicao em condicbes particularmente adversas, por forma a
minimizar as restricoes de funcionamento. Os individuos poderao ser reconhecidos a distan-
cias superiores, em movimento, com condicdes de iluminacao irregulares, e usando informacao
adquirida no espectro de luz visivel.

Por forma a atingir este objetivo, uma série de etapas intermédias foi estabelecida. Comecou-
se por estudar a iris enquanto sinal biométrico, prestando especial atencao a vertente nao-
cooperativa e ao funcionamento no comprimento de onda visivel. Este estudo englobou também
os efeitos da luz visivel no reconhecimento, tendo sido levada a cabo uma analise da reflectancia
da iris em funcdo do comprimento de onda de diferentes iluminantes. Tendo em conta que a iris
nao se apresenta como sinal ideal ao reconhecimento in the wild, foram estudadas caracteris-
ticas biométricas emergentes, prestando especial atencdo a regido periocular. Da literatura
analisada, os métodos mais relevantes foram implementados e testados contra um mesmo con-

Xiii



Biometric Recognition in Unconstrained Environments

junto de dados. Finalmente, varias contribuicées foram propostas e aceites pela comunidade
cientifica, com aplicacdo em diferentes ambientes nao-controlados, tendo sido a ultima a con-
ceptualizacdo de um sistema biométrico capaz de trabalhar nas condicdes desafiantes a que nos
propunhamos.

Palavras-chave

analise de erro; analise de textura; aprendizagem automatica; aprendizagem supervisionada;
avaliacdo da performance; bases de dados de imagens; biometria; biometria multi-modal;
biometria nao-cooperativa; biometria ocular; comprimento de luz visivel; dados degradados;
decisao baseada na fusao de resultados; descritores globais; descritores locais; extraccao de
caracteristicas; identificacdo de pessoas; privacidade; reconhecimento periocular; reconheci-
mento biométrico da iris; regiao de interesse; robustez do reconhecimento; seleccao de carac-
teristicas; variacdo de pose; video-vigilancia.
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Resumo alargado

Introducao

Esta tese tem por objectivo abordar a problematica associada ao reconhecimento biométrico
em ambientes ndao-controlados. Compreendendo que este € um objetivo desafiante, optamos
por seguir uma abordagem por etapas. Desta forma, comecamos por analisamos a viabilidade
do reconhecimento biométrico em cenarios ndo-cooperativos tendo a iris como principal sinal
biométrico. De seguida procuramos alternativas mais viaveis, tendo estabelecido a regiao pe-
riocular como a caracteristica biométrica mais promissora para os cenarios alvo e, como tal,
conduzimos um estudo mais aprofundado sobre a mesma. Ao longo dos trabalhos desenvolvidos
foram propostas varias contribuicoes cientificas e, por fim, é apresentado um sistema de reco-
nhecimento.

Enquadramento da Tese

Na sociedade atual tem vindo a registar-se uma crescente preocupacao com a seguranca, quer
individual quer global, impulsionando a pesquisa cientifica na area da biometria. Esta tendén-
cia de crescimento é visivel tanto nos métodos e técnicas desenvolvidos, como em aplicagdes,
estando presente hoje em dia num vasto nimero de dispositivos. O utilizador comum pode facil-
mente encontrar modos de autenticacao baseados em biometria em telemoveis e computadores
pessoais, mas € nos sistemas de controlo de acesso a um mais alto nivel (e.g., postos de controlo
fronteiricos) que se foca a maioria dos desenvolvimentos. Neste Gltimo grupo de aplicacoes, e
devido aos elevados padroes de seguranca, a maior parte da pesquisa é centrada em caracteris-
ticas biométricas que permitam uma maior discriminacao dos individuos, ao mesmo tempo que
minimizam a possibilidade de contrafacao, escolha esta que pode comprometer a usabilidade e
flexibilidade do sistema.

0 reconhecimento biométrico é na sua esséncia um problema de reconhecimento de padrdes,
na medida em que o objetivo é reconhecer um determinado individuo com base num conjunto
de caracteristicas fisicas ou comportamentais. Entende-se por reconhecimento de padrdes a
disciplina cientifica responsavel pelo processamento dos dados “crus” recolhidos de um deter-
minado objeto, e obtencao da informacéo (i.e., padrdes) necessaria para que este possa ser
atribuido a uma determinada classe. Tendo sido uma disciplina meramente tedrica até aos
anos 60, a evolucao dos sistemas computacionais trouxe consigo um vasto leque de aplicacoes,
tornando-se numa area extremamente ativa no dominio da aprendizagem automatica e em visao
computacional, mineracao e dados e extracao de conhecimento em particular [1]. A titulo de
exemplo, a Figura 1.1 ilustra duas classes de um problema tipico de reconhecimento de padroes:
tendo uma representacao de um dado objeto, determinar a que classe ele pertence. Neste caso
particular o objetivo seria analisar uma imagem médica contendo uma regidao devidamente de-
limitada, e decidir se esta correspondia a uma lesao benigna (classe A) ou era na realidade um
cancro (classe B). Para efeitos ilustrativos, assumamos que estamos na posse de uma base-de-
dados contendo imagens deste tipo, e que dentro da mesma classe estas sao similares. Para
gue possamos classificar uma nova instancia de dados € necessario que as caracteristicas que
tornam as classes distintas sejam identificadas. Neste exemplo ilustrativo, e como é possivel
perceber por inspecao visual, a intensidade dos pixeis difere significativamente de uma classe
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para a outra. Assim sendo, usando métricas tao simples como a média (P) e o desvio padrao
(Q) dos valores de intensidades, conseguimos obter uma 6tima separabilidade entre as classes
- Figura 1.2. Havendo este tipo de distincao, um threshold de classificacao pode ser inequiv-
ocamente definido (Figura 1.2, linha continua). Ao adquirir dados de uma nova observacao,
procede-se a extracdo de caracteristicas tal como realizada anteriormente (P e Q). Tracando a
nova observacdo no grafico (*) podemos entao classificar a mesma como pertencendo a classe
A, uma vez que se encontra acima do limiar de classificacdo. Sao estes os passos gerais na
resolucao de um problema de classificacao de padroes.

Dos sinais biométricos existentes, os sistemas implementados comercialmente dao preferéncia
aos que conduzam a taxas de erro minimas, pelo que a iris se apresenta como uma caracteris-
tica biométrica primordial. Contudo, a captura de imagens da iris esta condicionada por rigidos
protocolos de aquisicao, o que se deve essencialmente ao eu tamanho reduzido e propriedades
moveis, ndo sendo portanto um sinal biométrico ideal para um sistema de funcionamento sub-
repticio em ambientes nao-controlados. Em oposicao aos sistemas biométricos classicos que
requerem um elevado nivel de cooperacdo por parte dos utilizadores, em aplicacdes reais sob
tipicos cenarios de video-vigilancia nem sempre tal é expectavel. Contrariamente a crencas
populares, nao existe ainda um sistema capaz de levar a cabo o reconhecimento biométrico
em condicoes tao adversas. Neste contexto a regiao periocular apresenta-se como um sinal
biométrico emergente, havendo um crescente nimero de publicacdes sobre o seu potencial de
reconhecimento, tanto de forma auténoma, como em fusao com outras caracteristicas biométri-
cas. Neste Ultimo cenario, a iris assume-se como um candidato particularmente interessante,
visto que devido a sua localizacdo ambas podem ser adquiridas simultaneamente recorrendo
apenas a um Unico sensor.

Os desafios a comunidade cientifica apresentam-se entao sob duas formas: 1) por um lado
estudam-se alternativas que permitam relaxar os protocolos de aquisicao, adaptando os sis-
temas existentes para o funcionamento nao-cooperativo; 2) e por outro, explora-se a utilizacao
de novas caracteristicas biométricas que melhor satisfacam as atuais exigéncias. Estes tra-
balhos doutorais debrucam-se sobre os dois eixos, na medida em que avaliam a usabilidade de
carateristicas biométricas tradicionais (e.g., iris) adaptando-as aos requisitos do funcionamento
nao-cooperativo, e combinando-as com sinais biométricos emergentes (i.e., regido periocular).
0 nosso objetivo principal é propor um sistema de reconhecimento biométrico adaptado ao
funcionamento em cenarios nao-cooperativos, capaz de lidar com a aquisicao de individuos a
maiores distancias, em movimento, sob condicdes de iluminacdo varidveis e adquirindo a in-
formacao no comprimento de onda visivel. A motivacao para estes trabalhos de doutoramento
converge ainda com outra tendéncia de investigacdo, na medida em que combina o reconhe-
cimento biométrico com cenarios normalmente associados ao funcionamento de sistemas de
video-vigilancia, tendo em vista o desenvolvimento de solucdes hibridas capazes de identificar
utilizadores alvo em cenarios nao-controlados.

Descricao do Problema e Objetivos de Investigacao

De uma forma geral, esta tese foca-se no problema do reconhecimento biométrico em ambi-
entes nao-controlados. Assim sendo, o objetivo central destes trabalhos de doutoramento é
adaptar ou desenvolver um sistema de reconhecimento biométrico capaz de lidar com este tipo
de cenarios. Tendo por base a pesquisa desenvolvida, a regido periocular assume-se como carac-
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teristica central preferencial, devido a sua flexibilidade e facilidade de aquisicao nas condicoes
que o sistema exige.

Por forma a atingir o objetivo proposto foi estabelecido um conjunto de metas intermédias para
melhor estruturacdo do trabalho que seria necessario levar a cabo:

1.

Estudar a iris enquanto sinal biométrico, dando particular énfase aos métodos desenvolvi-
dos para ambientes nao-cooperativos que funcionem no comprimento de onda visivel. Este
estudo deve focar-se em métodos de reconhecimento que visem a reducao das restricoes
de aquisicao, ou que de outro modo sejam capazes de lidar com informacao especialmente
degradada.

Uma vez que a informacéo adquirida no comprimento de onda visivel introduz novos fatores
de ruido com um impacto consideravel no reconhecimento biométrico da iris, é necessario
analisar a sua reflectancia ao ser iluminada por diferentes iluminantes, em diferentes
comprimentos de onda. As propriedades discriminativas da iris devem ser analisadas sobre
trés eixos: o tipo de iluminante presente na cena; o nivel de luminancia desse mesmo
iluminante; e o nivel de pigmentacao da iris.

. Estudar sinais biométricos emergentes, com especial destaque aos que minimizem os

condicionantes associados a ambientes nao-controlados (e.g., regiao periocular). A regiao
periocular uma caracteristica biométrica apropriada por trés motivos: 1) é uma regiao
utilizada diaria e intrinsecamente pelo ser humano ao fazer o reconhecimento; 2) possui
uma localizacéo privilegiada em relacéo a iris, permitindo a aquisicdo simultanea destes
dois sinais biométricos com o mesmo sensor; 3) possui um vasto leque de caracteristicas
passiveis de serem exploradas, tal como corroborado pela literatura.

Implementar e avaliar o desempenho dos métodos mais relevantes analisados no topico
anterior, avaliacao esta que deve ser levada a cabo sobre o mesmo conjunto de dados.
Pretende-se ainda estabelecer uma nova base-de-dados com informacao capturada si-
multaneamente nos comprimentos de onda do infravermelho e luz visivel, que embora
adquirida em condicdes cooperativas introduza um conjunto de ruidos que simulem os que
sao encontrados em ambientes nao-controlados.

. Por fim, a maioria dos sistemas biométricos identifica (ou verifica a identidade) posi-

tivamente um determinado individuo de entre uma galeria de utilizadores previamente
adicionados ao sistema, tendo por base uma medida de semelhanca. Contudo, em muitas
aplicacoes in the wild, tais sistemas fariam mais sentido se operassem numa perspetiva
de reconhecimento negativo: garantir com determinada confianca que um individuo do
qual se desconhece a identidade nao pertence a um conjunto de “pessoas de interesse”,
ao invés de o tentar identificar. Nessa base, o nosso ultimo objetivo intermédio seria o
estudo do estado da arte relativo ao paradigma de reconhecimento negativo.

De entre os objetivos a que nos propusemos apenas a possibilidade de estudar e levar a cabo
o reconhecimento negativo nao foi totalmente atingido, sendo apresentado como uma linha de
trabalho futuro. Compreendemos contudo as vantagens praticas de um sistema com este tipo
de funcionamento, em especial se o sistema se encontrar a funcionar de forma sub-repticia,
tal como estabelecido ao longo do nosso trabalho [2]. Ainda assim, optamos por priorizar a
concecado de novos sistemas, igualmente desafiantes e aplicados a diferentes cenarios (e.g.,
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dispositivos moveis [3]).

Por ultimo, o sistema biométrico proposto no final destes trabalhos doutorais, foi estruturado
de forma a poder ser facilmente implementado, validado e otimizado.

Principais Contribuicoes

Segue uma breve descricao das contribuicdes resultantes do trabalho de pesquisa desenvolvido
no ambito deste programa doutoral, tal como ilustrado na Figura 1.3.

A primeira contribuicao consiste numa avaliacao preliminar sobre a capacidade discriminativa da
iris quando adquirida no comprimento de onda visivel, percebendo e quantificando as condicoes
que permitem efetuar o reconhecimento biométrico com um determinado grau de confianca.
Este estudo esta descrito no capitulo 3, que consiste num artigo publicado nos proceedings do
6° IEEE Workshop em Multimedia Information Processing and Retrieval [4].

A segunda contribuicao propée um novo método de reconhecimento, baseado em técnicas subs-
tancialmente diferentes das usadas tradicionalmente. A analise o nivel de correlacédo entre o
resultado do método proposto e outras técnicas do estado-da-arte sugere que a fusdo de am-
bas as estratégias de reconhecimento contribui para um aumento significativo da performance.
Assim sendo, é um passo positivo em direcao ao desenvolvimento de tipos de reconhecimento
mais ambiciosos. Este estudo esta descrito no capitulo 4, que constitui o artigo publicado no
116° volume da revista Computer Vision and Image Understanding [5].

A terceira contribuicao oferece uma visao comparativa dos trabalhos de pesquisa mais relevantes
no ambito do reconhecimento periocular, sumariando os métodos desenvolvidos e enumerando
os problemas identificados. Neste estudo consiste o capitulo 5, artigo publicado nos proceed-
ings do IEEE Symposium on Computational Intelligence in Biometrics and Identity Management
- CIBIM 2013 [6].

A quarta contribuicao fornece uma visao em maior detalhe sobre os métodos mais relevantes do
reconhecimento periocular, com uma analise aprofundada das técnicas sub-adjacentes e uma
analise comparativa dos resultados desses mesmos métodos contra uma base-de-dados comum.
Comeca com uma visao introdutdria dos métodos e sistemas biométricos tradicionais, anatomia
da regiao periocular e dificuldades existentes, e conclui com observacoes sobre os principais
fatores de degradacao e possiveis direcoes de pesquisa. Este estudo esta descrito no capitulo 6,
que consiste num artigo submetido para a revista Artificial Intelligence Review.

A quinta contribuicao consiste num novo método de detecao dos cantos do olho, capaz de lidar
com dados degradados, dando especial énfase a aplicacdes em condicées e ambientes nao-
controlados. As nossas experiéncias mostram que o método proposto supera os existentes na
literatura tanto em imagens sem ruido como naquelas com degradacdo (desfoque, rotacao e
variacao significativa de escala). Este estudo esta descrito no capitulo 7, que consiste no artigo
publicado nos proceedings da IEEE International Conference on Biometrics - IJCB 2011 [7].

A sexta contribuicdo apresenta um novo método de segmentacdo (rotulagem) da regido peri-
ocular, capaz de discriminar sete componentes principais: iris, esclera, pestanas, sobrance-
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lhas, cabelo, pele e oculos. Este tipo de segmentacao permite, entre outras coisas, melhorar
a definicao da regiao periocular e a estimativa da pose. Este estudo esta presente no capi-
tulo 8, que consiste num artigo publicado na IEEE International Conference on Biometrics - IJCB
2014 [8].

A sétima contribuicao propde um novo método de reconhecimento ndo-cooperativo da iris, com-
binando diferentes sinais biométricos. Este método foi avaliado no desafio Noisy Iris Challenge
Evaluation - Part Il (NICE.Il), onde demonstrou boa performance e terminou classificado em
terceiro lugar de entre os métodos a concurso. Este estudo esta descrito no capitulo 9, artigo
publicado no 33° volume da revista Pattern Recognition Letters [9].

A oitava contribuicao trata a questao do reconhecimento biométrico em dispositivos moveis,
usando a iris e a regiao periocular como caracteristicas biométricas. Anuncia ainda a disponi-
bilizacdo de uma nova base-de-dados da iris e regido periocular, contendo imagens adquiridas
com dez configuracbes diferentes de dispositivos moveis, juntamente com a mascara de seg-
mentacao da iris. Esta nova base-de-dados permite testar tanto métodos de segmentacao como
de reconhecimento da iris e da regiao periocular. Além disso, reporta também o resultado de
uma técnica de calibracao ajustada aos dispositivos moveis, capaz de compensar as diferentes
percecoes colorimétricas associadas a cada configuracdo. Este estudo esta descrito no capi-
tulo 10, artigo publicado na revista Pattern Recognition Leters.

A nona contribuicéo é centrada no reconhecimento biométrico em dados extremamente degrada-
dos. Nesta contribuicdo é anunciada a disponibilizacdo de uma nova base-de-dados anotada,
contendo informacao de 101 participantes: fotos de registo de alta qualidade; imagens degrada-
das por diferentes fatores de ruido; e videos dos participantes adquiridos também em condicdes
adversas. Sao ainda divulgados resultados de uma experiéncia conduzida simulando um cenario
de watchlist identification: foi conduzido um inquérito online em que os participantes eram
convidados a realizar o reconhecimento quer positivo quer negativo de um individuo nao identi-
ficado, e cuja foto estava degradada, contra um grupo de identidades conhecidas. Juntamente
com as respostas fornecidas, os participantes indicaram os motivos que justificavam as suas
escolhas, permitindo-nos perceber quais as caracteristicas mais frequentemente associadas ao
processo de reconhecimento efetuado pelo ser humano. Por fim, os resultados sugerem que o
reconhecimento negativo podera ser uma alternativa mais interessante ao lidar com informacao
extremamente degradada. Este estudo esta presente no capitulo 11, que consiste num artigo
publicado na revista IET Biometrics.

A décima contribuicdo consiste num novo método de detecao de landmarks, capaz de identificar
e localizar seis elementos-chave numa imagem contendo a cabeca de um individuo, independen-
temente do seu angulo de aquisicao ou da inclinacao da cabeca. Além das vantagens do ponto
de vista de compreensao da cena, um sistema de reconhecimento biométrico multi-modal pode
também beneficiar deste tipo de método, na medida em que se torna possivel decidir qual o
classificador a usar ou, eventualmente, ajustar o peso de cada um dos classificadores individuais
em funcao das regides que estdo efetivamente visiveis. Avaliando a performance do método em
imagens que simulam o tipo de informacao adquirida em ambientes de video-vigilancia, demon-
stramos que este consegue lidar com diferentes angulos de aquisicdo (cobrindo completamente
todos os 360°) e apresentando também invariancia ao angulo de inclinacdo da cabega. Este
estudo esta descrito no capitulo 12, que consiste num artigo submetido para a 102 International
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Conference on Biometrics.

A décima-primeira e ultima contribuicdo introduz o sistema de reconhecimento biométrico ide-
alizado. Este sistema minimiza as restricoes de operacao de tal forma que permite levar a cabo
o reconhecimento biométrico em cenarios de video-vigilancia. Consiste num sistema completa-
mente autonomo que combina detecao e tracking de pessoas na cena, com o reconhecimento
biométrico. Este sistema esta descrito no capitulo 13, e consiste num artigo submetido para a
102 International Conference on Biometrics.

Estado da Arte

Esta seccao comeca por introduzir alguns conceitos de biometria, nomeadamente os antecedentes
histéricos, principais caracteristica de um sistema biométrico e sinais biométricos. De seguida
descreveremos os desafios associados a ambientes nao-controlados, principais problemas e es-
forcos desenvolvidos no ambito do reconhecimento nao-cooperativo. Analisamos de forma
sumaria as técnicas desenvolvidas para a iris mais adequadas a este tipo de ambientes, e in-
troduzimos a regido periocular como uma alternativa mais viavel. Por fim, tecemos algumas
consideracdes sobre questdes éticas e de privacidade.

Biometria

O termo biometria teve origem no Grego “bio (vida)” + “metria (medida)”, e o seu significado
literal é “medir a vida”. De uma forma mais objetiva, biometria refere-se a capacidade de
reconhecer um sujeito com base num sub-conjunto das suas caracteristicas fisicas ou compor-
tamentais. Comparado com outros meios de identificacao pessoal (e.g., cartdo de cidadao ou
passwords), a utilizacdo de sistemas biométricos traz inUmeras vantagens: as caracteristicas
biométricas nao sao perdidas, roubadas ou esquecidas; sdo relativamente dificeis de forjar; e
nao podem ser utilizadas por terceiros, garantindo a nao-repudiacao.

Antecedentes Histoéricos

Mesmo sem registos fisicos, podemos com toda a seguranca identificar o uso de caracteristicas
faciais como um dos mais antigos exemplos de utilizacao da biometria por parte do ser humano.
Diariamente, mesmo sem que nos apercebamos, recorremos a informacao facial para nos re-
conhecermos, tornando a face a caracteristica biométrica mais utilizada em todo o mundo.

A utilizacao documentada da biometria data de 30000 a.C. altura em que o homem pré-historico
usou a impressao das suas maos para assinar pinturas em cavernas. Cerca de 500 a.C., outra
caracteristica biométrica era usada pelos Babilonios, que registavam as suas transacoes comer-
ciais juntamente com a impressao digital. Escritos de Joao de Barros (1496-1570) descrevem
praticas mercantis chinesas que incluiam a utilizacdo da impressao digital para firmar acordos
comerciais, e a utilizacao das impressoes das palmas das maos e pés de criancas em papel para
evitar a sua troca [10]. No antigo Egito (3100-332 a.C.) descritores fisicos dos comerciantes
eram utilizados para distinguir individuos de confianca. Nas escrituras candnicas existem tam-
bém varias referéncias de personagens que se reconheciam através de diferentes caracteristicas
biométricas: no livro de Tobias 11:6 relata-se a utilizacao da forma de caminhar e da silhueta,

”.

“[...] ela esperava o regresso de seu filho, quando viu ao longe que voltava reconheceu-o[...]”;
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e em Samuel 26:17 “[...] Saul reconheceu a voz de David, e exclamou: Néo é a tua voz que
ouco, meu filho David? [...]”; etc.

Mais recentemente, em 1858, William Herschel iniciou o registo da palma da mao de cada um
dos trabalhadores civis na india, para que pudesse verificar a suas identidades no dia de efe-
tuar o pagamento [11]. Nao obstante, o primeiro sistema biométrico real - “anthropometrical
signalment” - foi criado em 1879 por Alphonse Bertillion, chefe da divisao de investigacao cri-
minal. Sabendo que os criminosos recorrentes usavam frequentemente disfarces ou forneciam
informacao falsa quando eram detidos pela policia, Bertillion pretendeu estabelecer uma forma
de identificacao que nao necessitasse desse nivel de cooperacdo por parte dos individuos. Para
isso, recorreu a medicao de determinados atributos fisicos registando-os para referéncia futura
- Figura 2.1. Um total de onze medicOes era realizadas para cada individuo, entre as quais a
altura em pé e sentado, a distancia entre as pontas dos dedos, o tamanho da cabeca, etc. Esse
sistema acabaria por ser utilizado por forcas policiais um pouco por todo o mundo, ainda que
falhas na sua concecao viessem a torna-lo obsoleto em 1903, uma vez que duas pessoas distintas
podiam apresentar medidas semelhantes.

Em 1892 Francis Galton publica o primeiro estudo sobre as aplicacdes biométricas das impressoes
digitais, detalhando de que forma os pontos de minicia podiam ser utilizados para o reconheci-
mento [12]. Cinco anos depois, em 1897, a utilizacao de impressoes digitais foi introduzida nas
forcas policiais seguindo as especificacdes de Edward Richard Henry da Scothland Yard que, com
a ajuda de Francis Galton e Azizul Haque incluiu diversas melhorias no sistema de indexacao. A
utilizacdo dos pontos de mindcia proposta por Galton é uma técnica ainda atual.

Ao longo das ultimas décadas temos assistido a um crescimento acentuado na area da biometria,
pautado pelo aparecimento de novos sinais biométricos, técnicas e aplicacoes.

Principais Fases de um Sistema Biométrico

Ao desenhar um sistema biométrico, ou seja, um sistema de reconhecimento de padrbes que
aplicado a informacao biométrica de um individuo determine a sua identidade, é necessario
considerar quatro fases principais [13]: sensor; avaliacao da qualidade e extracao de carac-
teristicas; comparacéo e tomada de decisao; e, por fim, base-de-dados.

Sensor
Responsavel pela aquisicao do sinal biométrico, é a interface entre o utilizador e o sistema.
Dependendo da caracteristica biométrica que se pretende adquirir, varios sensores podem
ser escolhidos. Na medida em que a maior parte dos sinais utiliza informacao visual, a
maioria dos sistemas usa camaras para realizar a sua aquisicao.

Avaliacao da qualidade e extracao das caracteristicas
Apos adquirir o sinal biométrico, e assegurando que o processo foi conduzido corretamente
e que a informacao a ser processada tem qualidade suficiente, um conjunto de caracteris-
ticas discriminativas é extraido e codificado.

Comparacao e tomada de decisao
Nesta fase, as caracteristicas extraidas sdo comparadas com os templates armazenados
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na base de dados, e tomada a decisao sobre a identidade do utilizador. De acordo com o
modo de funcionamento, esta comparacao pode ser 1:1 ou 1:N.

Base-de-dados

Este ultimo modulo é onde toda a informacao dos utilizadores registados no sistema é
armazenada. Esta informacao ja se encontra codificada utilizando a técnica estabelecida
no modulo de extracédo de caracteristicas, para que possa ser diretamente comparada com
a informacéo extraida de novos individuos que se apresentem ao sistema. Geralmente a
base de dados é criada durante a fase de registo.

Modos de Funcionamento

0 sistema de reconhecimento biométrico pode funcionar segundo um de trés modos [14]: veri-
ficacao, identificacao, e identificacao negativa (screening).

Modo de Verificacao

No modo de verificacao, o sistema tenta validar a identidade de um individuo em par-
ticular (Figura 2.2). Como o utilizador que tenta aceder ao sistema ja reclama para si
uma identidade conhecida, o sistema realiza apenas uma comparacao 1:1 (um-para-um)
de forma a produzir um resultado binario: ou a identidade do utilizador é verificada ou
ndo. Este modo de funcionamento é utilizado no quotidiano em logins de computador,
ATMs, etc.

Modo de Identificacdo

No modo de identificacao o sistema vai comparar um determinado individuo contra todos os
utilizadores previamente registados no sistema (Figura 2.3). Contrariamente ao modo de
verificacao, nao existe uma identidade inicial que o utilizador reclame para si, pelo que as
comparacdes sao realizadas na forma 1:N (1-para-varios). Este modo de operacao nao pode
ser aplicado a outros métodos de identificacao tradicionais (e.g., tokens e passwords), so
podendo ser alcancado pela biometria.

Modo de Identificacdo Negativa

0 modo de reconhecimento negativo, também chamado de screening [14], pode ser visto
como uma extensao ao modo de identificacao. O objetivo é garantir que um determinado
individuo ndo pertence a um sub-grupo de utilizadores registados no sistema, realizado
um conjunto de comparacdes 1:N orientadas a exclusao (Figura 2.4). Este modo de fun-
cionamento é particularmente Util na seguranca de aeroportos, locais publicos, etc.

Classificacao e Propriedades dos Sistemas Biométricos

Existe atualmente um vasto leque de sistemas biométricos em funcionamento. Para auxiliar a
sua classificacdo, os sistemas biométricos podem ser agrupados de acordo com seis diferentes
perspetivas de funcionamento [15]:

Ostensivo (Overt) vs. Sub-repticio (Covert)
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Dependendo de se o individuo esta ou ndo ciente de que o sistema se encontra em fun-
cionamento, este pode ser classificado em ostensivo (overt) ou sub-repticio (covert) res-
petivamente. Sistemas biométricos cooperativos sempre funcionam de forma ostensiva,
embora atualmente existam esforcos da comunidade cientifica concentrados em atingir



um funcionamento o mais sub-repticio possivel, resolvendo tanto os problemas associa-
dos com elevadas restricées de funcionamento, como aqueles que advém de utilizadores
nao-cooperativos.

Com-habituacao (Habituated) vs. Sem-habituacdo (Non-habituated)
Sistemas com os quais os utilizadores interajam com regularidade sdao chamados, apos
algum tempo, de “habituados”. Embora seja relevante estabelecer qual o grau de en-
volvimento do utilizador com o sistema, o funcionamento ideal passa por uma interacao
natural entre os dois mesmo sem habituacao.

Supervisionado (Attended) vs. Nao-Supervisionado (Non-attended)
Um sistema biométrico que necessite de um supervisor que conduza o processo de reco-
nhecimento é designado por supervisionado. Contudo, um sistema nao-supervisionado é
geralmente preferivel, isto €, um sistema com o qual o utilizador possa interagir de forma
auténoma, sem qualquer tipo de supervisao.

Ambiente Padrédo (Standard) vs. Nao-Padrao (Non-standard environment)
Sistemas biométricos instalados em condicbes controladas, geralmente em ambientes de
interior, com iluminacao regular, e que contem com a cooperacao do utilizador, operam
em “ambientes padrdao”. Quando o sistema esta instalado em ambientes nao-controlados,
com condicdes de aquisicao variaveis, € dito que se encontra a operar num ambiente “n&do-
padrao”.

Publico (Public) vs. Privado (Private)
Esta perspetiva de funcionamento esta relacionada com o tipo de utilizador que interage
com o sistema. Se o sistema esta instalado num ambiente empresarial, onde os utilizadores
registados no sistema sao empregados dessa mesma empresa, trata-se de um sistema pri-
vado. Quando os individuos apresentados ao sistema nao tém qualquer filiagdo com a
empresa, é chamado de sistema publico.

Aberto (Open) vs. Fechado (Closed)
Se o modo como o sistema funciona, ou se a informacao sobre a qual ele trabalha sao
desconhecidos ou proprietarios, diz tratar-se de um sistema fechado. Caso contrario,
trata-se de um sistema aberto.

No ambito destes trabalhos doutorais, pretende-se criar um sistema aberto, que seja simul-
taneamente sub-repticio, nao-habituado e nao-supervisionado, com vista a ser instalado em
ambientes pUblicos e nao-padrao.

Ao desenvolver um sistema biométrico, e além dos requisitos relativos ao sinal ou caracteristica
biométrica, existem cinco propriedades que devem ser tidas em conta [15]:

Performance
Todos os fatores que influenciem quer a velocidade, quer a precisao do sistema devem ser
contemplados, sendo escolhidos aqueles que conduzam aos niveis de performance exigidos
pelo contexto ao qual ira ser aplicado;

Aceitacao
E essencial que os utilizadores aos quais o sistema se destina estejam dispostos a aceitar
a disponibilizacao dos dados biométricos necessarios a operacao do mesmo;
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Evasdo
O sistema deve ser relativamente robusto a tentativas de fraude para que nao possa ser
facilmente contornado;

Excec¢des
0 sistema deve estar munido dos meios necessarios a levar a cabo formas de reconheci-
mento alternativas (e.g., sistema multi-modal) no caso das caracteristicas nao poderem
ser extraidas para um utilizador especifico;

Custo
O custo associado ao desenvolvimento e manutencao do sistema deve ser adequado ao
contexto a que ira ser aplicado.

Sinais Biométricos

A face e a iris encontram-se entre os sinais biométricos mais utilizados para fins de reconhe-
cimento, e sao juntamente com a impressao digital os mais referidos na literatura [16, 17].
Jain et al. [18] estabeleceram um conjunto de quatro requisitos aos quais uma determinada
caracteristica fisica ou comportamental deve obedecer para que possa ser utilizada como sinal
biométrico:

Universalidade
Se um determinado individuo vai ser reconhecido através dessa caracteristica, entao ela
tem de ser comum a todas as pessoas;

Discriminacao
A caracteristica deve ser de tal forma inequivoca que duas pessoas dificilmente sejam
confundidas;

Performance
A caracteristica deve permanecer estavel por um periodo razoavel de tempo;

Colectibilidade
Por fim, a caracteristica tem de conseguir ser adquirida, e as suas propriedades extraidas
de forma quantitativa.

De forma geral, todos e cada um dos sinais biométricos utilizados atualmente respeitam esses
requisitos.

Apresentamos de seguida os sinais biométricos mais utilizados [14], agrupados por regiao cor-
poral, tal como ilustrado na Figura 2.5.

A regido da mao contém varias caracteristicas exploradas pelo seu potencial biométrico: im-
pressao digital, impressao da palma da mao, geometria da méao, padrdes dos vasos sanguineos,
impressao dos nos dos dedos, etc.

Impressao digital
A pele dos nossos dedos contém pequenas irregularidades, onde cumes e sulcos formam um
conjunto de padrdes. A partir desses padroes pode ser extraido um conjunto de pontos
de mindcia usado para o reconhecimento. Tal como referido anteriormente, este sinal
biométrico tem vindo a ser utilizado a varios séculos com uma performance consideravel.
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Sendo uma caracteristica bem aceite, facil de usar e passivel de ser adquirida recorrendo
a dispositivos relativamente pequenos e baratos, encontra-se atualmente implementada
em inimeros ambientes, desde controlo de acesso em empresas até aos computadores
pessoais.

Impressao da palma da mao

De forma analoga a impressao digital, o reconhecimento biométrico baseado na impressao
da palma da mao assenta na existéncia de um conjunto de padrdes formado por cumes e
sulcos. Uma vez que a area da palma da mao é significativamente maior que a dos dedos,
os padrodes distintivos sao também encontrados em maior nimero. Contudo, é necessario
recorrer a um sensor maior para proceder a aquisicdo dos mesmos. Como nem toda a area
da palma da mao entra em contacto com os objetos do dia-a-dia da mesma forma que a
ponta dos dedos, este sinal biométrico perde algum interesse do ponto de vista da analise
forense.

Geometria da méao
A geometria da mao também pode ser utilizada como sinal biométrico, através da medicao
do comprimento e largura da palma e dedos. Apresenta como vantagem uma forma de
aquisicao nao-intrusiva, e nao requerer equipamento tao dispendioso como outros sinais.
Contudo, esta caracteristica esta longe de ser suficientemente discriminativa para que
possa ser utilizada em larga escala, uma vez que muitas pessoas partilham as mesmas
dimensdes de mao.

Padrées dos vasos sanguineos
Os padroes dos vasos sanguineos sao uUnicos para cada individuo. Nas maos em particular,
existe um complexo sistema de vasos que permite o reconhecimento biométrico. Devido a
sua localizacdo, tem uma boa aceitacdo por parte dos individuos, embora seja necessario
que toda a mao esteja em contacto com o sensor enquanto € iluminada por radiacao no
comprimento de onda infravermelho, de forma a maximizar o contrate entre as veias e os
musculos da mao.

Impressao dos nos dos dedos
A impressao dos nds dos dedos é recolhida da pele na parte de tras dos dedos. Embora a sua
utilizacdo nao esteja tao generalizada, a textura desta regido da pele é particularmente
rica em informacao, possuindo por isso boa capacidade discriminativa.

Na zona da cabeca encontram-se também varias regides com caracteristicas valiosas do reco-
nhecimento biométrico: face, formato da orelha, denticao, etc. Embora a regidao periocular
também esteja contida neste grupo, sera tratada numa seccao separada.

Face

O reconhecimento facial tornou-se uma das aplicacées de maior sucesso na disciplina de
processamento de imagem. Sendo nao-intrusiva e permitindo aquisicdo sub-repticia, é
um sinal biométrico preferencial em relacao a outros com melhores taxas de reconheci-
mento, para aplicacdes nao-cooperativas. Varios sistemas comerciais de reconhecimento
facial estdo disponiveis, bem como inUmeras técnicas desenvolvidas tanto para imagens
estaticas, como para videos, no comprimento de onda visivel e no infravermelho. Estas
técnicas baseiam-se quer na analise global de toda a regido da face, quer na relagao entre
os varios atributos faciais, a sua localizacao e formato.
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Formato da orelha

O formato da orelha também pode ser utilizado como caracteristica biométrica, mais pre-
cisamente a estrutura da sua cartilagem. Os padroes por ela gerados podem ser adquiridos
tanto no comprimento de onda visivel e utilizando camaras comuns, como com camaras
que trabalhem no infravermelho e permitam a recolha da assinatura térmica, ou ainda a
sua impressao. O principal problema deste sinal biométrico esta relacionado com o facto
de exigir do utilizador um grau de cooperacao significativo, uma vez que quando em ambi-
entes nao-controlados as orelhas facilmente se apresentarao cobertas. Além disso, o seu
alinhamento com o sistema é dificil.

Denticao
A estrutura da denticao é Unica para cada individuo. Contudo, a aquisicao da informacao
que lhe esta associada consiste num processo altamente cooperativo e intrusivo. Por esse
motivo, este tipo de reconhecimento é utilizado especialmente por equipas forenses em
cenarios onde nao podem ser utilizados outros sinais biométricos.

A regiao ocular é uma das mais exploradas em biometria, nao so6 por conter multiplas carac-
teristicas, mas também por potenciar sistemas com elevadas taxas de reconhecimento. Os
sinais existentes na regidao ocular sdo a iris, retina, a propria regiao periocular, etc.

iris

A iris humana apresenta uma morfogenia predominantemente aleatéria, Unica para cada
individuo, conduzindo por isso a elevadas taxas de reconhecimento. Existe por isso um ele-
vado volume de pesquisa em torno deste sinal biométrico, tendo-se tornado rapidamente
um dos mais populares. Sendo um o6rgao visivel do exterior, os seus padrées podem ser
adquiridos de forma menos intrusiva. Contudo, a sua performance esta fortemente condi-
cionada em ambientes nao-ideais, devido ao seu tamanho reduzido e elevada mobilidade,
tornando-se dificil de capturar a distancias maiores sem a cooperacao do utilizador.

Retina

A retina é a parte mais interna do olho, e os vasos sanguineos que a atravessam podem ser
utilizados para identificar inequivocamente um individuo. Embora seja um sinal biométrico
altamente discriminativo, na medida em que nao existem duas pessoas com a mesma con-
figuracdo de vasos sanguineos, a sua localizacdo e tamanho tornam-no dificil de capturar.
E necessario um nivel elevado de cooperacdo por parte do utilizador, que tem de per-
manecer imdvel e com o olho alinhado com o sensor. Por outro lado, é extremamente
dificil de forjar, e é adquirido com niveis muito baixos de ruido.

Periocular
A regido periocular apresenta um bom compromisso entre a utilizacao de toda a face, ou
apenas da iris. A informacao desta regiao € facilmente adquirida, mesmo sem coopera-
cdo por parte do individuo, na medida em que ndo requer uma captura cooperativa e a
curta distancia. Como tal, a sua utilizacdo como sinal biométrico tem vindo a emergir,
constituindo hoje em dia uma forte alternativa para ambientes nap-controlados.

Caracteristicas biométricas que necessitam de sensores médicos para serem adquiridas sdo clas-
sificadas de médico-quimicas: ADN, electro-cardiogram (ECG), odor, etc.

ADN
0 acido desoxirribonucleico (ADN) é a molécula responsavel pela codificacao de todas as

XXVi



Odor

instrucdes genéticas, estando presente em cada célula do corpo humano. A excecdo de
gémeos idénticos, cada individuo tem um ADN Unico e que, como tal, pode ser usado
para o identificar de forma inequivoca. Apesar da sua utilizacao estar generalizada junto
de profissionais de ciéncia forense, o reconhecimento baseado no ADN ainda é altamente
intrusivo e dispendioso em termos de tempo, e a sua aquisicdo e manuseamento tém de ser
conduzidos com extremo cuidado para evitar contaminacdo. Além disso, existem varias
questoes de privacidade que se levantam, na medida em que a analise do ADN pode revelar
a predisposicao de uma pessoa a certas doencas.

0 odor emanado por um individuo é também ele Unico. Os sistemas atuais para a utiliza-
cdo do odor como caracteristica biométrica consistem em arrays de sensores quimicos,
cada um deles sensivel a uma fragrancia em particular. Ainda assim, esta caracteristica é
afetada por perfumes, desodorizantes, dietas alimentares, medicamentos, etc.

As caracteristicas biométricas comportamentais enquadram-se num ramo distinto da biometria,
na medida em que estabelecem a identidade de um determinado individuo ao analisar o0 modo
como este se comporta, e ndo os seus atributos fisicos ou fisiologicos. Os sinais comportamentais

mais utilizados sao a voz, assinatura, modo de andar, modo de digitar, etc.

Voz

A voz assume um papel importante no reconhecimento humano. Mesmo que nao estejamos
a ver uma determinada pessoa, conseguimos reconhece-la apenas por ouvir a sua voz. As
caracteristicas vocais sao determinados por diversos fatores, tais como as cordas vocais
e as cavidades bocal e nasal. Os atuais sistemas de autenticacdo baseados na voz nao
oferecem qualidade suficiente para aplicacdes de alta-seguranca, uma vez que se trata de
um sinal particularmente sujeito a interferéncias e dificil de capturar sem ruido mesmo
em ambientes padrao. Além do mais, pode ser condicionado pelas emoc¢des do utilizador,
estado clinico (e.g., infecoes relacionadas com a garganta), etc.

Assinatura

A utilizacdo da assinatura para verificar a identidade de uma pessoa € um procedimento
comum no mundo inteiro, estando de tal forma disseminado que é das modalidades de
reconhecimento mais bem aceite. Contudo, nido s6 a forma como um individuo assina
varia com o tempo, como ainda é influenciada pelo seu estado emocional e requer a sua
cooperacao.

Modo de andar

0 modo como uma pessoa anda (gait) € uma também ele uma caracteristica comporta-
mental que pode ser usada para o seu reconhecimento. E ndo-invasiva, pode ser adquirida
a distancia, e a maioria das técnicas existentes para a sua analise nao necessitam de infor-
macao em alta-resolucao. Pode por isso ser utilizada em dados capturados por camaras de
video-vigilancia e em locais publicos. Contudo, ha varios fatores que podem influenciar o
modo de andar de uma pessoa (e.g., calcado ou roupa desconfortavel), levando também
a alteracdes na performance do sistema.

Modo de digitar

A analise do modo como um utilizador interage com o teclado constitui também uma
caracteristica comportamental com aplicagdes no reconhecimento biométrico. De entre
a informacao que pode ser extraida deste sinal temos a velocidade de escrita, a cadéncia
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entre cada uma das letras, e erros tipicos de digitacdo. Tem como vantagem o facto de
nao ser necessario nenhum sensor dispendioso, e a possibilidade de ser adquirido de forma
sub-repticia. Contudo, a forma como um individuo digita é condicionada pelo seu estado
de espirito, nivel de relaxamento, ou tipo de teclado.

Finalmente, é importante referir as caracteristicas de soft-biometrics, que embora nao apre-
sentem capacidades discriminativas suficientes para identificar um individuo, podem ser usadas
em conjunto com outros sinais biométricos para melhorar as taxas de reconhecimento ou ace-
lerar o processo de pesquisa (e.g., categorizacao dos dados). Como exemplo de soft-biometrics
temos o género, etnia, altura, marcas na pele (e.g., tatuagens), cor do cabelo ou dos olhos, etc.

Avaliacao da Performance

Por forma a avaliar a performance de um determinado sinal ou sistema biométrico, varias métri-
cas podem ser utilizadas.

A decidabilidade d’, inicialmente introduzida por John Daugman [19], quantifica a separabili-
dade entre comparacdes intra- e inter-classe, analisando a relacdo entre as suas médias u e
desvios padrao ¢ (2.1), dado que ambas sejam distribuicées Gaussianas. Comparacoes intra-
classe referem-se a comparacdées em que tanto a informacao adquirida como o template ao
qual esta a ser comparada pertencem ao mesmo utilizador, e inter-classe quando pertencem a
diferentes individuos.

Outra representacao comum de performance em problemas de classificacdo binaria é a curva
Receiver Operating Characteristic (ROC). Este grafico relaciona a sensibilidade (ou True Posi-
tive Rate (TPR)) de um sistema com o False Positive Rate (FPR) e, com base nele, é possivel
quantificar a performance também com base na Area Under Curve (AUC). Esta Ultima métrica
varia no intervalo [0, 1], correspondendo a unidade ao cenario ideal em que todas as compara-
coes genuinas foram obtidas sem falsos positivos. Estabelecendo o limiar de aceitacao de tal
forma a que o erro introduzido seja igual em ambas as classes, obtemos o Equal Error Rate (EER).

A sensibilidade (ou TPR), e especificidade (SPC) sao dadas pelas equacoes (2.2) e (2.3) respeti-
vamente, e relacionam a quantidade de respostas correctas com o total de resultados positivos
(True Positives (TP) + False Negatives (FN)) e as repostas negativas (True Negatives (TN) + False
Positives (FP)). A Accuracy (ACC) (2.4) é utilizada para expressar o racio de comparacoes cor-
retamente classificadas. O seu valor maximo é 1, que corresponde ao cenario 6timo em que
todas as classes foram classificadas de forma correta. Para uma analise mais equilibrada em
situacdes onde exista uma grande discrepancia entre a quantidade de comparagées genuinas e
de impostores, pode ser utilizado o Mathews Correlation Coefficient (MCC) (2.5). Esta métrica
varia no intervalo [—1, 1], sendo a unidade o valor 6timo [20].

Ambientes Nao-Controlados

Varios autores se debrucaram sobre os principais problemas encontrados em ambientes nédo-
controlados. Fancourt et al. [21] concluiu ser possivel adquirir informac&o da iris com qualidade
suficiente em distancias até 10 metros. Smith et al. [22] examinaram comparativamente a infor-
macao da iris capturada simultaneamente no infravermelho e no comprimento de onda visivel,
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abordando a possibilidade de combinar informacao multi-espectral para aumentar as taxas de
reconhecimento. Na nossa pesquisa [4] analisamos a usabilidade da iris no comprimento de onda
visivel, quantificando as condicbes que permitiriam uma maior confiangca no reconhecimento.
Concluimos que o nivel de iluminacao da cena tem um impacto significativo, nao devendo ser
inferior a 120cd/m?, sendo o tipo de iluminante em utilizacdo de menor relevancia. Ross et
al. [23] centraram-se no problema do reconhecimento em imagens degradadas da iris, tendo
considerado cinco fatores de ruido: 1) iluminacao ndo-uniforme; 2) movimento; 3) desfoque; 4)
desvio no olhar; e 5) deformacdes ndo-lineares. O aspeto chave do seu método é que a codifi-
cacdo baseada numa Unica caracteristica nao soluciona todas estas variacdes, tendo os autores
proposto um processo de codificacdo e comparacdo baseado em trés métodos distintos: 1) his-
togramas de gradientes orientados; 2) Scale-Invariant Feature Transform (SIFT); e 3) modelo
probabilistico de deformacdo. A informacao extraida de cada descritor é comparada de forma
independente, e os resultados combinados no final recorrendo a uma regra classica da soma.
Experiéncias nas bases-de-dados FOCS e Face Recognition Grand Challenge (FRGC), encorajam
o desenvolvimento de mais trabalhos com este tipo de abordagem hibrida [24]. Quanto aos
diferentes fatores de ruido que influenciam o reconhecimento em cenarios ndo-controlados, os
mesmos encontram-se descritos e ilustrado em maior detalhe na seccao 11.4.2 do capitulo 11,
e Figura 11.3.

A eficiéncia de sistemas de reconhecimento baseados na face em ambientes nao-controlados é
influenciada por uma série de fatores [24]: a sua estrutura tridimensional provoca variagcdes na
sua aparéncia, essencialmente a pose do utilizador; regides significativas da face estao geral-
mente sujeitas a oclusao (e.g., aquisicao nao ortogonal); a sua aparéncia é claramente afetada
pelas expressdes faciais; e pode ser facilmente disfarcada.

Por Gltimo, ambientes ndo-controlados podem nao permitir adquirir de forma satisfatoria nem
a iris nem a face. Nesses casos, a utilizacao de informacao na regido circundante ao olho (i.e.,
regido periocular) tem vindo a ganhar crescente interesse por parte da comunidade cientifica,
representando um bom compromisso entre utilizar a face completa ou apenas a iris [24].

Dispositivos Moveis

A utilizacdo de dispositivos moveis (e.g., telemoveis e tablets) tem vindo a crescer significati-
vamente ao longo dos Gltimos anos, bem como as suas capacidades e aplicacdes. A implemen-
tacdo de tecnologias de reconhecimento biométrico neste tipo de gadget nao so é desejada,
como representa a disponibilizacao de solucdes de reconhecimento ao utilizador comum e, con-
sequentemente, em qualquer lado e em qualquer altura.

A maioria dos algoritmos desenhados para ambientes in the wild consegue funcionar sem pro-
blema em dispositivos de consumo. Contudo, e a par das questdes ja levantadas pelos ambientes
ndo-controlados, um reconhecimento baseado na iris esta, neste tipo de dispositivos moveis, as-
sociado a uma série de problemas: os telemoveis e tablets vém equipados com uma vasta gama
de sensores (i.e., camaras) e lentes, introduzindo discrepancias nas imagens adquiridas (e.g.,
distorcdes da cor); a acquisicao dos sinais biométricos on-the-go por individuos “nédo-treinados”
ird resultar em maiores variacoes de pose, expressao, angulo de aquisicao, escala e rotacao
(e.g., os utilizadores seguram os dispositivos moveis de forma distinta); o ambiente onde a
imagem esta a ser adquirida pode ter condicdes de iluminacao insuficientes, ou mesmo ilumi-
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nacao exterior muito forte que pode provocar reflexos sobre uma parte significativa da iris; etc.

No capitulo 10 estao detalhados os esforcos desenvolvidos ao longo destes trabalhos doutorais
no sentido de minimizar estes problemas: descreve-se a aquisicdo de uma base de dados da iris
e periocular, adquirida com dez configuragdes moveis distintas; detalha-se a utilizacdo de um
método de correcao de cor adaptado a cada configuracdo mével, de forma a compensar as difer-
entes percecdes de cor que a ela sao inerentes; e sdo aplicadas estratégias de reconhecimento
da iris e da regiao periocular pro forma a atingir o reconhecimento biométrico em dispositivos
moveis.

Fases de um Sistema de Reconhecimento In the Wild

Ao desenhar um sistema de reconhecimento destinado a ambientes in the wild é necessario
complementar os quatro elementos-chave previamente mencionados, ficando o sistema dividido
nas sete-fases principais ilustradas na Figura 2.6:

1. Aquisicdo do Sinal Biométrico A escolha do sensor de aquisicdao dependera do sinal bio-
métrico que se pretende adquirir. No caso especifico de ambientes in the wild, deve
recorrer-se a sensores que nao necessitem de interacao por parte do utilizador, na sua
maioria camaras. Outro fator a ter em conta, principalmente ao projetar sistemas de
funcionamento em tempo real, é o compromisso entre a definicao da informacao adquirida
e as taxas de aquisicao.

2. Avaliacdo da Qualidade Mesmo o mais otimizado dos sensores nem sempre devolve in-
formacao considerada ideal, e que permita a extracdo de caracteristicas com elevada
confianca. Quantificar a qualidade da informacao adquirida, descartando imagens que
nao se adequem as fases seguintes do processamento, permitira diminuir tanto o tempo
final de execucao, como as taxas de erro do sistema.

3. Melhoria do Sinal Complementarmente a avaliacdo de qualidade, o sinal adquirido pelo
sensor pode ser submetido a métodos de remocao de ruido, se forem conhecidos os fatores
que provocaram a sua degradacao. Ainda que o sinal original ndao possa ser restaurado,
este passo pode ser usado para aumentar a performance do sistema, ou em situagées em
que os dados sejam adquiridos com qualidade especialmente reduzida.

4. Detecdo e Segmentacdo O sinal biométrico necessita de ser devidamente localizado e
segmentado, para que a extracao de caracteristicas possa ser levada a cabo de forma
eficiente. A fase de segmentacao permite também descartar fatores de ruido que tenham
transitado das fases anteriores (e.g., oclusao da iris).

5. Extracdo de caracteristicas Um conjunto representativo de caracteristicas tem de ser
extraido, de tal forma a que a informacao discriminante de cada sujeito seja codificada.
Em sistemas de tempo real, estas caracteristicas devem ser extraidas tao rapido quanto
possivel, e codificadas minimizando o custo computacional. Durante a fase de registo,
a informacao recolhida dos utilizadores é armazenada na base-de-dados para que, mais
tarde, estes possam ser identificados ou as suas identidades validadas.

6. Comparacéao As caracteristicas sao entao comparadas com os templates da base-de-dados.
Em sistemas de tempo real, ndo s6 a informacao da base-de-dados deve estar otimizada
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para um rapido acesso, como soft-biomtrics podem ser utilizadas para reduzir o espaco de
procura.

7. Tomada de decisdo Com base no resultado da fase de comparagao (que podem ser varios,
no caso de um sistema multi-modal), é tomada uma decisao final sobre a identidade do
individuo. Eventualmente, o sistema pode nao ser capaz de chegar a uma conclusao posi-
tiva sobre a identidade do utilizador, mas ainda assim ser capaz de reduzir o conjunto de
possibilidades.

A iris como Sinal Biométrico

A possibilidade de adquirir a informacao da iris a uma determinada distancia, e as elevadas taxas
obtidas no reconhecimento cooperativo, tornam-na um possivel sinal biométrico também para
cenarios ndo-controlados, justificando os esforcos em “relaxar” as condicées de aquisicao [9,
25, 26].

A iris tem inUmeras provas dadas enquanto caracteristica biométrica, sendo que os sistemas
de reconhecimento nela baseados estao implementados para um funcionamento fortemente
cooperativo: os utilizadores necessitam de permanecer imoveis e relativamente proximos ao
dispositivo de aquisicdo, enquanto uma imagem da iris € adquirida no infravermelho-proximo
(700 a 900 nm). O recurso a iluminacao no infravermelho permite adquirir imagens de boa quali-
dade, evitando a maioria dos fatores de ruido associados a iluminacdo no comprimento de onda
visivel (e.g., reflexos). Contudo, ao passarmos para ambientes ndo-controlados em que a iris
€ adquirida a distancias superiores e em que os utilizadores estdao em movimento, necessita-
mos de camaras com um f-number maior e menor tempo de exposicao para que se obtenha um
depth-of-field aceitavel. Uma vez que existe uma relacao direta entre esses valores e a quanti-
dade de luz na cena, para que o sistema continuasse a operar no infravermelho seria necessario
recorrer a iluminadores suficientemente potentes, sendo estes prejudiciais a visdo humana uma
vez que o organismo nao tem mecanismos naturais de resposta (e.g., contracao da pupila). A
exequibilidade do reconhecimento da iris neste tipo de ambientes usando o comprimento de
onda visivel continua a ser um tema controverso, especialmente para iris com um elevado nivel
de pigmentacao (o0 que representa a maior parte da populacao mundial).

Na fase de segmentacao da iris, muitas técnicas baseiam-se numa correta parametrizacao da
transformada de Hough. Junli et al. [27] desenvolveram uma técnica de ellipse fitting ro-
busta a mapas de arestas ruidosos, especialmente adaptada a dados degradados. Para resolver
o problema associado com a aquisicdo de imagens a maiores distancias, Tan and Kimar [28]
propuseram um método baseado no algoritmo grow-cut capaz de discriminar entre informacao
correspondente a iris e ndo. Os resultados sao ainda refinados através da estimativa do centro
da iris, do refinamento dos contornos, da remocéo de pestanas e sombras, e da localizacao das
palpebras. Este método foi validado contra bases-de-dados bem conhecidas (UBIRIS.v2, FRGC
e CASIA.v4 Diatance), apresentado um menor custo computacional em relacao a estratégias
analogas. Alonso-Fernandez e Bigun [29] segmentam a iris com base no algoritmo Generalized
Structure Tensor: recorrendo a filtros complexos, os autores obtém informacéo sobre a magni-
tude e orientacao de cada pixel da fronteira, fornecendo informacao adicional para uma melhor
distincao dos contornos pertencentes aos limites da iris. Xinyu et al. [30] propdem um algoritmo

XXXi



Biometric Recognition in Unconstrained Environments

capaz de segmentar imagens da iris muito robusto a variacoes de escala (diametro da iris a variar
entre 50 e 360 pixels). Comeca por detectar um conjunto de contornos usando o detetor Canny,
usando de seguida os componentes nédo ligados como nodos de um grafo. Por fim é utilizado um
critério de corte para distinguir quais os contornos da iris mais provaveis.

Ao trabalhar em ambientes nao-controlados, é de particular importancia que o sistema possua
um modulo de detecdo de ruido para que se possam distinguir as sub-regides da iris que se
encontram ocluidas por outro tipo de informacao (e.g., palpebras, pestanas, reflexos). Desta
forma, € possivel atenuar o seu impacto na fase de codificacdo, diminuindo a taxa de falsas
rejeicoes (FRR) [24]. A maioria dos autores que se debrucaram sobre este problema utilizou
métodos baseados em regras e, por conseguinte, a sua eficacia pode ser questionada. Por outro
lado, Li e Savvides [31] utilizaram Gaussian Mixture Models para modelar as distribuicoes de
probabilidade das regides livres de ruido, e das que estavam ocluidas. Como caracteristica base
os autores propuseram filtros de Gabor otimizados.

Determinar a qualidade da informac&o adquirida permite também, como ja foi referido, melho-
rar a performance do sistema de reconhecimento biométrico. Zuo e Schmid [32] propuseram
a determinacdo de trés indices de qualidade: qualidade da amostra, confianca no resultado
da comparacao; e qualidade da amostra e template. Este algoritmo tem a vantagem de ser
genérico e, por isso, adequado também a outras modalidades biométricas.

A textura da iris é caracterizada pela ditribuicda irregular de caracteristicas locais, tais como
furrows, criptas, rugas e spots. Como tal, as técnicas tradicionais de reconhecimento baseiam-
se na textura, decompondo a informagao da iris num conjunto de coeficientes numéricos cor-
respondentes a orientacdes ou frequéncias dos padroes dominantes. Os sistemas de reconheci-
mento da iris implementados comercialmente baseiam-se no método pioneiro de Daugman [19],
e conseguem alcancar uma performance excecional em dados adquiridos no infravermelho. Ape-
sar de algumas melhorias [33], este processo de reconhecimento consiste na transposicao da iris
segmentada para um sistema de coordenadas pseudo-polar, por forma a obter invariancia a
escala e translacdo. Nesta versao normalizada da iris é entdo feita a convolucdo com um con-
junto de filtros de Gabor, a multiplas frequéncias e orientacdes, sendo o resultado quantificado
num dos quadrantes, com a extracao de dois bits para a informacao da fase. Para a compara-
cdo de assinaturas € utilizada a distancia de Hamming, sendo feitas comparacdes com diversas
translacdes dos dados de forma a obter invariancia a rotacao. Outros métodos classicos do reco-
nhecimento da iris baseiam-se em zero-crossing, como Boles e Boashash [34] que usam wavelets
1D com diferentes resolucdes em circulos concéntricos, ou na analise da textura da iris, como a
técnica de Wildes [35] que codifica a informacao com base numa piramide Laplaciana. Em todo
o0 caso, qualquer uma destas técnicas pressupde cooperacao por parte do utilizador.

O reconhecimento em ambientes menos controlados ganhou maior relevancia com o projeto
Iris-on-the-Move [36], um sistema de aquisicdo de imagem que torna o reconhecimento da iris
menos intrusivo para os utilizadores, e um bom exemplo de engenharia: imagens sao adquiridas
na gama de infravermelhos mais proxima do comprimento de onda visivel, enquanto o individuo
atravessa um portal de controlo de acesso deslocando-se a sua velocidade normal. A empresa
Honeywell Technologies deu entrada no processo de patente para um sistema similar [37], tam-
bém ele capaz de reconhecer pessoas utilizando capturando a iris a uma certa distancia.
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A Regiao Periocular

Ao olho e a sua area circundante da-se o nome de regiao periocular. A sua utilizacao para
efeitos de biometria foi inspirada na capacidade que os seres humano tém em se reconhecer
entre si através do olhar. A utilidade desta regido € particularmente notoria em cenarios menos
controlados, quando o grau de confianca na informacao adquirida seja menor, e como forma de
compensar problemas introduzidos pelo meio envolvente ou individuos que nao estejam dispos-
tos a cooperar com o sistema. Outras aplicacdes interessantes da regiao periocular sao cenarios
onde a face sofreu transformacodes (e.g., cirurgia plastica) [38, 39].

Adquirir imagens deste sinal biométrico ndo pressupoe a necessidade de ambientes controlados,
nem da cooperacdo por parte do utilizador. E relativamente estavel (quando comparado com
a regiao facial) e raramente se encontra ocluido. Além disso, estando a iris localizada no seu
interior, podem ambas ser adquiridas com uma Unica camara e a sua informacao combinada
para melhorar a performance do reconhecimento [24].

Os capitulos 5 e 6 contém uma analise dos métodos mais relevantes presentes na literatura,
comparando as caracteristicas das principais bases-de-dados existentes e apresentando resulta-
dos da sua aplicacao, identificando os principais problemas associados ao seu funcionamento.

Preocupacdes Eticas e de Privacidade

A par dos desenvolvimentos no campo da biometria surgem preocupacdes éticas e de privaci-
dade, especialmente em métodos e sistemas desenhado para um funcionamento sub-repticio.
Se por um lado a informacao biométrica é Unica, pessoal e intransmissivel, e uma forma de
autenticacao forte, por outro lado se os dados biométricos de uma pessoa vierem a ser com-
prometidos nao podem ser alterados como € o caso de uma palavra-chave ou cédigo PIN. Em
ambientes nao-controlados os individuos podem ainda estar sujeitos ao processo de reconheci-
mento mesmo sem que se apercebam ou haja o seu consentimento formal, levantando ainda
mais questoes.

Do ponto de vista da legislacao europeia, existe um conjunto de principios a ter em conta quando
se implementa um sistema biométrico num cenario real [40, 41]:

Principio da proporcionalidade
Deve ser analisado se a utilizacdo dos dados biométricos é realmente necessaria no con-
texto da aplicacao, ou se podem ser utilizados para o mesmo fim outros métodos de au-
tenticacao que nado recorram a biometria;

Risco de discriminagao
O sistema implementado nao deve demonstrar falsos positivos, falsos negativos, ou falhas
no registo de utilizadores do sistema;

Uso improprio / Ambito
Os dados biométricos adquiridos nao devem ser utilizados para outros fins além daqueles
a que originalmente se destinam. Além disso os utilizadores devem conhecer quais os
fins a que os seus dados se destinam, e consentir de forma explicita a sua utilizacao pelo
sistema.
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Obtencao sub-repticia de dados biométricos e monitorizacao
Os utilizadores devem ser informados e estar cientes sempre que a sua informacao bio-
métrica esteja a ser recolhida. Para que um sistema funcione sem esse pressuposto é
necessario que exista uma dispensa legal.

Protecdo dos dados
Os dados biométricos devem ser adquiridos de tal forma que ndo permitam a extracao de
outro tipo de informac&o além da que sera usada para a identificacao (e.g., informacéao
médica ou étnica), ou caso contrario devera existir um consentimento informado.

Adicionalmente, um conjunto de medidas Privacy Enhancing Technologies (PET) foi tomado pelo
European Committee for Standardization (CEN) através da iniciativa Information Society Stan-
dardization System (ISSS), visando a protecao e padronizacao da privacidade na Europa [42].
Exemplos dessas medidas sao: a minimizacao da quantidade de dados em utilizacao, a sua en-
criptacdo e remocao logo que deixem de ser necessarios; evitar a utilizacao de bases-de-dados
centralizadas, que em certos paises chegam mesmo a ser proibidas (e.g., Alemanha); etc.

Em todo o caso, as pessoas estdao mais ou menos familiarizadas com a utilizacao de sistemas
de video-vigilancia em locais pUblicos. Os Estados Unidos da América sao um bom exemplo em
como apesar do direito a privacidade estar instituido na constituicao, os ataques de 11 de Setem-
bro de 2001 alteraram de forma muito rapida a percecao civil do que seria a sua “expectativa
razoavel de privacidade” (“reasonable expectation of privacy”). A expectativa de privacidade
das pessoas no que diz respeito a sinais biométricos que estejam normalmente visiveis &€ muito
baixa, e a liberdade de escolha em nao participar na capturada de dados pelo sistema nem sem-
pre é razoavel. Num aeroporto, por exemplo, uma pessoa nado ira optar por nao ser submetida
aos procedimentos de seguranca, sob pena de ser impedida de viajar [43]. Neste contexto, a
utilizacdo de mecanismos de reconhecimento negativo (screening) podera ser uma alternativa
mais bem aceite, uma vez que a informacao armazenada na base de dados corresponde sé a
individuos “suspeitos”, e a informacao adquirida durante o funcionamento do sistema é descar-
tada apos a identificacao negativa.

Em Ultima analise, e independentemente das diretrizes e protocolos existentes, poucas sao as
garantias reais de que estes procedimentos sejam realmente postos em pratica.

Principais Conclusoes

Esta tese propde-se a abordar o problema do reconhecimento biométrico em ambientes nao-
controlados, descrevendo o trabalho desenvolvido no sentido de implementar um sistema que
funcione de forma completamente autonoma e nao-supervisionada em ambientes adversos.

A estratégia seguida para abordar este problema dividiu-se em cinco passos: comecamos por
estudar a iris enquanto sinal biométrico, e em particular a sua usabilidade em cenarios nao-
controlados, onde as restricoes de aquisicao sao menores e, consequentemente, se lida com
informacao mais degradada; de seguida conduzimos uma analise mais detalhada sobre como
a performance da iris enquanto sinal biométrico é condicionada pela luz no comprimento de
onda visivel, mais especificamente pelo tipo de iluminante em utilizacdo, e pelo nivel de lu-
minancia; estudamos posteriormente os sinais biométricos emergentes, e em particular a regido
periocular, uma vez que esta tem vindo a assumir um papel cada vez mais relevante na litera-
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tura no que toca a ambientes ndo-ideais; os métodos de reconhecimento mais relevantes foram
entdo implementados e testados, e construiu-se uma base de dados que replica os fatores de
ruido e condicdes observadas em cenarios ndo-cooperativos, ainda que de forma controlada e
devidamente quantificada; por fim, pretendiamos estudar a possibilidade de recorrer ao re-
conhecimento negativo, convergindo assim para um cenario que julgamos mais adequado aos
desafios atuais. Ainda que este Ultimo objetivo ndo tenha sido completamente alcancado, li-
nhas complementares de pesquisa foram levadas a cabo e, em ultima analise, um sistema de
reconhecimento biométrico foi proposto capaz de trabalhar autonomamente sobre cenarios de
video-vigilancia. A par com estes objetivos, varias contribuicdes cientificas foram publicadas
em revistas e conferéncias internacionais.

Durante a pesquisa realizada sobre a usabilidade da iris, avaliando o seu comportamento sob luz
no comprimento de onda visivel, foi possivel observar como a aparéncia dos seus padroes é muito
pouco condicionada pelo tipo de iluminante em utilizacao durante a sua aquisicao, ainda que
os niveis de luminancia sejam de maior importancia [4]. Tal facto permite avancar com maior
confianca para a construcao de um sistema biométrico baseado na iris capaz de trabalhar sob
diferentes tipos de luz, quer natural quer artificial, desde que um nivel adequado de luminancia
seja mantido, ou medidas adicionais sejam tomadas para contornar esta limitacdo. Foi também
proposto um novo método de reconhecimento utilizando informacéo da iris, capturada no com-
primento de onda visivel, baseado na extracao dos descritores de cor e forma presentes no
MPEG-7 a partir de sub-regides da iris definidas de forma auténoma. Esta nova técnica demon-
strou nao so niveis de performance proximos dos métodos do estado-da-arte, como também um
baixo nivel de correlacdo em relacao aos mesmos, sugerindo que a sua eventual fusao podera
conduzir a um acréscimo adicional na performance [5].

No ambito do reconhecimento periocular o estudo da literatura revelou que as mais recentes
pesquisas se focam na analise da textura e na extracao de pontos-chave, e que mesmo algo-
ritmos menos complexos (e.g., técnicas baseadas em Local Binary Patterns (LBP)) resultam em
niveis de performance consideraveis. A regiao periocular é particularmente favoravel a ambi-
entes ndo-ideais e ndo-cooperativos, quer quando utilizada por si s6, quer quando combinada
com a iris, e ainda que a informacao contida nesta Ultima nao possa ser capturada de forma
otima. Testar os métodos do estado-da-arte contra uma base-de-dados comum permitiu-nos
analisar comparativamente as suas performances, identificando os padroes que condicionam
sistematicamente as suas capacidades [6, 44].

Tendo estabelecido a importancia para aplicacdoes biométricas da detecdo dos cantos dos olhos
em imagens da face (e.g., definicdo da regido periocular), avaliamos os métodos presentes na
literatura em imagens degradadas. Observando que as condicdes as quais os submetemos condi-
cionavam de sobremaneira a sua performance, propusemos um novo método capaz de lidar com
imagens capturadas in the wild. Comparativamente com as técnicas da literatura, o método por
nos proposto revelou-se mais eficaz tanto em dados sem ruido, como em dados degradados (des-
foque, rotacao, diferencas de escala, etc.). De salientar ainda que essa eficacia foi alcancada
sem perdas de eficiéncia computacional, fator importante quando se pretende construir um sis-
tema biométrico capaz de funcionar em tempo real [7]. Também para uma melhor definicdo dos
limites da regiao periocular, melhor estimativas da pose, e direcao do olhar, foi proposta uma
técnica de labeling capaz de discriminar sete componentes principais desta regido. A abordagem
seguida consistiu em duas etapas: inicialmente um grupo de classificadores locais recorre a des-

XXXV



Biometric Recognition in Unconstrained Environments

critores de textura para determinar, em cada pixel, a probabilidade de cada classe; de seguida,
esta informacdo é combinada com restricdes geométricas e informacao sobre a forma de cada
uma das regides usando Markov Random Field (MRF) [8].

Com o objetivo de aumentar a fiabilidade do reconhecimento nao-cooperativo baseado na iris
sobre dados degradados, propusemos a fusao de diferentes técnicas de reconhecimento, de tal
forma a que os problemas associados ao funcionamento no comprimento de onda visivel fossem
minimizados. A combinacao da iris e da regido periocular demonstrou melhorar a performance
global do sistema, quer no modo de identificacao quer de verificacao, observacao que foi cor-
roborada com o terceiro lugar no desafio NICE.II [9].

Uma abordagem similar foi levada a cabo no Mobile Iris CHallenge Evaluation - Part | (MICHE I),
desta vez tendo por base o reconhecimento biométrico em dispositivos mdveis. Elaboramos e
tornamos publica para a comunidade cientifica uma nova base-de-dados da iris e da regiao pe-
riocular - Cross-Sensor Iris and Periocular Dataset (CSIP) -, contendo imagens adquiridas em dez
configuragdes moveis distintas e com oito fatores visiveis de ruido, juntamente com as respetivas
mascaras de segmentacao da iris. Esta base-de-dados permite avaliar técnicas de segmentacao
e de reconhecimento da iris e da regiao periocular. Foi-nos também possivel identificar as dis-
paridades cromaticas que alguns dispositivos introduziam nas imagens, pelo que propusemos a
utilizacdo de uma técnica de correcdo de cor para compensar as distor¢des inerentes a cada
uma das configuracoes moveis. Os resultados mostraram esta abordagem conduz a resultados
muito satisfatorios, especialmente em comparacdes cross-sensor. Demonstramos ainda como a
combinagao de estratégias de reconhecimento da iris e do periocular podem ser usadas para su-
perar os problemas associados a aquisicdo em dispositivos moveis. Adicionalmente, mostramos
como técnicas de codificacdo muito simples e de baixo custo computacional podem produzir
performances consideraveis, o que se torna particularmente interessante no caso de aplicacoes
desenvolvidas para plataformas moveis, onde as limitagdes computacionais sao maiores [3].

Tendo em mente o objetivo final de desenvolver um sistema de reconhecimento capaz de li-
dar com informacado adquirida em condicdes adversas, identificamos a necessidade de criar
uma base-de-dados que agregasse multiplos fatores de ruido de forma perfeitamente quan-
tificada. Neste sentido, criamos a base-de-dados BioHDD, contendo informacdo de 101 par-
ticipantes adquirida ao longo de varias sessdes: fotos de registo de alta definicao; um largo
conjunto de imagens degradadas segundo dez fatores de ruido; sequéncias de video com os par-
ticipantes a percorrer um cenario nao-uniforme. Levando a cabo um estudo online em que se
simulava o processo de identificacao no formato watchlist onde os participantes eram convida-
dos a realizar tarefas de reconhecimento positivo e negativo, foi-nos possivel identificar quais
as caracteristicas mais frequentemente associadas pelo ser humano ao processo de reconheci-
mento. Observamos a capacidade dos participantes em lidar com intensidades de iluminacao
adequadas e niveis moderados de oclusao, e o facto de terem atingido bons resultados quando
na presenca de imagens comprimidas ou de baixa-resolucao sugere que sao essencialmente us-
adas caracteristicas globais. Como principais problemas identificamos situacées em que as fo-
tos dos participantes foram tiradas com maior inclinacdao da cabeca e niveis significativos de
oclusado, o que pode ser particularmente relevante se pensarmos em individuos que tentem evi-
tar a identificacao olhando para longe da camara ou cobrindo uma parte significativa da face.
De entre os detalhes mais vezes identificados como condicionantes do reconhecimento temos
informacao sobre a forma e caracteristicas holisticas, que por sua vez se revelaram também
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as mais fiaveis. Este estudo permitiu-nos consolidar a escolha da regiao periocular enquanto
caracteristica biométrica principal, na medida em que as caracteristicas localizadas na regiao
central da face foram as que conduziram a maior taxa de acertos [2].

Tendo por base estas descobertas, e procurando um melhor entendimento das fotos adquiridas
in the wild que contivessem a regiao da cabeca, propusemos um novo algoritmo para a detecao
de landmarks [45] capaz de identificar e localizar seis elementos chave, entre os quais a regiao
periocular. Este algoritmo, tendo sido testado contra um sub-grupo da base-de-dados BioHDD,
demonstrou ter a capacidade de lidar com imagens adquiridas de multiplos angulos, apresen-
tado igualmente robustez ao nivel de inclinacdo da cabeca do utilizador.

Estes trabalhos de doutoramento culminaram com a concecdo de um sistema hibrido de video-
vigilancia com capacidade de reconhecimento biométrico: tendo por base num sistema de video-
vigilancia capaz de detetar e fazer tracking de pessoas em ambientes in the wild, o mesmo foi
complementado com mecanismos de analise de cenario e controle de uma camara Pan-Tilt-
Zoom (PTZ), adquirindo imagens mais detalhadas da regido da cabeca dos individuos. Recor-
rendo a técnica de landmarking referida anteriormente, o sistema sera capaz de ajustar o fun-
cionamento dos diferentes médulos de reconhecimento as caracteristicas biométricas que se
encontrem efetivamente visiveis, decidindo quais usar e que peso dar a cada uma delas. Por
fim, apresentamos uma proof of concept refletindo o funcionamento desse mesmo sistema num
cenario de video-vigilancia [45].

Trabalho Futuro

A implementacao de um sistema de reconhecimento biométrico, auténomo e completamente
funcional, capaz de trabalhar de forma sub-repticia in the wild e em condicdes adversas € ainda
um trabalho em andamento. Embora o sistema ja tenha sido desenhado na sua totalidade, alguns
modulos encontram-se ainda em producao. Pretendemos levar a cabo uma completa validacao
do sistema, avaliando a sua performance em diferentes ambientes.

Embora dois dos métodos propostos tenham sido submetidos a desafios internacionais (NICE.Il e
MICHE |) e todas as contribuicées tenham sido avaliadas pelos nossos pares, achamos que seria
interessante alargar os testes realizados a diferentes bases-de-dados e de maior escala, para
poder aumentar ainda mais a relevancia estatistica dos resultados apresentados.

Tal como referido na introducdo, um dos objetivos definidos inicialmente para esta tese da-
ria ainda lugar a uma pesquisa mais aprofundada, nomeadamente o estudo do modo de reco-
nhecimento negativo enquanto alternativa mais adequada a realidade atual de determinadas
aplicacbes biométricas. Ser capaz de garantir com elevado grau de confianca que um determi-
nado individuo, do qual nao sabemos a identidade, nao pertence a uma determinada lista de
“pessoas de interesse” é um objetivo muito tentador e de elevada aplicabilidade em seguranca
publica e de larga escala. Compreendendo todas estas vantagens, muitas das quais estdo ainda
relacionadas a questdes de privacidade, pretendemos complementar o prototipo final com este
modo de funcionamento.
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Organizacao da Tese

Este documento encontra-se organizado em catorze capitulos. Os primeiro e ultimo capitulos
sdo dedicados respetivamente a introducéo e conclusoes e trabalho futuro. O segundo capitulo
descreve os fundamentos da biometria, e os desafios associados a ambientes nao-controlados.
Oferece ainda detalhes sobre a usabilidade da iris neste tipo de cenario, uma visao geral dos
métodos existentes e problemas identificados. Além disso, introduz a regidao periocular en-
quanto sinal biométrico com particular aplicabilidade em cenarios de reconhecimento adversos.
Por fim, sdo tecidas algumas consideracdes sobre questdes éticas e de privacidade. Cada um
dos restantes capitulos € constituido por um artigo, publicado ou submetido para apreciacao
junto de revistas ou conferéncias internacionais.
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Abstract

Every human being is entitled, by his very nature, to a set of physiological and behavioral fea-
tures that characterize him. The study of such features led to the development of a considerable
amount of systems and applications, referred as biometric systems.

The usage of biometric systems has been significantly growing over the last years, particularly
in the field of security: authentication, access control, criminal identification, etc. Being a
high demanding sector, it is then natural that greater focus is placed on the biometric traits
that are able to deliver high discrimination between subjects whilst being less prone to forgery.
However, such constraints represent a significant impact on both system’s usability and flexi-
bility, requiring from the user a significant amount of cooperation. In this context, the iris is a
primordial trait. The existing biometric recognition systems based on the iris follow the pioneer
approach proposed by John Daugman, that proved itself as an excellent option for cooperative
scenarios where images are acquired in the near-infrared spectrum.

However, not in every case user cooperation is expected and, when not, systems with such high
acquisition constraints are of little or no use. Research is then focused on circumventing those
issues, either by improving the existing methods or finding new and more fitting traits. On the
later, the periocular region (i.e., the region surrounding the eye) is one of the most promising
characteristics: it mimics a natural and spontaneous way of recognition employed by the human
beings; has an advantageous localization in relation to the iris, making it easy to be simulta-
neously acquired; and has, as corroborated by the literature, a set of promising characteristics
that can be used for recognition purposes.

The main objective of this doctoral work is then to either adapt or develop a novel biometric
recognition system, suited for in the wild environments. Such systems should preferably use
the periocular region as biometric trait, due to its flexibility and ease of acquisition in adverse
conditions, and keep the operation constraints as low as possible. Subjects can be imaged at-
a-distance, on-the-move, and under irregular lighting conditions, using cameras working in the
visible wavelength.

To accomplish such goal, a set of intermediate milestones was established. At first, the iris was
studied as biometric trait, paying particular attention to the techniques allowing its usage on in
the wild scenarios. The effects of the visible wavelength light on iris performance for biometric
purposes should not be disregarded and, as so, this factor was also studied. After rolling out
iris usability as main distinctive feature, different emerging traits were analyzed, with special
attention being paid to the periocular region. The most relevant methods were implemented
and tested against the same dataset. Ultimately, multiple contributions were proposed and
accepted by the scientific community, with applicability on different in the wild environments,
the last of which is the proposal of an actual biometric system, working in real challenging
conditions.
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Chapter 1

Introduction

1.1 Overview

This thesis addresses the subject of biometric recognition in unconstrained environments. Being
a rather challenging objective, we choose to adopt a divide and conquer approach. At start,
iris usability for biometric recognition in the wildis analyzed, and more suited alternatives are
sought. With the periocular region being established as the most promising biometric trait
for the targeted scenarios, a more in depth study of that trait was conducted. This doctoral
research adds up to multiple scientific contributions and, ultimately, a fully automated system
is proposed. This chapter describes thesis focus and scope, followed by problem definition and
objectives, the main contributions and thesis organization.

1.2 Thesis Focus and Scope

Societies’ increasing concerns about both individual and global security has put biometrics as
one of the most actives areas of research. This growth trend is visible on methods, techniques
and applications, being deployed in a wide range of devices. Nowadays we can find biometrics
being used in personal electronics, such as mobile devices and personal computers, but also and
foremost on high-level access control systems, such as border access control. On this last group
of applications and due to its highly demanding requirements, most of the research is focused on
traits allowing higher user discriminability and lower forgery potential, at the cost of usability
and system flexibility.

Achieving biometric recognition is in fact a pattern recognition problem, as we aim at recogniz-
ing a subject based on a set of his physiological or behavioral features. Pattern recognition is
the scientific discipline responsible for processing raw data from certain objects, working out
the information (i.e., patterns) needed to sort them into classes. Having been a theoretical
statistical research field until 1960s, it was the evolution of computer systems that promptly

(a) Benign lesion (b) Malign lesion (cancer)

Figure 1.1: Illustration of image regions corresponding to two different classes [1].
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demanded for a large amount of applications, making it a very active field within the machine
learning domain, in particular on machine vision, data mining and knowledge discovery [1].

For illustration purposes, Figure 1.1 depicts two distinct classes from a classical pattern rec-
ognition problem: facing a depiction of a certain object, determine to which class it belongs.
In this particular example, our objective would be to analyze a medical image containing an
identified region and determine if it belongs to a benign lesion (class A) or a cancer (class B).
For illustration purposes, lets assume we possess a database of such images, and the data from
a particular class is similar.

In order to successfully classify a new instance of data, we first need to determine which features
make the classes distinct. In this illustrative example, we can perceive from visual inspecting the
images how pixel intensities significantly differ between classes. Thus, simply by computing the
mean and standard deviation values of the pixel intensities, we can work out from Figure 1.2 how
each class occupies a distinct area of the plot. Having such clear class distinction, a classification
threshold can be unequivocally drawn (straight line).
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Figure 1.2: Mean values P and standard deviation @ for images belonging to classes A (0) and B (+). The
observation marked with a star (*) corresponds to a new observation [1].

When acquiring data from a new observation, we carry on feature extraction the same way as
we did before (P and Q). Placing that new observation on the plot (*) we can classify it as
belonging to class A, as it is above the classification threshold. Those are the general steps to
solve a pattern classification problem.

From the existing biometric traits, the commercially deployed biometric systems prefer those
capable of lower error rates and, on this scope, the iris plays an important role. However, iris
imaging is conditioned by strict acquisition protocols, mostly due to its reduced size and mov-
ing profile, thus not being a suitable trait for covert operation on non-cooperative scenarios.
Contrary to the classical biometric systems that require high user cooperation, in real world
applications that is not always expectable and, contrary to popular belief, no research efforts
to date have produced a machine able to recognize human beings in such adverse conditions. In
this context, the periocular region presents itself as an emerging biometric trait, with a growing
number of publications on both its stand-alone potential and fusion possibility with more clas-
sical biometrics. In the later scenario, the iris is a particularly interesting fusion candidate, as
both traits can be acquired simultaneously with a single sensor.
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The scientific community is then facing two different roads: 1) lower the acquisition constraints
present in the existing systems, adapting them for unconstrained operation; 2) explore the us-
ability of new traits, best fit for the demands of these new working scenarios. This doctoral
work merges those two goals by stressing the usability of existing traits (e.g., the iris) adapting
them to the requirements of unconstrained operation, and fusing them with new and emerging
traits, best fit for those scenarios from their conception (e.g., the periocular region). Our main
purpose is to propose a biometric system for unconstrained environments, capable of dealing
with at-a-distance data acquisition from moving subjects, under varying visible wavelength illu-
mination settings. This motivation meets to another researching trend, as researchers are trying
to combine biometrics with surveillance systems, aiming at the deployment of hybrid solutions
capable of identifying unfriendly users in the wild.

1.3 Problem Definition and Research Objectives

This thesis addresses the problem of biometric recognition in unconstrained environments. Ul-
timately, the central objective of this doctoral program is to adapt or develop a biometric
recognition system suited for unconstrained environments. Based on the conducted research,
the periocular region is to be preferably used as main trait, due to its flexibility and ease of
acquisition in non-ideal dynamic conditions.

To accomplish the proposed goal, a set of intermediate objectives was defined to better organize
the required research work:

1. Study the iris as a biometric trait, with particular emphasis on the non-cooperative meth-
ods working over visible wavelength data. Such study should focus on the published iris
recognition methods aimed at lowering the acquisition constraints, or work on degraded
data.

2. The visible wavelength light introduces new noise factors with considerable impact on the
recognition performance. We should then analyze iris reflectance whilst being illuminated
by different illuminants (i.e., with different wavelengths), since this is a conditioning
factor when working under the visible spectrum. Iris discriminatory properties should be
analyzed over three axes: the type of illuminant on the scene; the luminance level of such
illuminant; and the iris pigmentation level.

3. Study emerging biometric traits, paying particular interest to those who minimize the
downside of non-ideal environments (e.g., the periocular region). Hence, the periocular
region is an appropriate candidate for three reasons: 1) it is a natural way of recognition,
used by the human being even without its awareness; 2) has a privileged location in relation
to the iris, allowing simultaneous acquisition with a single sensor; 3) as corroborated by
the literature, has a set of features that can be explored.

4. Implement and test the most relevant methods analyzed in the previous topic, having in
mind that the evaluation of the implemented algorithms should be conducted over the
same dataset. Moreover, we aim at gather a new dataset, with data acquired simulta-
neously over the near-infrared and visible wavelengths. Even though this new dataset is
acquired on a controlled environment, it will introduce a set of noise factors that replicate
those observed in unconstrained environments.
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5. Most biometric systems attempt positive identification (or verification) against a gallery
of enrolled users based on a (dis)similarity measure. In many in the wild applications
however, biometric systems make more sense when used from the negative perspective:
guarantee with enough confidence that an unknown subject does not belong to a gallery
of “persons-of-interest”, instead of attempting to identify him/her. On that basis our
last intermediate objective is to study the state-of-the-art of the negative recognition
paradigm.

From the proposed objectives, only the possibility of studying and performing negative recog-
nition was not fully achieved, being presented as further work. We understand the practical
advantages of deciding if a particular subject is not one of the users registered on the system,
particularly in systems working covertly, which is further supported in our work [2]. However,
we decided to prioritize the conception of equally challenging systems, with applications on
different scenarios (e.g., mobile setups [3]).

Finally, the biometric system we aim at establishing should be developed in such a way that can
be easily implemented, validated and debugged.

1.4 Main Contributions

This section briefly describes the contributions resulting from the research work developed in
the scope of this doctoral program, as illustrated in Figure 1.3.

The first contribution consists of a preliminary assessment about the discriminating capability
of the human iris when acquired under visible wavelength light, by perceiving and quantifying
the conditions that enable iris recognition with enough confidence. This study is described in
chapter 3, which consists of an article published in the proceedings of the 6" IEEE Workshop on
Multimedia Information Processing and Retrieval [4].

The second contribution proposes a new recognition scheme, based on techniques that are
substantially different from those traditionally used. The minimal levels of linear correlation
between the outputs produced by the proposed strategy and other state-of-the-art methods
suggest that the fusion of both recognition schemes significantly improves performance, which
is regarded as a positive step towards the development of extremely ambitious types of biomet-
ric recognition. This study is described in chapter 4, which consists of an article published in
the 116 volume of Computer Vision and Image Understanding [5].

The third contribution provides a comparative overview of the most relevant research works in
the scope of periocular recognition, summarizing the developed methods and enumerating the
current issues. This study is described in chapter 5, which consists of an article published in the
proceedings of the IEEE Symposium on Computational Intelligence in Biometrics and Identity
Management - CIBIM 2013 [6].

The fourth contribution delivers a more detailed comparative overview of the most relevant
research on the scope of periocular recognition, with widen detail on the underlying techniques
and a comprehensive analysis of the state-of-the-art results against a common dataset. It starts
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Figure 1.3: Illustrative overview of the main contributions of our research work. Some depicted methods
were used as modules on the building of a fully automated surveillance system for human recognition
purposes over video surveillance scenarios [45].
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with an introductory three-fold framework, with relation to traditional biometric traits and sys-
tems, periocular anatomy and identified difficulties, and concludes with insights on the main
degradation issues and directions for further improvements on this emerging trait. This study
is described in chapter 6, which consists on a paper submitted for publication in the journal of
Artificial Intelligence Review.

The fifth contribution provides an eye-corner detection method able to deal with degraded
data, emphasizing robustness and applicability to real-world conditions. Our experiments show
that the proposed method outperforms others in both noise-free and degraded data (blurred
and rotated images and images with significant variations in scale). This study is described in
chapter 7, which consists on an article published in the proceedings of the IEEE International
Conference on Biometrics - IJCB 2011 [7].

The sixth contribution provides a segmentation (labeling) method for the periocular region, able
to discriminate between seven components in a single shot: iris, sclera, eyelashes, eyebrows,
hair, skin and glasses. Having such a labeled image allows improving the definition of the peri-
ocular Region of Interest (ROI), with better pose and gaze estimation. This study is described
in chapter 8, which consists on a paper published in the IEEE International Conference on Bio-
metrics - IJCB 2014 [8].

The seventh contribution proposes a novel strategy fusing different recognition approaches, de-
scribing how it contributes to a more reliable non-cooperative iris recognition by compensating
for degraded images captured in less constrained acquisition setups and protocols, under visible
wavelengths and varying lighting conditions. The proposed method was tested at the NICE.II
contest, where its remarkable performance was corroborated by a third-place finish. This study
is described in chapter 9, which consists on a paper published in the 33" issue of Pattern Rec-
ognition Letters [9].

The eighth contribution focus on biometric recognition on mobile environments using the iris
and periocular information as main traits. It announces the availability of an iris and periocular
dataset containing images acquired with 10 different mobile setups, along with the correspond-
ing iris segmentation data, allowing to evaluate both iris segmentation and recognition methods,
and periocular recognition techniques as well. Furthermore, it reports the outcomes of device-
specific calibration techniques that compensate for the different color perception inherent to
each setup, and proposes the application of well-known iris and periocular recognition strate-
gies, giving evidence on how they can be fused to overcome the issues associated with the
mobile environments. This study is described in chapter 10, which consists on a paper published
the journal Pattern Recognition Letters.

The ninth contribution also focuses on biometric recognition in extremely degraded data. The
availability of an annotated dataset containing high quality mugshots of 101 subjects, and large
sets of probes degraded extremely by ten different noise factors is announced. Furthermore,
it reports the results of a mimicked watchlist identification scheme: an online survey was con-
ducted, where participants were asked to perform positive and negative identification of probes
against the enrolled identities. Along with their answers, volunteers had to provide the major
reasons that sustained their responses. That enabled us to perceive the kind of features that
are most frequently associated with successful / failed human identification processes, being
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observed how humans greatly rely on shape information and holistic features. Finally, evidence
is provided that the positive human identification on such extremely degraded data might be
unreliable, whereas negative identification might constitute an interesting alternative for such
cases. This study is described in chapter 11, which consists on a paper published in the journal
IET Biometrics.

The tenth contribution consists of a novel landmark detection technique, able to identify six-
key elements of the human head and pinpoint their location regardless of the image acquisition
angle or head’s pitch. Apart from the scene understanding point of view, on a multi-modal
biometric system being able to tell if a particular landmark is visible or not would allow decid-
ing which classifier to use, or adjust weights on a score-level fusion scheme. Evaluating the
proposed technique against surveillance-like data showed that its ability to cope with images
acquired over multiple angles covering a full 360° view, even when participants exhibited vari-
ations along the full head pitch range. This study is described in chapter 12, which consists on
an article submitted for the 8" IAPR International Conference on Biometrics.

The eleventh and last contribution is the introduction of a novel biometric system that effec-
tively minimizes the operation restrictions, bringing biometric recognition to video surveillance
scenarios. It consists on a fully automated surveillance system for recognition purposes, that
extends a typical human detection and tracking machine by further enhanced it with a PTZ
camera that delivers data with enough quality to perform biometric recognition. This study is
described in chapter 13, which consists on an article submitted for the 8t" JAPR International
Conference on Biometrics.

1.5 Thesis Organization

This thesis is organized in fourteen chapters. The first and last chapters are devoted to the
introduction and conclusions and further work respectively. The second chapter introduces the
basis of biometrics and the challenge of unconstrained scenarios, followed by insights on iris us-
ability such environment. After an overview of the existing methods and identified issues, the
periocular region is presented as a valuable trait for adverse environments. Each one of the re-
maining chapters is formed by an article, published or submitted for publication in international
journals or indexed conferences.
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Chapter 2

State-of-the-Art

2.1 Overview

This chapter introduces the basics of biometrics: its historical background, the main charac-
teristics of a biometric system, and traits. We further describe the challenge of unconstrained
scenarios, the related issues and the efforts towards non-cooperative recognition. We overview
the iris recognition techniques best suited for those environments, and introduce the periocular
region as a viable alternative. In the end, we describe some ethic and privacy concerns.

2.2 Biometrics

The term biometrics came from the Greek “bio” + “metrics”, and literally means “to measure
life”. In more scientific therms, biometrics refers to the ability to recognize a subject based on
a set of his / her physiological or behavioral features.

Compared to other means of proving a subject’s identity as tokens (e.g., personal identity cards)
or passwords (e.g., memorized PIN), the usage of a biometric system offers numerous advan-
tages: traits cannot be lost, stolen or forgotten, are harder to forge, and cannot be used by
third-parties thus assuring non-repudiation.

2.2.1 Historical Background

Even without records, we can safely point out the use of facial features as one of the oldest ex-
amples of biometrics actually employed by humans. Everyday and even without our awareness
we all use facial information to recognize each other, making it the most widely used biometric
trait.

Documented usage of biometrics date back to approximately 30,000 B.C. when prehistoric men
used handprints to sign their paintings on caves. Around 500 B.C. another hand trait was used
by Babylonians, who recorded their transactions in clay tables along with their fingerprints.
Writings from Joao de Barros (1496-1570) also describe Chinese merchant practices including
the usage of fingerprints to settle business agreements, and avoiding children being mistaken
by imprinting their palm- and footprints on paper [10]. In ancient Egypt (3100-332 B.C.) physical
descriptors were used to tell apart trusted traders in the market. In the canonical scriptures
there are also several statements of characters performing biometric recognition using multiple
traits: in the book of Tobit 11:6 gait and silhouette are used, “[...] she saw him afar off, and
presently perceived it was her son [...]”; and in Samuel 26:17 “[...] Saul recognized David’s
voice [...]”; etc.
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(a) The measuring procedure. (b) The “antropometric card”.

Figure 2.1: Depiction of the Bertillion’s system: illustration on how the measurements were taken; and
the card where the information was stored'.

More recently, in 1858, William Herschel started recoding handprints on every civil worker con-
tract in India, so he can verify their identities on payday [11]. Nonetheless, the first true
biometric system was set up in 1879 by the chief of the criminal identification division Alphonse
Bertillion - the “anthropometrical signalment”. It was known that recurring criminals often
disguised themselves or provided false information when arrested. Bertillion’s purpose was to
establish a way of identify them even without their cooperation, by measuring invariant physical
attributes and storing them for further reference - Figure 2.1. A total of eleven measurements
were taken for each individual, including standing and sitting height, fingertip distance, size of
the head, etc. This system became used by police forces all around the world, but had a flaw
that eventually led to its face in 1903: two people can have the same measurements.

In 1892, Francis Galton publishes the first study on fingerprint biometrics, detailing how minu-
tia points could be used for biometric recognition purposes [12]. Five years later, in 1897, the
usage of fingerprint biometrics was introduced in the law enforcement, according to the spec-
ifications of Edward Richard Henry at the Scotland Yard, with the help of Francis Galton and
Azizul Haque who also perfected the indexing system. They used the minutiae points present in
the fingerprints, a technique that is still in use.

Over the last decades we have seen a dramatic growth in biometrics, as new traits, methods,
techniques and applications emerged.

2.2.2 The Main Stages

When devising a biometric system, that is, a pattern analysis system working on biometric data
to determine the identity of an individual, one must consider four main stages [13]: sensor mod-
ule; quality assessment and feature extraction; matching and decision making; and database.

'Image source: http://sherlockholmes.stanford.edu/print_issue3.html
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Sensor module
Responsible for acquiring the biometric trait, is the input interface between the individual
and the system. One can choose from a wide variety of sensors, depending on which trait
is being acquired, and the characteristics we want to capture. Since most traits use visual
data, most systems use cameras for acquisition.

Quality assessment and feature extraction
Upon acquisition of the biometric trait, and assuring the process was conducted correctly
and produced usable data, feature extraction is then conducted. The raw collected infor-
mation is processed so that discriminatory features can be extracted and encoded.

Matching and decision making
At this stage, the features extracted from the acquired data are matched against the
templates stored on the database. Depending on the operation mode, this can be a 1:1 or
1:N matching process, and the corresponding decision is taken.

System database
This last module is where all the information from the users enrolled in the system is
stored. The stored information is already encoded, using the same technique established
at the feature extraction module, so that it can be directly compared to new features
extracted from further users. Usually the system database is built during an enrollment
stage.

2.2.3 Operation Modes

The biometric system can operate in one of three distinct modes [14].

2.2.3.1 Verification Mode

In the verification mode the biometric system attempts to validate the identity of a particular
individual (Figure 2.2). Since the user trying to gain access already claims an identity of his
own, the system only performs a 1:1 (one-to-one) comparison to produce a binary result: either
user identity is verified or it is not. This operation mode is used everyday on computer logins,
ATMs, etc.
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Figure 2.2: Block diagrams of a biometric system carrying out a verification task.
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2.2.3.2 Identification Mode

In the identification mode the system tries to match a particular individual against all users
previously enrolled on the database (Figure 2.3). Contrary to the verification mode, there
is no identity claim to start with, and 1:N (one-to-many) comparisons need to be performed.
This operation mode cannot be applied to traditional recognition methods (e.g., tokens and
passwords) and can only be achieved through biometrics.
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Figure 2.3: Block diagrams of a biometric system carrying out an identification task.

2.2.3.3 Negative-ldentification Mode

This operation mode, also designated as screening [14], is an extension to the identification
mode. Its purpose is to assure that a particular individual does not belong to a subset of
users previously enrolled in the system, by performing 1:N exclusion-oriented comparisons (Fig-
ure 2.4). This watchlist-like operation mode is particularly useful for airport security, public
places security, etc.
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Figure 2.4: Block diagrams of a biometric system carrying out a screening task.

2.2.4 C(Classification and Properties of a Biometric System

There is a wide range of biometric systems operating nowadays. To better aid their classifica-
tion, biometric systems can be grouped accordingly to six perspectives [15]:

Overt vs. Covert
Depending on the user being aware of system operation or not, the biometric system can be
classified as overt or covert, respectively. Cooperative biometrics are always associated
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with overt systems, but efforts are being put into the expansion of covert biometrics,
circumventing the issues associated with both high-constraint setups and non-cooperative
users.

Habituated vs. Non-habituated
Systems with which the users interact on a regular basis are called habituated (after some
time). Although being relevant to establish the required degree of cooperation by the
user, an ideal system would be that where individuals interact seamlessly even without
habituation.

Attended vs. Non-attended
A biometric system requiring a supervisor to conduct the process is called attended. A
non-attended system would be preferred, that is, a system the user can interact with
alone, without any supervision.

Standard vs. Non-standard environment
Biometric systems operating under controlled conditions, usually indoor with regular illu-
mination and cooperatively, are said to operate in a standard environment. If the system
is deployed on uncontrolled scenarios where the acquisition conditions can vary, it is said
to be on non-standard environments.

Public vs. Private
This perspective relates to the type of users interacting with the system. If the system
is deployed in a enterprise environment, where the users enrolled are employees of the
company, it is called a private system. When the individuals being present to the system
are just customers, with no affiliation to the company, it is then a public system.

Open vs. Closed
When the way the system works, or the data it handles is unknown or proprietary, it is a
closed system. Otherwise, it is an open system.

On the scope of this thesis we aim at establishing an open biometric system that is both covert,
non-habituated and non-attended. It is to be deployed on a non-standard and public environ-
ment.

When developing a biometric system, and apart from the requirements that must be observed
for the biometric trait (see section 2.2.5), there are five properties that must be regarded [15]:

Performance
All the factors that impact both performance (e.g., speed) and accuracy must be con-
templated, being chosen the factors that lead to the accuracy and speed required by the
context it is being used on;

Acceptability
It is essential that the individuals to whose the system is targeted at are willing to accept
that the system can acquire that trait;

Circumvention
The system should not be easily bypassed by forgeries or impersonation attempts;

Exception Handling
The system should have means of accomplishing an alternative matching (e.g., multi-
modal), if the features can not be extracted from a particular user;
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Figure 2.5: The main biometric modalities, and some examples of the traits they use.

System Cost
The cost associated with the development, deployment and maintenance of the system
should be adequate for the context its being applied on.

2.2.5 The Biometric Traits

The face and the iris are among the most popular biometric traits used for recognition purposes
and, along with fingerprint, the most reported in the literature [16, 17].

Jain et al. [18] established a set of four requirements for a particular physiological or behavioral
characteristic, so it could be used as biometric trait. They are as follows:

Universality
If an individual is to be recognized using that characteristic, then it has to be common to
every person;

Distinctiveness
It should be unambiguous enough so that two persons could hardly be misidentified;

Permanence
The characteristic should remain stable over a reasonable amount of time;

Collectability
The characteristic must be acquirable and its features extracted in a quantitatively way.

Accordingly, several traits are used nowadays, each one respecting those requirements up to a
certain degree.

We now present the most used biometric traits [14], grouped by the body region they are located
on, as illustrated in Figure 2.5. Some traits were not described, as even though some studies
point these as suitable for biometric recognition further large scale studies are still required.
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2.2.5.1 The Hand Region

The hand region contains several traits explored for their biometric potential: fingerprint, palm-
print, hand geometry, vein pattern, finger knuckle print, etc.

Fingerprint

The skin in our fingers contains small irregularities, where ridges and furrows make a set of
patterns. From those patterns, a set of minutiae points can be extracted, and used for bio-
metric recognition. As said before this biometric trait has been used for several centuries (see
section 2.2.1), with considerable good accuracy. Being a well accepted trait, easy to use and
acquired with small and cheap devices, it is widely deployed in many scenarios, from access
control in firms to personal computers.

Palmprint

Similar to the fingerprint, palmprint biometrics is based on skin ridge distribution along the palm
of the hand. As the palm area is significantly higher than finger’s, a lot more distinctive patterns
can be observed. However, the palm of the hand does not become in contact with everyday
surfaces as the fingerprint does, which can be a downside from the forensics point-of-view. As
the same advantages and pitfalls of the fingerprints, plus a larger area thus also requiring a
bigger sensor.

Hand geometry

The geometry of the hand can also be used as biometric trait, by measuring the length and
width of the palm and fingers. As the advantages of being less intrusive and easy to acquire,
and not requiring expensive equipment in comparison to the other traits. However, this is far
from being a highly distinctive trait, as many people share the same hand dimensions.

Vein pattern
The vascular patterns of an individual are unique. In the hands in particular, there is a complex
vein system allowing biometric recognition to be carried on. Due to its location, has good
acceptance by the users, although requiring the whole hand to be in contact with the system
whilst being illuminated by infrared light so that the contrast between the veins and the muscles
is maximized.

Knuckle print

The knuckle print is extracted from the skin near the joints in the back of the fingers. Although
not so commonly used, the finger knuckle skin is particular rich in texture information, thus
holding high discriminative capabilities.

2.2.5.2 The Head

On the human head there are also several regions holding valuable cues for biometric recog-
nition: face, ear shape, teeth, etc. The ocular region is also contained on the head, but since
it gathers a lot of different traits and attention from the scientific community, will be treated
as a separate section.
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Face

The face recognition become one of the most successful applications of image analysis and
understanding. Being non-intrusive and allowing cover acquisition, it became preferable over
very reliable traits when aiming at less constrained subject recognition. Several commercial
face recognition systems are now available, and a lot of techniques were developed for both still
images and video, under the Visible Wavelength (VW) and infrared. Face recognition approaches
are either based on a global analysis of the whole region as a set of pixel intensities, or the
relation between facial attributes, their location and shape.

Ear shape

The shape of the ear can be used as a biometric trait or, more precisely, the structure of the
cartilage it is made of. Its patterns can either be imaged on the VW with regular cameras, using
far-infrared cameras to capture it thermal signature, or imprinting it in the form of earprints.
The main issue is that all methods require user cooperation up to a certain degree, as in the
wild they are easily occluded or poorly alighed for proper data to be acquired.

Teeth

The dental structure is unique for each individual. However, its acquisition evolves highly coop-
erative and intrusive processes. As so, teeth analysis for recognition purposes is used particularly
in forensic scenarios where other traits can no longer be acquired.

2.2.5.3 The Ocular Region

The ocular region is one of the most explored in biometry, since not only it contains multiple
traits, as they also lead to high accuracy systems. The traits from the ocular region used for
biometric recognition are the iris, retina, sclera vein patterns, the periocular region itself, etc.

Iris

The iris has a predominantly randotypic morphogenesis, unique for each individual and allows
very high recognition accuracy, which justifies the efforts being held on iris biometrics research
and its quick ascent as one of the most popular biometric traits. Being a protected organ
visible from the exterior, it can be acquired in a less intrusive way. However, iris performance
as a biometric trait is severely impacted in non-ideal setups, and its relatively reduced size
and moving profile make it difficult to image at-a-distance and without user cooperation (see
Section 2.3.3).

Retina

The retina is the innermost part of the eye, and the blood vessels that pass through it can also
be used to uniquely identify an individual. This trait has high distinctiveness, as there are no
two persons with the same vein configuration, but its location ans size make it hard to acquire.
A high level of cooperation is required, as the user needs to stand still and look through an
eyepiece while being illuminated with an infrared beam. On the other side, its extremely hard
to forge, and is acquired with low levels of noise.

Periocular
The periocular region represents a good trade-off between the whole face and the iris alone,
and it is easy to acquire without user cooperation, not requiring a constrained close capturing.
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As so, its use as a biometric trait has emerged and constitutes nowadays a strong alternative for
less constrained environments (see section 2.3.4).

2.2.5.4 Medico-chemical

Traits requiring medical-grade sensors to be acquired were classified as medico-chemical:
deoxyribonucleic acid (DNA), ECG, odor, heart sound, etc.

DNA

The DNA is a molecule contained in every cell of the human body that encodes our genetic
instructions. With exception of identical twins, each person’s DNA is unique and can be used to
unequivocally recognize an individual. Despite its worldwide acceptance by forensic experts,
DNA based biometrics are still highly intrusive and time consuming. The acquisition and handling
need to be performed with extreme care to avoid contamination. Also, there are some privacy
concerns, as DNA analysis can reveal a person’s predisposition to certain diseases.

Odor

The odor emanated by an individual is also unique, and can be used to identify him. Existing
odor acquiring sensors consist of arrays of chemical sensors, each one sensitive to a particular
fragrance. Nonetheless, it is affected by deodorants, perfumes, diets, medicines, etc.

2.2.5.5 Behavioral

Behavioral biometrics are a rather different branch of biometrics since they establish a subject’s
identity by analyzing the way they behave rather than their physiological attributes. The major
behavioral traits in use are: voice, signature, gait, keystroke dynamics, etc.

Voice

The human voice plays an important role on human recognition. Even without seeing the indi-
vidual, we can identify it just by earing him speak. A person’s voice is determined by several
physiological factors, like the vocal tracts and the mouth and nasal cavities. The deployed voice
authentication systems do not offer enough quality for high-security scenarios, as this trait is
prone to interference and hard to acquire without noise even in standard environments. Plus,
it can be conditioned by an individual’s emotions or medical conditions (e.g., throat related
infections).

Signature

Using a person signature to verify his identity is commonly used worldwide, and its so dissemi-
nated among users that it is one of the most accepted recognition modalities. However, not only
the way an individual signs changes over time and it is influenced by his emotional condition,
acquiring it requires substantial user cooperation.

Gait

The way a person walks (gait) is a behavioral trait that can be used for biometric recognition
purposes. It is non-invasive, and can be acquired at-a-distance. The majority of the existing
recognition methods do not require high resolution data, so they can run over security cameras
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located at public locations. As there are some factors that affect the way people walk (e.g.,
awkward shoes or clothing) the performance of a gait recognition system can also be affected.

Keystroke

The analysis of the keystroke patterns of an individual can also be used to identify him. Among
the features available are typing speed, the pace between different letters and typical typing
errors. This trait has the advantage of using a regular keyboard as input sensor, not requiring
rather expensive acquisition devices. However, the way an individual types on the keyboard
lacks in permanence, being affected by the state of mind or the relaxation level. Plus, the
same individual can have different performances when using different keyboards.

2.2.5.6 Soft-biometrics

Soft biometrics characteristics are not discriminatory enough to be used for subject identifica-
tion. However, they can be used along with hard-biometrics to improve the recognition rate
or speed up the system (e.g., data categorization). Examples of soft-biometrics are gender,
ethnicity, height, skin marks (e.g., tattoos), hair / eye color, etc.

2.2.6 Performance Assessment

In order to evaluate the performance of a particular trait or biometric system, several statistical
metrics can be used.

Decidability d’ was introduced by Daugman [19], and quantifies intra- and inter-class separability
by analyzing their mean p and standard deviations o (2.1), given that both distributions are
Gaussian. For the sake of clarity, intra-class refers to the comparisons where both the acquired
data and the matching template belong to the same person, and inter-class otherwise.

d = ||Hint2er - Mintra” (21)
V -5+ Titra

The ROC curve is also a common plot relating the sensitivity, or TPR with the FPR. From that
plot, we can take the AUC to quantify how well pairwise comparisons were performed on a bi-
nary classification perspective. This metric varies in the [0, 1] interval, being 1 the ideal scenario
where all positive matches are ranked higher than the negatives. When setting the operating
threshold that determines the accept / reject decision for an equal error on both classes, we
obtain the EER.

Sensitivity, or TPR and Specificity (SPC) are given by (2.2) and (2.3) respectively, and relate the
correct responses to the total of positive (TP + FN) and negative answers (TN + FP).

TP
TN
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The ACC (2.4) is used to express the overall ratio of correctly classified matches. Its maximum
value is one, expressing the optimal scenario where all classes have been correctly classified.

TP+ TN
ACC = TP +FN+FP+TN (2.4)

For a balanced analysis in situations where there is an high discrepancy between the amount of
positive and negative matches, the MCC can be used (2.5). It varies in the [—1, 1] interval, being
one the optimal value [20].

Mec — TP-TN—TP-FN 2.5)
/(TP + FP)(TP + FN)(TN + FP) (TN + FN)

2.3 Towards Non-Cooperative Scenarios

Several authors have stressed the main issues associated with non-cooperative environments.
Fancourt et al. [21] concluded that is possible to acquire sufficiently high-quality iris data at dis-
tances up to 10 meters Smith et al. [22] comparatively examined iris data captured in both the
near-infrared (NIR) and VW spectra, addressing the possibility of combining that multi-spectral
data to improve recognition performance. In our work [4] we addressed iris usability for rec-
ognition purposes on the visible wavelength, quantifying the conditions that allow that process
with enough confidence. We conclude on the significant impact of the luminance level that
should be no lower that 120cd/m?m, in opposition to the illuminant being used that was less
relevant. Ross et al. [23] addressed the problem of biometric recognition over degraded iris
images, having authors considered five factors: 1) non-uniform illumination, 2) motion, 3) de-
focus blur, 4) off-axis gaze, and 5) nonlinear deformations. The key insight for the proposed
method is that a single-feature encoding schema does not appropriately handle all these vari-
ations. Having that in mind, authors propose three feature extraction / matching strategies:
1) gradient orientation histograms; 2) scale invariant feature transforms; and a 3) probabilistic
deformation model. The information extracted by each descriptor is independently matched,
and results are combined at the score level using the classical sum-rule. Experiments on the
FOCS and FRGC data sets encourage further work on this kind of hybrid techniques [24]. The
noising factors are further described and illustrated at Chapter 11 Section 11.4.2 and Figure 11.3.

The effectiveness of face recognition systems is significantly decreased by several factors [24]:

1. its 3D structure introduces substantial differences in appearance, with respect to subject’s
pose;

2. large regions of the face are often occluded (e.g., non-orthogonal imaging);
3. its appearance is notoriously affected by facial expression;
4. can be easily disguised.

Ultimately, unconstrained scenarios could not allow the proper acquisition of the iris, nor the
full facial picture. As so, growing attention has been paid to other potential traits. The use of
information in the vicinity of the eye has been gaining particular interest and popularity, as it
represents a good trade-off between the whole face and the iris alone [24].
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2.3.1 Mobile Setups

The usage of mobile devices has substantially grown over the last years, along with their ca-
pabilities and applications. Deploying biometric technologies to such gadgets is not only quite
desirable, but would also represent the ability to deliver off-the-shelf solutions for everyday
consumers, extending biometric recognition everywhere, anytime, and to anyone.

Most of the algorithms designed for in the wild operation can run effortlessly on everyday elec-
tronics. However, when attempting to perform iris or periocular biometrics on mobile environ-
ments, several problems arise: the wide variety of camera sensors and lenses mobile phones and
tablets come equipped with produce discrepancies in working images, as they are acquired with
color distortions, at multiple resolutions, etc; on-the-go acquisition by potentially untrained
subjects will result in demanding Pose, Illumination and Expression (PIE) changes (e.g., not all
users hold their mobile devices at the same position), resulting in varying acquisition angles and
scales, or rotated images; the acquisition environment can have poor or insufficient lighting,
and uncontrolled outdoor daylight will most likely produce spectacle reflections over the iris
region; etc.

Chapter 10 details our endeavors on tackling those issues: the acquisition of an iris and peri-
ocular database with 10 different mobile setups; reports on the application of a device-specific
color calibration technique that compensate for the different color perception inherent to each
setup; and the application of well-know iris and periocular recognition strategies to such data,
evidencing how they can be fused to achieve biometric recognition over mobile setups.

2.3.2 Stages of Unconstrained Recognition Systems

When designing a system for unconstrained scenarios we can extend the previously mentioned
four-step approach, devising a seven-step system as depicted in Figure 2.6:

1. Trait acquisition The acquisition sensor depends on which trait the system is going to deal
with. In the specific case of unconstrained biometrics, we should rely on sensors that do
not require user interaction, mostly cameras. Also, when aiming at real-time systems, we
must consider the trade-off between the richness in detail of the acquired data and the
acquisition rate.

2. Quality assessment Even the most tunned sensor setup does not always return optimal
data from which reliable features can be extracted. Quantifying the quality of the ac-
quired data, discarding unfit images will decrease both the overall processing time, and
the system error rates.

3. Signal enhancement Complementary to quality assessment, the acquired signal can be en-
hanced if it is known which particular degradation factor is affecting it. Even if the original
signal cannot be restored, this step is a good alternative to increase system performance,
or to when few quality data is being acquired.

4. Detection and Segmentation The acquired trait needs to be properly located and seg-
mented, so that feature extraction can be carried on effectively. A proper segmentation
stage allows discarding noise factors not discarded during signal enhancement (e.g., eye-
lashes occluding the iris).
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Figure 2.6: Illustration of the main steps and elements of a biometric recognition system.

5. Feature extraction A representative set of features needs to be extracted in such a way
that discriminant user information is collected. On real-time systems, user features should
be quickly extracted and encoded with minimum computational burden. During the en-
rollment stage, the gathered information is stored in the system database for later iden-
tification or verification of their identities.

6. Feature matching Features are then matched against the templates on the database. On
real-time systems, not only the information on the database should be optimized for fast
access, but also soft-biometrics are used to narrow the set of identities being matched.

7. Decision making Based on the results of feature matching stages (multiple possible results,
if using multiple traits), a final decision about subject’s identity is reached. Eventually,
the system can be unable to positively identify a particular subject, but still be able to
reduce the set of possible identities.

2.3.3 The iris as biometric trait

The data from the human iris can be acquired contactless at-a-distance, and it delivers great
performance on constraint environments, making it a potential trait for unconstrained scenarios
and justifying the efforts on “relaxing” its acquisition setup [9, 25, 26].

Iris effectiveness as a biometric trait has been proven, being widely deployed on quite con-
strained scenarios: subjects are required to stop-and-stare relatively close to the acquisition
device, while their iris is imaged on the NIR slice of the electromagnetic spectrum (700 a 900
nm). NIR illumination enables the acquisition of good quality data, while avoiding main noise
factors typically associated with the VW light imagery (e.g., reflections). Nonetheless, uncon-
strained scenarios involve iris acquisition at significantly larger distances and on moving targets,
demanding cameras with simultaneously high f-numbers and short exposure times for an accept-
able depth-of-field to be obtained. Since there is a direct relation between those values and
the amount of the light on the scenery, to operate in such conditions the system would need
strong NIR illumination, thus being hazardous as the human eye does not instinctively respond
with its natural protection mechanisms (e.g., blinking and pupil contraction). The feasibility of
iris recognition in VW conditions remains controversial, in particular for highly pigmented irises
(the majority of world’s population).
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2.3.3.1 Iris Segmentation

Many iris segmentation techniques are based on Hough-transform parametrization.

Junli et al. [27] developed a ellipse fitting technique particularly adapted to degraded data
due to its robustness to noisy edge-maps. The algorithm starts by selecting a subset of more
accurate edge-points, which contribution is magnified by squaring the fitting residuals. Finally,
solution is found using the computationally efficient interior-point methods.

To attenuate the issues inherent to images acquired at large distances, Tan and Kimar [28] pro-
pose a method based in the grow-cut algorithm that is able to discriminate between iris and
non-iris data. Results are further refined through: iris center estimation, boundary refinement,
pupil masking and refinement, eyelashes and shadow removal, and eyelid localization. The ef-
fectiveness of such approach was validated against well known datasets (UBIRIS.v2, FRGC and
CASIA.v4 Distance), with lower computational burden than similar strategies.

Alonso-Fernandez and Bigun [29] perform iris segmentation based on the Generalized Structure
Tensor algorithm: using complex filters authors are able to obtain both magniture and orien-
tation information for each edge pixel, providing additional information to better discriminate
between edges belonging to the iris boundaries.

Xinyu et al. [30] proposes an algorithm able to segment iris on images with very distinct reso-
lution (iris diameter from 50 to 360 pixels). They start by detecting a set of edges using Canny
detector, which non-connected components are used as nodes of a graph. They further use the
normalized cuts criterion to discriminate between the most probable iris boundaries.

2.3.3.2 Noise Detection

When dealing with unconstrained environments it is particularly important to have a noise de-
tection module, so that one can estimate the regions of the iris that are occluded by other types
of information (e.g., eyelids, eyelashes, reflections). That will allow handling them prior to the
feature encoding phase, otherwise increasing the false rejection rates [24].

Several authors addressed this problem, most of them with rule-based approaches and thus of
questionable effectiveness. On that basis, Li and Savvides [31] used Gaussian Mixture Models
to model probabilistic distributions of noise-free and noise regions of the irises, adjusting the
number of Gaussians for a distribution in such way that those not supported by the observations
were eliminated. Authors propose Gabor filters as basic features, optimized by a simulated
annealing process.

2.3.3.3 Quality Assessment

Indexing the quality of the data being handled improves the performance of the biometric rec-
ognition system, as shown by Zuo and Schmid [32] who proposed three quality indexes:

1. quality of sample: by adaptively filtering the probe biometric data based on predicted
values of Quality of Sample index (defined here as d-prime);
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2. confidence in matching score: by adaptively filtering the matching scores based on pre-
dicted values of Confidence in matching Scores index (defined here as d-prime);

3. quality sample and template features: considering image quality measures as features for
discriminating between genuine and impostor’s matching scores.

The proposed algorithm has the advantage of being generic, and thus suitable for other biometric
modalities.

2.3.3.4 Iris Recognition

The iris texture is characterized by the irregular distributions of local features such as furrows,
crypts, freckles or spots. Hence, traditional approaches are texture-based and decompose the
iris data into a set of numerical coefficients corresponding to specific orientations or frequen-
cies of predominant patterns.

Commercially deployed iris recognition systems are based mainly on Daugman’s pioneering ap-
proach [19], with extremely high performance over NIR data. Despite a few innovations [33] the
process consists in the translation of the segmented iris to a pseudo-polar coordinate system,
attaining invariance to both scale and translation. This normalized data is convolved with a
set of Gabor filters, at multiple frequencies and orientations, and their output quantized into
one of four quadrants, extracting two bits of phase information per convolution. For signature
matching the factional Hamming distance is used, and several comparisons of shifted data are
performed to achieve invariance to rotation.

Other classical iris recognition methods are based in zero-crossing, as Boles and Boashash [34]
who use 1D wavelets over different resolutions of concentric circles, or iris textural analysis,
as Wildes [35] whose encoding was based on the Laplacian pyramid. Nonetheless, any of those
systems require high user cooperation.

The recognition in less constrained environments has been gaining relevance, being the Iris-on-
the-Move project [36] a major example of engineering and image acquisition system that makes
iris recognition less intrusive for subjects: NIR close-up iris images are acquired as subjects
walk at normal speed through an access control point. Honeywell Technologies applied for a
patent [37] on a similar system, which was also able to recognize irises at a distance.

2.3.4 The Periocular Region

The area in the vicinity of the eye is designated as periocular region. Its use for biometric
purposes was inspired by human ability to recognize each other by his eyes. This region is par-
ticularly useful on less constrained scenarios, where image acquisition is unreliable, to avoid
iris pattern spoofing, compensate for environmental adversities or cooperative subjects. The
usage of periocular information has even proven itself to be of importance in scenarios where
the face has been reshaped (e.g., plastic surgery), with interesting results [38, 39]. It does not
require constrained close capturing or user cooperation, is relatively stable (when compared to
the whole face), and rarely occluded. Also, having the iris in its middle, both can be acquired
simultaneously with a single camera, and fused either at feature or score levels [24].
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Chapters 5 and 6 provide a comprehensive summary of the most relevant research conducted
in the scope of periocular recognition methods, comparing the main features of the publicly
available datasets, and presenting state-of-the-art results and current issues on this topic.

2.4 Privacy and Ethical Concerns

Along with the developments on biometrics a lot of privacy and ethical concerns arise, specially
on the field of covert biometrics. If by one side biometrics are unique and personal, and a strong
way of authentication, on the other side if that information becomes compromised it cannot be
changed like a regular password or PIN code. When advancing to unconstrained environments,
further ethical problems arise, as individuals can engage on the biometric recognition process
even without their acknowledgment or consent.

From the point of view of the European law, there are five principles that must be considered
in order to deploy real-world biometric applications [40, 41]:

Proportionality principle
One should assess if the use of biometric traits is really necessary on the context of the
application, or if other authentication methods can be applied to the same purpose, that
do not require dealing with biometric or personal data.

Potential Risk of Discrimination
The deployed system should not evidence false positives or negatives, nor failure to enroll.

Improper Use/Scope Limitation/Function Creep
The gathered biometric data should not be put to other uses than the one it was originally
acquired for. Furthermore, there must be an explicit consent of the user for his biometric
data to be used on the system and to that purpose.

Possible covert obtaining of biometric data and monitoring
Users should be informed and aware that their data is being collected, or otherwise a legal
provision must exist so that the collected data can be used.

Specific data warranting protection
The acquired biometric data should not give additional information other than the one
used for identification purposes (e.g., health or ethnic data), or otherwise that must be
covered by the explicit consent.

Furthermore, a set of PET measures to protect privacy were enforced by the CEN through the
ISSS initiative on privacy standardization in Europe [42]. Examples of such measures include:
the minimization of the amount of personal data in use, its proper encryption, and prompt dele-
tion when no longer needed; avoid to use central databases, which are actually prohibited in
some countries (e.g., Germany); etc.

Even so, people are more or less familiar with the usage of video surveillance systems on public
places. The United States of America, where the right to privacy is also established by con-
stitution and where the 9-11 attacks were a mind-turning event, is a good example on how
the “reasonable expectation of privacy” can shift on a very short period. People’s “reasonable
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expectation of privacy” regarding features that are exposed to the public are found to be con-
siderably low, and the choice to do not be engaged on biometric procedures could not always
be reasonable. At an airport, for instance, a person will not be able to travel if do not agree
with engaging in a biometric recognition process [43]. In this context, the usage of a negative
recognition approach (or screening) would be more easily accepted, as the data stored on the
database is only from wrongdoing individuals and the gathered data should not be stored for
further usage.

Ultimately, and regardless of the existing security directives and protocols, no or few guarantees
are that those procedures will be followed or the system will not be put to misuse.
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Chapter 3

Iris Recognition: Preliminary Assessment about
the Discriminating Capacity of Visible Wavelength
Data

3.1 Overview

This chapter consists of the following article:

Iris Recognition: Preliminary Assessment about the Discriminating Capacity of Visible Wave-
length Data

Gil Santos, Marco V. Bernardo, Hugo Proenca and Paulo T. Fiadeiro

6t IEEE Workshop on Multimedia Information Processing and Retrieval - MIPR ’10, December
13-15, 2010, Taiwan.

ISBN: 978-0-7695-4217-1
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Iris Recognition: Preliminary Assessment about the
Discriminating Capacity of Visible Wavelength Data

Gil Santos*, Marco V. Bernardo*, Hugo Proenga* and Paulo T. Fiadeiro!

* Dept. of Informatics, Instituto de Telecomunicacdes - Networks and Multimedia Group
t Dept. of Physics, Remote Sensing Unit - Optics, Optometry and Vision Sciences Group
University of Beira Interior, Covilhd, Portugal
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Abstract—The human iris supports contactless data acquisi-
tion and can be imaged covertly. These factors give raise to the
possibility of performing biometric recognition procedure with-
out subjects’ knowledge and in uncontrolled data acquisition
scenarios. The feasibility of this type of recognition has been
receiving increasing attention, as is of particular interest in
visual surveillance, computer forensics, threat assessment, and
other security areas. In this paper we stress the role played by
the spectrum of the visible light used in the acquisition process
and assess the discriminating iris patterns that are likely to
be acquired according to three factors: type of illuminant,
it’s luminance, and levels of iris pigmentation. Our goal is
to perceive and quantify the conditions that appear to enable
the biometric recognition process with enough confidence.

Keywords-biometrics, iris recognition, visible light data, con-
trolled standard illumination

I. INTRODUCTION

Due to the effectiveness proven by the deployed iris
recognition systems, the popularity of the iris as biometric
trait has considerably grown over the last few years. A
number of reasons justify this interest: it is a naturally pro-
tected internal organ visible from the exterior, it has a near
circular and planar shape and its texture has a predominantly
randotypic chaotic appearance. The typical scenarios where
iris recognition systems were successfully deployed are quite
constrained: subjects stop-and-stare relatively close to the
acquisition device while their eyes are illuminated by a near
infrared (NIR) light source that enables the acquisition of
good quality data. Recently, several research initiatives have
sought to increase capture distance and relax constraints on
iris acquisition systems, making use of visible wavelength
(VW) light imagery to covertly perform data acquisition
(e.g. [1]), which broads the iris recognition applicability to
forensic domains where the cooperation of the subjects is
not expectable.

It is known that the VW light imagery engenders notorious
differences in the appearance of the captured data when com-
pared with the traditional NIR constrained setup (Figure 1).
However, the acquisition of iris data from significantly larger
distances and on moving targets demands simultaneously
high f-numbers and very short exposure times for the
optical system, in order to obtain acceptable depth-of-field

(a) NIR image, acquired under (b) VW image, acquired under

highly  constrained  conditions  less constrained conditions (UBIRIS
(WVU database [2]). database [3]).
Figure 1. Comparison between the appearance of NIR and VW images.

values. These are in direct proportion with the amount of
light required to proper imaging, which is a concern as
excessively strong illumination can cause permanent eye
damage. The American and European standards councils ([4]
and [5]) proposed safe irradiance limits for NIR illumination
of near 10 mW/cm?. The NIR wavelength is particularly
hazardous, because the eye does not instinctively respond
with its natural mechanisms (aversion, blinking and pupil
contraction).

The Eumelanin molecule is predominant in the human
iris pigment [6] and has most of its radiative fluorescence
under the VW light, which enables the capture of a much
higher level of detail, but also of many more noisy artifacts:
specular and diffuse reflections and shadows. Also, the
spectral radiance of the iris in respect of the levels of its
pigmentation varies much more significantly in the VW than
in the NIR (Figure 2). These biological features usually en-
gender acquired data with several other types of information
within the iris rings: eyelashes, eyelids, specular and diffuse
reflections obstruct portions of the iris texture and increase
the challenges in performing accurate recognition.

The feasibility of the VW iris recognition remains contro-
versial — specially for high pigmented irises that constitute
the majority of the world’s population — and fundamental
research remains to be done. Hence, this paper gives —
whenever possible — preliminary assessments about the
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Figure 2. Spectral radiance of the human iris according to the levels of
iris pigmentation [7].

amount of discriminating data able to be captured in such
acquisition setup, regarding the spectrum and intensity of
the used light and the levels of iris pigmentation. Also, we
report the biological structures of the iris that are most likely
to be used in discriminating between individuals in the VW
acquisition scenario.

The remainder of this paper is organized as follows:
Section II overviews mainstream iris recognition techniques
and efforts towards the reduction of the involved constrains;
Section III describes the image acquisition framework and
setup used for the purposes of this paper; Section IV reports
the performed experiments and discusses our results; Finally,
Section V concludes and points further work.

II. IRIS RECOGNITION

Deployed iris recognition systems are mainly based on
Daugman’s pioneering approach [8], and have proven their
effectiveness in relatively constrained scenarios where im-
ages are acquired in the NIR spectrum (700-900 nm).
Regardless a few innovations [9], the process consists in
the segmentation of the iris pupillary and limbic boundaries
followed by the translation into a double dimensionless
pseudo-polar coordinate system, that gives invariance to
scale and translation. This normalized data is convolved
with a set of Gabor filters at multiple frequencies and
orientations and the corresponding output quantized to one
of four quadrants, extracting two bits of phase information
per convolution. The fractional Hamming distance is used
to match iris signatures and several comparisons of shifted
data are performed to achieve invariance to rotation.

The acquisition constraints for effective recognition have
been motivating serious research efforts. The ”Iris-on-the-
move” project [10] should be emphasized: It is a major
example of engineering an image acquisition system to make
the recognition process less intrusive for subjects. The goal
is to acquire NIR close-up iris images as a subject walks
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Figure 3. Acquisition setup. Subject (A) was positioned within an
acquisition scene (D) and required to look forward, towards the camera
(C) while illuminated at 45° by the RGB projector (B) controlled through
a Visual Stimulus Generator (E).

at normal speed through an access control point. Previously,
Fancourt et al. [11] concluded that it is possible to acquire
sufficiently high-quality images at a distance of up to 10
meters. Smith et al. [12] examined the iris information that
could be captured in the NIR and VW spectra, addressing
the possibility of using these multispectral data to improve
recognition performance.

III. IMAGE ACQUISITION FRAMEWORK

The conceived acquisition setup was the one presented at
Figure 3.

The subjects were placed in a dark acquisition scene,
with their heads steady on a chin rest, and required do
look forward towards the camera, which was placed at two
meters and aligned with their right eyes. Varying the scene
illuminant, produced by a Barco RLM G5i Performer (Barco
Corporation, Belgian) RGB projector through a Visual Stim-
ulus Generator (VSG) 2/5 (Cambridge Research Systems,
UK), images were captured by the Canon EOS 5D camera
using the configuration in Table I.

Previously, the VSG generated stimulus were verified and
calibrated using a telespectroradiometer (PR-650 Spectra-
Colorimeter ™- Photo Research, Inc., CA) and a reference
white BaSO,4 sample placed on the chin rest. The maximum
errors allowed were 0,002 illuminant chromaticities in the
Commission Internationale de I’Eclairage (CIE) 1931 (x,y)
space and 1 c¢d/m? for luminance.

In order to mimic incandescent light, different phases of
the daylight and fluorescent lamps, illuminants CIE A, D
and F were picked as specified by the CIE 1931 standard
colorimetric observer (2°) [13], [14]. Illuminants’ luminance
was also controlled, regulated in uniform steps of 20 cd/ m2,



Table I
DETAILS OF IMAGE ACQUISITION SETUP.

Image Acquisition Framework and Setup
Camera = Canon EOS 5D Format = tiff
Color Representation = SRGB | F-Number = /5.6
Shutter Speed = 1/8 sec ISO Speed = ISO-400
Focal Length = 400 mm Metering Mode = Spot
Width = 4368 pixels Height = 2912 pixels
Resolution = 240 dpi Bit Depth = 24 bit
Details of the Manually Cropped Resultant Images
Width = 800 pixels Height = 600 pixels
Format = tiff Resolution = 240 dpi

Table 1T
GENERATED ILLUMINANTS AND THEIR RESPECTIVE LUMINANCE.
COMBINATIONS REPRESENTED BY X WERE NOT REPRODUCED AS THEY
WERE OUT OF GAMUT ON THE RGB PROJECTOR.

Luminance (cd/m?)

20 [ 40 [ 60 | 80 | 100 | 120
- A Ve e X X X
S| DS |V [V [V V][V [ x
= D65 | v |V |V |V | ¥ | V
= DS | v |V |V |V | v | V
8 Fil | v | v |V |V | x | x

from 20 to 120 cd/m?, producing the configurations shown
in Table II.

According to this setup, 5 samples were consecutively
acquired in each of the 24 scenarios (a specific illuminant
at a certain luminance), delivering a total of 720 images.
Such images came from 6 different subjects {57, ..., Sg},
equally divided into light, medium and heavily pigmented
irises.

IV. EXPERIMENTS

All irises were manually segmented (Figure 4a), avoiding
that eventual errors were carried on to further experimental
stages.

Both the pupillary and limbic iris boundaries were mod-
eled as circles, and data was translated into a pseudo-polar
dimensionless coordinate system (Figure 4b) in order to
obtain invariance to scale and translation.

A. Visual Inspection

When comparing to the currently deployed iris recognition
systems, there is a complexity gain in the VW image
acquisition, as data become represented along three axis
(usually Red, Green and Blue — RGB) instead of a single
one.

However, our earliest analysis did not make use of this
higher amount of information. Aiming at study the lumi-

(a) Merging of original image with manual segmentation.

0 A I I B B =
P, L ||| | 2

(b) Normalized iris on pseudo-polar coordinates.

Figure 4. Tllustration of the steps taken prior to visual inspection and color
analysis.

nance bounds that — under visual inspection — enable
the capturing of discriminating patterns in the iris data,
we found appropriate to reduce data dimensionality to the
luminance channel (Y) of the YCbCr colorspace [15]. Later,
we performed an equalization of each image histogram, so
that the iris structure could be better distinguished.

We concluded that the easiness of detecting discriminating
iris patterns varies proportionally to the illuminants’ lumi-
nance level used in the acquisition, and is almost invariant
to the type of used illuminant. For light pigmented irises, all
the luminance levels on trial appeared to be propitious (Fig-
ure S5a). Oppositely, for highly pigmented ones, the detection
of discriminating patterns has revealed as a much more
difficult task, even using 120 cd/m2 (Figure 5c¢). Medium
pigmented irises have intermediate behavior, and luminance
values higher than 60 cd/m? propitiate the capturing of
discriminating iris patterns (Figure 5b). According to these
observations, we found appropriate to define relatively large
bounds for the amounts of light that enable the capturing of
discriminating iris patterns, as given in Figure 6.

Also, it should be taken into account that the quantity of
discriminating patterns able to be perceived under visual in-
spection is highly varying between different irises, although
crypts and freckles were observed to be the most likely used
to discriminate between individuals. For such, these bounds
are regarded as rough initial values, that should be finely
adjusted by further analysis.
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Table III
CIELAB AE?*, ON POINT-TO-POINT IMAGE COMPARISONS, IN DIFFERENT ILLUMINANTS FOR BOTH INTRA- (I) AND INTER- (II) CLASSES, AT
60 cd/m?. VALUES ARE PRESENTED FOR AN 95% CONFIDENCE INTERVAL.

mm cl Heavy Pigmentation Light Pigmentation Medium Pigmentation
um. LAass Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
A I 14,08 £ 401 | 14,15 £ 491 | 1828 £ 4,57 | 17,71 + 457 | 1426 = 420 | 14,19 £ 4,08
I | 22,06 + 10,32 | 27,29 4+ 11,17 | 19,11 + 827 | 18,84 + 8,15 | 23,46 + 1023 | 24,68 + 9,95
D55 I 744 £ 491 8.03 £ 5,71 8.86 £ 7,84 9,08 £ 7.59 | 7.62 £ 6,15 822 £ 6,13
II 17,51 + 7,62 | 24,13 £ 9,35 | 27,87 & 10,00 | 23,78 4 9,79 | 1542 £+ 7,29 | 16,24 + 737
D65 I 7,59 £ 5,79 8.10 £ 6,00 8.64 £ 7,90 855 £ 6,84 | 7,16 £ 5,93 7,16 £ 5,70
II 17,74 + 7,22 | 2428 + 889 | 2821 + 10,05 | 22,36 4+ 9,28 | 1549 + 742 | 16,50 &+ 7,57
D75 I 871 £ 627 8.83 £ 6,37 844 £ 7,61 872 £ 7.27 | 7.14 £ 582 725 £ 5,70
II 1784 + 6,94 | 24,10 £ 8,66 | 27,77 + 10,03 | 23,55 &+ 9,76 | 15,53 £ 7,39 | 16,49 + 7.54
F11 I 8.62 £ 2,64 846 £ 494 | 10,61 £ 1.09 | 10,12 £ 1,47 | 857 £ 1,12 843 £ 1,82
II 18,77 + 871 | 2559 + 10,23 | 21,98 + 8,75 | 19,22 4+ 7.87 | 1827 + 889 | 19,18 + 8,76
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(c) Heavy pigmented iris.

Figure 5. Y channel histogram-equalized samples for different pigmen-
tation levels, under CIE D65 illuminant, with 20, 60 and 120 cd/ m2 (top
to bottom).

32

Figure 6. Best perceived luminance levels for high (H), medium (M) and
low (L) pigmented irises.

B. Color Analysis

Normalized images were converted to the CIE 1976
(L*a*b*) colorspace, also known as CIELAB, which is
device independent, partially uniform and based on the
human visual system, allowing absolute color representation
according to the illuminant. We obtained the chromatic adap-
tation matrices using projector’s CIE 1931 (x,y,Y) phosphor
coordinates and RGB coordinates of the reference white
for each illuminant. We selected the images captured at an
intermediate luminance level (60 cd/mz), and performed
a pixel-to-pixel color difference (chromatic error) between
image pairs I; and I as Equation 1.

AEp, = /(L — L3)? + (af — a3)* + (b —3)2 (1)

Results were grouped into two distributions: intra-class
for comparisons between the same eye and inter-class for
different eyes, both captured in different illuminants. In-
specting those results, we observed that they fit the normal
distributions detailed at Table III, also described through the
Receiver Operator Characteristic (ROC) curves of Figure 7
and Table IV.
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Figure 7. ROC Curves for all subjects, on different illuminants, at 60 cd/ m2.
Table IV

AREA UNDER ROC CURVE FOR ALL SUBJECTS ON DIFFERENT
ILLUMINANTS, AT 60 cd/m?2.

S1 S2 S3 S 4 S5 S6
A 0,724 | 0,850 | 0,501 | 0,527 | 0,781 | 0,824
D55 | 0,862 | 0,926 | 0,930 | 0,877 | 0,791 | 0,795
D65 | 0,855 | 0,930 | 0,934 | 0,880 | 0,808 | 0,834
D75 | 0,827 | 0,916 | 0,934 | 0,884 | 0,813 | 0,832
F11 | 0,890 | 0,940 | 0,892 | 0,886 | 0,845 | 0,876

It can be seen that results obtained for the CIE D55,
D65 and D75 illuminants were very similar. The poorest
matches occurred when data captured with a CIE D is
compared to data captured with a CIE A illuminant. The
CIE F11 illuminant, with a Correlated Color Temperature
(CCT) between the ones of CIE D-Series and CIE A, is the
one with better overall performance.

The upper image of Figure 8 illustrates the pixel usage in
the obtainance of the pixel-to-pixel color distances.

Here, the darkest region at the left part of the normalized
image (which corresponds to the lower part of the cartesian
data), is the one more frequently considered as noise-free.
The brightest part by other side, commonly occluded, was
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Figure 8. Pixel usage probability (top) and AE;b values per pixel for
intra (middle) and inter (bottom) classes.

rarely used for comparison purposes. The middle and bottom
images give the AEY, average values (AEY,), enabling
us to perceive the relative contribution of each iris region
to the intra-class (middle image) and inter-class (bottom
image) distance values. Relatively homogeneous values were
obtained in both cases, with exception to the pupillary
region, where the average chromatic error values AEY, of
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the inter-class comparisons tend to vanish close to the intra-
class values. The obtained AE;b values were 9,82 + 6, 36
for the intra-class and 21,21 £ 9,77 for the inter-class
comparisons, with a 95% confidence interval. Thus, even
an extremely simple image matching technique is able to
produce a clear separability between the two classical types
of comparisons.

V. CONCLUSIONS AND FURTHER WORK

Although preliminary, performed experiments allowed us
to conclude that the appearance of the captured iris pattern
is poorly conditioned by the type of VW illuminant used in
the acquisition, in opposition to the levels of luminance, that
play a much more significant role.

The obtained pixel-to-pixel AEY, values appear to con-
firm that color information contained in VW data can be
used to discriminate between different irises. Also, the CIE
F11 illuminant should be preferably used in data enrollment,
as it was the one that propitiated more compatibility between
iris patterns acquired with all the remaining illuminants.

As further work, we plan to increase the statistical
relevance of the described experiments — with both the
inclusion of more test subjects and a subsequent higher range
of pigmentation levels — and make use of more types of
illuminants, so that CCT differences between them become
more uniform and a larger area in the Planckian locus will
be covered.
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Chapter 4

Fusing Color and Shape Descriptors in the
Recognition of Degraded Iris Images Acquired at
Visible Wavelengths

4.1 Overview

This chapter consists of the following article:

Fusing Color and Shape Descriptors in the Recognition of Degraded Iris Images Acquired at Visible
Wavelengths

Hugo Proenca and Gil Santos

Computer Vision and Image Understanding, 116, 167-178, 2012.

According to SCImago Journal & Country Rank, this journal’s index' for the 2013 year are as
follows:

Category Quartile SJR
Computer Vision and Pattern Recognition Q1
Signal Processing Q1 1,462
Software Q1

'The SCImago Journal & Country Rank (SJR) indicator is a measure of journal’s impact, influence or
prestige. It expresses the average number of weighted citations received in the selected year by the
documents published in the journal in the three previous years. http://www.scimagojr.com
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Despite the substantial research into the development of covert iris recognition technologies, no machine
to date has been able to reliably perform recognition of human beings in real-world data. This limitation is
especially evident in the application of such technology to large-scale identification scenarios, which
demand extremely low error rates to avoid frequent false alarms. Most previously published works have
used intensity data and performed multi-scale analysis to achieve recognition, obtaining encouraging
performance values that are nevertheless far from desirable. This paper presents two key innovations.
(1) Arecognition scheme is proposed based on techniques that are substantially different from those tra-
ditionally used, starting with the dynamic partition of the noise-free iris into disjoint regions from which
MPEG-7 color and shape descriptors are extracted. (2) The minimal levels of linear correlation between
the outputs produced by the proposed strategy and other state-of-the-art techniques suggest that the
fusion of both recognition techniques significantly improve performance, which is regarded as a positive

step towards the development of extremely ambitious types of biometric recognition.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Contrary to popular belief, no research effort to date has pro-
duced a machine able to covertly recognize human beings in
real-world conditions. However, it is not difficult to anticipate the
significant potential impact of such automation on the security
and safety of modern societies (forensics and surveillance). Various
research programs have pursued biometric recognition, and most
regard the iris as the main biometric trait for three main reasons:
(1) the iris is a naturally protected internal organ that is visible
from the exterior; (2) the iris has a near-circular and planar shape
that facilitates its segmentation and parameterization; and (3) its
texture has a predominantly randotypic chaotic appearance that
appears stable over the human lifetime and is unique for each
individual.

The iris texture is characterized by the irregular distribution of
local features such as furrows, crypts, freckles or spots. Hence, tra-
ditional approaches are texture-based and decompose the iris data
into a set of numerical coefficients that correspond to specific
orientations or frequencies of predominant patterns. The recogni-
tion in less controlled environments has been gaining relevance
and was the focus of many recent proposals, among which the
“Iris-on-the-move” project [1] should be highlighted: it is a major
example of engineering an image acquisition system to make the

* Corresponding author.
E-mail addresses: hugomcp@di.ubi.pt (H. Proenca), gsantos@di.ubi.pt (G. Santos).

1077-3142/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2011.10.008

recognition process less intrusive for subjects. The goal is to ac-
quire near infra-red close-up iris images as a subject walks at nor-
mal speed through an access control point. Honeywell Technologies
applied for a patent [2] on a very similar system, which was also
able to recognize irises at a distance. Previously, Fancourt et al.
[3] concluded that it is possible to acquire sufficiently high-quality
images at a distance of up to 10 m.

However, recognition in real-world data presents many chal-
lenges to the pattern recognition process, such as using images ac-
quired in the visible wavelength (VW) spectrum, at widely varying
distances (4-8 m), in uncontrolled lighting conditions, on moving
subjects and without their active participation in the acquisition
process. It becomes relatively difficult to acquire data where the
most discriminating iris patterns remain perceptible because the
pigments of the human iris (brown-black Eumelanin (over 90%)
and yellow-reddish Pheomelanin [4]) have most of their radiative
fluorescence under visible light, which significantly varies with re-
spect to the pigmentation levels of the subjects. Although previous
technology evaluation initiatives by the authors [5,6] have empir-
ically confirmed the possibility of recognizing human beings in VW
real-world data, despite achieving error rates far from those ob-
tained in constrained environments, state-of-the-art VW iris recog-
nition methods have achieved decidability indexes of 2.5 at most.
The approach that currently outperforms was developed by Tan
et al. [7] and makes use of both iris and periocular data. Global col-
or-based features and local ordinal measures were used to extract
discriminating data from the iris region, later fused to periocular
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data extracted from texton representations. Finally, fusion was
performed by the sum rule using the normalized scores generated
for the different types of features. Wang et al. [8] used an adaptive
boosting algorithm to build a strong iris classifier from a set of bi-
dimensional Gabor-based features, each corresponding to a spe-
cific orientation and scale and operating locally. Given the fact that
the pupillary boundary is especially difficult to segment in VW
data, the authors later trained two distinct classifiers: one for irises
deemed to be accurately segmented and another for cases in which
the pupillary boundary is expected to be particularly hard to seg-
ment. Li et al. [9] used a novel weighted co-occurrence phase his-
togram to represent local textural features, which is claimed to
model the distribution of both the phase angle of the image gradi-
ent and the spatial layout and overcomes the major weakness of
the traditional histogram. A matching strategy based on the Bhat-
tacharyya distance measures the goodness of match between
irises. Marsico et al. [10] proposed the use of implicit equations
to approximate both the pupillary and the limbic iris boundaries
and to perform image normalization. They exploited local feature
extraction techniques such as linear binary patterns and discrimi-
nable textons to extract information from vertical and horizontal
bands of the normalized image. Although devised for near infra-
red data, Du et al. [11] aimed at robustness and used the SIFT trans-
form and Gabor wavelets to extract iris features, which were used
for local feature point description. Then two feature region maps
were designed to locally and globally register the feature points,
building a set of deformable iris subregions that take into account
the pupil dilation/contraction and deformations due to off-angle
data acquisition.

Having empirically analyzed the performance of the above de-
scribed methods, this paper aims to propose a recognition strategy
that uses techniques that are substantially different from those tra-
ditionally used in iris recognition, making use of color and shape.
Color is a major visual feature in image and video analysis because
color features are considered robust to viewing angle, translation,
rotation and scale. Furthermore, for many situations, the shape of
image objects often provides important clues for recognition,
although shape is sensitive to geometric distortions. The proposed
method begins by partitioning the iris into coherent regions in
terms of space and color, using data self-organization techniques
that tend to compensate for global changes in data. Our method
then makes use of a set of well-known color and shape MPEG.7
descriptors to extract both global and local information from the
iris data. According to the experiments performed, two types of
conclusions are substantiated: (1) the proposed approach achieves
performance close to the state-of-the-art methods, and (2) because
the data encoding and matching techniques are radically different
from the state-of-the-art approaches, the proposed method exhib-
its low levels of linear correlation with the outputs, which allows it
to obtain significant improvements in performance when perform-
ing evidence fusion.

The remainder of this paper is organized as follows. Section 2
provides a description of the proposed recognition method. Section
3 provides and discusses the results obtained by our method and
compares them to state-of-the-art techniques. The improvements
obtained by fusion are highlighted. Finally, the overall conclusions
are given in Section 4.

2. Proposed method

A cohesive perspective of the proposed recognition strategy is
given in Fig. 1. A color constancy technique is used for regulariza-
tion purposes, and data are normalized into a Polar coordinate
system of constant dimensions, from which global MPEG.7 color
descriptors are extracted. Next, a self-organizing data technique
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divides the noise-free iris data into spatially and color coherent re-
gions that feed the local color and shape MPEG.7 descriptors. Final-
ly, fusion is performed by means of a weighted sum rule.

2.1. Retinex

The original Retinex model was proposed by Land [12]. Its key
insight is that color is determined by three independent retinal-
cortical systems that use intensity information from different spec-
tral regions of the input data. Each system determines a lightness
quantity that is superimposed, yielding the output color for each
point. As detailed by Provenzi et al. [13], given an image I, || or-
dered chains of pixels can be obtained, starting at k and ending at i,
where |.| denotes cardinality. Let x; and x..; be subsequent pixels of
a chain. Let R; be the ratio between the intensity of consecutive
pixels in the chain, R;, = /%2, with respect to each image channel.

T I(Xe1)
Lightness at position i is girv]en by

. 1 M nal-1
L('):NZ tEl1 9 (Re,), (1

k=1

being J, given by

Ry, ifO<R,<1—¢
1, ifl-e<R <1+e€
3c(Ry) = . e
Ry, if T+e<R, <€
1 if Ry >
where € >0 and o = 1+€

T ¢ .
T ety

2.2. Noise-free iris segmentation

The segmentation of the noise-free iris data acquired in uncon-
trolled setups has motivated significant research efforts. He et al.
[14] used a clustering-based scheme to roughly perform iris local-
ization followed by an integro-differential constellation method
for fine detection of each boundary, which not only accelerates
the traditional integro-differential operator but also enhances its
global convergence. Finally, parametric models were trained to
deal with eyelids and eyelashes. Du et al. [15] used a high-pass
filter to detect specular reflections inside the pupil and performed
a coarse-to-fine segmentation scheme using a least-squares
ellipse fitting strategy. A gradient-based technique detected noisy
regions that corresponded to diffuse reflections inside the iris. Li
et al. [16] used Viola and Jones’ method to roughly detect eyes
and normalized their region of interest by a K-means-based
technique. These data fed the subsequent processing combining
traditional iris segmentation methods with RANSAC-like tech-
niques. Concerned about the computational requirements of
previously published iris segmentation methods, Proenca [17]
considered the sclera the most easily distinguishable part of the
eye in degraded VW images and fed a neural network with a
feature set based in the local proportion of sclera in different
directions, resulting in a process that runs in deterministically
linear time with respect to the size of the image. Regarding all
of the experiments described in this paper, it was observed that,
although with noticeably higher computational requirements, the
segmentation method of He et al. [14] outperforms the other
strategies. Because we aim to obtain performance indicators that
are as unbiased as possible, we chose to use this method as the
basis for our recognition experiments. Fig. 2 gives examples of
eye images and the corresponding noise-free iris segmentation
masks, obtained by He et al.’s [14] method.

Parameterization of iris boundaries. Subsequent to segmentation,
efficient parameterization of the iris boundaries that are behind
occlusions was a key issue, especially regarding the normalization
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Fig. 1. Cohesive perspective of the proposed method, describing its major phases and the corresponding sections of this paper.

L]’

Fig. 2. Examples of degraded VW iris images and the corresponding noise-free segmentation masks obtained according to the method of He et al. [14]. The binary masks
discriminate between the non-occluded pixels of the iris (white regions) and all of the remaining types of data (black regions).

(a) Segmented boundary

N/

(b) Fourier regression

(c) Reconstructed boundary

Fig. 3. Parameterization of the biological iris boundaries. According to the values of (3), smoother regions with low energy of the cumulative angular descriptor (a) were
deemed to belong to the biological boundaries (cross and circular data points of b) and used to reconstruct the deemed biological border through a regression of a Fourier

series (c).

of the iris data into a pseudo-polar coordinate system of constant
dimensions. As detailed in [18], this phase was divided into two
steps: (1) discriminating between the boundary segments that cor-
respond to biological iris borders and the boundary segments that
delimit noisy regions and (2) reconstructing the full biological iris
boundaries according to the former segments. The key insight in
this step is that biological boundaries can be faithfully described
by periodic signals, which justifies the use of Fourier series for such
purposes. The cumulative angular function was used as a shape
descriptor, defined as the amount of angular change from an arbi-
trary starting point:

2(t) = /0 T k(r)dr — k(0) + ¢ 2)

where t € [0, 2] and k(r) describe changes in direction at point t
with respect to changes in arc length L. As illustrated in Fig. 3a
and b, biological boundaries have smoother angular descriptor val-
ues with lower energy, which leads to the following objective
function:

2 i
00 = poy(©) + Y471
i=1

; 3)

where pB; were empirically obtained regularization constants.
Arguments of the first quartile of O(t*) — t* regularly spaced in [0,
2n] - were deemed to belong to the biological border and their
coordinates (column and row), illustrated by the dot and cross data
points of Fig. 3b. Finally, the reconstruction of the biological border
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used the selected coordinates and was regarded as a nonlinear
regression of a Fourier series of order r, with a fundamental fre-
quency constrained to w =1, which assures closure and complete-
ness of the contour:

c(x) = % + zr:(akcos(xwk) + @y Sin(xwk)). (4)
k=1

Using the deemed biological iris boundaries, in the next step we
convert data into a pseudo-polar coordinate system of fixed dimen-
sions, using the well known Daugman rubber sheet model [19].

2.3. Partitioning the iris into regions

Partitioning the iris into regions is one of the roots of the pro-
posed recognition method and aims to divide the noise-free pixels
of the iris into k disjoint sets C={Cy,... G} such that elements
within each C; are as homogenous as possible in terms of both their
position and their color. Considering the demands of a perceptually
uniform color space and aiming to preserve the connectivity be-
tween pixels of each cluster, each element was represented by
the feature set f = {r,|% —c|,L",a*b"}, with r and c the row and
column coordinates with respect to the normalized iris image. W
is the width of the normalized image, and L*,a*b* are the color coor-
dinates in the CIELAB color space, using a reference white provided
by illuminant D65, 2nd observer, as described in . In this 5D space,
distance corresponds to the metric:

dfi.fo) = > oilfi ), (5)

where f denotes the ith feature of f. Using a partition-based cluster-
ing scheme (fuzzy c-means [20]), partitions were found by maxi-
mizing an objective function that considered both the within and
between cluster variation:

k k
Jo=%" <Z d(Ci, Cj) - Zd(cf,ﬁ>) (6)
j=1

i=1 jeG

being d(C,G) the sum of L, distances (5) between every combina-
tion of elements of C; and G and d(G; f) the sum of L, distances
(5) between every element of C.and the feature point f.

Fig. 4 illustrates how the typical appearance of the generated
clusters would vary with respect to different w; values. Black pixels
denote regions that were classified as noisy by the segmentation
method and, as such, were not considered in the clustering process.
The remaining intensities represent the clusters assigned to each
pixel of the normalized iris data when privileging the (w;, ®-)
weights (associated with spatial features) and the (w3, w4, ®s)
(associated with color features) (bottom left image). The image at
the bottom illustrates clusters generated for the optimal weight
values @;, which constitutes a trade-off between space and color,
as follows:

@ = argmin Y > oy (0, {Cig}) + (L — 4mA)), (7)
i k J

where L j and A represent the perimeter and the area of the region
delimited by the jth cluster of the kth image (Cy;), ¢« corresponds to
the total of connected components in that cluster [21] and « is a
regularization term that was empirically found according to the
training data set of k images (o = 10", k = 100 in our experiments).
To account for the dynamic conditions that propitiate occlusions in
different regions of the irises, the clustering process was performed
using as a noise-mask the conjunction of the noise-masks of images
to be matched.

! http://www.csse.uwa.edu.au/du/Software/graphics/xyz2lab.m
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w=(1,1,0.01,0.01,0.01)

w =(0.01,1,0.01,0.01,0.01)

@ =(0.27,0.19,0.26,0.51,0.42)

Fig. 4. Comparison between the regions resulting from different clustering
processes with respect to weights given to each feature. The image at the top
resulted from large weights (denoted by bold font) for spatial features, whereas in
the case of the second image at the top, a large weight was given exclusively for one
of those spatial features (column). The second image at the bottom resulted from
low weight values for spatial features, and clusters were formed, accounting for the
color values. The weights used in the case of the image at the bottom were obtained
by (7); this type of cluster is used in all subsequent processing phases.

2.4. Color descriptors

Most of the MPEG.7 descriptors have compression/reconstruc-
tion purposes and - consequently - tend to focus in the lowest fre-
quency components of signals. When compared to other biometric
traits, one of the most interesting features of the iris is that most of
its discriminating information lies in the lowest and middle-low
frequency components. For such, these descriptors would intui-
tively be useful for iris recognition purposes, which constituted
the main key insight for their utilization in this work.

2.4.1. Dominant color descriptor

The dominant color descriptor summarizes the image content
by extracting the most important colors in an image or region, nat-
urally perceived as the most frequent. Let I = {X},X = (x,, %, ) be
ar x cimage represented in the CIELAB color space, known to more
closely fit the Euclidean difference between colors and the visual
perception of color difference. Let k be the number of colors to ex-
tract from the image. Aiming to obtain deterministic results, the k
geometric centroids (s;) were used as initial values of the centers of
clusters:

imax{x} + (k+ 1 — i) min{X}
Si = )
k+1

i={1,... k. (8)

The coordinates of these centroids were updated according to the
generalized Lloyd algorithm, minimizing the objective function:

k
argymin ) Y X — sif|. 9)

s=1 Xes;

The iterative procedure continues until the values of s; at successive
steps do not differ more than a positive value that acts as stopping
criterium (0 < e < 1), i.e., ||sf —si*!|| < €.
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2.4.2. Color layout descriptor

This descriptor extracts the spatial distribution of the most rep-
resentative colors of visual signals according to their position on a
grid superimposed on data. Let I be an image of size r x ¢ expressed
in the YCbCr color space [22]. First, the most representative colors
in each n x n region are obtained, as described in Section 2.4.1,
which yields a r/n x c/n array that was transformed using the 1D
Discrete Cosine Transform type-II, performed first along the rows
and then along the image columns, yielding a set of 2D
components:

c—1 r—

X,‘J‘:Z

n=0 m=0

I(n, m) cos [g(m + O.S)j} cos [g (n+ 0.5)i] .

Finally, the X;; coefficients were zigzag ordered [23], resulting in a
vector 7 of (r x c)/n? real components. Matching between vectors

o1 and 75 was performed according to the L, norm of the vector

=7 =S 1) - vali))

2.4.3. Color structure descriptor

The color structure descriptor [22] generalizes a simple color
histogram and uses a structuring element that moves across data,
defining a neighborhood where the dominant color values are
analyzed and counted for each bin. In our experiments, we used
a rectangular structuring element with & of the image width and
height. Because this descriptor is very similar to an image
histogram, the same L; based matching functions were used in
matching.

2.4.4. Scalable color descriptor

Scalable color descriptors [22] are global descriptors mainly
used for image-to-image matching. The process starts by extract-
ing a color histogram of k bins in the HSV color space, where the
hue component is usually quantized to a larger number of bins
compared to saturation and value layers. Such a histogram feeds
a dyadic decomposition process based in a pair of Haar wavelet
transforms. Let I be an image represented in the HSV color space
and let h be the corresponding normalized histogram with k bins.
The convolution between h and the low-pass kernel of the Haar
transform is equivalent to summing pairs of adjacent bins, whereas
the high frequency components are obtained by the difference in
adjacent bins. Such decomposition is repeated n times, using at
each iteration the lower frequency components previously ob-
tained. The default matching function is based on the L; metric
(i.e., the sum of the absolute differences between corresponding
elements): S =S¥, |ha[i] — hsli]|, where k denotes the number of
extracted coefficients.

2.5. Order statistics of dominant colors

Let € be the dominant color of the noise-free iris portion of I. Let
C; be the dominant color of each cluster G;and d : R®> x R> — R the
L, norm of the vector ¢; — ¢ For any pair (¢, ¢;), we define a
pseudometric d*(¢;, ;) given by

d'(c, ¢) = |d(ci, &) - (g, ).
Similarly, a binary relation > on R? x R® is defined by
&> < d(@,0) > d(G,0 (10)

. The rationale behind > is to consider as greater colors those that
are more distant from the dominant color of the iris. From this def-
inition, it is straightforward to infer that > is irreflexive, asymmet-
ric and transitive, which is particularly useful for our purposes. Let
X ={X1,...,%,} be a random variable that represents the distance
between the dominant colors inside each cluster and the whole iris.

According to the elementary theory of rank tests and using (10), the
kth order statistic x;, of a statistical sample {X7,...,%,} is equal to
its kth smallest value. Let X, . ., X be the order statistics of a set
of independent observations, that is, X1y < Xz < ... < X . Assum-
ing that X is mutually independent, the distribution function of
P—

X is equal to [24]:

n

Fu®) =P <) = (| )P - For )

i=k

being F(y) the cumulative distribution function of X. For a pair of
images, having two vectors with the kth, (k= {1, ..., n}) order statis-
tics of m matching was performed according to the L, metric, i.e.,
the sum of the absolute differences between corresponding ele-
ments. As described in the experiments section, the kth order statis-
tics have evident discriminating information between individuals
and was often one of the features automatically selected for the
classification stage.

2.6. Linear assignment problem

The normalization of the iris data into a polar coordinate system
propitiates invariance to translation and scale of the original data,
but not to rotation, which appears as differences in translation of
the normalized data and of the resultant clusters. For this, we used
an automated method that seeks the maximal similarity between
clusters, independent of their position in the normalized data,
which was handled by a linear assignment strategy. Let G=
(U,V;E) be a bipartite graph with a separable set of vertices U and
V (|U| = |V| =n) and a set of edges E = {e;}, such that e; denotes an
edge from the ith vertex of U to the jth vertex of V. Let c(e;) denote
the cost of the edge c(e;), such that c(e;) > 0,Vij € {1,...n}. The
linear assignment problem aims to find E*, a subset of E that satis-
fies the following properties: (1) the accumulated cost of its edges
is minimal, and (2) each vertex of U and V appear exactly once in E*.
Let ¢(i,j),: Nx N —{0,1} be an indicator function, such that
$(i,J) = Ue;cery- The optimal correspondence between elements of
U and Vis given by

min3" 3" 6 jic(ey)
i1 =1

s.t. Zn:d)(i,j):l,ViE{l,...,n) (12)
i=1

n

¢(1,j)=1,¥je{1,...,n)

=1

Due to computational concerns, the problem was regarded as a
shortest augmenting path algorithm with an implementation of
the Dijkstra’s shortest path method, which is known to run in time
0(n®). Details can be found in the work of Jonker and Volgenant
[25]. In practical terms, when matching two clustered iris images,
the relative position of each cluster center is regarded as a vertex
and included respectively in U and V. The cost (c) of edges E corre-
sponds to the Euclidean distance between elements of U and V,
which complies the above formalization.

2.7. Histogram matching

In every phase of our method where the distance between his-
tograms had to be obtained, several possibilities were tested, and
the results were evaluated in a training data set. The best results
were obtained with the cross-bin Quadratic-Chi distance histo-
gram proposed by Pele and Werman [26]: let h; and h, be two
non-negative bounded histograms, and let A = [a;] be a non-nega-
tive and symmetric bib-similarity matrix, such that a; > a;,Vj # i.
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The Quadratic-Chi histogram distance is given by (13), where h"{_}
denotes the histogram value at position i, and m is a regularization
factor (the best results were obtained in our experiments with 0.9).

By — 1)
T\ (s +mad)” || (o heia)

QC(hy, hy) = = | A

(13)

2.8. Shape context descriptor

Proposed by Belongie et al. [27], this descriptor provides an effi-
cient way to measure the similarity between shapes, represented
by a set of contour points {p;}. For each p;, we extract a histogram
h; of the relative coordinates of the remaining p; points (i # j) with
respect to p; and represented in a log-polar coordinate system.
Each h; histogram is defined as the shape context of p; and is used
in all subsequent processing. Let p; and p, be boundary points of
two shapes that are to be matched. The cost of matching p; with
P2 uses the y? statistic:

1T E (k) — ha(k)?
C”ﬁ; ha (k) ho (k) (14)

where h(k) and hy(k) denote the kth bin of the histograms of p; and
p2. The set of all costs Cj; between all pairs of points of two shapes is
regarded as the cost matrix of a bipartite graph-matching problem
and was solved as described in Section 2.6. As illustrated in Fig. 5,
this descriptor is an efficient way to extract discriminating informa-
tion about the shape of the regions resulting from the data parti-
tioning phase and is used as a soft biometric measure in the
recognition process.

2.9. Robustness to data variation factors

The basic premise of the proposed method is that the unique-
ness of each iris texture determines that pixels are grouped in a
specific way for each iris and compose clusters that are specific
in terms of their positions and shapes, although these clusters
cannot be expected to provide enough information for strong
biometric recognition. Fig. 6 illustrates such discriminating ability,
showing the clusters that result from two different heavily
pigmented irises. Here, the existence of four predominantly

3“/‘/

r
_
Fig. 5. Illustration of the shape descriptor used to characterize each iris region. The
upper row shows two similar shapes, from which shape context descriptors were
extracted. The image at the center has a significantly different shape. Images in the
bottom row illustrate the corresponding shape descriptors at point L/4, with L being
the length of the contour and starting in the upper left pixel. Note the similarity

between the far left and the centered descriptor and their dissimilarity to the far
right image.
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Fig. 6. Clusters generated for two different heavy pigmented irises, where local
contrast inside the iris ring is hardly perceived by a human observer. Even so, the
appearance of the resulting group is evidently different. Images are
“C_1_S1_I112.tiff" and “C_101_S1_I10.tiff" of the UBIRIS.v2 data set.

horizontal clusters in the left image is in opposition to the right
image and is particularly evident in the regions delimited by the
dashed ellipses.

Due to the dynamics of the acquisition setup, it is expected that
the unoccluded regions of the iris will vary, which will affect the
clustering results. This was overcome by obtaining the conjunction
noise-mask of the pair of images to be matched (illustrated in
Fig. 7), yielding two properties: (1) multiple biometric signatures
are possible to extract from each image, depending on the other
image that it will be matched against and (2) privacy concerns
about the recognition process because it is required that the raw
iris data and the corresponding noise-mask be stored in the data-
base instead of the biometric signature.

Furthermore, it is important that the positions, sizes and shapes
of regions are not subject to sudden or extreme changes as a result
of the dynamics of the acquisition setup. Fig. 7 illustrates two
images from the same eye acquired from different distances (9
and 4 m). It can be seen that clusters remained relatively stable,
essentially due to translation into the polar coordinate system
and to the known property of invariance to color perception, as a
result of moderate changes in scale.

The acquisition of a small moving target as the iris at relatively
large and varying distances propitiates very different levels of

Fig. 7. Robustness to changes in scale. Images are “C_111_S1_I4.tiff" and
“C_111_S1_I13.tiff” of the UBIRIS.v2 data set.
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Fig. 8. Robustness to defocused data. Images are “C_183_S2_I10.tiff” and
“C_183_S2_I13.tiff" (defocused by a Gaussian kernel of ¢ =1.4) of the UBIRIS.v2
data set.

image focus. Fig. 8 illustrates such variations. Although the similar-
ity between the clustered images is evident, we observe that the
shape of the clusters often becomes smoother in defocused data.
If the defocus is exaggerated, the clustering process tends to aug-
ment the relevance given to spatial features, resulting in clusters
with more regular shape.

Rotations in the original Cartesian space directly correspond to
translations in the Polar coordinate system. However, significant
changes in rotation are not expected due to the natural and biolog-
ically determined position of the head with respect to the neck and
shoulders of stand-up subjects. Fig. 9 illustrates the behavior of the
clustering process for a pair of images of the same eye where one of
them was artificially rotated by Z (a value that is beyond the ex-
pected rotations). The relative position of clusters was shifted
approximately ; of the width of the polar image. In this case,
shapes remain roughly constant and the position of corresponding
clusters varies significantly, which was handled by the Linear
Assignment process described in Section 2.6, which finds the opti-
mal correspondence between clusters according to their shape.

Off-angle images are of special interest because gaze is known
to be a primary source of error in traditional recognition strategies,
particularly when circular iris parameterization techniques intro-
duce differences in the phase of the normalized data and the bias
phase-based in encoding/matching methods. The translation into
the polar coordinate system implies that the data are sampled at
different rates with respect to the length of the iris ring at each an-
gle (a > b in the right image of Fig. 10, but a ~ b in the left image),
which does not significantly affect the color perception of the
resultant data. This relationship was observed even in cases where
exaggerated deviations occlude portions of the iris. Furthermore,
this figure gives a typical failure situation motivated by iris seg-

Fig. 9. Robustness to changes in rotation. Images are “C_171_S1_I10.tiff" and
“C_171_S2_110.tiff” (rotated by %) of the UBIRIS.v2 data set.

Fig. 10. Robustness to off-angle image acquisition. Images are “C_24_S1_I13.tiff”
and “C_24_S1_I15.tiff" of the UBIRIS.v2 data set.

mentation inaccuracies: the region delimited by the dashed ellipse
in the right figure should have been classified as noise (corresponds
to the upper part of the iris, partially occluded by eyelashes) but
was erroneously considered for the clustering process and induced
substantial differences in the resultant clusters near that region.

Lighting variations are due to the type of illuminants or to the
amount of light in the environment and constitute a problematic
factor, especially for local variations. The upper and middle row
images of Fig. 11 were acquired from the same eye under substan-
tially different lighting conditions but were mostly compensated
by the Retinex process described in Section 2.1 (compensated
images are shown in the central column). Even so, higher variabil-
ity in the shapes of the resulting clusters was observed, as high-
lighted by the regions delimited by the dashed horizontal
ellipses. Finally, local lighting variations were observed to be the
most problematic factor and to significantly bias the clustering
process. Images at the bottom row illustrate such types of varia-
tions and, as highlighted by the diagonal dashed ellipses, the Ret-
inex algorithm was not able to handle such variations, and the
resulting clusters varied significantly.

3. Experiments

According to the review of other VW iris recognition methods
given in Section 1 and to the performance that we empirically ob-
served, four methods were selected to be used as comparison
terms of our proposal: Tan et al. [7], Wang et al. [8] and Marsico
et al. [10] were the outperforming methods of a recently performed
contest about VW iris recognition, and simultaneously exhibited
the lowest levels of linear correlation. Finally, even though the ap-
proach of Du et al. [11] was devised for NIR data, it was selected for
contextualization purposes, in order to assess the adaptability of
NIR-based approaches to VW data. All these methods are our
own implementations, validated by comparing the performance
described by authors (in the NICE:II data sets) and ours.

3.1. Feature selection

In a training set of 1000 images used by the participants of the
NICE:II contest (available at?), the discriminating ability of a large
set of features was assessed, testing different values for the number
of clusters (between two and seven) and for the most relevant
parameters of the described encoding strategies, yielding a total of
112 features. Fig. 12 gives the probability density functions and
the corresponding cumulative density functions of the ten most dis-
criminating features, selected based on mutual information and the

2 http://nice2.di.ubi.pt
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Fig. 11. Robustness to global and nonuniform lighting changes. Images are “C_137_S1_I10.tiff" (top) and “C_137_S1_I7.tiff" (middle) and “C_137_S1_I10.tiff" (bottom, with a

directional artificial light effect) of the UBIRIS.v2 data set.
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Fig. 12. Probability density (continuous lines) and cumulative density functions (dashed lines) of the features selected for the biometric recognition process. The non-match
comparisons are represented by darker lines and the match comparisons by lighter lines.

criteria of maximum dependency, maximum relevance and mini-
mum redundancy, as proposed by Peng et al. [28]. We considered
two sets of observations in a k-dimensional space, one for match
and other for non-match comparisons, assumed to be independent
and identically distributed. The probability functions f were esti-
mated by Gaussian-based kernel density estimators, as proposed
by Botev et al. [29]:

A 18 1 2
X; t) =— _e*(x*di) /(Zt)7 15
foct =33 o (15)

where the bandwidth t was determined by the analysis of the mean
integrated square error. Having assessed performance in this train-
ing set, near maximal performance was observed when selecting
more than thirty features, linearly combined to maximize perfor-
mance in that data set. Further, subsequent recognition experi-
ments were made when using this classifier.

3.2. Verification mode

fig. 13 compares the ROC curves obtained by the proposed
method and other methods selected for comparison, where each
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Fig. 13. Comparison between the receiver operating characteristic curves of the
proposed methods and others used for contextualization purposes.
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Fig. 15. Average cumulative rank n curves obtained by the proposed method and
others used as comparison terms. The bottom and top horizontal lines around the
data series denote the worst and best values obtained.

data point is surrounded by two horizontal bars that denote the
best and worst values obtained at that operating point. The algo-
rithm of Tan et al. [7] outperformed others at most operating
points, whereas the proposed strategy usually performs better
than that of Wang et al. [8]. The performance of Du et al. [11]
and Marsico et al. [10] often intersect.

Another comprehensive comparison between the error rates
obtained by these methods is given in Fig. 14, which shows the

Table 1
Pearson’s sample correlation coefficients between the tested recognition methods and
ours. Values are given with the corresponding 95% confidence intervals.

Proposed Tan Wang Marsico Du
Proposed 1.00 - - - -
Tan 0.38+0.016 1.00 - - -
Wang 0.33+0.017 0.56+0.013 1.00 - -
Marsico 0.37+0.016 0.56+0.013 0.41+ 0.016 1.00 -
Du 0.32+0.017 042+0.016 0.33+0.017 0.30+0.017 1.00

i
decidability index (d’) given by d' ==L where u, = ¥ and
71t
Sodf .
1z ==~ are the means of the match/non-match distributions,

and o; = M and oy = W are their standard deviations.
The approximated equal error rate (EER), the area under the curve
(AUC) and the average sensitivity when operating at a FAR of
approximately 0.01 were also obtained. The results are expressed
in terms of boxplots, showing the median of the observed perfor-
mance range (horizontal solid line) and the first and third quartile
values of the observations (top and bottom of the box marks). The
upper and lower whiskers are denoted by the horizontal lines out-
side each box, and the outliers are denoted by dot points.

3.3. Identification mode

assuming a closed universe model, we tested the effectiveness
of each method when trying to answer the following question:
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Table 2
Best results obtained by classification ensembles, according to the number of fused
methods.

# Fused Methods Rule Decid. d’' (Ad')

2.848(+0.2629)
2.860(+0.2831)
2.738(+0.1609)
2.605(+0.0280)

2 {Proposed, Tan}

3 {Proposed, Tan, Marsico}

4 {Proposed, Tan, Wang, Marsico}

5 {Proposed, Tan, Wang, Marsico, Du}

* X % ¥

“Is the correct identity among the best k matches?” This type of
performance measure is usually expressed by means of rank and
cumulative rank histograms, where ranks appear in the horizontal
axis and probabilities in the vertical one. Let T = {Ty,...,T;} be the
set of gallery images such that i##j=id(T;) #id(T;) and S =
{S1,...,Ss} the set of samples that are to be compared against T.
Each S; constitutes a query that is matched against all elements
of T, yielding a set of D ={d;, ..., d;;} dissimilarity scores, where
d;j denotes the dissimilarity between the ith sample and the jth
template. Let D' = {d.,,...,d;} be the ordered version of D, such
that d; < dj, <... <d. S;is said to have rank k if the score dj; is
in the kth position of D’ and id(S;) = id(T;). The probability of having
rank k P (rank-k) is estimated by the ratio between the number of
sample queries with rank k and the total number of queries.
Accordingly, the probability of cumulative rank k can be calculated
as ¥ P(rank — i). Fig. 15 gives the probability distribution of the
cumulative rank values obtained for t = 100, representing the iden-
tification performance obtained.

3.4. Correlation and fusion

The statistical correlation between the outputs given by our
method and others used as comparison terms was analyzed to
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Fig. 17. Degradation in recognition performance, expressed in terms of the
decidability values, with respect to variations in different factors. The results are
expressed in terms of boxplots, showing the median of the observed performance
range (horizontal solid line) and the first and third quartile values of the
observations (top and bottom of the box marks). The upper and lower whiskers
are denoted by the horizontal lines outside of each box, and the outliers are denoted
by dot points.

determine whether performance could be improved by fusing sev-
eral of them. It was assumed that any eventual dependence be-
tween scores would be linear, which justifies the use of the
Pearson’s correlation coefficient to analyze the strength of these
dependences. Table 1 gives the correlation r of 10,000 responses gi-
Xi-X Yi-Y
ox Oy’

ven by each biometric system, where r(X,Y) =%

where X; and Y; denote the system outputs, X,Y are the sample
means and ox,0y the standard deviations.
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Fig. 16. Comparison between the performance obtained by the best classification ensembles composed of 2-5 recognition methods.
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Using the theoretical framework developed by Kittler et al. [30],
we tested all of the combinations of the recognition methods de-
scribed above according to the usual fusion rules: product (*),
sum (+), min (m) and max (M). Without any assumption of the
prior probabilities, the posterior probability that a pattern x; be-
longs to class w; was obtained by

)
PWjlxi) = —=-"—~. (16)
5 P ws)

An input pattern is assigned to class w, if w, = arg; max dP(W;|X)),
where ¢ denotes the combination rule. Table 2 lists the best classi-
fication ensembles obtained according to the number of fused ex-
perts (column #Fused) and the best combination rule observed.
Also, a comparison between the performance of such ensembles is
given in Fig. 16.

3.5. Degradations in performance

As a summary, Fig. 17 reports the degradation in performance of
the proposed method with respect to each of the factors discussed
previously. We show the boxplots of the decidability values ob-
tained for data sets with increasingly higher levels of variation
(from darker to lighter boxplots). For every factor where the UBI-
RIS.v2 database has enough images to perform statistically rele-
vant experiments (scale and off-angle), we compared the results
obtained in a homogenous subset of the data (represented by the
horizontal line) and in degraded data sets. For the remaining fac-
tors (blur, rotation and lighting), variations were introduced artifi-
cially, resulting in different versions of the same data sets, each
with different amounts of variation. It can be confirmed that the
proposed strategy behaves robustly to changes in scale and rota-
tion and moderately degrades for off-angle and defocused data.
The most problematic case was observed for changes in lighting
conditions, especially for non-global lighting changes, where per-
formance has degraded substantially.

4. Conclusions

Current state-of-the-art methods to perform iris recognition in
VW real-world data achieve encouraging performance values that
are, however, still far from the demands of the applications of this
technology in large-scale identification scenarios. Having analyzed
the typical strategies of these approaches, the key innovations of
this paper can be summarized in two terms: (1) we propose a rec-
ognition scheme based on autonomously defined sub-regions of
the iris from which MPEG-7 color and shape descriptors are ex-
tracted, achieving performance close to the best-known tech-
niques, and (2) minimal levels of linear correlation between the
outputs given by the proposed strategy and state-of-the-art tech-
niques were observed, which suggests that the fusion of evidence
between these techniques improved performance. The progress
described here is regarded as a positive step towards the develop-
ment of an extremely ambitious type of biometric recognition.

Regarding further directions of the work given in this paper,
some issues can be enumerated: (1) analyze how different color
contrast levels and sensor quality would affect the recognition
accuracy. Regarding this issue, it is expected that such changes
are mainly handled by the retinex phase (several contrast enhance-
ment retinex-based methods are reported in the literature), and
should yield different weights (7) for each feature used in the data
partition process; and (2) a more objective assessment about the
conditions in the environments that enable this type of recognition
with enough confidence (specification of the type of illuminants,

amount of light and angles of incidence). We are currently working
on both these issues.
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Chapter 5

Periocular Biometrics: An Emerging Technology
for Unconstrained Cenarios

5.1 Overview

This chapter consists of the following article:

Periocular Biometrics: An Emerging Technology for Unconstrained Scenarios

Gil Santos and Hugo Proenca

IEEE Symposium on Computational Intelligence in Biometrics and Identity Management - CIBIM
13, April 16-19, 2013, Singapore.

ISBN: 978-1-4673-5879-8/13
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Abstract—The periocular region has recently emerged as a
promising trait for unconstrained biometric recognition, specially
on cases where neither the iris and a full facial picture can
be obtained. Previous studies concluded that the regions in
the vicinity of the human eye - the periocular region- have
surprisingly high discriminating ability between individuals, are
relatively permanent and easily acquired at large distances.
Hence, growing attention has been paid to periocular recognition
methods, on the performance levels they are able to achieve,
and on the correlation of the responses given by other. This
work overviews the most relevant research works in the scope of
periocular recognition: summarizes the developed methods, and
enumerates the current issues, providing a comparative overview.
For contextualization, a brief overview of the biometric field is
also given.

I. INTRODUCTION

Due to increasing concerns on security and safety of
modern societies, biometrics has emerged in the last decade
as a major domain of knowledge and has been motivating
significant research efforts. Considering the outstanding levels
of performance that currently deployed biometric systems
achieve, the interest now in putted in the development of
systems able to work in uncontrolled acquisition environments,
which significantly increases the challenges on reliable recog-
nition. In this setup, alternatives are sought [1] by improving
the existing algorithms, by using multi-modal systems or
exploring new traits. Despite a broad variety of traits that has
been researched, the classical traits to perform at-a-distance
recognition are the face and the iris.

The face is the most widely used biometric trait. Everyday
and even without noticing it, we all use facial information to
recognize each other. Not only that, it become one of the most
successful applications of image analysis and understanding.
Being non-intrusive and allowing cover acquisition, it became
preferable over very reliable traits like the iris or fingerprint
when aiming at less constrained subject recognition. Several
commercial face recognition systems are now available, and a
lot of techniques were developed [2] for both still images and
video. Face recognition approaches are either based on a global
analysis of the whole region as a set of pixel intensities, or the
relation between facial attributes, their location and shape.

The iris texture has a predominantly randotypic morpho-
genesis unique for each individual and allows very high
recognition accuracy, which justifies the efforts being held on
iris biometrics research [3] and its quick ascent as one of the
most popular biometric traits. While most of the commercially

deployed iris recognition systems work with constrained near-
infrared (NIR) data that favors perception of its patterns whilst
reducing the number of noise factors associated, literature
on extending this biometrics usability to “relaxed” visible
wavelength (VW) setups has broaden [4]-[6]. However, iris
performance as a biometric trait is severely impacted in non-
ideal setups, and its relatively reduced size and moving profile
make it difficult to image at-a-distance and without user
cooperation.

The periocular region represents a trade-off between the
whole face and the iris alone. Containing the eye and its
immediate vicinity, it covers eyelids and eyelashes, nearby skin
area and eyebrows. Its use as a biometric trait has emerged,
constituting nowadays a strong alternative for less constrained
environments, when image acquisition is not reliable, and to
avoid spoofing of the iris patterns. It is easy to acquire without
user cooperation and does not require a constrained close
capturing. Also, this region is not so affected by the aging
process as other facial regions are, as for instance the mouth
and cheek whose skin become loosened over time.

Periocular biometrics can be used alone or complementary
to iris recognition, considering that the use of multiple traits
might be specially important to compensate for the adversity
of the environments and uncooperative subjects. Most times,
the responses of periocular methods are fused at the score level
to the corresponding iris scores, due to their spatial proximity
and to the fact that a single camera might be able to acquire
both traits. Being relatively stable and rarely occluded, it’s
particularly useful when the subject is wearing a mask or
otherwise only exposing their eyes. Although this paper is
focused on recognition, periocular biometrics as proven to be
suitable for other purposes as well (e.g. [7], [8]).

In terms of features of the periocular region, they can be
divided into two levels, as suggested by [9]: the first level
comprise the eyelids, eye folds, and eye corners; and the
second level comprises the skin texture, wrinkles, color and
pores. Analysis of those features can be carried on based on
their geometry, texture or color.

As described by Park et al. [10], the problems that arise
from periocular recognition can be summarized as follows:
Imaging: What would be the optimal spectrum band for
periocular biometrics? Is VW, more advantageous on covert
biometrics, fit for this trait?

Region definition What are the actual “boundaries” of the
periocular region? Should iris, sclera or the eyebrows be

51



Biometric Recognition in Unconstrained Environments

included or masked/cropped?

Encoding Which features would better describe and discrim-
inate this region? How reliable would they be when relaxing
imaging conditions?

Matching What'’s the best matching scheme for those features?
Will coarse classification be of any use?

Fusion What would be the benefit on fusing periocular with
other traits? Which ones, and how to fuse them?

The remainder of this paper is organized as follows: Sec-
tions II and III overview the recognition systems and existing
datasets; Section IV comparatively details the relevant methods
developed on periocular recognition; and finally Section V
present some final considerations.

II. BIOMETRIC SYSTEM

The importance of the biometric authentication system
must not be disregarded, as it will be the responsible for
carrying the whole process, from the data acquisition, to fea-
ture extraction, and matching against the database. Therefore,
designing a system that adapts to its application scenario is
most important. In a general way, a recognition system is
composed of four modules [11]:

1) Sensor Module: A wide variety of sensors are available,
depending on which biometric trait we are going to work
with. Since most of the biometric traits consist on visual data,
cameras will be used for acquisition. On real-time systems,
the balance between the richness on detail of the acquired data
and the acquisition rate is essential, and therefore choosing
a proper camera also is. This module is strictly related with
the first step of recognition systems (trait acquisition) and is
where the trade-off between the quality of the gathered data
and user cooperation is set.

2) Quality assessment and Feature extraction: Even with
an optimal sensor setup, not always the acquired data is suited
for feature extraction. Therefore, its quality is usually assessed,
and the image discarded if no minimum requirements are met,
thus saving time in additional processing. The trait needs to
be properly located and segmented (specially useful to gather
preferably “good” data), and then encoded as feature templates.

3) Matching and decision-making: In this module,
features are matched against the templates in the database,
thus deciding either to be in the presence of a genuine or
impostor comparison.

Sensor Module

Quality Assessment and Feature Extraction

Decision Making

Trait Detection and

Acquisition ) Segmentation )

Feat. Extraction

and Encoding )

Matching and
Recognition

| Quality 1 1 <
_)l Assessment | Database
|

Fig. 1. General steps and elements of biometric recognition systems.
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4) System database: This module consists on the repository
of user biometrics and other identification information, which
is acquired during the enrollment stage, and used for later
identification or verification of users’ identity.

III. DATASETS

Only a few public datasets were designed for the devel-
opment of periocular recognition methods. Instead, face and
iris databases are generally used for that purpose. The most
commonly used databases for the evaluation periocular meth-
ods are now introduced', and their specifications summarized
at Table I.

A. FERET

The Facial Recognition Technology (FERET) database [12]
was designed as a standard for developing face recognition
methods, and acquired at George Mason University over 11
sessions and a three years period (1993 to 1996). Initially
released as low resolution (256 x 384 pixels) grayscale data,
years later a high-resolution color version was also disclosed.
A total of 14051 images were gathered from 1199 different
subjects. Image acquisition protocol contemplates a semi-
controlled environment, with strict expression, pose and illu-
mination changes.

B. FRGC

Collected at the University of Notre Dame, the Face
Recognition Grand Challenge (FRGC) database [13] consists
of high resolution (= 1200 x 1400 pixels) color still images,
captured on both controlled and uncontrolled environments.
The controlled subset was captured on a studio under uniform
illumination, where subjects were required to stand still while
looking straight at the camera and essay neutral and smiling
expressions. As for the uncontrolled acquisition, images were
shoot in different scenarios, disregarding both background and
illumination. Data is split into a training partition of 12776
images from 275 subjects, and a testing partition of 24042
images from 466 subjects, 6 images per session for each
subject in both partitions. Illumination is not regular, as the
illumination bursts for a short period of time, and main noise
factors are observable (eye blink, motion blur, occlusions,
reflections). Acquired data is stored on 2048 x 2048, 15 frames
per second (fps) AVI files, where iris spatial extension is about
120 pixels [14].

! Although not so common, the FC-NET database will be included by its

relevant facial aging characteristics.

¥,

(a) FERET (b) FRGC (c) MBGC  (d) UBIRIS2 (e) FG-NET
Fig. 2. Sample images from the commonly used datasets on evaluating

periocular algorithms. Except from (d), data has been cropped for illustration
purposes.



TABLE 1. OVERVIEW OF DATABASE SPECIFICATIONS. VARYING
ELEMENTS ARE DISTANCE (D), EXPRESSION (E), ILLUMINATION (I),
OCCLUSION (O) AND POSE (P).

Name Images | Subj. Dimensions Variations
FERET 14051 1199 512 X 768 E I P
FRGC 36818 741 ~ 1200 x 1400 | E, I
MBGC 149 AVI 114 2048 x 2048 | D,E, 1, O, P.
UBIRIS.v2 11102 261 800 x 600 D, O, L
UBIPr 10950 261 Multiple D, LO,P
FG-NET 1002 32 ~ 400 x 500 D,E, L P
C. UBIRIS.v2

The UBIRIS.v2 is a unconstrained iris database [15], cap-
tured on the VW from moving subjects, at different distances
and challenging illumination conditions, simulating realistic
acquisition issues with the associated noise factors. Data for
both eyes is separately available, as well as the surrounding
periocular data, thus being prone to stress not only robust iris
related methods for the visible spectrum, but periocular ones
and their fusion as well. The 11102 acquired images represent
a total of 261 subjects, from different ages and ethnicities.

D. UBIPr

This newly created UBI Periocular Recognition (UBIPr)
database, by Padole and Proenca [16], represent a renewed
effort to advance periocular biometric research, providing new
means of evaluating robust methods, at “higher levels of
heterogeneity”.

In opposition the most common datasets used for periocular
method evaluation, noise factors were actually introduced
through acquisition setup: varying acquisition distance, irreg-
ular illumination, pose and occlusion. In addition, database
manual annotation include ROI and essential landmarks.

Dimensions vary, accordingly to the acquiring distance,
between 501 x 401 (8m) and 1001 x 801 (4m).

E. FG-NET

FG-NET is a facial aging database with around one thou-
sand images from 82 subjects, 0 to 69 years old. Captured with
different acquisition setups and many years apart, subjects have
clear changes in illumination, pose and expression. Images are
400 x 500 pixels in size, captured on VW, and for each one a
68 facial landmark points annotation is also provided.

IV. RELEVANT RESEARCH

In this section we will detail the relevant research on
periocular biometric recognition, providing at Table III a
summarized overview over the described methods and reported
results.

A. Park et al. [10], [17]

Park et al. pioneering approach [17] explored the recog-
nition capabilities of the periocular region. Feature extraction
is divided in two approaches: local and global, as information
concerns local regions, or is extracted from the whole image
(or, in this case, several region of interest (ROI)).

For global feature extraction images are properly aligned
using iris center and radius as reference. Although authors

acknowledge eye corners to be more fit for such task [10], they
claim that such points cannot be reliably determined. Then,
two well-known distribution-based descriptors are employed,
namely Histogram of Oriented Gradients (HOG) [18] and
Local Binary Patterns (LBP) [19], [20]. Values are computed
for a given ROI independently, and then quantized into 8-bin
histograms. The ROI are contiguous squares, where the side
equals in length the iris radius, forming a 7 by 5 grid centered
on the iris. Those histograms, combining shape and texture
information, are merged into a single-dimension array, easily
matchable to an identical one (from another image) simply by
computing the Euclidean distance.

As for the local features, Scale-Invariant Feature Transform
(SIFT) [21] allowed the detection of a set of key-points, en-
coded with their surrounding pixels information, and compared
against their counterparts from the testing image. SIFT offers
invariance to translation, scaling and rotation.

Tests were conducted over a “small” (899 images, 30
subjects, 2 sessions) database of frontal periocular images,
acquired in the VW. Although face matching achieving 100%
rank-1 recognition accuracy, the reported recognition for peri-
ocular range from 62.5% when using HOG features, to 80.8%
when fusing them with SIFT results. Curiously, combining the
three descriptors didn’t overcome those results, although joint
performance was very close: 80%.

On their later work [10], authors went further on stressing
periocular applicability for biometric recognition, analyzing
the impact of diverse factors over performance: eyebrow inclu-
sion or disguising, automatic segmentation, side information,
iris and sclera masking and expression variation.

As expected, results highlighted eyebrow information im-
portance, being more significant over SIFT where improve-
ments reached almost 19%. Nonetheless, the eyebrow inclusion
is more favorable over manual segmentation, as its perfor-
mance degraded when using automatic segmentation through
OpenCV, which was not observed on “eyebrow-less” data.
Facial side information, on the other hand, can be considered
almost irrelevant, since performance variation from both to
same side matching didn’t go behind 1% except for SIFT on
2 of the 48 test setups.

Changes in subjects’ expression significantly lowered the
performance of LBP and HOG, although on SIFT, more robust
to distortions, a slightly increase was registered. Masking the
iris and the entire eye also caused performance to decrease, this
time being SIFT the more disfavored. Top accuracy for single
classifiers was 79.49%, achieved through SIFT on unmasked
periocular images, manually segmented with the eyebrow,
when compared to an image captured from the same side and
expression. As reported in their prior paper [17], score level
fusion didn’t represent a significant performance improvement.

The authors also simulated periocular recognition over non-
ideal conditions, performing four simple tests: result com-
parison against recognition with partial (occluded) facial and
periocular images; conducting cosmetic changes on the eye-
brows; template aging; and perspective variations. For the first
step, they used FaceVACS? face recognition system, whose
99.77% recognition accuracy on “clear” face images, dropped

2FaceVACS SDK available at: http://www.cognitec-systems.de
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to 39.55% simply by occluding the lower region. Occluding the
periocular region is also an element of concern, since relatively
low occlusions lead to significant decay on performance.
Without score fusing the feature encoding methods, 10%, 20%
and 30% periocular occlusion led to accuracies no greater than
25.97%, 20.51% and 10.12% respectively (all with SIFT).

On eyebrow modifications, the TAAZ? tool was used to
simulate eyebrow makeover, producing a decay from 7.5%
on LBP to 10% on the other descriptors. The tests regarding
pose effect were the ones with greater impact over periocular
recognition accuracy, specially when using SIFT. Apart from
frontal images, subjects shoot with 15° and 30° rotation of
the head, produced a 35% and 45% decay on this method’s
accuracy, respectively. Finally, another concern the authors rise
is the apparent tendency of the periocular region not to be
stable over relatively small amounts of time. Images captured
3 months apart from each other have up to 15% less accuracy,
and about 30% on only half an year.

As further work, multi-spectral analysis is suggested, along
with improvements on the alignment and matching methods.
Fusion with iris or face recognition is also not discarded.

B. Miller et al. [22], [23]

Miller et al. [22] analyze periocular skin texture using
Uniform Local Binary Patterns (ULBP) alone, with some
deeper insights on each region’s impact on the recognition
process. The ULBP, as it name states, is an LBP-based method,
with “improved rotation invariance with uniform patterns and
finer quantization of the angular space” [24].

At a first stage, the periocular region is cropped proportion-
ally to the distance between the eyes, and scaled to 100 x 160
pixels. Then, a 7 by 4 grid of square ROIs is defined, centered
on the eye, and iris and sclera texture effects are eliminated
overlapping an elliptical neutral mask to the image. Each ROI's
histogram is normalized, and ULBP calculated using an 8-pixel
neighborhood. As such neighborhood produces 59 different
possible results, 59-bin histograms are populated with the
result count, and then merged to produce a single-dimension
array as the final periocular signature. Manhattan distance is
used for subject identification against the database.

Experiments were conducted on subsets of the FRGC and
FERET databases, for the left and right eyes separately and
both eyes together. Recognition rates were around 84% and
71% for each eye individually, and 90 and 74% for both eyes
together, on FRGC and FERET respectively.

Further to this work, Miller et al. [23] conducted deeper
analysis on image quality impact over periocular local texture
based recognition, namely changing blur, resolution and illu-
mination, while comparing the results with similar experiments
conducted with the entire face.

As preprocessing, the periocular region was cropped from
the FRGC database in proportion to the distance between
the eyes, and then resized to a square region with 251 pixel
long sides. Upon grayscale conversion, image histogram is
equalized and the eye is masked. Texture is then encoded using
LBP over a regular block division of the image, and values

used to populate an histogram, similarly to other periocular
approaches.

Image blurring was achieved through Gaussian filter convo-
lution, and results showed that even though face being far less
affected by small amounts of blur than periocular, this last trait
is slightly better at high blur levels. As for resolution, images
were down-sampled up to 40% its original size, and behavior
was similar to the one of blurred images.

Ilumination variation was not simulated, since the FRGC
database already contains both controlled and uncontrolled
acquired images. The low accuracy verified when matching
pairs of images captured on uncontrolled setups suggest that
local appearance approaches like LBP are not suited for
irregular lighting conditions.

Finally, information differences from one color channel to
the others were also analyzed. Conclusions show the green
channel as the more discriminant, with accuracy levels =~ 23%
higher than for the red channel (which is presented as the less
discriminant). In fact, when fusing scores from all three chan-
nels, the red contribution only lowers the overall performance.
Blue channel has similar texture information as the green one.

In a general way, periocular was proven to outperform face
recognition in the stressed setups.

Further work includes conducting the same tests for differ-
ent classification methods, possibly adapting Support Vector
Machines (SVM) usage as suggested by Savvides et al. [25].

C. Adams et al. [26]

Adams et al. extended Miller’s work [22], proposing the
usage of a Genetic & Evolutionary Computing (GEC) method
to optimize the original feature set.

The first stage of feature extraction was conducted as
described by Miller et al. [22], and on the second stage the Ge-
netic & Evolutionary Feature Extraction (GEFE) chosen was
the Steady-State Genetic Algorithm (SSGA), as implemented
by the NASA’s eXploration Toolset for Optimization of Launch
and Space Systems (X-TOOLSS)*.

Reported results were about 86% accuracy for either eye
on the FRGC database, and 80% on similar experiments for
the FERET. Best results were obtained when using both eyes:
85% and 92% for those same datasets.

The usage of GEC represented an improvement of at least
10%, and only 49 =~ 52% of the initial features were used.
Nevertheless, the selected algorithm was not proven to be the
optimal for that specific periocular features.

D. Juefei-Xu et al. [27], [28]

Inspired by the work of Park et al. [17], the authors
decided to expand their experiments to less ideal imaging
environments, evaluating the performance of different feature
schemes over the FRGC database [27].

In addition to LBP and SIFT, both local and global
feature extraction schemes were stressed: Walsh masks [29],
Law’s masks [30], DCT [31], DWT [32] Force Fields [33],

3Free virtual makeover took, available at http://www.taaz.com
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SURF [34], Gabor Filters [35] and Laplacian of Gaussian
(LoG). The LBP itself was tested while applied over some
of the other methods (Table II). For matching, different dis-
tance metrics were tested: Normalized Cosine, Euclidian and
Manhattan.

TABLE 1L RANK-1 ACCURACY FOR LBP FUSION WITH OTHER
METHODS [27].
Fused methods Accuracy
LBP + LBP 42.5%
Walsh Masks + LBP 52.9%
Laws’ Masks + LBP 51.3%
Discrete Cosine Transform (DCT) + LBP 53.1%
Discrete Wavelet Transform (DWT) + LBP 53.2%
Force Field Transform + LBP 41.7%
Gabor Filters + LBP 12.8%
LoG Filters + LBP 30.9%

Experiments shown that best results were registered when
using local descriptors, and the post-application of LBP was
translated in a performance boost (Table II). Top accuracy of
53.2% was attained with DWT + LBP, followed closely when
combining this last one with DCT (53.1%) and Walsh or Laws’
Masks (52.9% and 51.3%).

Worst outcomes were registered for SIFT and Speed Up
Robust Features (SURF), with a Verification Rate (VR) no
greater than 1%, possibly due to the low resolution of the
images.

Later on [28], they addressed the aging effect on periocular
recognition, reported to be an issue by several authors (e.g.
Park et al. [10]), even at relatively small time lapses (months).
This important issue is not trivial, as modeling the aging
process would require large datasets, and the decoding of its
dependence on external factors, as ethnicity, gender, etc. The
authors method was developed and validated on images from
the FG-NET database, taken years apart at different acquisition
setups, thus also dealing with illumination, pose and expression
issues.

Their method starts by preprocessing the periocular region:
pose is corrected through Active Appearance Models (AAM),
illumination is dealt with anisotropic diffusion model, and
region is normalized using the landmark points provided with
the database. Next step is feature extraction using Walsh-
Hadamard transform encoded LBP (WLBP), followed by
unsupervised discriminant projection (UDP) [36] application
that boosted results to very high performance levels.

Results show UDP to give better accuracy than Principal
Component Analysis (PCA) and Locally Preserving Projec-
tions (LPP) by up to 40%. As for WLBP, results were 15%
better than raw pixel intensity matching, and pose correction
resulted in a 20% improvement. Finally, the proposed method
for the tested images resulted in a complete 100% identification
accuracy.

E. Bharadwaj et al. [37]

Bharadwaj et al. propose the combination of a global
matcher (GIST) with ULBP for periocular recognition over
VW uncooperative images from UBIRIS.v2 database.

The GIST algorithm consists on combining five perceptual
dimensions, usually associated with scene description [38]:
naturalness,openness, roughness, expansion and ruggedness.

When computing the global GIST descriptor, and to
achieve local contrast normalization, the image is preprocessed
with Fourier transform. Then, the spatial envelope is computed
using a set of Gabor filters (4 scales x 8 orientations, produc-
ing a 1536 element GIST descriptor).

The ULBP is computed over the original image, sliced into
64 patches (producing a 64 x 256 descriptor).

For both descriptors, matching is computed using 2
distance, and min-max normalized results from both eyes are
fused simply by using a weighted sum.

Results showed that GIST overperformed ULBP, with
Rank-1 accuracy around 62% for the regions separately, and
70.82% for their fusion. The ULBP performance was around
53%, and 63.77% when fusing both region results. When
combining both descriptors, accuracy was boosted to 73.65%.

F. Woodard et al. [9], [14]

In their work, Woodard et al. [9] aimed at evaluating
periocular performance, thus determining its usability as a
biometric trait over NIR and VW data. Their analysis is
focused only on second level features (texture and color).

As pre-processing, periocular slice of images is cropped,
and an elliptical mask overlapped to the iris and sclera region
for “unbiased” periocular analysis. Cropped color images from
the FRGC are scaled down to 100 x 160, while the periocu-
lar NIR frames from the Multi Biometric Grand Challenge
(MBGC) are 601 x 601 pixel.

Texture features were encoded the same way for both
databases, through LBP computation over a ROI grid, which
was then quantized into histograms. As for the color informa-
tion on FRGC images, it was encoded using color histograms
for red and green channels. On this database, score level fusion
was used to combine texture and color results. Matching was
achieved using Manhattan distance for LBP and Bhattacharya
distance for color histograms.

Results suggest texture information to be more discriminant
that color, and score fusion only slightly improves overall
performance. As a comparison term, reported texture based
accuracy was around 90% and 88% on the VW, and 81%
and 87% on NIR for the left and right periocular regions
respectively.

On their later work, Woodard et al. [14] make use of
the periocular region texture information to improve iris data
reliability, aiming at overcoming the difficulties when dealing
with non-ideal imaging.

Tests were conducted over MBGC that, although being a
NIR database, is a challenging one for iris recognition due
to at-a-distance in-motion subjects and illumination variations.
Frames were treated as described above, with texture measured
computing LBP the same way. Iris processing was as of Daug-
man’s [39], except for the segmentation that was manually
performed to avoid further errors. Both methods’ results were
then normalized using min-max scheme, and combined by a
simple weighted sum.
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Results demonstrate iris’ poor accuracy (10.1% ~ 13.8%)
to benefit from fusing with periocular results, raising rank-1
to 96.5%.

G. Padole and Proenga [16]

Padole and Proencga also stressed how noise factors deteri-
orate periocular recognition, using natural images where those
factors were included by the acquisition framework instead
of simulating them: pose variation, distance of the subject,
pigmentation and occlusion.

Inspired by the work of Park et al. [17], they used the same
feature extraction techniques, except that ROI center was com-
puted with relation to eye-corners instead of iris center. This
new alignment method led to most significant improvements,
specially since in unconstrained biometrics gaze variations are
more prone to happening.

On score level fusion, linear an non-linear methods were
also tested: logistic regression [40] and Multi Layer Perceptron
(MLP) respectively. Although the last one reported to lead to
slightly better results, difference was not significant.

For the stressed covariates, interesting conclusions were
reached. Results shown that closer acquired distances didn’t
led to better performance, and neither did very large ones.
Worst results were obtained for images acquired at 4 m, and
though highest stressed distance was 8 m, top performance
was obtained at 7 m. Not surprisingly, pose variation impact
on performance was in inverse proportion: higher tilting angle
result in lower accuracy values. Same as for the occlusion.

Finally, iris pigmentation was reported to also impact
periocular recognition performance, specially on heavily pig-
mented ones which lead to lower accuracy. Best results were
obtained for medium pigmented irides.

Another interesting discovery was that subject gender af-
fects recognition rates. More precisely, female subjects are
easily identified using periocular biometrics than male ones.

H. Hollingsworth et al. [41], [42]

The human ability to use contextual information and to
“disregard” most of noise factors adapting itself to surrounding
conditions is outstanding, making it a harder task for machines
to mimic. In fact, recognition algorithms should not try to just
mimic the human perception system, but to understand its way
of working, and then seek alternate strategies to tackle the same
issues.

Hollingsworth et al. understood existing methods to have
overlapped that step. Having that in mind, they [41] established
parallelisms between human perception and automatic recog-
nition systems, identifying which ocular elements humans find
more useful for periocular recognition.

On their essay, 640 x 480 NIR images were acquired from
120 subjects using an iris camera (LG2200), and the iris was
completely masked to avoid biased answers. Only periocular
from eyes’ tight vicinity is visible, with some features used
by other methods partially hidden (e.g. eyebrows). 80 pairs
of images were presented to 25 human observers, who were
asked to tell if they belong to the “same person” or “different
people”, and how ‘“certain” they were. Further to that, the
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observer had to individually rate each one of the features’
helpfulness, in a three level scale. Results showed eyelashes
to be the most helpful periocular feature, closely followed by
the medial canthus and the eye shape. The observers based
themselves on eyelash clusters, density, direction, length and
intensity. To the human observers, skin was actually the less
useful. Average human accuracy was 92%.

On their later work [42], similar tests with human observers
were widen to the VW band, with a more extent study on new
factors. The algorithms suggested by Park et al. [17] were
also implemented for periocular performance comparison, and
irides were evaluated using the IrisBEE biometric system from
ICE [43].

Trial data was also widen to 210 subjects, imaged on the
same controlled fashion with a setup as above, and on the
VW using a Canon D80 camera. The amount of observers also
increased to 56, to whom 140 pairs of images were presented
for each one of the four sets of experiments built: NIR and
VW, periocular and iris images. Test subjects could then rank
their certainty of a positive match in a 5 level scale, and
for the periocular images they had to specify how helpful
individual features were (“eye shape”, “tear duct”, “outer
corner”, “eyelashes”, “skin”, “eyebrow”, “eyelid”, “color”,
“blood vessels” and “other”).

Human NIR periocular recognition accuracy dropped to
78.8%, probably due to the different pairing system and limited
observation time, and VW performance was set on 88.4%.
Machine results were similar, within a 1% difference on overall
accuracy. The features identified as fit for periocular NIR
region were similar to the ones at [41], but for VW data
changes occurred: blood vessels, skin and eye shape were
reported to be more helpful than eyelashes.

When acquiring data on VW band, differences on acquired
skin details are perceptible. Also with the LG2200 camera
illumination, being designed for iris recognition, usually causes
skin saturation. As so, VW band was found to be preferable
for periocular recognition tasks.

Human perception of iris features is greater on NIR images,
leading to 85.6% accuracy against 79.3% on VW. However,
and unlike periocular, machines recognition was 13% better,
on average, than human observers, with 100% and 90.7%
accuracy for those same bands.

V. CONCLUSIONS

The interest on the periocular region as a biometric trait has
justifiably increased over the last years, considering the pioneer
approach of Park et al. [17] a starting point. Subsequently,
even simple algorithms led to fair performance levels, and the
surprisingly good response of LBP based methods (like ULBP
and WLBP) is noteworthy.

The recently developed methods focus mainly on texture
analysis and keypoint extraction. Periocular is currently re-
garded as specially suitable for unconstrained and uncoop-
erative scenarios, where iris cannot be properly imaged and
neither a full facial picture can be obtained. Also, results
favoring VW periocular over NIR also show its fitness for
more relaxed setups and for its use based on conventional
surveillance cameras.



TABLE III. OVERVIEW OF THE MOST RELEVANT PERIOCULAR RECOGNITION METHODS.
Approach Features Extract Classifier Dataset Accuracy
Sh oG 299 HOG: 62.5%,
ape, HOG, . : VW images, LBP: 70.0%
Euclidean distance, . : .0%,
Park et al. [17] Texture2 LBP, SIFT matcher 30 ) subjects, 2 SIFT: 74.2%,
Key-Points SIFT sessions Best: 80.8%
. . FRGC, FRGC: 89.8%,
Miller et al. [22] Texture ULBP Manhattan distance FERET FERET: 74.1%.
. FRGC, FRGC: 92.2%,
Adams et al. [26] Texture LBP +GEFE Manhattan distance FERET FERET: 85.1%.
Left VW peri: 90%
. Color, RG color histogram, | Bhattacharya, FRGC, Right VW per_i: 88%
Woodard et al. [9] Texture LBP Manhattan distance | MBGC Left NIR peri: 81%
Right NIR peri: 87%
Left Iris: 13.8%
Left Peri: 92.5%
Daugman’s irisCode, | Hamming distance, Fusion: — 96.5%
Woodard et al. [14] Texture LBP Manhattan distance MBGC Right Iris: 10.1%
Right Peri: 88.7%
Fusion: 92.4%
Walsh Masks, Laws’ DWT+LBP: 53.2%
Texture. Masks, DCT, DWT, | Cosine distance, DCT+LBP:  53.1%
Juefei-Xu et al. [27] Kev-Points Force Field Trans- | Euclidean distance, | FRGC Walsh+LBP:  52.9%
Y * form, Gabor Filters, | Manhattan distance Laws’+LBP: 51.3%
LBP, SIFT, SURF,
Juefei-Xu et al. [28] Texture WLBP+UDP Cosine distance FG-NET 100%
Naturalness,
O s
Rgsngiiq GIST: 70.82%
Bharadwaj et al. [37] Expfn%i(;[i’ GIST, ULBP x?2 distance UBIRIS.v2 ULBP: 63.77%
Ruggedness, Fusion: 73.65%
Texture
. NIR images,
Hollingsworth et al. [41] | Human Human Human 120 subject 92%
NIR Peri: 78.8%
. NIR and VW, VW Peri: 88.4%
Hollingsworth et al. [42] Human Human Human 210 squl)jects NIR Iris: 85.6%
VW Iris: 79.3%

However, some issues remain to be properly addressed,
specially the about poses, occlusions and aging. Regarding the
latter, extending Juefei-Xu et al [28] work to different scenarios
should be considered.

The work of Hollingsworth et al. [41], [42] on human
perception suggests that eye shape constitutes a powerful ally
to the skin analysis methods on both spectral bands, thus
making us rethink periocular recognition, possibly taking a
leap away the overused texture methods. Eyelashes are also
pointed as a good indicator, specially for NIR, keeping in
mind that images differ from the “traditionally” used periocular
images and the close capturing of the data could have biased
the results. Those issues should be addressed in further work,
as well as a more complete and uniform study of existent
methods’ performance over the UBIPr dataset.
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Chapter 6

On Periocular Biometrics: A Comprehensive

Outline

6.1 Overview

This chapter consists of the following article:

On Periocular Biometrics: A Comprehensive Outline
Gil Santos and Hugo Proenca

Artificial Intelligence Review, submitted for consideration, 2013.

According to SClmago Journal & Country Rank, this journal’s index' for the 2013 year are as

follows:
Category Quartile SJR
Artificial Intelligence Q2
Language and Linguistics Q1 1,242
Linguistics and Language Q1

'The SCImago Journal & Country Rank (SJR) indicator is a measure of journal’s impact, influence or
prestige. It expresses the average number of weighted citations received in the selected year by the
documents published in the journal in the three previous years. http://www.scimagojr.com
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On Periocular Biometrics

A Comprehensive OQutline

Gil Santos - Hugo Proenca

Abstract The usage of ocular data for recognition pur-
poses has recently emerged, being actually one of the
most promising traits for unconstrained scenarios, or
when neither the iris nor the full face can be prop-
erly imaged. Supported by the literature is its high dis-
criminability, relative stability and acquisition simplic-
ity, making the periocular region — the region in close
vicinity of the human eye — a good trade-off between the
whole face and the iris alone. Furthermore, being easily
acquired covertly without requiring constrained close
capturing, it is an effective alternative when user coop-
eration is not expectable. This article offers the follow-
ing contributions: 1) introductory three-fold framework
on periocular biometrics, with the relation to the classi-
cal biometric traits and systems, the anatomy of the pe-
riocular region, and identified difficulties; 2) compara-
tive overview of the most relevant research on the scope
of periocular recognition, with widen detail on the un-
derlying techniques; 3) state-of-the-art results against
a common dataset; 4) comprehensive analysis of those
results, using well-known evaluation metrics; 5) analy-
sis of the biometric menagerie underlying each method,
with insights about the main degradation issues; and,
finally, 6) directions for further improvements on this
technology.
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1 Introduction

The concept of biometrics has been evolving along with
modern societies’ increasing concern on individual and
global security. From personal computers to border ac-
cess control, everyone wish for securing their identity,
their assets and, primarily, their homeland. In order to
achieve such safety, the ability to accurately identify
subjects based on their biometric features, either bio-
logical or compartmental, is essential.

Biometric systems rely on both the accurate extrac-
tion of individuals’ distinctive features and their ade-
quate encoding, so that the essential information can be
preserved. Those requisites were traditionally assured
by high constraining acquisition setups, with subject
cooperation being a key element. However, when ac-
quisition constraints are lowered or subject cooperation
is not expectable, recognition become more challenging
and alternatives are sought [38], either by improving the
existing algorithms, resorting to multi-modal biometric
systems, or exploring new traits that could better fit
this new reality.

1.1 A leap from the traditional traits

Since biometrics emerged as a science, researchers have
established biometric recognition with a wide variety of
traits. From the most used traits, two of them are par-
ticularly related to the spring of periocular biometrics:
the face and the iris.
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(a) heavy weather
clothing

(b) balaclava

(¢) nigab

(d) medical mask (e) helmet

Fig. 1 Illustration of situations where, due to subjects wearing severe headgear, the periocular region is the most advisable

trait .

The face is presumably the most common and widely
used biometric trait. Everyday and even without notic-
ing it we all use facial information to recognize each
other. Not only that, it became one of the most suc-
cessful applications of image analysis and understand-
ing. Several face recognition systems are commercially
deployed, with a lot of techniques accessible for both
still images and video [52]. Those methods are based
either on global analysis of the whole region (as a set
of pixel intensities), or in the relation between facial
key-elements, their location and shape. However, their
effectiveness is conditioned by several factors: its 3D
structure lead to substantial differences in appearance
accordingly to subject’s pose; large portions are often
occluded on non-orthogonal data acquisition; facial ex-
pressions affect their appearance; and it is particularly
easy to disguise.

In opposition, the iris is known to deliver extreme
recognition accuracy in exchange for high acquisition
constraints. The high recognition performance attained
with the iris is due to its predominantly randotypic
morphogenesis unique for each individual. As so, a con-
siderable amount of efforts are being held on iris bio-
metrics [9], that quickly ascended as one of the most
popular biometric traits. While most of the commer-
cially deployed iris recognition systems work with con-
strained Near-Infrared (NIR) data, favoring the per-
ception of its patters whilst reducing the quantity of
inherent noise factors, literature on extending this trait
usability to “relaxed” visible wavelength (VW) setups
has broadened [42,45,39]. However, iris performance
is severely impacted in non-ideal setups, as its rela-
tively reduced size and moving profile make it difficult
to image at-a-distance and without user cooperation.
Accordingly, growing attention has been paid to other
traits with potential application on unconstrained bio-
metric recognition.

The periocular region, being a central figure of the
face and representing a good trade-off between the whole
face and the iris alone, has been receiving increased at-
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tention from the scientific community. Literature shows
it to be a strong alternative on less constrained bio-
metrics, when image acquisition is otherwise unreliable,
or complementary to avoid iris pattern spoofing. It is
relatively stable, rarely occluded, and easy to acquire
covertly without requiring constrained close capturing,
being an effective alternative when user cooperation is
not expectable — Figure 1. Its proximity with the iris is
definitely a surplus, as they can be imaged simultane-
ously with a single camera and fused (at feature or score
levels) compensating for environmental adversities and
uncooperative subjects.

1.2 Anatomy of the ocular region

Facial appearance is determined by both the superficial
features of the skin, and the concavities and convexities
conferred by the underlying bones and muscles. The pe-
riocular region in particular comprises many anatomic
features and landmarks fit for recognition purposes —
Figure 2.

up|
eye
creas

imbus

lateral
canthus

lower
eyelid
crease

intraorbital
crease

Fig. 2 Anatomic features in the vicinity of the eye.
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Fig. 3 General steps and elements of biometric recognition systems.

Centered on the eye, which is located on the or-
bital aperture, the periocular region has its creases and
sulcus decided essentially by four bones: 1) the frontal
bone, ending with the supra-orbital process where the
eyebrow is located and which affects its appearance; 2)
the nasal bone, defining the upper part of the nose; 3)
the lacrimal bone, that forms the cavity for the tear
gland; and 4) the zygomatic bone, also known as cheek
bone.

As for the superficial features, and besides the skin
texture and landmarks, we have eyebrows, eyelids and
eyelashes. Eyebrows constitute the foundation for eye-
lids, and are straighter on men and more arched on
women. Eyebrow thickness changes accordingly to eth-
nicity and, with the aging process, their orientation and
height also change. Concerning the eyelids, their con-
tours depend on gender, ethnic group and age, and di-
mension intervals are defined in previous studies [44].
We must remark that not only this region is not so af-
fected by the aging process as other facial regions (e.g.,
mouth and cheek skin that become loosened over time),
but even when the anatomic features of the face has
been reshaped (e.g., plastic surgery), periocular data
usage for recognition purposes remains advantageous

[19,8].

Even considering the richness of ocular elements,
the features actually being used on periocular biomet-
rics algorithms are quite simple and can be divided into
two levels, as suggested by Woodard et al. [46]. The
first level comprises eyelids, eye folds, and eye corners,
and the second level comprises skin texture, wrinkles,
color and pores. This simplicity might be due to the
relative novelty of the field: having passed only a cou-
ple of years since the first relevant study on periocular
recognition, the earliest recognition algorithms firstly
employed classical techniques in the computer vision
domain-of-knowledge, before attempting more sophis-
ticated and specific methods.

1.3 Structure of a Biometric System

The importance of a biometric authentication system
as a whole must not be disregarded, as it will be the
responsible for carrying the whole process from data
acquisition to feature extraction and matching against
the database. Thus, designing a system that adapts to
its application scenario is of the most importance. A
recognition system comprises four core modules [18] —
Figure 3:

1. Sensor Module A wide variety of sensors is avail-
able, depending on which biometric trait we are go-
ing to work with. Since most of biometric traits con-
sist on visual information, cameras are more likely
to be used on data acquisition. On real-time sys-
tems (RTS) the balance between the richness on de-
tail of the acquired data and the acquisition rate is
as essential as choosing a proper camera. This mod-
ule is strictly related with the first step of recog-
nition systems (trait acquisition), and is where the
trade-off between the quality of gathered data and
user cooperation is set.

2. Quality assessment and Feature extraction
Even with an optimal sensor setup, not always the
acquired data is suited for feature extraction. It is
therefore important to access its quality, discarding
images where minimum requirements are not met,
thus saving further processing time. The trait needs
to be properly located and segmented (specially use-
ful to gather preferably “good” data), and then en-
coded as feature templates.

3. Matching and decision-making In this module
features are matched against the templates on the
database, thus deciding to be facing either a genuine
or an impostor comparison.

4. System database The system database module
consists on the repository of user biometrics acquired
during the enrollment stage and used for further
identification or verification of users’ identity.
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Since the use of the periocular region as a biomet-
ric trait is relatively recent, there are a set of identi-
fied pitfalls regarding its use for recognition purposes.
These were grouped into five topics, based on criteria
suggested by Park et al. [32]. Right from the trait ac-
quisition stage, it is yet to be determined the optimal
imaging spectrum for periocular biometrics. While for-
mer research on ocular biometrics usually prefers near-
infrared data, expectation aim towards the visible wave-
length where unconstrained recognition is favored. It is
moreover expected that the fusion from data acquired
at different wavelengths, yielding multispectral infor-
mation, would result in relevant advantages. The second
concern is related with the actual boundaries of the
periocular region. Although the literature shows the in-
clusion of some traces (e.g., the eyebrows, iris or sclera)
to improve overall performance, researchers sometimes
disagree on whether those elements should rather be
masked or cropped to avoid biased results. Even for the
region itself, only recently an optimal periocular region
of interest (ROI) by balancing minimal template size
with maximal recognition accuracy was proposed by
Bakshi and Majhi [4], through an insightful study on
the impact of its proportions to both the recognition
performance and computational cost. At the feature
extraction and encoding stage, new questions arise,
as it is not yet settled which features are the most rep-
resentative when aiming at discriminating this region.
Furthermore, the heterogeneity of the components in
the periocular region may suggest that more elaborate
feature schemes are required to describe such differ-
ent types of information. Subsequently, a fit match-
ing scheme should be determined, taking into account
the techniques most suitable to handle data variations
inherent to the less controlled acquisition process and
how to optimally handle the variations in the tradi-
tional data variation factors. On the fusion of periocu-
lar biometrics with other traits, we must consider that
even if the use of multiple traits might be important to
compensate for acquisition adversities, and iris being
a fit candidate for score level fusion during periocular
recognition, the way of maximize the outcome of this
(or other) association is yet to be clearly established.

1.4 Datasets

Another known adversity inherent to the novelty of the
use of the periocular region as biometric trait is that
only a few public databases are available specifically
designed for periocular method development. Hence,
face and iris datasets are usually used for that pur-
pose, being the most relevant illustrated on Figure 4
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and detailed through Table 1. For each dataset here in-
troduced we detail the amount of images and subjects,
image dimensions and main variability factors, essential
in evaluating the robustness of recognition algorithms.
The heterogeneity present on the datasets make them
a good mimic of non-cooperative operation conditions.

FERET!
The Facial Recognition Technology (FERET) data-
base [35] was designed as a standard for developing
face recognition methods. It was acquired at George
Manson University over eleven sessions and a three
year period, and initially released as low resolution
(256 x 384 pixel) grayscale data. Only later a high-
resolution color version was disclosed. It contains a
total of 14051 images, gathered from 1199 different
subjects within a semi-controlled acquisition pro-
tocol with strict expression, pose and illumination
changes.

FRGC?
Collected at the university of Notre Dame, the
Face Recognition Grand Challenge (FRGC) data-
base [34] consists of high resolution (~ 1200 x 1400
pixel) color images, captured on both controlled and
uncontrolled environments. On the controlled ac-
quisition scenario uniform studio-grade illumination
was used and subjects requested to stand still, look
straight to the camera and essay sequentially both
neutral and smiling expressions. As for the uncon-
trolled acquisition, images were shot at different sce-
narios disregarding both background and illumina-
tion.

MBGC?
The Multi Biometric Grand Challenge dataset con-
sists on 149 videos, acquired under the NIR wave-
length and introducing several noise factors: non-
uniform illumination, eye-blink, motion blur, occlu-
sions and reflexions. Videos were shot at 15 frames

http://www.nist.gov/itl/iad/ig/colorferet.cfm/
http://face.nist.gov/frgc
http://face.nist.gov/mbgc/

Table 1 Specification of the most commonly used databases.
Except for the MBGC, all datasets contain VW data. Vari-
ation abbreviations refer to Distance (D), Expression (E),
Ilumination (I), Occlusion (O) and Pose (P).

Name Images | Subjects | Dimensions | Variations
FERET 14051 1199 512 x 768 | E, I, P.
FRGC 36818 741 ~ 1200 x 1400 | E, I.

MBGC 149 AVI 114 2048 x 2048 | D, E, I, O, P.
UBIRIS.v2 11102 261 800 x 600 D, O, L.
UBIPr 10950 261 Multiple D, I, O, P.
FG-NET 1002 82 ~400 x 500 | D, E, I, P.
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(a) FERET

(b) FRGC

(d) UBIRIS.v2

--

R

(c) MBGC

Fig. 4 Sample images from the most commonly used datasets. Except from (d), data was cropped for illustration purposes.

per second (fps), on 2048 x 2048 pixel frames, rep-
resenting an iris spatial extension of 120 pixel [47].

ular methods and their fusion with iris recognition
techniques.

UBIRIS.v2* UBIPr®

The UBIRIS.v2 [37] is an unconstrained iris data-
base captured on the VW from moving subjects, at
different distances and challenging illumination con-
ditions, thus simulating unconstrained acquisition
and the inherent noise factors. Data from both eyes
is available separately, along with the surrounding
periocular data, thus allowing to test both perioc-

More recently, the UBI Periocular Recognition data-
set by Padole and Proenca [31] represents an effort
to advance of periocular biometric research, provid-
ing data to evaluate robust methods at “higher lev-
els of heterogeneity”. Noise factors were also intro-
duced on the acquisition setup: varying acquisition
distance, irregular illumination, pose and occlusion.
Image dimensions vary accordingly to acquisition

4 http://iris.di.ubi.pt/ubiris2.html 5

http://socia-lab.di.ubi.pt/~ubipr
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distance, ranging from 501 x 401 pixels at 8m to
1001 x 801 pixels at 4m. Manual database annota-
tion is also provided, more specifically the ROI and
essential landmarks.
FG-NET®

The FG-NET is a facial aging database that, al-
though not so commonly used, is relevant due to the
facial aging features: it contains around one thou-
sand images from 82 subjects, up to 69 years old.
Captured with different acquisition setups and many
years apart, it is clear how subjects were shot un-
der very irregular illumination, pose and expression
conditions. Images are 400 x 500 pixels in size, cap-
tured on the VW, and for each one a 68 landmark
points annotation is provided.

Considering that the collection of data for biomet-
ric experiments is particularly hard due to both secu-
rity and privacy concerns and the substantial amount of
required participants, Cardoso et al. [10] recently devel-
oped an algorithm for synthesizing degraded ocular im-
ages . They described a stochastic method able to gen-
erate a practically infinite number of iris images, simu-
lating acquisition under uncontrolled conditions. The
images generated using their technique display eight
noise factors: optical defocus, motion blur, iris occlu-
sions, gaze, pose, distance, levels of iris pigmentation
and lighting conditions.

The work presented in this paper extends the pre-
vious published work on periocular biometrics [40], by
introducing a more detailed description and a side-by-
side analysis of periocular methods on a fixed data-
set. The remainder of this article is organized in the
following manner: Section 2 comparatively details the
relevant methods developed on periocular recognition;
Section 3 presents and comparatively discusses the re-
sults of the implemented methods; and finally Section 4
states the final considerations.

2 The Most Relevant Recognition Algorithms

This section we summarize the most relevant techniques
published in the scope of biometric recognition using
information from the periocular area.

The pioneer approach on periocular biometrics dates
back to Park et al. [33], who proposed a twofold fea-
ture extraction based on local and global features, as
information relates to local regions, or the whole im-
age — Figure 5. Global feature extraction starts by im-
age alignment using as reference the iris coordinates

6 nhttp://sting.cycollege.ac.cy/~alanitis/
fgnetaging/index.htm
7 http://iris.di.ubi.pt/NOISYRIS
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(b) Global Features

(a) Local Features

Fig. 5 Illustration of the a) extracted local features and b)
ROI for global feature extraction (adapted from [33]).

and its dimensions, followed by the computation of two
well-known distribution-based descriptors, Histogram
of Oriented Gradients (HOG) and Local Binary Pat-
terns (LBP), over several contiguous square ROI form-
ing a 7 x 5 grid (Figure 5(b)). Both descriptors are
sequentially computed and quantized for each ROI into
8-bin histograms, storing both shape and texture infor-
mation in a global single-dimension array. Although au-
thors identify the eye-corners as better reference points
for image alignment [32], they claim that they cannot
be reliably determined.

LBP [27,28] works in a quite simple yet efficient
fashion, measuring pixel intensity changes in a deter-
mined neighborhood P of radius R. Taking the dif-
ference T of the P intensities I to the central pixel,
LBPp R can be easily computed through (1), where s
denotes the signal function. The HOG descriptor [12]
is also well-known for its wide applications in computer
vision. It simply computes gradient orientation by filter-
ing the image with two kernels: [-1,0, 1] and [-1,0, 1]

P-1

LBPpr =Y T,2" (1a)
p=0

T = S(IO — IC), ciny S(Ip_l — IC)

s(a—b):{l’ ifa>b (10)

0, otherwise

The local features are represented by a set of key-
points, and their surrounding information extracted us-
ing Scale-Invariant Feature Transform (SIFT) [23]. Key-
points are detected in scale space using a Difference of
Gaussians (DOG) function, and features extracted from
their bounding boxes (scale proportional) based on the
gradient magnitude and orientation — Figure 6. The us-
age of SIFT offers invariance to translation, scaling and
rotation.
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Fig. 6 Block diagram of the SIFT steps (adapted from [20]).

At the matching stage both arrays (H, and H},) con-
taining the global features are compared using the Eu-
clidean distance, simply by applying the Pythagorean
formula (2) over their elements. The key-points repre-
senting the local features are matched using their geo-
metrical alignment to their counterparts on the testing
image.

d(H,, Hy) =

The authors conducted their tests over a “small”
(899 images, 30 subjects, 2 sessions) database of frontal
periocular images acquired in the visible wavelength
of the electromagnetic spectrum. The reported perfor-
mances range from 62.5% when using the HOG features
alone, to 80.8% when fusing them with the results from
SIFT. Curiously, combining all the three features didn’t
led to further improvements on those results, with the
joint performance being set at 80%. For that same data-
set, authors report that Rank-1 recognition accuracy
when using the whole face was 100%.

On their later work, Park et al. [32] went further on
stressing periocular recognition by analyzing the im-
pact of several factors: eyebrow inclusion or disguis-
ing, automatic segmentation, side information, iris and
sclera masking and expression variation. Their results
showed that although automatic OpenCV segmentation
exhibits better performance on “eyebrow-less” data, its
inclusion in the periocular region improves the SIFT re-
sults in almost 19%. Information about the side of the
face is almost irrelevant, with performance variations
of about 1%. From the stressed variations facial expres-
sions was the one with the most significant impact over
periocular recognition performance, except for SIFT,
which is more robust to distortion. On the other side,
the SIFT descriptor revealed itself handicapped when
facing iris or sclera occlusions. Top accuracy for the
classifiers singlehanded was 79.49%, achieved using SIFT
on manually segmented and unmasked data, including
the eyebrow, when compared to images taken from the
same side of the face and the same facial expression.

Compared to their previous work (i.e., [33]) score level
fusion did not result in significant improvements.

As recognition over non-ideal situations was also
a concern, authors compared their results with Face-
VACSS? face recognition system marks —99.77% recogni-
tion accuracy on “clear” facial images. Significant per-
formance drops were registered, for instance, with oc-
clusions (about 60% when occluding the lower part of
the face — Figure 7(a)), and even for small occlusions
on the periocular area. Without resorting to score-level
fusion, the encoding methods led to accuracy values no
greater than 25.97%, 20.51% and 10.12% respectively
for 10%, 20% and 30% of periocular occlusion. Eyebrow
modification was also subject for testing (Figure 7(b)),
using the TAAZ® tool to simulate makeover. The reg-
istered decay on performance was 7.5% for LBP and
10% for other descriptors. On subjects facing at 150 to

8 FaceVACS SDK
cognitec-systems.de

9 Free virtual makeover took, available at http://www.
taaz.com

available at http://www.

(a) Facial occlusion

(b) Eyebrow makeover

Fig. 7 Illustration of the non-ideal conditions simulated by
Park et al: a) facial occlusion and b) eyebrow makeover
(adapted from [32]).
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Table 2 Average accuracy degradation under different fac-
tors tested by Park et al. [32].

Factor Accuracy avg. diff.
Eyebrow inclusion +10.66%
Automatic segmentation —0.06%
Expression change —3.36%
Same side matching +0.33%
Iris masking —3.65%
Eye masking —15.95%
10% periocular occlusion —48.67%
Different sessions —25.00%

300 (i.e., head rotation), 35% to 45% performance dete-
rioration was registered, being SIFT the most affected
descriptor. Finally, authors pointed out an additional
issue associated with the periocular region — its lack of
stability over time. Images captured three months apart
from each other appear to perform 15% worst, and 30%
when captured with half-year gap. Results from those
experiments [32] are summarized on Table 2. Authors
suggest several further improvements: better alignment
and matching methods; multi-spectral analysis; and the
possibility of fusion with iris (or face) recognition meth-
ods.

Miller et al. [26] analyzed the periocular skin tex-
ture by applying the Uniform Local Binary Patterns
(ULBP) method, and providing further insights on each
region’s impact on the recognition process. This LBP-
based approach is meant to achieve “improved rotation
invariance with uniform patterns and finer quantization
of the angular space” [29]: from the 2F possible binary
patterns returned from regular LBP computation (1)
over a P neighborhood, a uniformity measure U can be
calculated representing the number of bitwise changes
in that pattern (3a). Using a uniformity value of 2, users
employed the ULBP operator using equation (3b).

U(LBPRR) = |S(Ip,1 — Ic) — S(I() — IC)‘

P+1 a
S sty — 1) = syt Y

if U(LBPp.g) <2

otherwise

P—1

I, - L),

LBPE, = {ET; s(lp = L)
(3b)

Similarly to the previous approach, the periocular
region was cropped proportionally to the intra-eye dis-
tance, scaled to 100 x 160 pixels and divided into a
7 x 4 ROI grid. To avoid that the iris and the sclera
information could possibly influencing the results, an
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elliptical neutral mask was overlapped to the periocu-
lar image. After histogram normalization the ULBP is
computed for each region, using an 8-pixel neighbor-
hood and producing 59 possible results used to pop-
ulate the histogram for the periocular signature array.
Finally, the Manhattan distance (4) is used for compar-
ison at the matching stage.

d(Hy, Hy) = |Hq; — Hy,l (4)
=1

Experiments conducted on images from the FRGC and
FERET datasets, for both eyes separately and com-
bined, reported 84% and 71% and 90% and 74% recog-
nition rates respectively.

Miller et al. [25] later work addressed the impact of
image quality over three axes: blur, resolution and illu-
mination. Image was preprocessed using a similar peri-
ocular crop and resizing (251 x 251 pixels), grayscale
conversion, histogram equalization and eye masking,
but instead of the ULBP a base LBP was used. When
blurring the data by convolving it with a Gaussian fil-
ter, the periocular recognition outperformed that of the
entire face in particular for high levels of blur. A similar
conclusion was reached upon down-sampling the data
to 40% of its original size. As for uncontrolled illumi-
nation conditions (already introduced on the dataset,
i.e., not simulated), performance degrades to low levels
since local approaches (e.g., LBP) are not suited for ir-
regular lighting conditions. The authors also compared
the discriminant capabilities of each color channel, con-
cluding that the green channel is the one leading to
higher differentiation (23% higher accuracy than the
red channel), and encodes the texture information in a
very similar way as the blue channel. In general, authors
concluded that performance achieved on the periocular
region was higher than when using the whole face, and
suggest the usage of different classification methods as
Support Vector Machines (SVM) [41].

Adams et al. [2] extended Miller’s work [26], by us-
ing a Genetic & Evolutionary Computing (GEC) method
to optimize the original feature set, namely the Steady-

Procedure GEC{

t=0\;

Initialize Pop(t)\; /+ Initial Population */

Evaluate Pop(t);

while (While Not Done){
dad = Select_Parent (Pop(t)); /x Dad */
mom = Select_Parent (Pop(t)); /x Mom */
offspring = Create_Offspring (mom,dad);
Evaluate (offspring);
Pop(t+1) = Replace(worst , offspring );
t =1t 4+ 1;

}
Fig. 8 Pseudo-code example of a GEC [1].
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State Genetic Algorithm (SSGA) algorithm implemented
by eXploration Toolset for Optimization of Launch and
Space Systems (X-TOOLSS)!°. The GEC algorithm com-
prehends the process of creating problem solvers, hav-
ing as basis the simulated evolution. Starting from a
randomly selected set of candidate solutions (CS), the
goodness of fit (GOF) of an evaluation function is de-
termined to select two parents and create offspring that
replaces the worst members of the current population
— Figure 8. Authors reported 86% accuracy for either
eye on the FRGC database, and 80% over the FERET
data, and top results of 85% and 92% when using both
eyes. Using only 49 ~ 52% of the original features im-
proved on, at least, 10%. Nonetheless, the chosen algo-
rithm was not proven to be the optimal for that specific
periocular features.

Inspired by Park et al. [33] work, Juefei-Xu et al [20]
expanded their experiments to less ideal imaging envi-
ronments, conducting performance analysis for different
feature schemes over the FRGC dataset. At the encod-
ing stage, and in addition to the LBP and SIFT tech-
niques, both local and global feature extraction schemes
were tested: Walsh masks, Law’s masks, DCT, DWT
Force Fields and SURF; Discrete Wavelet Transform
(DWT), Gabor Filters and Laplacian of Gaussian (LoG).
For the matching stage, the impact of different distance
metrics was also tested: Normalized Cosine (5), Euclid-
ian (2) and Manhattan (4).

E:? 1}¥ﬁi X lybi
Vi 2% /3 (Hyi)?
Walsh masks [6] are a set of filters based on the
Walsh function (6), whose convolution with the image
captures its binary characteristics in terms of contrast.
Sampling each function at the integer points, 5 vectors
(7) of size 5 are produced and, when combined in be-

tween themselves, 25 base images are obtained.

Waj g (£) = (=) S H W, (28) + (= 1)+ 7W; (2= 1)] (6)

where L%J is the integer part of j/2, and ¢ is either 0
or 1.

d(Ho, Hy) = ()

wE =(1,1,1,1,1)

wi=(-1,-1,-1,1,1)

Wi =(-1,-1,1,1,-1) (7)
wi=(1,1,-1,1,-1)

wi=(1,-1,1,1,-1)

Laws filter masks [22] were pioneer techniques of
texture identification through filtering. They consist on

10 http://nxt.ncat.edu/

using a bank of 25 filters, five in each dimension, accord-
ingly to the masks from (8) and assuming the shape of
level (L), edge (E), spot (S), wave (W) and ripple (R).

Ls =[1,4,6,4,1] (8a)
Es=[-1,-2,0,2,1] (8b)
S5 = [~1, 0 2,0, —1] (8¢)
W5 =[-1,2,0, -2, 1] (84)
Ry =[1,—4,6,—4,1] (8e)

Discrete Cosine Transform (DCT) [3] is a commonly
used image encoding technique with a good balance be-
tween performance and computational cost. In this par-
ticular case authors employed the 2-D DCT, transform-
ing each intensity I, to the frequency domain D, ,
using (9b) over windows of size N.

1/v2 ifu=0
c, = {12 =g (90)
1 otherwise
Du,v:
N—1N-1
20 —1 2y —1
CC’ ;)yz%[ ycos<u7r 5N >cos<v7r o\ >
(9b)

C, and C), are computed likewise.

The Force Field Transform [17], based on gravita-
tional force field, assumes that any pair of pixels main-
tains attraction between themselves. Every pixel gener-
ates a field that affects another pixel, at position vector
r; and through the force F; (10a). The resulting force
at a given pixel will then be the sum of all forces (10b).

Fy(ry) = 1(r) ——3 (10a)

N-1 N-1

mm—iwxmw

Ty — Ty

10b)
=) o
=0 2j |ri — 75l

As for DWT [24], it was computed using the wavelet
at equation 11.
1 f0< T, <43
-1 if1<I,<1

0 otherwise

P(r) = (11)

Gabor filters were also used to encode texture fea-
tures [11] (12) with the following parameters: wave-
length A = 8, orientations 6 = {0°,45°,90°,135°}, phase
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offset ¢ = {mw/2,—m/2}, sigma o = 4.5 and ellipticity
v=1

58/2 + 2y/2 .’I,'/
g(x7 Y )‘7 97 ’l/)a g, ,7) = €xXp (_ﬁ) COS(QWX""(/))
(12a)
x! cosf sinf| | z
{ y’} N [ —sind cos@} { y} (12b)

The purpose of the Laplacian of Gaussian is to de-
tect edges, and can be described as a function of Gaus-
sian standard deviation o and the radial distance p (13).

1 2 )2 /902
*m(“%)e o (13)

The main objective of Speed Up Robust Features'!
[5] is to provide a faster alternative for SIFT on detect-
ing and describing local features.

The LBP itself was fused with other methods, yield-
ing the results given in Table 3.

Authors show local descriptors to register better re-
sults, with the post-application of LBP translated into
a significant performance boost. Although top accuracy
being registered for DWT + LBP (53.2%), results were
very similar when DCT and Walsh or Laws’ masks were
used. SIFT and Speed Up Robust Features (SURF) ver-
ification rate was surprisingly low (< 1%), mostly due
to low image resolution.

On a later work, Juefei-Xu et al. [21] addressed the
aging effect on periocular recognition previously iden-
tified as an issue (e.g., Park et al. [32]) of no trivial
resolution due to its influence from external factors,
such as ethnicity, gender, etc. Their approach starts
by performing two type of corrections: pose, through

11 Matlab interface to OpenCV SURF package avail-
able at http://www.maths.lth.se/matematiklth/personal/
petter/surfmex.php

Table 3 Rank-1 accuracy obtained when fusing LBP with
the other methods [20].

Fused methods Accuracy
LBP + LBP 42.5%
Walsh Masks + LBP 52.9%
Laws’ Masks + LBP 51.3%
DCT + LBP 53.1%
DWT + LBP 53.2%
Force Field Transform + LBP 41.7%
Gabor Filters + LBP 12.8%
LoG Filters + LBP 30.9%
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Active Appearance Models (AAM), and illumination,
through anisotropic diffusion model. The periocular re-
gion was normalized from the provided landmark points
and features encoded using Walsh-Hadamard transform
encoded LBP (WLBP). On a final stage the unsuper-
vised discriminant projection (UDP) technique [51] was
used to boost results to very high performance levels,
using both global and local information to minimize the
local scatter matrix Sy, (14a) while maximizing the non-
local Sy (14b) using the adjacency matrix A produced
by (14c) based on a set of z classified instances.

1
Sp=52 3 Aiglwi —a5)(w; — ;)" (14a)
i=1 j=1
1N
SN:§ZZ(1 A ) — xy) (@ — )T (14b)
i=1 j=1
Ay = 1 if 12,1J are mutually KNN (14¢)
0 otherwise

This method was tested on the FG-NET database,
with images taken years apart at different acquisition
setups (non-uniform illumination, pose and expression)
— Figure 9. The reported results show 20% of perfor-
mance improvement, with WLBP performing 15% bet-
ter than raw pixel intensity matching. UDP also deliv-
ers better accuracy (up to 40%) than Principal Com-
ponent Analysis (PCA) or Locally Preserving Projec-
tions (LPP). Authors report that all stages combined
result in 100% identification accuracy.

Bharadwaj et al. [7] research on periocular biomet-
rics was focused specifically on unconstrained VW cap-
tured data (UBIRIS.v2 dataset). The authors tackled
the question combining ULBP with a global matcher —
GIST — what consists in the combination of five scene
descriptors [30]: naturalness (i.e., how vertical and hor-
izontal edges are distributed); openness (i.e., the pres-
ence or lack of reference points); roughness (i.e., size
of the largest prominent object); ezpansion (i.e., depth
of the space gradient); and ruggedness (i.e., deviation
from the horizontal, assessed by contour orientation).
ULBP was computed over 64 patches of the original
image. Prior to the GIST analysis, local contrast nor-
malization was achieved with Fourier transform and the
special envelope computed using a set of x? distance
(15) and min-max normalized results from both eyes
are fused by a weighted sum. GIST gave better perfor-
mance than ULBP, with 70.82% against 63.77 respec-
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(d) 35 y.o. (e) 45 y.o.

(f) 42 y.o.

Fig. 9 Example of aging subject from the FG-NET database,
at ages 2 (a), 10 (b), 19 (c¢), 35 (d), 45 (e) and 52 (f) years
old (y.o.).

tively, and fusing both results led to 73.65% Rank-1
accuracy.

Ao Hy) = 5>

i=1

(Hai — Hbi)2

(Ho 5 Hy) (15)

To determine which slice of the electromagnetic spec-
trum would better favor the periocular recognition, Wo-
odard et al. [46] conducted a comparative analysis of
second-level features on both visible (FRGC) and NIR
(Multi Biometric Grand Challenge (MBGC)) data. As
preprocessing, and to avoid biased results, an elliptical
mask was used to remove iris and sclera information.
Then LBP was computed over a ROI grid (on both
datasets), and color information was extracted from
both the red and green channels’ histograms and fused
at score-level (on VW data). At the matching stage,
the LBP histograms were matched using Manhattan
distance, with Bhattacharya distance being chosen for
color histograms. Results suggest texture information
to be more discriminant, with only a slight improve-
ment registered after the fusion. As for the electromag-
netic spectrum, visible wavelength data delivered better
results (88 ~ 90% accuracy) than NIR (81 ~ 87%).

On their later work, Woodard et al. [47] assessed
how periocular texture information could improve iris
data reliability, thus overcoming the difficulties asso-
ciated with non-ideal imaging. Tests were conducted
over the MBGC dataset, that despite containing NIR,
data, represents a challenging scenario for iris recogni-
tion. Periocular information was handled the same way

as before (i.e., [46]), and iris processing was achieved
followed Daugman’s approach [13], except with manual
segmentation. Information from both traits was com-
bined at score-level using a simple weighted sum af-
ter min-max normalization. Their work shows how iris’
low performance on such difficult data benefits from
the fusion with periocular information, raising Rank-1
accuracy in over 80% to 95.6%. Both Woodard et al.
studies [46,47] were unified and extended, providing a
closer insight to their previous results [48].

The effect of periocular information on improving
face recognition performance was stressed by Jillela &
Ross [19]. In their study, authors aimed at improving
commercially deployed face recognition software iden-
tification performance against subjects who have been
submitted to plastic surgery. Authors applied SIFT and
LBP over the periocular region, as proposed by Park et
al. [33], except for this last descriptor that was com-
puted on all color channels independently and aver-
aged at score-level. Tests were conducted over a plastic
surgery database [43] consisting of images downloaded
from plastic surgery information websites, with consid-
erable changes in resolution, scale and expression. Re-
sults showed periocular information to boost face recog-
nition software Rank-1 accuracy by 2%, attaining a top
performance of 87.4%.

On stressing noise factors’ impact on periocular recog-
nition, Padole & Proenca [31] conducted a series of tests
on images with four inherent variations: subjects’ pose,
distance to the camera (4m to 8m), iris pigmentation
and occlusion. Periocular information was analyzed as
suggested by Park et al. [33], with some minor varia-
tions: the ROI definition that was based on eye-corner
position instead of iris center, which led to most sig-
nificant improvements since unconstrained biometrics
favor gaze variations; and for the fusion stage authors
tested both logistic regression and Multi Layer Percep-
tron (MLP).

The logistic regression model [16] is a weight fitting
methodology that works as a single-output neural net-
work with a logistic-activation function trained under
log loss (16), relating output weights S3; with the odds
of a positive match (p/(1 — p)).

log (%) = Bo+BixLpp+B2rHoc + B3rsirr (16)

Interestingly, closer acquiring distances didn’t led to
better performance, as worst results came from com-
parisons between subjects imaged at 4 meters. From
the tested distances, authors found the “optimal” one
to be 7m. Not so surprising was pose variation impact
on recognition, with higher tilting angles resulting in
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(a) NIR periocular (b) VW periocular

(c) NIR iris

(d) VW iris

Fig. 10 Sample NIR periocular images used by Hollings-
worth et al. (adapted from [14,15]).

lower accuracy values. Similar observations were found
for the occlusion trials. Iris pigmentation was also re-
ported to impact periocular recognition performance,
with darker eyes leading to poorer results and medium
pigmented irides the best ones. As for gender, female
were found to be more easily identified through their
periocular features.

The Human ability to use contextual information
and “disregard” most of the noise factors, adapting it-
self to surrounding conditions is outstanding, marking
it a hard task for machines to mimic. In fact, when de-
signed recognition algorithms a logic path would be to
figure out its way of working, seeking alternate strate-
gies to tackle the same issues. On that subject, Hollings-
worth et al. [14] conducted a study aimed at identi-
fying which ocular elements humans find more useful
for the periocular recognition task. Using an iris cam-
era, authors acquired NIR data from 120 subjects with
the periocular region closer to the eye visible and only
few features missing (e.g., incomplete eyebrows) — Fig-
ure 10(a). In order to avoid biased responses, iris was
completely masked with a circular patch. Eighty pairs
of images were presented to 25 human observers, who
were asked to tell apart which pairs belonged to the
same or different subjects, indicating their degree of
certainty and individually rating each feature’s helpful-
ness in a three level scale. Results pointed eyelashes to
be the most helpful periocular feature, closely followed
by the medial canthus and the eye shape. Participants
based their responses on eyelash clusters, density, di-
rection, length and intensity. To the inquired observers,
skin was actually the less useful. Average human accu-
racy on such setup was 92%.
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In order to extend that analysis to the visible spec-
trum, to new factors and to a wider dataset, a second
study was conducted by Hollingsworth et al. [15]. The
human observers’ performance was compared to both
periocular (Park et al. [33]) and iris (IrisBEE biometric
system from ICE [36]) recognition algorithms. Imaging
210 subjects on a controlled environment, 140 pairs of
images were presented to 56 observers for each one of
four setups: NIR and VW, periocular and iris data. Test
subjects could then rank their certainty on a five level
scale, specifying how helpful individual features were
(eye shape, tear duct, outer corner, eyelashes, skin, eye-
brow, eyelid, color, blood vessels and other). Due to the
different pairing system and limited observation time,
NIR accuracy dropped to 78.8%, and it was set on
88.4% for the visible wavelength. Machine performance
was similar, with 1% difference on overall accuracy. As
for the feature discrimination capacity, results for NIR
data were similar to the previous ones [14], with some
differences on the visible spectrum where blood vessels,
skin and eye shape were reported to be more helpful
than eyelashes. Skin details were in fact more percepti-
ble on visible wavelength data, as NIR camera illumi-
nation caused frequent skin saturation. In general, the
visible light was found to be preferable for periocular
recognition tasks. Human perception of iris features is
greater on NIR images, with 85.6% accuracy against
79.3% on the visible wavelength. However, and unlike
periocular, machine performance was 13% better than
humans’, with 100% and 90.7% accuracy for those same
bands.

3 Empirical Evaluation of Algorithms

A summarized overview over the described methods
and reported results is provided at Table 4, along the
type of features extracted, the classification scheme,
and the dataset used by each author. As we can see,
the methods from the literature are focused mainly on
texture analysis and key-point extraction. Even sim-
ple algorithms (e.g., LBP based) lead to fair perfor-
mance levels, and can be improved with further refine-
ments, optimization or score-level fusion. Reported re-
sults also suggest periocular fitness for unconstrained
setups, with VW prevailing over NIR. Nonetheless, the
heterogeneity between test data renders methods’ rela-
tive performance in-between themselves difficult to as-
sess.

To achieve a clearer performance insight, algorithms
should be tested over the same data, with results ana-
lyzed side-by-side. As most of the literature reports re-
sults against FRGC, we choose it as the most fit can-
didate for the evaluation stage. A total of 6225 im-
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Table 4 Overview of the most relevant periocular research available on the literature.

Approach Features Extract Classifier Dataset Reported Accuracy
Shape, HOG. Euclidean 899 VW img., HOG: 62.5%
Park Toxt ; . LBP: 70.0%
et al. [33] exture, LBP, distance, 30 subject, SIFT: 74.2%
Key-Points SIFT SIFT matcher 2 sessions D an
Best: 80.8%
Miller Texture ULBP Manhattan FRGC, FRGC: 89.8%
eAtdal. [26] xtar distance FERET FERET: 74.1%
ams Manhattan FRGC, FRGC: 92.2%
et al. [1] Texture LBP+GEFE distance FERET FERET: 85.1%
Bhattach Left VW peri: 90%
Woodard Color, RG color hist, M ahagt arya, FRGC, Right VW peri: 88%
et al. [46] Texture LBP d.atn attan MBGC Left NIR peri: 81%
istance Right NIR peri: 87%
Left Iris: 13.8%
Da an’s Hamming Left Peri: 92.5%
Woodard Textur .. ug(rin n distance, MBGC Fusion: 96.5%
et al. [47] exture E]l;g) © Manhattan Right Iris: 10.1%
distance Right Peri: 88.7%
Fusion: 92.4%
Walsh Masks, Cosi
Laws’ Masks, di‘;fg;ece DWT+LBP: 53.2%
Juefei-Xu Texture, DCT, D.WT’ Euclidea;n DCT+LBP: 53.1%
. Force Fields, . FRGC Walsh+LBP: 52.9%
et al. [20] Key-Points . distance,
Gabor Filters, Manh Laws’+LBP: 51.3%
LBP, .an attan
SIFT, SURF distance.
Juefei-Xu Cosine
et al. [21] Texture WLBP+UDP distance FG-NET 100%
Naturalness,
Openness
. i GIST: 70.82%
Bharad
aradwaj Roughness, GIST, 2 distance UBIRIS.v2 ULBP: 63.77%
et al. [7] Expansion, ULBP :
Fusion: 73.65%
Ruggedness,
T ) Texture NIR i
ollingswor img, .
et al. [14] Human Human Human 120 subject NIR peri: 92%
NIR Peri: 78.8%
Hollingsworth - o H NIR &VW, VW Peri: 88.4%
et al. [15] uman uman uman 210 subject NIR Iris: 85.6%
VW Iris: 79.3%

ages were selected, with the right-side periocular region
manually cropped to avoid further errors, resulting in
over 250 thousand matching trials with a 1 : 2 intra-
inter-class ratio. The iris segmentation required by Wo-
odard et al. method [47] was also manually conducted.
We reproduced the presented algorithms as close as pos-
sible, choosing omitted parameters in such way that
overall performance was maximized. At score-level fu-
sion, weights were optimized using logistic regression
with 10-fold cross-validation. The results of that evalu-
ation are the ones at Table 5. As some papers reported
results from multiple setups, values may differ from the
ones at Table 4, as we now choose to display those best
fitting the testing conditions.

For the tested methods, registered performances are
quite similar with Rank-1 accuracy around 97%. Hav-
ing Park et al. [33] pioneering approach as comparison
term, we can see that improvements introduced by sub-
sequent algorithms rely on three different factors: dif-
ferent image preprocessing and ROI definition, more ro-

bust procedures, and bringing in new techniques. Start-
ing at this first topic, we can easily observe how chang-
ing image pre-processing and ROI definition lead to
performance discrepancies for the same descriptor over
the exact same dataset and comparisons. ULBP, for in-
stance, displays a rather good performance on Miller et
al, a better one on Woodard et al. [46], and a slightly
worse on Bharadwaj et al.. Another example is Park et
al. LBP not being over-performed by ULBP from meth-
ods [25] and [7]. Apart from that, when applied under
similar preprocessing ULBP preforms better that reg-
ular LBP (Woodard et al. [47] vs Woodard et al. [46]).
From the introduced descriptors GIST is the most note-
worthy for its surprisingly high performance, being the
feature with higher Area Under ROC Curve (AUC) and
lower Equal Error Rate (EER). As we can see on the
last two methods, classification accuracy don’t always
agree with AUC and EER about the best classifier. On
those situations, we found these last two metrics to be
more reliable indicators.
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On methods using multiple descriptors, relative in-
dividual performances are comparable to the ones au-
thors reported, except for two particular cases. The
first one is when color information is used (Woodard et
al. [46]), as we didn’t manage to reproduce such scores
even though the same database was used. Even obtain-
ing better accuracy for ULBP, fusing it with the color
descriptors didn’t led to significant improvements, as
score-level fusion optimization technique (logistic re-
gression) didn’t give color information enough weight
to make itself representative. The second one is for
iris based recognition, where we obtained higher perfor-
mance levels even with a VW dataset. We must have in
mind that the MBGC dataset was originally chosen by
authors to test their approach because of its challenging
conditions for iris biometrics.

Analyzing Pearson’s linear correlation coefficients
between techniques — Table 6, we are able to under-
stand their pairwise dependence. This measure (p) re-
lates two methods (X, Y), by analyzing the relation be-
tween their covariance (cov) and standard deviations
(o), returning values in the [—1 : 1] interval according
to (17). Total positive correlation is represented by 1,
negative correlation —1, and the absence of correlation
is then 0.

cov(X,Y)

(17)
OxO0y

PX)Y) =

As anticipated, high correlation values were regis-
tered between LBP based descriptors, particularly the
ones used on both Woodard et al. methods and Miller’s
[26]. On Park et al. pioneer approach, LBP correla-
tion with HOG was also significant. In fact, with ex-
ception of color and iris correlation values were gener-
ally high, being those the two less-dependent routines
(the ones with lower average absolute correlation coeffi-
cients). The third one was SIFT. GIST descriptor, the
one with better individual performance, was actually
found to be significantly correlated with most of the
tested techniques.

3.1 Biometric Menagerie

To better understand subjects’ influence on the tested

methods, we analyzed them individually in terms of

genuine/impostor distance, classifying them accordingly
to the four biometric menagerie classes suggested by

Yager & Dunstone [49] — Figure 11(f): doves, chameleons,
phantoms and worms.

Let us define two regions for the genuine distance
distribution, G, and Gy, containing the subjects be-
low the first quartile or over the third quartile respec-
tively. If we define two similar regions (I, and Iy) for
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the impostor distance distribution, subjects s can be
classified as one of the animal families accordingly to
(18) [50]. From Figure 11, we can see how certain sub-
jects systematically fork from the sheep group for most
of the tested periocular recognition methods.

Dove, ifsCcGrNlig
Chameleon, if s C Gp NI (18)
Phantom, ifsCcGygNliy
Worm, ifscGgnlIig

Doves are the most favorable subjects, as they pro-
duce low distances for intra-class comparisons and high
distances for inter-class. This animal family is an exten-
sion of the herd, and the optimal group for any recogni-
tion system as it does not produce verification error. As
we can see from Figure 11, there are only two samples
who could be identified as doves: subjects A, imaged
with a slight head rotation (Figure 12(a)), and subject
B, with a significant occlusion caused by her hair (Fig-
ure 12(b)), those presumably being the causes of such
good response. As so, we were not able to generalize
which features (or conditions) best describe those sub-
jects, being the optimal for each method operation.

Chameleons are subjects who produce low distances
on both classes matches, thus being easily misidentified
as they always appear similar to others. Their false-
reject rate is low, but false-accept is extremely high.
The graphics at Figure 11 show us a considerable con-
centration of chameleons, who we assume to be the in-
dividuals with more generic features, as subjects C and
D (Figure 12(c) and 12(d)) who systematically display
that behavior for all methods.

Phantoms are associated with high matching dis-
tances on both intra- and inter-class comparisons. Con-
trary to chameleons, they are associated with high false-
reject rate, and low false-accept. As we can see from
the graphical representation, subjects on the phantom-
region are more disperse, and a larger set of subjects
recurrently belonging to this class was identified — sub-
jects E to H. Sample elements of this family are de-
picted at Figures 12(e) to 12(h). Subjects identified as
phantoms were enrolled under non-uniform lightening,
or with significant changes in their appearance — sub-
jects being captured with and without glasses.

Contrary to doves, Worms are the most problem-
atic subjects in a biometric system. They behave in
the worst possible way, yielding high distances on gen-
uine matches and low distances on impostor ones. As
pointed by Yager and Dunstone [49], in real biomet-
ric applications this group does not exist, as it would
represent a significant flaw in the matching algorithm.
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Table 5 Tested periocular recognition methods performance indicators: Area Under ROC Curve (AUC), Equal Error Rate
(EER), Computed (CA) and Reported Accuracy (RA) and Original testing dataset.

Approach Features AUC | EER | CA%) || RA(%) | Dataset
Park et al. [33] LBP 0.87 0.20 96.64 70.00 899 images,
HOG 0.85 0.22 94.32 62.50 30 subjects,
SIFT 0.86 0.19 96.38 74.20 2 sessions,
Fusion 0.89 0.17 97.16 80.80 visible wav.
Miller et al. [26] ULBP 0.85 0.21 96.64 89.90 FRGC
Woodard et al. [46] ULBP 0.87 0.18 97.16 83.80 FRGC
Color 0.63 0.40 35.66 74.20
Fusion 0.86 0.19 97.42 87.10
Woodard et al. [47] LBP 0.85 0.20 96.90 88.70 MBGC
Iriscode 0.78 0.28 75.45 10.10
Fusion 0.86 0.19 96.64 92.40
Bharadwaj et al. [7] ULBP 0.78 0.27 96.38 54.30 UBIRIS.v2
GIST 0.90 0.17 97.42 63.34
Fusion 0.92 0.15 95.61 73.65

Table 6 Linear correlation coefficient matrix for the tested periocular recognition methods. Results refer to LBP (L), HOG
(H), SIFT (S), Fusion (F), ULBP (U), Color (C), Iriscore (I) and GIST (G).

[33] (26] (46] [47] (7]
L H S F U U C F L I F U G F
L| 1
H| 082 1
33 g | 060 061 1
F| 08 08 -093 1
26] U| 084 072 063 077 1
U | 080 071 -0.65 0.77] 096 1
[46) C | 020 020 -0.18 021| 020 020 1
F| 079 071 -065 077| 095| 099 036 1
L | 08 073 -063 078] 097 095 018 093 1
[47) 1 | 043 045 -049 053 | 045 | 047 010 046 | 046 1
F| 079 073 -0.67 0.79| 090| 089 017 088 | 093 076 1
U 060 045 -043 052 | 087 | 0.81 011 079 | 086 030 075 1
M G| o071 072 -059 073] 071| 071 021 071 | 073 048 0.73| 050 1
F | 064 068 -055 068| 057| 059 021 059 | 060 045 063| 031 098 1

Consistently, the worms were unlikely to be found on
the tested methods.

4 Conclusions

This study addressed how information in the vicinity of
the eye (periocular region) can be used to perform bio-
metric recognition, as the interest on this new biometric
trait has justifiably increased over the last years.

We identified the pioneer approach of Park et al. [33]
as the starting point, and how simple algorithms led to
fair recognition accuracies, being noteworthy the sur-
prisingly good response of LBP based methods.

The recently developed methods focus mainly on
texture analysis and key-point extraction, and present

periocular as a fit biometric trait specially for uncon-
strained and uncooperative scenarios, where iris cannot
be properly imaged and neither a full facial picture can
be obtained. Results favoring VW periocular over NIR
also show its fitness for more relaxed setups, and for its
use based on conventional surveillance cameras.

However, some issues were identified to consider-
ably impact system accuracy and should be addressed,
specially pose, minor occlusion, illumination and aging.
Regarding the later, extending Juefei-Xu et al [21] work
to different scenarios should be considered.

The work of Hollingsworth et al. [14,15] on human
perception suggest that eye shape constitutes a power-
ful ally to skin analysis methods on both spectral bands,
thus making us look at the periocular recognition task
from a different perspective, and where a leap away the
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Fig. 11 Zoo plots for the tested periocular algorithms: a) Park et al. [33], b) Miller et al. [26], ¢) Woodard et al. [46], d)
Woodard et al. [47] and e) Bharadwaj et al. [7]. Black lines represent the first and third quartiles for genuine and impostor
distance distributions. For illustration of the localization of each family, a reference chart f) is also displayed (adapted from

[49]).
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Fig. 12 Sample images from database subjects potentially belonging to each one of the identified animal families: doves (a
and b), chameleons (¢ and d) and phantoms (e to h).
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overused texture methods could be advantageous. Eye-
lashes are also point as a good indicator, specially for
NIR, but we must keep in mind that used images dif-
fer from the “traditionally” used periocular images and
the close capturing of the data could have biased the
results.
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A Robust Eye-Corner Detection Method for Real-World Data

Gil Santos and Hugo Proenca

Abstract— Corner detection has motivated a great deal of
research and is particularly important in a variety of tasks
related to computer vision, acting as a basis for further stages.
In particular, the detection of eye-corners in facial images is
important in applications in biometric systems and assisted-
driving systems. We empirically evaluated the state-of-the-art
of eye-corner detection proposals and found that they achieve
satisfactory results only when dealing with high-quality data.
Hence, in this paper, we describe an eye-corner detection
method that emphasizes robustness, i.e., its ability to deal with
degraded data, and applicability to real-world conditions. Our
experiments show that the proposed method outperforms others
in both noise-free and degraded data (blurred and rotated
images and images with significant variations in scale), which
is a major achievement.

I. INTRODUCTION

A corner is defined by the intersection of at least two
edges. For decades, it was believed that most primitives
of the human visual system were based on the detection
of such points, which have well-defined positions. Corner
detection is known to have particular relevance in computer
vision, as it is often used as a starting point for other
image recognition processes. Hence, various corner detection
strategies have been emphasized in previous investigations
of image segmentation, tracking, recognition and motion
detection systems.

In this paper, we are particularly interested in the detection
of both the temporal and nasal eye-corners in facial images.
Eye-corners constitute relevant points of interest, and the
ability to accurately pinpoint them is of great value in
areas, such as biometrics, and applications, such as driv-
ing assistance systems. In biometrics, an emerging type of
recognition is called periocular, based on human recognition
by using data collected from around the eyes. The periocular
region is particularly useful when the quality of data reduces
the efficacy of other recognition strategies, such as with
uncooperative subjects, when using visible light imagery or
when acquiring data from moving subjects at a distance
(e.g., [12], [10], [9]1, [15D).

Among all of the points of interest that can be extracted
from the periocular region, we highlight eye-corners — the
intersections between the upper and lower eyelids — because
the position of eye corners does not vary with different
facial expressions, levels of eye closure, gaze, eyelashes
or makeup. After reviewing the state-of-the-art research on
eye-corner detection, we concluded that published methods
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lack robustness and were developed to operate successfully
only with high-quality data. We empirically determined that
the performance of these approaches tends to significantly
deteriorate with real-world data of significantly higher het-
erogeneity. Hence, this work proposes an eye-corner detec-
tion method suitable for imperfect environments, such as
uneven lighting conditions and rotated or blurred data, with
substantial differences in scale and levels of eye closure.
Our method uses a periocular image as input, segments
the iris and the sclera and defines a region of interest
from which candidate points are extracted. Then, multiple
features are linearly combined in an objective function whose
optimization determines the pair of points that constitute the
nasal and temporal eye-corners.

A. Related Works

Several approaches for the detection of eye-corners
can be found in the literature. Harris and Stephens [6]
proposed a general purpose corner detection method, which
is often used in the specific case in which eye-corners with
satisfactory results with high-quality data are available.
Zheng et al. [17] estimated an initial region of interest from
integral projections and located eye-corners according to a
bank of Gabor-based filters, convolved at five different scales
and orientations, from which averaged outputs yielded the
final detection kernel. A more in-depth description of this
strategy can be found in [18]. Khosravi and Safabakhsh [7]
localized eye-corners in gray data, starting from the center
of the iris and selecting two points on its scleric boundary
at symmetric angles. Next, they found points on the eyelids
according to local differences in brightness and used four
masks to define motion direction. Xu ef al. [16] used
the approach of Harris and Stephens to select candidate
points and then parsed them, combining semantic features
using logistic regression. However, this method relies on
image edges, which are difficult to obtain in unconstrained
acquisition environments. Haiying and Gouping [5]
proposed the weighting of Harris’s response function with
the variance projection function, achieving a more robust
system for frontal images with no significant lighting
variations or rotation. The variance projection function itself
was proposed for similar purposes by Feng and Yuen [4].
More recently, Erdogmus and Dugelay [3] proposed a
method that achieves good results on frontal images but also
heavily relies on edge detection, and eye-corners result from
the interception of polynomial functions fitted to these edges.

The remainder of this paper is organized as follows: in
Section II we describe our methods in detail; Section III
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presents our experiments and discusses the obtained results,
with an emphasis on the robustness factor. Finally, Section IV
presents our conclusions.

II. PROPOSED METHOD

A. Iris Segmentation and the Definition of the Region of
Interest

(a) Eye image

(b) Iris segmentation mask

Fig. 1. Data used as the input in applying our method.

As illustrated in figure 1, our method uses a periocular
image as the input, and the first step is to obtain the
corresponding noise-free iris binary segmentation mask. This
mask discriminates between the noise-free regions of the iris
and all of the remaining data and was obtained as described
by Tan et al. [14]. This method has been shown to be
effective with real-world data. In addition, this iris segmen-
tation algorithm was selected because it outperformed in the
NICE.I contest !. The segmented iris data are represented
by the black regions of figure 1(b) and contain holes that
correspond to the pupil and occluded iris regions. These
holes were removed by zeroing out all of the regions that
were unreachable when filling out the background from the
edges of the image, as described in [13].

NO

Fig. 2. An illustration of the regions of the eye involved in our work. P, I
and S correspond to the pupil, iris and sclera, respectively. P, and P; are
the nasal and temporal eye-corners, respectively. P, and P, are the vertical
extremes of the region segmented as the iris and were used by the proposed
method.

Next, we defined a region of interest (ROI) from which
subsequent processing would be completed. This region is
illustrated in figure 2 and was obtained by cropping the input
image and the segmentation mask, avoiding unnecessary

INICE.I: Noisy Iris Challenge Evaluation - Part [ http://nicel.di.
ubi.pt
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regions, such as the eyebrow and the skin underneath the
eye. With an input image of dimensions M x Ny, this yields
regions of dimensions M x Nj, according to horizontal
projection techniques. This procedure ensures that the ROI
is composed of the extreme coordinates of pixels belonging
to the iris (P, and P, of figure 2):

Yu, :max(yp)
Yy = min(y,) M

where y,, are the row coordinates of all of the pixels that
belong to the iris.

B. Sclera Segmentation

The localization of regions that correspond to the sclera
inside the ROI is critical to our method, as both eye corners
should be adjacent to the sclera. In addition, pixels belonging
to the human sclera have particularly low levels of saturation,
which is illustrated by figure 3. The left image gives the
saturation channel of the HSV colorspace (figure 3(a)), and
the right image shows the result of the convolution with
a unidimensional horizontal median filter [8] for eyelash
attenuation, followed by data quantization and histogram
equalization (figure 3(b)). This example illustrates that the
sclera became more homogenous and had evidently lower
intensities, enabling their classification using empirically
adjusted thresholds.

(a) Saturation values

(b) 12 level histogram equaliza-
tion

Fig. 3. Sclera enhancement.

C. Eye Contour Approximation

Once the iris and sclera were segmented, the next stage
involved approximating the contours of the eyelids. This was
performed in two steps: 1) a morphological dilation of the
iris segmentation mask with a horizontal structuring element,
which horizontally expands the iris regions, and 2) a point-
by-point multiplication between the dilated and the enhanced
data illustrated in figure 3(b), as described by Caselles [2].
We obtained an image similar to that illustrated in figure 4(b)
and whose boundary constitutes a close approximation of the
contours of the eyelids.

(b) Result

(a) Starting image

Fig. 4. The eyelid contour determined corresponds to the boundary of the
region indicated by black pixels.



D. The Generation of Eye-Corner Candidates

This stage involved the generation of a set of candidate
points for the positions of the eye-corners, which was per-
formed by using the approach of Harris and Stephens [6].
However, because of the high probability of producing too
many false positives, this detector was exclusively applied
inside the nasal (R,) and temporal (R;) regions, cropped
from the extremes of the major axis of the sclera mask, as
illustrated in figure 5.

Fig. 5. An approximation of the eyelid contour (white snake) and the
regions from which corner candidates are extracted (represented by white
rectangles).

E. Feature Set

This stage involved finding the appropriate features to
discriminate between the set of corner candidates. We also
wanted to ensure that such a feature set would be robust
in response to differences in translation, rotation, scale,
affine-transformation and blurred data. In all subsequent
descriptions, we consider {¢;}"_;, ¢; = (z;,y;) to be the
set of eye-corner candidates.

a) Harris Pixel Weight H(P.): Because all candidates
were generated according to the Harris and Stephens method,
it is straightforward to include the corresponding score in the
proposed feature set. This score is given by

H=|M|—k tr(M)? )

where |.| denotes the matrix determinant, tr(.) is the trace
of a matrix and M is the Hessian matrix obtained from a
blurred version of the original data:

2 X
M(z,y) = [gui(@c’,yy))

I(z,y) ® h(z,y), with h(z,y) =
and ® denotes convolution.

Guv(,y)
G2(z,y)

where G(x,y) =
% exp (#)

b) Internal Angles: Let B = {b;}*_,, b; = (z;,y;) be
the set of pixels belonging to the eyelid boundary obtained
as described in section II-C. An ellipse fitted to B points is
parameterized as follows:

A cos(a)} 3

E = (2e,y.) + Q7). [B. sin(o)

where (z.,y.) is the central point of the ellipse, Q(7) is a
rotation matrix and A and B are the lengths of the major and
minor axes, respectively. Two sets of pixels located along the
opposite directions of the ellipse’s minor axis are given by

b = (xe — cos ('y — g) .B,y. —sin (’y — g) .B) (4a)

by = (x + cos (7 - g) B, ye +sin (7 - g) .B) (4b)

For every candidate point ¢;, two vectors U = ¢; —b,, and
U = ¢; — by were obtained , and their internal angle 6(c;, F)

is given by
(u,0) ) )

601(c;, E) = arccos (
' [ul|-{[ol]

where (u,v) is the dot product between u and v, and || - ||
denotes the norm of a vector.

Let m; be the slope of the ellipse’s major axis and my be
the slope of the line connecting (z.,y.) and the candidate
point ¢;:

Ye — Yi
LTe — T

6

mo =

Their internal angle measures the agreement between the
directions of the ellipse’s major axis and the straight line
that passes through the candidate point and the center of the
ellipse:

as(c;, E) = arctan <m) (7
Finally, because we are interested in pairs of eye corners,
we found it useful to obtain a feature that relates any two
candidates as a pair rather than scoring them independently.
Let ¢;; and c¢;5 be two corner candidates, one from the
temporal and the other from the nasal region, and let /15 be
the line that passes through both points. If the plausibility
of both candidates is high, the direction of l;5 should be
similar to that of the major axis of the previously defined
ellipse . Thus, according to (7), we obtained the internal
angle between these vectors (as(ci1, ¢iz, E)).
¢) Positions in ROIs: A complementary feature mea-
sures the relative position of each candidate in the ROIs,
i.e., the proportion of pixels inside the ROI that are above
each candidate. This feature is given by

N M
. Zizlxi ijl H{(m)eR}
- N M
2t 23:1 Ly g)ery
where Iy} is an indicator function.
d) Relative Distances: This type of feature considers

the distance between each candidate point ¢; and the center
of the ellipse:

p(cia R) (8)

\/(xi —ze)” + (i —ve)’
A

where (z.,y.) denotes the coordinates of the center of
the ellipse and A the length of the ellipse’s major axis to
compensate for the imbalance between acquisition distance
and eye size.

Let U, be a vector with the same direction of the major
axis of the ellipse and p; = (z1,y1) and py = (x2,y2) be
the antipodal points of the ellipse. Let pian = (Ttan, Ytan)
be a point tangential to the ellipse that belongs to a line that
passes through ¢;:

di(c;,E) = 9
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Ttan = T1 + u(x2 — 1)
Yean = Y1 + u(y2 — y1)

where v given by:

10)

(e —21) (w2 — 71) + (Ye — y1)(y2 — 1)
||p2 —le2

The Euclidean distance between p:,, and each candidate
¢; (da(¢iy Pran)) Was also added to the feature set.

e) The Intersection of Interpolating Polynomials: The
nasal and temporal eye corners can be regarded as the
intersections between the upper and lower eyelids. Because
of this, we parameterized two lines, each corresponding
to one eyelid. The intersections ¢ of both polynomials are
illustrated by figure 6 and provide a rough estimate of the
nasal and temporal eye corners. Based on our observations
of the typical shape of eyelids, we used second and third
degree polynomials to fit the contours of the upper and
lower eyelids, respectively. Thus, the Euclidean distance
between each candidate and the interception point of the
corresponding ROI (ds(c;,t)) also acts as a measure of
goodness for that candidate.

u =

Fig. 6. Interpolating second (upper eyelid) and third (lower eyelid) degree
polynomials. The interception points of both polynomials constitute an
accurate approximation of the eye corners.

FE. Objective Function

According to the description given in section II-E,
the proposed feature set is composed of seven features:
F={h(ci), 91(61', E), 92(Ci, E),p(Ci, R), dl (Ci, E), dQ(CZ‘, E),
da(¢i, Pran), andds(c;, t)}, which should be fused to
produce the final score. With two sets of corner candidates
(nasal and temporal), the final score for every pair of nasal
cn, and temporal ¢; candidates is given by the weighted sum
of these features:

7 14
T(ci,en) =D Bi fit Y By fir (11
i=1 j=8

where {01,...,514} are regularization terms adjusted to
maximize performance in a training set. This optimization
procedure was carried out by linear regression, and these
terms were adjusted to minimize the mean squared error
between the predicted values and the ground-truth data using
the Akaike criterion [1]:

J(Ct’ Cn) = (F(Ct7 Cn) - g(ctv CTL))2

where g(ct,¢,)) is the sum of the Euclidean distances
between the coordinates of the candidates and the ground-
truth data.

12)
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Regularization coefficients were estimated on a sub-set of
frontal images, resampled in a ten-fold cross-validation.

III. EXPERIMENTS
A. Datasets

The performance of the proposed method was assessed
on right-eye images of the UBIRIS.v2 database [11]. The
images have dimensions of 400 x 300 pixels and were
acquired from moving subjects in visible wavelengths at
different distances and under varying lighting conditions.
Additionally, the quality of the images was degraded by
different factors, such as blur, motion, rotation and gaze.
To check the reduction in the performance of the proposed
method with respect to each factor, five dataset configurations
were used and are illustrated in figure 7:

o Frontal — includes 300 images with the subjects’ gazes

aligned toward the camera;

o Deviated Gaze — 200 images in which the subjects’

heads were deviated;

e Blur — images with an artificially made 50-pixel-length

motion blur in the /4 direction;

o Clockwise rotation (CR) — images artificially rotated by

/8 clockwise;

o Counter-clockwise rotation (CCR) — the same as the

previous but with a counter-clockwise rotation.

For the Blur, CR and CCR experiments, the images
selected from the UBIRIS.v2 database were not enough,
and variations were artificially made by image processing
software, starting from the frontal subset. For all images, the
data were ground-truthed manually by different experts in
order to reduce subjectivity.

(a) Deviated Gaze

(b) Motion Blur (c) Clockwise Rotation

Fig. 7. Sample images from the different datasets.

B. Results

Based on the analysis of previously published research, the
type of data used in this research and the results reported by
the authors, we compared the performance of our method
to the strategies employed by Haiying and Guoping [5]
and Erdogmus and Dugelay [3]. The methods we compare
ourselves to were implemented on the scope of this work
and, although designed for different databases, were the ones
best fitting our purposes. In addition, because we found that
one of the proposed features (the intersection of polynomials)
constitutes a strong estimator even when used alone, we also
included this feature in our comparisons (Polyfit 1.). All of
the error values provided in this section correspond to the
Euclidean distance between the estimated location of the eye-
corners and the true location obtained by a manual annotation
of all the images in our datasets.



Detection Rate
o o o
PR )

o
[ &)
T

—Proposed Method

R Polyfit Interception

-+ Haiying and Guoping

‘ - - -Erdogmus and Dugelay

0 25 50 75 100 125 150
Distance (pixels)

o o
-
v
<
.

175 200

(=]
N

(a) Overall Results

1

0.8,

Detection Rate
e
>

Detection Rate
)
=y

14
kY
o
s

*[—Proposed Method
Polyfit Interception g
Haiying and Guoping £
P - - -Erdogmus and Dugelay| 5
0 25 50 75 100 125 150 175 200 G0
Distance (pixels)

— Proposed Method
Polyfit Interception
Haiying and Guoping

- - -Erdogmus and Dugelay|

25 50 75 100 125 150 175 200

Distance (pixels)

0.2 ot

(b) Temporal Region (c) Nasal Region

Fig. 8. Detection rate for frontal images.

Figure 8 gives the results obtained for frontal images,
which is the data subset that in appearance most closely
resembles the type of data the other methods are concerned
with. Figure 8(a) provides the global detection rates, and
figures 8(b) and 8(c) specify the results obtained for the
temporal and nasal eye-corners. The horizontal axes denote
the error values, and the vertical axes illustrate the proportion
of images with such error values. From the analysis, it is
evident that the proposed approach clearly outperformed
previously reported strategies in the frontal images. When the
analysis was performed separately for the nasal and temporal
corners and for the temporal region, the polynomial interpo-
lation interception was more accurate than the Erdogmus and
Dugelay method, and in most cases, it showed performance
similar o the proposed method. Regarding the nasal corners,
we observed that all three methods behave similarly for
small error values, whereas our proposal is notably better
for moderate and large error values (larger than 25 pixels).

For the sake of clarity, figure 9 compares the boxplots of
the error values observed for the proposed method and the
methods used for comparison in the temporal (black bars)
and nasal (gray bars) corners. The median of the observed
performance range (horizontal solid lines) and the first and
third quartile values of the observations (top and bottom of
the box marks) are shown. The upper and lower whiskers are
denoted by the horizontal lines outside of each box, and the
outliers are denoted by dot points. This plots highlights the
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Fig. 9. The distances between the predicted corners and the true locations
on frontal images. Black and gray represent the temporal and nasal regions,
respectively.

methods that are generally more efficient in detecting the
nasal eye-corner, with the exception of the Erdogmus and
Dugelay strategy. Again, the proposed method outperformed
the previous methods.

C. Analysis of Bias

To analyze the errors that are predominant in the outputs
of each method, for each case, we obtained a vector T =
(m,0), where m is the Euclidean distance between the
estimated (z.,y.) and true (x:,y:) corner position, and
6 is the arctangent of (z. — xt,y. — y:). The relative
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the predicted and true positions of eye-corners. The left and right images
represent the temporal and nasal corners, respectively.
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frequency of these values is illustrated in figure 10, where
the horizontal axis denotes the angle, and the vertical axis
denotes magnitude. Deviations from the proposed method
and from the polynomial interpolation interceptions are ho-
mogeneously distributed in all directions, slightly skewed
toward the [0, 7] interval. Considering that our datasets are
composed exclusively of right-eye images, the estimates tend
to be biased northeast of the true eye-corners. On the nasal
region, the prediction tends to be closer to the center of the
eye than the true location. This fact is especially evident for
the estimates using the Haiying and Guoping method. With
the Erdogmus and Dugeley approach, temporal deviations
were observed more rarely, with a slight predominance to
the right of the true corner. Whereas the other methods seem
to have a clear bias toward the center of the face in the
nasal region, deviations were spread in all directions with
the Erdogmus and Dugeley approach. This atypical behavior
shown by the Erdogmus and Dugeley method in both regions
probably results from the fact that, as this method is heavily
dependent on edge detection, it is also considerably affected
by data degradation. Notably, such distributions of deviations
are in concordance with the observed correlation values,
where a higher similarity between the proposed method, the
interception of the polynomials and the Haying and Guoping
methods was observed.

D. Robustness to Variations in the Data

Robustness is a key requirement for the proposed method,
and we aimed to assess the decrease in performance when
the quality of the data was degraded by different factors.
In this analysis, we decided to exclusively compare the
results obtained by the proposed method with those obtained
using the Haiying and Guoping approach, as the latter is
considered a state-of-the-art approach, and its performance
was closest to ours. Figure 11 summarizes the obtained error
values in the dataset, where the images were substanctially
degraded as a result of the corresponding factor. The black
boxplots denote the results of our method and the gray bars
those determined by the Haiying and Guoping method. The
analysis demonstrates the higher stability of the performance
of our method across the different datasets, as the average
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Fig. 11. The distance from the different methods’ outputs to the actual eye-
corners on frontal images. Black and gray represent the proposed method
and Haiying and Guoping’s method, respectively.
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error values are steady and remain under 50 pixels. The
performance of the Haiying and Guoping method, in con-
trast, notably diminished when handling rotated iris data,
simultaneously increasing its variance.

Figure 12 highlights these decreases in performance and
provides the detection rates with respect to the error value (in
pixels). Here, the higher slope of our method’s performance
plots for small errors is especially evident, which may
indicate that large errors in the estimates are quite unlikely,
as opposed to the values observed for the other strategy.
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Fig. 12. Detection rate as a function of the distance for all image variations.

1) Blur: Acquiring sharp data in less controlled acquisi-
tion environments is an important issue, as slight movements
of subjects often correspond to severely blurred data, a
result of small depth-of-focus ranges. Thus, the ability to
handle blurred data is a desirable property of any robust
corner detection method. Our method only slightly decreased
in performance, whereas Haiying and Guoping’s performed
better in some circumstances (distances from 55 to 130 pixel
present an higher detection rate), with blurred data than with
the focused images. The minor degradation in performance
of our proposal occurred during the stage that defines the
ROIs, as illustrated in figure 13; the edges become less
prominent in blurred data, the region growing process stops
at different iterations and consequently, the candidate search
areas are also different. This, coupled with the fact that the
blur also degrades the performance of the method used for
the extraction of the candidates, led to a worse outcome in
our proposed method.

Fig. 13.  Extraction of candidate points in frontal image and in the
corresponding blurred version.

2) Deviated Gaze: Gaze is another important factor in
less controlled acquisition environments, as it is expected that
most of the time, a subject’s head and eyes will not be aligned
with the camera. In this case, our method behaves robustly,
which was regarded as extremely positive and may indicate
good performance with this type of data. There was a typical
case in which our method performed better than the others:
when the images had a visible background or notable facial



elements (e.g., the nasal bone). Figure 14 illustrates such
cases and highlights the robustness of the proposed method
for deviations in gaze.

Fig. 14. An illustration of the results typically obtained in gaze-deviated
images. White squares and black circles represent the outputs of our method
and Haiying and Guoping’s method, respectively.

3) Rotation: Rotation is another case of special interest,
and significant rotations in data are expected as a result of
different types of movements in an uncontrolled acquisition
scene. Again, our method showed a much more robust
behavior than the approach of Haiying and Guoping, which
had a significantly diminished performance. We believe that
this was the result of the vertical and horizontal variance
projection functions that produce different results in rotated
data and, consequently, bias further processing. This is
highlighted by figure 15(a), in which a visible predominant
bias in the opposite direction of the rotation can be seen. This
is in opposition to our method, as illustrated in figure 15(b),
in which a different behavior for each corner was observed:
in the nasal corner, vectors counteract the direction, but angle
changes are minimal. For the temporal corner, the prediction
tends to follow the rotation with a larger angle variation.
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Fig. 15. The relative frequencies of the deviations in clockwise rotated
data. The images on the left and right images are of the temporal and nasal
regions, respectively.

IV. CONCLUSIONS

Several researchers are working on eye-corner detection,
and the performances of different proposed methods have
been found to significantly diminish in response to degraded
data acquired under less controlled conditions. These short-
comings led us to propose a new method for the detection
of eye-corners in periocular images that simulate real-world

data. We compared the results obtained by our proposal
to other state-of-the-art methods and concluded that our
method consistently outperformed these methods, both when
operating with noise-free and with degraded data (rotated,
blurred, affine-transformed and with significant differences
in scale). Finally, these improvements were obtained without
significant increases in the computational demands of the
task, which is a significant asset, considering the real-
time demands that eye-corner detection techniques typically
impose.
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Chapter 8

Segmenting the Periocular Region using a
Hierarchical Graphical Model Fed by Texture /
Shape Information and Geometrical Constraints

8.1 Overview

This chapter consists of the following article:

Segmenting the Periocular Region using a Hierarchical Graphical Model Fed by Texture / Shape
Information and Geometrical Constraints

Hugo Proenca, Joao C. Neves and Gil Santos

IEEE International Joint Conference on Biometrics - IJCB ’14, September 19 - October 2, 2014,
Clearwater, Florida, USA
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Segmenting the Periocular Region using a Hierarchical Graphical Model Fed by
Texture / Shape Information and Geometrical Constraints

Hugo Proenca, Jodao C. Neves and Gil Santos
IT - Instituto de Telecomunicacdes
University of Beira Interior, Portugal
{hugomcp, jcneves, gsantos}@di.ubi.pt

Abstract

Using the periocular region for biometric recognition is
an interesting possibility: this area of the human body is
highly discriminative among subjects and relatively stable
in appearance. In this paper, the main idea is that improved
solutions for defining the periocular region-of-interest and
better pose / gaze estimates can be obtained by segment-
ing (labelling) all the components in the periocular vicin-
ity. Accordingly, we describe an integrated algorithm for
labelling the periocular region, that uses a unique model
to discriminate between seven components in a single-shot:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution fuses texture / shape descriptors and geometrical
constraints to feed a two-layered graphical model (Markov
Random Field), which energy minimization provides a ro-
bust solution against uncontrolled lighting conditions and
variations in subjects pose and gaze.

1. Introduction

Motivated by the pioneering work of Park er al. [14],
the concept of periocular recognition has been gaining rel-
evance in the biometrics literature, particularly for uncon-
trolled data acquisition setups. For such cases, the idea is
that - apart the iris - additional discriminating information
can be obtained from the skin and sclera textures, and the
shape of eyelids, eyelashes and eyebrows.

Most of the relevant periocular recognition algorithms
work in a holistic way, i.e., they define a region-of-interest
(ROI) around the eye and apply a feature encoding strat-
egy independently of the biological component at each po-
sition. The exceptions (e.g., [17] and [6]) regard the iris
and the sclera components, for which specific feature en-
coding / matching algorithms are used. This observation
leads that some components (e.g., hair or glasses) might be
erroneously taken into account and bias the recognition pro-
cess.

The automatic labelling (segmentation) of the compo-
nents in the periocular region has - at least - two obvious
advantages: it enables to define better ROIs and conducts to
more accurate estimates of subjects’ pose and gaze. Hence,
this paper describes an image labelling algorithm for the
periocular region that discriminates between seven com-
ponents (iris, sclera, eyelashes, eyebrows, hair, skin and
glasses), according to a model composed of two phases:

1. seven non-linear classifiers running at the pixel level
are inferred from a training set, and provide the poste-
rior probabilities for each image position and class of
interest. Each classifier (neural network) is specialized
in detecting one component and receives local statis-
tics (texture and shape descriptors) from the input data;

2. the posteriors based on data local appearance are com-
bined with geometric constraints and components’ ad-
jacency priors, to feed a hierarchical Markov Ran-
dom Field (MRF), composed of a pixel and a com-
ponent layer. MRFs are a classical tool for vari-
ous computer vision problems, from image segmenta-
tion (e.g., [10]), image registration (e.g., [8]) to object
recognition (e.g., [5]). Among other advantages, they
provide non-causal models with isotropic behavior and
faithfully model a broad range of local dependencies.
The model proposed in this paper inherits some in-
sights from previous works that used shape priors to
constraint the final model (e.g., [3]) and multiple lay-
ered MRFs (e.g., [19]).

To illustrate the usefulness of the proposed algorithm,
we compare the effectiveness of the Park et al.’s [14] recog-
nition method, when using the ROI as originally described
and according to an improved version, that considers
the center of mass of the cornea as reference point (less
sensitive to gaze) and avoids that hair and glasses inside
the ROI are considered in feature encoding / matching. The
observed improvements in performance anticipate other
benefits that can be attained by labelling the periocular
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region before recognition: pose / gaze estimates based in
the labelled data and development of component-specific
feature encoding / matching strategies.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the most relevant periocular recognition
algorithms. Section 3 provides a description of the proposed
model. Section 4 regards the empirical evaluation and the
corresponding results. Finally, the conclusions are given in
Section 5.

2. Periocular Recognition: Literature Review

The first work in this field was published in 2009, due
to Park et al. [14]. They characterised the periocular re-
gion by local binary patterns (LBP), histograms of ori-
ented gradients (HOG) and scale-invariant feature trans-
forms (SIFT), fused at the score level. Subsequently, the
same authors [13] described additional factors that affect
performance, including segmentation inaccuracies, partial
occlusions and pose. Woodard et al. [20] observed that fus-
ing the responses from periocular and iris recognition mod-
ules improves performance with respect to each system con-
sidered individually. Bharadwaj et al. [4] fused a global
descriptor based on five perceptual dimensions (image nat-
uralness, openness, roughness, expansion and ruggedness)
to circular LBPs. The Chi-square distances from both types
of features were finally fused at the score level. Ross et
al. [16] handled challenging deformed samples, using prob-
abilistic deformation models and maximum-a-posteriori es-
timation filters. Also concerned about robustness, Woodard
et al. [21] represented the skin texture and color using sep-
arate features, that were fused in the final stage of the pro-
cessing chain. Tan et al. [18] proposed a method that got the
best performance in the NICE: Noisy Iris Challenge Evalu-
ation'. contest. This method is actually a periocular recog-
nition algorithm: texton histograms and semantic rules en-
code information from the surroundings of the eye, while
ordinal measures and color histograms encode the iris data.
Oh et al. [9] combined sclera and periocular features: direc-
tional periocular features were extracted by structured ran-
dom projections, complemented by a binary representation
of the sclera. Tan and Kumar [17] fused iris information
(encoded by Log-Gabor filters) to an over-complete repre-
sentation of the periocular region (LBP, GIST, HOG and
Leung-Malik Filters). Both representations were matched
independently and fused at the score level.

3. Proposed Method

As Fig. 1 illustrates, the proposed MRF is composed of
two layers: one works at the pixel level, with a bijection
between each image pixel and a vertex in the MRF. The

"http://nice2.di.ubi.pt/
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Figure 1. Structure of the MRF that segments the periocular re-
gion.

second layer regards the major components in the perioc-
ular vicinity, with six vertices representing the eyebrows,
irises and corneas from both sides of the face. The insight
behind this structure is that the pixels layer mainly regards
the data appearance, while the components layer represents
the geometrical constraints in the problem and assures that
the generated solutions are biologically plausible.

Let G = (V,&) be a graph representing a MRF, com-
posed of a set of ¢, vertices V, linked by ¢. edges £. Let
t,, be the number of vertices in the pixels layer and let ¢, be
the number of vertices in the components layer, such that
ty = tp + tc. Let €(x,y) denote the biological component
at position (z,y) of an image and T; be the component’s
type of the j** component node: either ’iris’, *cornea’ or
"eyebrow’.

The MREF is a representation of a discrete latent ran-
dom variable L = {L;},Vi € V, where each element
L; takes one value [; from a set of labels. Let I =
{le,.. . le,, leyv1s -+ -5 1,40} e one configuration of the
MRE. In our model, every component node is directly con-
nected to each pixel node and the pixel nodes are connected
to their horizontal / vertical neighbors (4-connections).
Also, the edges between component nodes correspond to
geometrical / biological constraints in the periocular region:
the nodes representing both irises, corneas and eyebrows are
connected, as do the iris, cornea and eyebrow nodes of the



same side of the face. Note that the proposed model does
not use high-order potentials. Even though there is a point
in Fig. 1 that joins multiple edges, it actually represents
overlapped pairwise connections between one component
and one pixel vertex.

The energy of a configuration [ of the MRF is the sum of
the unary 6;(I;) and pairwise 6; ;(l;, ;) potentials:

El)=>"0:(l)+ > 0:,(:1)). (1)
icV (i.4)€E
According to this formulation, labelling an image is
equivalent to infer the random variables in the MRF by min-
imizing its energy:

[=arg mlin E(), )
where {I,... ,l}p} are the labels of the pixels and
{ftp+1, e th+tc} specify the components’ parameteriza-

tions. In this paper, the MRF was optimized according to
the Loopy Belief Propagation [7] algorithm. Even though
it is not guaranteed to converge to global minimums on
loopy non-submodular graphs (such as our MRF), we con-
cluded that the algorithm provides visually pleasant solu-
tions most of the times. As future work, we plan to evaluate
the effectiveness of our model according to more sophisti-
cated energy minimization algorithms (e.g., sequential tree-
reweighed message passing [11]).

3.1. Feature Extraction

Previous works reported that the hue and saturation
channels of the HSV color space are particularly power-
ful to detect the sclera [15], whereas the red / blue chroma
values provide good separability between the skin and non-
skin pixels [1]. Also, the iris color triplets are typically dis-
tant from the remaining periocular components and there is
a higher amount of information in patches of the eyebrows
and hair regions than in the remaining components. Ac-
cordingly, a feature set at the pixel level is extracted, com-
posed of 34 elements (Fig. 2): {red, green and blue channels
(RGB); hue, saturation and value channels (HSV); red and
blue chroma (yCbCr); LBP and entropy in the value chan-
nel}, all averaged in square patches of side {3, 5, 7} around
the central pixel. Also, the convolution between the value
channel and a set of Gabor kernels G' complements the fea-
ture set:

2 2
G[xvyaw7W7 U] = exp |:x72y
(o2

} exp[2rwi®]  (3)
being ® = x cos(p) + ysin(y), w the spatial frequency,
the orientation and o the standard deviation of an isotropic

Gaussian kernel (w € {3,3},0 € {0, 3}, 0 = 0.65w).

f) Gabor (w = £, = 0)

e)Gabor (w = 2,0 = %)

Figure 2. Illustration of the discriminating power of the features
extracted, for the seven classes considered in this paper.

3.2. Unary Potentials

Let v : N2 — R3* be the feature extraction func-
tion, that for each image pixel (z,y) returns a feature vec-
tor fY(xv y) € ]R34' LetI' = [,Y(‘Z‘la y1)7 ce 77(1‘7“ yn)}T
be a n x 34 matrix extracted from a training set, that is
used to learn seven non-linear binary classification models,
each one specialized in detecting a component (class) w; €
{Iris, Sclera, Eyebrows, Eyelashes, Hair, Skin, Glasses}.
Let ; : R3* — [0,1] be the response of the i*" non-
linear model, used to obtain the likelihood of class w;:
p(m (v(z,y)) |wz) According to the Bayes rule, assuming

equal priors, the posterior probability functions are given
by:

P(m (v(@,y)) |w1)
P(wilni(1(,9)) ) = S P(ni (@) s )

The unary potentials of each vertex in the pixels layer are
defined as 6" (I;) = 1 — p(wi\m (v(, y)))

Each label in the components layer represents a param-
eterisation of an ellipse (found by the Random Elliptical
Hough Transform (REHT)) [2] that roughly models the eye-
brows, corneal or iris regions. Starting from images la-
belled by the index of the maximum posterior probability

I, (z,y) = argmax; p(wjmj (v(x,y))) (upper image in
Fig. 3), a binary version per component can be obtained
(bottom images in Fig. 3):

1 L if Ly (z,y) =1

L (z,y) = { 0 , otherwise ®
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The output of the REHT algorithm in I, (x,
the unary potential of the component vertices: 956)(&) =
—log (k(i)),Yi € tpi1,...,tpte, being k(i) the votes re-
turned by the REHT for the i*" ellipse parameterisation.

y) gives

\ a) I (z,y)

) Iy (@, y) (iris)  ©) Imy o (2, y) (cornea)  d) I,5 (, y) (eyebrow)

Figure 3. (Upper row) Example of an image labelled by the
maximum of the posteriors given by the classification models
i (fy(:c, y)) The red ellipses in the bottom images represent the
parameterisations returned by the REHT algorithm for the left iris,
cornea and eyebrow.

3.3. Pairwise Potentials

There are three types of pairwise potentials in our model:
1) between two pixel nodes; 2) between two component
nodes; and 3) between a pixel and a component. The
pairwise potential between pixel nodes spatially adjacent
95? (I3,1;) is defined as the prior probability of observing
labels I;,1; in adjacent positions of a training set (e.g., it is
much more probable that an “eyebrow” pixel is adjacent to
a ”’skin” pixel than to an “iris” one):

1

0P (1;,1;) =
Ul)) = TP, y) = on, € ) = o)

2y

; (0)

where P(.,.) is the joint probability, (z',3’) and (z,y) are
4adjacent positions and ap € R™ avoids infinite costs (like-
wise, all a; terms below are regularization terms).

The pairwise potentials between component nodes con-
sider the geometrical constraints in the periocular area, i.e.,
enforce that the irises are inside the cornea, and below
the eyebrows. Also, both irises, corneas and eyebrows
should have similar vertical coordinate and similar size. Let
(w4, s, ai, bi, ;) be the it parameterisation of an ellipse,
being (z;,y;) the ellipse centre, (a;,b;) its major / minor
axes and ¢; the rotation. For pairs of nodes of the same type
(%; = T;), similar vertical coordinates and similar sizes are
privileged:
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9(01)(1175 ) = a1lyi — y;| + azla; + by —a; —bi[. (B)

For edges connecting the cornea (i*" node) and the eye-
brow (j*" node) we privilege similar horizontal coordinates
and locations having the eyebrow above the cornea:

01D (13, 1;) = asla; — ;] + asmax{0,y; —y;}. (9

Regarding the iris / cornea pairwise potentials, we pe-
nalize parameterizations with portions of the iris outside the
cornea:

ZT1 Zyi ¢(xiayiaxj7 Yjs ajvbj7 (p])

(e3)7 7.y _ _
0; ;" (li 1) = as (1 >N Zy 1
(10)

being (z;,y;) a pixel labelled as iris and
(24, Yis T, Y, 45,05, ;) an indicator function that
verifies if that position is inside the ellipse defined by the
jt" parameterisation (7). Overall, the pairwise potentials in
the components layer are defined as:

6% (1, 1;) Ze“’“)(ll,z (11)

Lastly, the pairwise potentials between pixels and com-
ponents enforce that pixels inside a component parameter-
isation are predominantly labelled by the value that cor-
responds to that type of node, whereas pixels outside that
parameterisation should have label different of the compo-
nent’s type. Let (;L'jk, yjk) be the coordinates of the ellipse
defined by the j*" parameterization. The pairwise cost be-
tween the i*" pixel node and the j** component node is
given by:

ming ||(z:, ¥i) — (@55, Yjx)||2,if l; € T;
and w($27y17x]7yjaaj7bjagpj) =0
0,ifl; ¢ T
and Y (4, ys, ¢4, Y5, a5, b5, 05) =0
0,if l; € {Ij
and ¥ (3, yi, 25, Y;, a5, bj, 0;) = 1
maxy ||[(zi, yi) — (€jk, yjn)||2, if l; & T;
and 1/’(%,%7%7%,%7537%03) =1
(12)

6 (13,1;) =

where ||.|| is the Euclidean distance.

4. Experiments

Our experiments were carried out in a data set com-
posed of 5,551 visible-light images (with resolution 800 x



(cos(<pi)(a:7xi)+sin(tpi)(y*yz‘))2

" ( sin(gal)(xfmi)%»cos(%)(y*lli)) ’

1 ,if <1
¢(way:$i7yiaai7bi>¢i) = ’ b? - (7)
0 , otherwise
300) containing the periocular regions from both sides of Labeling Error NN (%) \ MRF (%)
the face. These images were the source for the UBIRIS.v2 Component FP FN ‘ FP FN
fiataset:. they were collected in 1n§00r unco.nst.rame.d light- Itis 112+020 | 906+ 180 | 017 £003 | 261+ 051
ing environments and feature significant variations in scale, Sclera 161 4£049 | 5174083 | 0194003 | 3.60+ 082
subjects’ pose and gaze. For learning / evaluation purposes, Eyebrows 2904040 | 693+£095 | 0794028 | 225+ 046
200 images were manua}lly lab.elled, covering th'e seven Eyelashes 1474038 | 5024 113 | 0934023 | 0.62+053
cl.a.ss.es we aim to deal with. This set was C.llVldG.:d into two Hair 3164056 | 674127 | 1264030 | 3.09 L 0.88
disjoint pgrts: 1) one ysed to learn Fhe 'class1ﬁcat10n models Skin 410+ 1.03 | 4094069 | 2.63+£043 | 386+ 101
and to estimate the prior unary / pairwise costs of the MRF; Glasses 108 £022 | 5034145 | 0062001 | 0.60%0.09

and 2) the complementary part served for quantitative per-
formance evaluation.

To obtain the seven classification models, we used feed-
forward neural networks with three layers and {34 : 17 : 1}
topology, with tan-sigmoid transfer functions in the input
and hidden layers and linear transfer functions in the out-
put layer. The learning sets were always balanced (ran-
dom sampling) and the Resilient Back-propagation algo-
rithm used to learn the classifiers. Regarding the MRF opti-
mization, every image was resized to 200 x 75 pixels, i.e.,
tp, = 15,000 in our MRFs. Also, a = {0.01, 1, 2,10, 10}.

4.1. Segmentation Performance

Fig. 4 illustrates the results typically attained by the pro-
posed model. Their visual coherence is evident, where
regions labelled as hair appear in pink, eyebrows in yel-
low, irises in green, eyelashes in black, sclera in blue and
glasses in blueberry color. Also, solutions were biologi-
cally plausible in the large majority of the cases, for vari-
ous hairstyles, and different subjects poses / gazes. A par-
ticularly interesting performance was observed for glasses,
where the algorithm attained remarkable results for various
types of frames. This was probably due to the fact that
glasses were the unique non-biological component among
the classes considered, which might had increased their dis-
similarity with respect to the remaining components.

In opposition, the most concerning cases happened when
the eyebrows and the hair were overlapped (bottom-right
image in Fig. 4) . Also, for heavily deviated gazes, the
sclera was sometimes under-segmented (typically, by non-
detecting the less visible side). In opposition, eyelashes
tended to be over-segmented, with isolated eyelashes be-
ing grouped in large eyelash regions, which might be due
to excessive pairwise cost for observing different labels in
adjacent positions of the pixels layer.

It should be noted that «; were found in an empirical
and independent way, i.e., no exhaustive evaluation of com-

Table 1. Average pixel labelling errors per component, when con-
sidering exclusively the arg max; p (wj |75 ('y(x, y))) value (NN
column) and with the proposed MRF model (MRF column).

bined configurations was carried out, nor any parameter op-
timization algorithm was used, which also points for the ro-
bustness of the proposed model against sub-optimal param-
eterizations. Table 1 gives the error rates per class, when
considering exclusively the first phase of our model (maxi-
mum of the posterior probabilities, column "NN”’) and the
full processing chain (MRF optimization, column "MRF”).
In this table, FP stands for the false positives rate, whereas
FN refers to the false negatives rate. In all cases, it is evi-
dent that the MRF substantially lowered the labeling error
rates, essentially by imposing smoother responses and con-
straining the range of biologically acceptable solutions.

As the machine learning algorithm described in this pa-
per is supervised, it is important to perceive its variations
in performance with respect to the amount of learning data
used to create the classification models and the prior unary
/ pairwise potentials. To this end, performance was com-
pared while varying the number of images used in learn-
ing, and keeping constant the number of images used in
performance evaluation (to assure comparable bias / vari-
ance scores). Figure 5 expresses the results: the horizontal
axis gives the number of learning images used and the verti-
cal axis is the corresponding pixel classification error, with
the corresponding 95% confidence intervals. We observed
that when more than 35 images were used in learning, the
pixel classification errors tend to converge. This is evident
in terms of the absolute error values and of the narrowness
of the confidence intervals.
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Figure 4. Examples of the segmented periocular regions. “Hair” class is represented by the pink color, ”Eyebrows” appear in yellow, "Iris”
in green, "Sclera” in blue, ”Glasses” in blueberry and “Eyelashes” in gray. Pixels classified as ’Skin” are transparent.
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Figure 5. Variations in labelling errors with respect to the number
of images used in the learning phase of the algorithm.

4.2. Periocular Biometrics Performance

To exemplify the usefulness of periocular segmentation
algorithms, one all-against-all matching experiment was
designed, using the method of Park et al. [13] and two dif-
ferent strategies to define the ROI: as baseline, the iris center
was the unique reference for the ROI (upper-left image in
Fig. 6). Next, according to the labels provided by the MRF,
the center of mass of the cornea was used to define the ROI,
which is obviously less sensitive to changes in gaze. Also,
regions labelled as hair and glasses were disregarded from
the recognition phase, considering that they likely suffer of
significant variations among samples of a subject (upper-
right image in Fig. 6). The Receiver Operating Character-
istic curves for both variants are compared in the bottom
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plot of Fig. 6 and turn evident the benefits attained due to
data segmentation (Equal error rate of 0.128 for the clas-
sical ROIs and 0.095 for the improved ROIs configuration).
The improvements were substantial in all regions of the per-
formance space, having at some operating points increased
the system sensitivity over 10%. It should be stressed that
no particular concerns were taken in optimizing the recog-
nition method for the used data set, meaning that the focus
was putted much more in the performance gap between both
recognition schemes than in the recognition errors in abso-
lute values, which are out of the scope of this paper.

5. Conclusions and Further Work

In this paper we have proposed an algorithm for one-
shot labelling of all the components in the periocular region:
iris, sclera, eyelashes, eyebrows, hair, skin and glasses. Our
solution is composed of two major phases: 1) a group of
local classification models gives the posterior probabilities
for each pixel and class considered; 2) this appearance-
based information is fused to geometrical constraints and
shape priors to feed a two-layered MRF. One layer repre-
sents pixels, and analyzes the local data appearance while
enforcing smoothness of the solutions. The second layer
represents components, and assures that solutions are bio-
logically plausible. By minimizing the MRF energy, the
label of each pixel is found, yielding solutions that are ro-
bust against changes in scale, subjects’ pose and gaze and
dynamic lighting conditions.

As further directions for this work, our efforts are fo-
cused in estimate gaze / pose from the labelled data, in order
to compensate for deviations before the recognition process.
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Figure 6. Improvements in periocular recognition performance due
to the semantic categorization (labeling) of each pixel in the peri-
ocular region.
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Chapter 9

A Fusion Approach to Unconstrained Iris

Recognition

9.1 Overview

This chapter consists of the following article:

A Fusion Approach to Unconstrained Iris Recognition

Gil Santos and Edmundo Hoyle

Pattern Recognition Letters, 33(8), 984-990, June 2012.
DOI: 10.1016/j.patrec.2011.08.017

According to SClmago Journal & Country Rank, this journal’s index' for the 2013 year are as

follows:
Category Quartile SJR
Computer Vision and Pattern Recognition Q1
Artificial Intelli 2
rtificial Intelligence Q 0,995
Signal Processing Q1
Software Q1

'The SCImago Journal & Country Rank (SJR) indicator is a measure of journal’s impact, influence or
prestige. It expresses the average number of weighted citations received in the selected year by the
documents published in the journal in the three previous years. http://www.scimagojr.com
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ABSTRACT

As biometrics has evolved, the iris has remained a preferred trait because its uniqueness, lifetime stability
and regular shape contribute to good segmentation and recognition performance. However, commer-
cially deployed systems are characterized by strong acquisition constraints based on active subject coop-
eration, which is not always achievable or even reasonable for extensive deployment in everyday
scenarios. Research on new techniques has been focused on lowering these constraints without signifi-
cantly impacting performance while increasing system usability, and new approaches have rapidly
emerged. Here we propose a novel fusion of different recognition approaches and describe how it can
contribute to more reliable noncooperative iris recognition by compensating for degraded images cap-
tured in less constrained acquisition setups and protocols under visible wavelengths and varying lighting
conditions. The proposed method was tested at the NICE.II (Noisy Iris Challenge Evaluation - Part 2) con-

test, and its performance was corroborated by a third-place finish.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The use of the iris as main biometric trait has emerged as one of
the most recommended methods due not only to the possibility of
noncontact data acquisition and to its circular and planar shape that
facilitates detection, segmentation and compensation for off-angle
capture but also for its predominately randotypic appearance.
Although these factors contribute to high effectiveness in the cur-
rently deployed iris-recognition systems, their typical scenarios
are quite constrained: subjects stop and stare relatively close to
the acquisition device while their eyes are illuminated by a near-
infrared light source, enabling the acquisition of high-quality data.
As reported in the study conducted by Aton Origin for the United
Kingdom Passport Service,! imaging constraints are a major obstacle
for the mass implementation of iris-based biometric systems. Notably,
several researchers are currently working on minimizing the con-
straints associated with this process, in a way often referred to as non-
cooperative iris recognition, referring to several factors that can make
irisimages nonideal, such as at-a-distance imagery, on-the-move sub-
jects, and high dynamic lighting variations.

In this study, we stress multiple recognition techniques, each
one based on a different rationale and exploiting different proper-
ties of the eye region. Furthermore, we show how their fusion can
increase the robustness to the degraded data typically captured in
unconstrained acquisition setups.

* Corresponding author. Tel.: +351 92 683 24 68.
E-mail addresses: gmelfe@ubi.pt (G. Santos), edhoyle@pads.ufrj.br (E. Hoyle).
! http://www.ips.gov.uk/cps/rde/xchg/ips_live/hs.xsl/publications.htm.

0167-8655/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2011.08.017

The recognition techniques used in our proposition can be di-
vide in two main categories. In one approach, we use wavelet-
based iris-feature-extraction methods, complemented with a
zero-crossing representation (Hoyle et al., 2010, 2009) and the
analysis of iriscode-matching bit distribution (Santos and Proenca,
2010). Complementarily, we expanded the extraction of features to
the ocular region outside the iris, as recent studies (Savvides et al.,
2010; Miller et al., 2010; Park et al., 2009) have suggested using
these data, which appear to be a middle ground between iris and
face biometrics and incorporates some advantages of each.

The performance of the fusion method we propose is high-
lighted by its third-place finish at the NICE.II (Noisy Iris Challenge
Evaluation - Part 2), an international contest involving almost sev-
enty participants worldwide.

The remainder of this paper is structured as follows: Section 2
describes the steps for iris-boundary localization and normaliza-
tion, feature extraction and matching for the different approaches,
and how their outputs are joined; Section 3 details the experimen-
tal process followed by a discussion of the obtained results; finally,
Section 4 states the conclusions.

2. Proposed methodology

This section describes the five steps of our approach: iris-
boundary detection, iris normalization, feature extraction, match-
ing and decision ensemble (as schematized in Fig. 1). Furthermore,
for feature extraction and matching, five recognition techniques
are detailed.

101



Biometric Recognition in Unconstrained Environments

G. Santos, E. Hoyle/ Pattern Recognition Letters 33 (2012) 984-990

FEAT. EXTRACTION

MATCHING

985

Scale-Invariant Distance-Ratio
IRIS IMAGE Feature Transform Based Scheme [ |
* BOUNDARIES \ \ AN Local Binary - Euclidean
SEGMENTATION DETECTION Patterns o Distance ]
MASK
1-D Wavelet Dissimilarity Using ‘( DECISION
Zero-Crossing " | Correlation Coeficient 'L ENSEMBLE
\d
IRIS & MASK \ | 2-D Dyadic Wavelet Dissimilarity Using | |
NORMALIZATION ] "|  Zero-Crossing | Correlation Coeficient
Comparison o Spatial and ||
Maps "| Frequency Analysis

Fig. 1. Proposed methodology.

2.1. Iris boundaries detection

The first task was to locate the circles that best approximate iris
and pupil boundaries, a necessity in the majority of methods used
for this work. To accomplish this, we utilized a binary mask repre-
senting only parts containing iris information, created using the
method proposed by Tan et al. (2010), winner of the NICE.I contest.

The steps taken in boundary approximation (Fig. 2(h)) were as
follows:

e A contour is extracted from the segmentation mask Fig. 2(b),
created with Tan et al. method (Tan et al., 2010). A pixel is part
of such contour if it is nonzero, and connected to at least one
zero-valued pixel.

o From the contour Fig. 2(c) of the segmentation mask Fig. 2(b), a
Hough transform (Ballard, 1981) is applied to obtain the circle
best fitting the iris Fig. 2(d).

e Convert the eye image Fig. 2(a) to grayscale and enhance it
through histogram equalization Fig. 2(e).

e To the enhanced image Fig. 2(e), a Canny edge detection (Canny,
1986) is applied inside the circular region Fig. 2(f) concentric
with the iris and 2/3 its radius, producing the edges shown in
subFig. 2(g).

o Finally, a Hough transform is used on the resulting edge map
Fig. 2(g) to obtain the circle that best fits the pupil.

Although this method produces good iris-boundary approxima-
tions, the estimated pupil limits sometimes diverge from ideal con-
tours (e.g. Fig. 3). The main reason for this occurrence is poor
lighting conditions when imaging heavily pigmented irises, which
results in a low contrast ratio between the iris and the pupil.

2.2. Iris normalization

The iris-normalization process aims to obtain invariance with
respect to size, position and pupil dilatation in the segmented iris
region, which is accomplished by assigning each pixel to a pair of
real coordinates (r,0) over the double dimensionless pseudopolar
coordinate system. For this purpose, we proceeded with the rub-
ber-sheet model originally proposed by Daugman (2004).

I(x(r,0),y(r,0)) — I(r,0) (1)

x(r,0) = (1 —1)xp(0) + rx5(0)
y(r,0) = (1 —1)y,(0) + 1y5(0)

where r and 6 denote the radius and the angle, respectively, and
x(r,0) and y(r,0) are defined as linear combinations of both the set
of pupillary boundary points (x,(0),y,(0)) and the set of limbus
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(a) Eye image (b) Segmentation mask

(c) Segmentation mask contour

(d) Best fitting circle

—~— -y
7

(e) Enhanced image

(g) Edge points from the search (h) Iris and pupil boundaries ap-
area proximation

Fig. 2. Illustration of the steps taken during the segmentation stage.

boundary points along the outer perimeter of the iris (x(0),ys(6))
bordering the sclera.

Eqgs. (1) and (2) give a transformation similar to that depicted in
Fig. 4: subfigure (a) is the normalized iris image; subfigure (b)
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Fig. 3. Illustration of unsuccessful inner boundary detection.

(a) Normalized iris image

e

(b) Normalized segmentation mask

(c) Normalized iris image with occlusion zeroed

Fig. 4. Normalized images. Iris data are represented in grayscale.

represents the normalization of its mask (occlusions being the
black region); and subfigure (c) is the normalized iris image where
the occlusion has been zeroed. In either case, no interpolation was
used, being chosen the nearest pixel to fill eventual gaps.

2.3. Feature extraction

Feature extraction and representation varies according to the
employed method, as detailed herein.

2.3.1. 1-D wavelet zero-crossing representation

The representation method applied here is an extension of the
Boles method (Boles and Boashash, 1998; Boles, 1997). Other stud-
ies (Hoyle et al., 2010, 2009) have shown that the proposed exten-
sion significantly improves the recognition performance.

The starting point for iris representation is the pixel-intensity
data for the normalized iris image. In this representation, two nor-
malized images are analyzed - with and without zeroed occlusion
- as shown in the Fig. 4. Each row of the normalized images forms a
vector which is later treated as a single-period sample of a one-
dimensional periodic signal. A 1-D Gaussian wavelet transform
(Daubechies, 1992) is applied to each row vector and decomposed
into different resolution levels. The zero-crossing representation is
then calculated for each row and resolution level. Zero crossings

0.4r (] ) T

()]
©
2
a
£
<
k]
[]]
© |
I
= o4 il |
[
|I |
!
-0.6} l: 1
1 50 100 150 200

Pixel position in a row of the normalized image

Fig. 5. Wavelet and zero-crossing representations.

occur where wavelet signals have abrupt changes in signal ampli-
tude. Once the zero-crossings have been located, the average value
between each two consecutive zero-crossing points in the wavelet
output is computed.

Illustrated in Fig. 5 are wavelets for one resolution level (blue?
and red dashed lines) and the respective zero-crossing representa-
tion (blue and red solid lines) from the same row of both the nor-
malized iris (blue) and zeroed image (red), as well as the final zero-
crossing representation (black line). As shown here, these wavelets
(and their respective zero-crossing representations) differ at the
regions where occlusion has been identified (the zeroed image).
The final representation (black solid line in Fig. 5) is produced by
starting from the zero-crossing representation (solid blue line) of
the normalized iris image (Fig. 4(a)) and zeroing where it differs
from the image (red solid line) for which occlusion was considered
(Fig. 4(c)).

The values from the black solid line used in the iris representa-
tion were extracted from a 200 x 16 pixels normalized iris image,
decomposed into three resolution levels (2, 3 and 4) for each row,
resulting in a matrix of 48 rows by 200 columns.

2.3.2. 2-D dyadic wavelet zero-crossing representation

The earlier representation method used a 1-D Gaussian wavelet
transform for each row of the normalized iris image. Here, a 2-D
Daubechies dyadic wavelet transform (Daubechies, 1992) is ap-
plied instead.

To extract features from the normalized iris image, it is first
convolved with a 2-D dyadic wavelet low-pass filter, minus the
estimated value of both normalized iris images (Figs. 4(a) and (c)).

The resulting information matrices are then processed using the
same technique for each row as detailed in Section 2.3.1, to obtain
the final zero-crossing representation (Fig. 5 - black line) and rep-
resent the iris in a 200 x 16 matrix.

2.3.3. Periocular

New trends in biometrics (Park et al., 2009; Woodard et al.,
2010) suggest the use of periocular information as an important
addition in noncooperative biometric recognition, as information
derived from this area is less prone to degradation in visible wave-
lengths than other traits (e.g., the iris). Representing a tradeoff be-
tween facial and iris recognition techniques, this method has the
advantage of not requiring any additional equipment, as usually

2 For interpretation of color in Figs. 4 and 5, the reader is referred to the web
version of this article.
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Fig. 6. Steps for LBP feature extraction.

such information is not discarded in iris databases. This technique
is also less vulnerable to problems resulting from a lack of proper
illumination or low-resolution acquisition, motion blur and vary-
ing imaging distances.

For the purpose of this work, we used the simple yet effective
analysis suggested by Park et al. (2009).

Distribution-based descriptors. The iris location and size being
known, images were aligned and normalized for both scale and
translation as a set of regions of interest (Fig. 6) were defined
according to those parameters. As shown here, iris size is propor-
tional to the sides of each square region, and the central one is con-
centric with the iris itself.

Local Binary Pattern Pietikainen (2005) descriptors were then
extracted, as depicted in Fig. 6. Using pixel intensities in a square
window iterated over the entire region of interest, the difference
between the central pixel and its eight neighbors was computed
and its signal used to produce a binary result (thresholded values).
Converting those results to decimal, values from each region were
then quantized into eight-bin histograms, which upon concatena-
tion produce the complete 280-feature array (35 regions x 8 bins
per region).

Scale-Invariant Feature Transform. Differing from the previ-
ous method, where features were only extracted from the region
closest to the eye, the Scale-Invariant Feature Transform (SIFT)
(Lowe, 2004) was applied to all available data, here seeking salient
regions (e.g., facial marks). SIFT is one of the most popular descrip-
tors for image point matching, as it can achieve invariance to scale
and rotation and is also robust to affine distortion. The method is
based on the extraction of key points represented by vectors
containing scale, orientation and location information. To achieve
those results, a publicly available SIFT implementation® was used,
and its parameters optimized based on tests performed on the
training dataset.

2.3.4. Comparison maps

This approach (Santos and Proenga, 2010) can be regarded as an
extension to the widely known Daugman method (Daugman,
2004), which is the most widely acknowledged, with great accep-
tance over the scientific community.

3 VLFeat open-source library http://www.vlfeat.org/.
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This method begins with the detection and segmentation of the
iris. For our approach, we used the procedures detailed above for
the iris-boundary detection and normalization, except for the nor-
malized iris sizes, which were 450 x 64 pixels for both the iris
(Fig. 4(a)) and the noise mask (Fig. 4(b)).

Later, features were extracted through the convolution of the
normalized data with a bank of 2-D Gabor wavelets, followed by
a quantization stage that produced a binary iriscode, in which every
complex-valued bit hge 1m) depends on the sign of the 2-D integral.

We decided on the use of a very small yet optimized wavelet
bank, for which performance was optimized using the training
data. For such optimization, we parameterized the wavelets cy-
cling through a range of scales, orientations and frequencies we
found fit, searching for the configuration that maximized the
decidability (13).

2.4. Matching

In this section, the matching process is described for each one of
the feature-extraction methods.

2.4.1. 1-D and 2-D wavelet zero-crossing representation

To compute the dissimilarity between two irises, their zero-
crossing representations are compared. Boles (1997) proposed four
functions to measure the dissimilarity between the signals. In this
work, we used the dissimilarity measure defined by Eq. (3).

-1 StoZif(e) - Zig(e +m)
1Zf111Z:gll

In the above equation, d;,,(f,g) denotes the dissimilarity of irises
fand g associated with the Ith row of their representation matrices
for a displacement m, the vectors Zjf and Zg are the Ith row of the
zero-crossing representations of irises f and g, respectively, E is the
number of elements of Zf and Z;g and m, e € [0,E — 1]. The symbol
|| - || denotes the vector-norm operation. Note that d,,(f,g) is equal
to 1 minus the correlation coefficient between Zjf(e) and Zg(e).
Thus the dissimilarity d;,(f,g) may take values between 0 and 2,
whereby 0 corresponds to a perfect match.

Eq. (3) is computed for each row of the representation matrices
and determine which mean is taken as the dissimilarity (D;,) be-
tween irises f and g for a given value of m.

This work proposes the use of a weighted mean rather than a
simple mean, whereby the weights are given by the number of
nonzeroed values in Zf{(n) and Z;g(n) according to:

din(f,8) €)

b _ Tiadm(f.g) < Ki "
" ZL] K

where d;,(f,g) is given by (3) and K; is the number of nonzeroed val-
ues in the Ith row of the zero-crossing representations of both
images.

It is important to notice that m in Eq. (3) represents the shifts of
the second signal. Varying m in (3) from 0 to E — 1 yields E dissim-
ilarity values (Dp,). The overall dissimilarity D between irises f and
g is given by:

D = min(Dy,) ()

2.4.2. Periocular
From periocular analysis, two types of results were produced.
To compute the matching between two feature vectors u and v
with n elements produced by the distribution-based descriptor, we
used a Euclidean distance (6):
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Fig. 7. lllustration of two iriscode matching results. Black pixels express concordant
bits in the correspondent biometric signatures.

As for the features extracted by the SIFT, the distance-ratio-
based matching scheme (Lowe, 2004) was applied.

2.4.3. Comparison maps

With two binary codes (codeA and codeB) and the corresponding
segmentation masks (maskA and maskB), the Hamming distance (8)
is applied as comparison measure.

¢ = (codeA ® codeB) N maskA N maskB (7)

el @)

HD = lmaskA N maskB||

where ® is the logical XOR operation, n is the logical AND and c is
the “comparison map”.

Instead of using the Hamming Distance alone (which is simply
the ratio of concordant iriscode bits) as a single comparison mea-
sure, the resulting “comparison maps” (Fig. 7(a) and Eq. (7)) from
the similarity between iriscodes are then subjected to both spatial
and frequency-domain analysis in a search for high-concordance
areas (Fig. 7(b)).

Spatial-domain analysis. For the spatial-domain analysis, we
proceeded with a set of convolutions with Haar-based wavelets
of different sizes, which allowed us to ascertain the concordance
level of regions with different sizes.

Let ¢ be a comparison map of M x N dimensions. Let h be a Haar-
based mother wavelet with size s x s. The similarity r in local
regions of c is given by:

rs=hsxc, s={2k}, k=2,3,...,16 9)

where % denotes the bidimensional convolution and r, has the same
dimensions of c.

Let w, = max{ry(i,j)},i=1,2,...,N;j=1,2,..., M.

Let H be the 25-bin histogram of r, where 1/ is the maximum
size of the Haar-wavelet, such that H = {hy1,hy,. .., hys).

Using w; and h; values, features were produced and used as de-
tailed in the Classification subsection.

Frequency-domain analysis. For the frequency-domain analy-
sis, the Fourier transform F of the comparison map ¢ of M x N
dimensions was computed as follows:

1

M N
NZZC
—0 y:()

where j is the square root of —1 and e denotes the natural exponent.

The results were then regularly windowed in sixteen subre-
gions, and statistical features were extracted from each region.
For the central part, where the most relevant information lies,
we considered a P x N window centered in the P x M matrix that

u z/ 1271 ux/M+vy/N) (]O)

contains the noticeable central shape such that P=2M/8. Ten fea-
tures F; are then extracted, representing the distribution of an
evenly spaced ten-bin histogram:

T; = min(A) + iﬁ (11a)
P N

=3 sgn(Amm —Ti) (11b)
m=1 n=1

with AA=max (A) —min (A)andi=1, 2, ..., 10.

Classification. Combining the best features (according to their
individual decidability) and performing a dimensionality reduction
through Local Fisher Discriminant Analysis (Sugiyama, 2006), a
logistic regression (Hosmer and Lemeshow, 2000) was used to
describe the function that eventually produced the final result for
this method.

2.5. Decision ensemble

With several outputs coming from the different representation
methodologies, a logistic regression model (Agresti, 2002; Cantor,
2002; Hosmer and Lemeshow, 2000) was used to describe the rela-
tionship between them and a final response. This weight fitting
methodology efficiency was verified on identical situations, with
multiple classifiers of different accuracies (Monwar and Gavrilova,
2008, 2009; Santos and Proenga, 2010).

The way this logistic regression works is equivalent to a single-
output neural network with a logistic-activation function trained
under log loss; this model is described by Eq. (12):

log <%> =Po+ X1+ PoXa + -+ BsXs (12)

where the fraction p/(1 — p) is called the odds of a positive match,
that is, the ratio between that probability and its complementary.
The B; value is the weight relating the outputs x; from the previously
described methods to the odds.

3. Analysis of results

To assess the performance of the proposed method, experi-
ments were conducted using 1,000 iris images from the UBIRIS.v2
(Proenca et al., 2010) database used for the NICE.II* contest, and
their respective segmentation masks. Although this contest was
based only on identification mode (performance was ranked through
the decidability measure), our experiments were carried out in two
modes: verification mode (one-to-one matching) and identification
mode (one-to-many matching).

In verification mode, we selected the well-known receiver-
operating characteristic curves (ROC), the area under curve
(AUC), the equal-error rate (EER) and the decidability (Daugman
and Williams, 1996) index, given by Eq. (13):

d’ _ |luinter — :uintral (13)

Ohter i
where pineer and pinq denotes the means of the interclass and intra-
class comparisons and Gy and oy are the respective standard
deviations.

The ROC curve is a graphical plot of the sensitivity, or true po-
sitive rate vs. false positive rate. The AUC can be perceived as a
measure based on pairwise comparisons between classifications
of two classes. With a perfect ranking, all positive examples are
ranked higher than the negative ones and the area equal to 1.
Any deviation from this ranking decreases the AUC. The EER of a

4 NICE.II - http://www.nice2.di.ubi.pt.
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Table 1
Recognition rates of each test.
DEC EER (%) AUC
LBP 0.99 31.87 0.76
SIFT 0.87 32.09 0.74
1-D wavelet 1.44 23.12 0.85
2-D wavelet 1.29 25.04 0.82
Comparison maps 1.27 24.99 0.82
Fusion 1.74 18.48 0.90
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Fig. 8. ROC curves for all matchers and their fusion.

verification system means that the operating threshold for the ac-
cept/reject decision is adjusted so that the probability of false
acceptance and false rejection becomes equal.

In identification mode, where a subject is matched against a
database in a 1:N way, a good performance assessment is the
Cumulative Match Characteristic (CMC), as it shows the identifica-
tion probability against the N closest candidates.

The parameters specified in the method description were tuned
for best performance; here we chose those with maximal decid-
ability indices, i.e., those that maximize the average distance be-
tween distributions obtained for the two classical types of
biometric comparisons: data extracted from the same (intraclass)
and different eyes (interclass).

When applying the described methods independently on the
training dataset, we obtained the results presented in Table 1
and Figs. 8 and 9.

As shown in Table 1, with respect to decidability (which was the
criterion under consideration for the NICE.II contest), the best indi-
vidual results were with the 1-D and 2-D Wavelet methods, with
decidability (DEC) values of 1.44 and 1.29, respectively, closely fol-
lowed by comparison maps at 1.27. The same observation is valid
for the AUC values, whereas for EER the comparison maps slightly
outperform the 2-D wavelet. Periocular features, despite low indi-
vidual performance, proved to be of great help when fused with the
other methodologies. In fact, inspection of the CMC plot (Fig. 9),
where the separability between intra- and interclass distributions

is not as pronounced, shows that LBP is the best of all individual
methods, with a 56.4% rank-1 cumulative accuracy versus the
41.9% of the 1-D wavelet, beaten only by the fusion, with a 74.3%
rank-1 cumulative accuracy.
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Fig. 9. CMC curves for all matchers and their fusion.

(a) Good intraclass performance

(b) Bad intraclass performance

Fig. 10. SIFT performance examples in intraclass comparisons.

Fusing all the methods enhanced decidability to 1.74, repre-
senting an improvement of 20.8% over the best individual method.
Improvements in identification performance were even more sig-
nificant, as rank-1 was raised to 31.7%.

From these results, we can see that the entire method perfor-
mance cannot be accessed by a single operational mode. We thus
infer that, although some approaches improve recognition capabil-
ities in verification scenarios, and some others work well for iden-
tification mode, their fusion produces more suitable outcomes,
demonstrating the effectiveness of our method in both cases.

As the SIFT method uses more area for feature extraction than
the others, it is more likely to be affected by strong variations in
imaging conditions (e.g. pose or illumination; see Fig. 10(b)), thus
producing globally unsatisfactory results. However, its good per-
formance in some particular cases (e.g., Fig. 10(a)) led us to include
it, as its use improved the overall fused decidability by 4.5%.
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4. Conclusions

In this study, we presented a novel fusion of different recogni-
tion approaches to address the issue of noncooperative iris recog-
nition using nonideal visible-wavelength images captured in an
unconstrained environment.

We tested several different autonomous approaches; their indi-
vidual performances were evaluated in identification and verifica-
tion modes and then the methods were fused, resulting in
improved accuracy. We also showed that combining features ex-
tracted from the iris region itself with periocular information im-
proves the overall performance in both recognition modalities.

The robustness of our approach was corroborated by indepen-
dent evaluation in the NICE.II iris-recognition contest, where our
method placed third rank among almost seventy participants from
all over the world.
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Chapter 10

Fusing Iris and Periocular Information for

Cross-sensor Recognition

10.1 Overview

This chapter consists of the following article:

Fusing Iris and Periocular Information for Cross-sensor Recognition

Gil Santos, Emanuel Grancho, Marco V. Bernardo and Paulo T. Fiadeiro

Pattern Recognition Letters, accepted for publication subject to minor revision, 2014.

According to SCImago Journal & Country Rank, this journal’s index' for the 2013 year are as

follows:
Category Quartile SJR
Computer Vision and Pattern Recognition Q1
Artificial Intelli 2
rtificial Intelligence Q 0,995
Signal Processing Q1
Software Q1

'The SCImago Journal & Country Rank (SJR) indicator is a measure of journal’s impact, influence or
prestige. It expresses the average number of weighted citations received in the selected year by the
documents published in the journal in the three previous years. http://www.scimagojr.com
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ABSTRACT

Over the last years the usage of mobile devices has substantially grown, along with their capabilities
and applications. Extending biometric technologies to such gadgets is quite desirable, as it would rep-
resent the ability to perform biometric recognition virtually anytime, anywhere, and by everyone. This
paper focus on biometric recognition on mobile environments using the iris and periocular informa-
tion as main traits, and its main contributions are three-fold: 1) announce the availability of an iris and
periocular dataset containing images acquired with 10 different mobile setups, along with the corres-
ponding iris segmentation data. Such dataset allows to evaluate both iris segmentation and recognition
methods, as well as periocular recognition techniques; 2) report the outcomes of device-specific cali-
bration techniques that compensate for the different color perception inherent to each setup; 3) propose
the application of well-known iris and periocular recognition strategies, based on classical encoding
and matching techniques, giving evidence on how they can be fused to overcome the issues associated
with mobile environments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The evolution of biometric systems over the last years is no-
torious, with the appearance of new traits and algorithms and
the refinement of the existing ones. At the same time that the
acquisition constraints are being lowered favoring in-the-wild
operation, efforts are being put into delivering off-the-shelf so-
lutions for everyday consumers, so that biometric systems can
run easily on everyday electronics. Mobile devices in particular
are preferable targets, as they comprise all the necessary com-
ponents to carry the whole process, from trait acquisition to the
final decision.

From the existing traits, the face and the iris are present in the
literature among the most popular (along with the fingerprint)
(Bowyer et al., 2008; Zhao et al., 2003). Iris usage as main bio-
metric trait has remained stable despite the evolution of biome-
trics in the last years. Being a naturally protected organ, visible
from the exterior and allowing contact-less acquisition, its cir-
cular and planar shape that favors detection and segmentation,
and its predominantly randotypic appearance that assures high
recognition effectiveness. There are, however, certain scena-
rios where the iris cannot be properly imaged, and where the

**Corresponding author: Tel.: +351-275-242081; Fax : +351-275-319899;
e-mail: gmelfe@ubi.pt (Gil Santos)

complementary use of other ocular information is regarded as a
good way to compensate for unreliable iris acquisition — peri-
ocular biometrics.

Particular useful on unconstrained scenarios, the periocular
region does not require constrained capturing or complex ima-
ging systems, being fairly easy for a mobile user to operate a
periocular identification application. The grounds for periocu-
lar recognition came from human intrinsic ability to recognize
someone just by looking at his/her eyes, which are known to
provide substantial amounts of discriminant information whilst
remaining relatively stable over large periods of time. Periocu-
lar biometrics analyze not only iris structure, but also other sur-
rounding features, such as the shape of eyelids, eyelash distri-
butions, or sclera and skin texture information. At last, both the
iris and the periocular region are imaged simultaneously with a
single camera.

1.1. Contextualization: Iris biometrics

The commercially deployed iris recognition systems are
mainly based on Daugman (1993) pioneering approach, with
great effectiveness in relative constrained scenarios, and with
data acquired in the near-infrared (NIR) slice of the electro-
magnetic spectrum (700-900 nm). Even that a few innovations
were introduced later on (Daugman, 2007), the process con-
sists in a three stage approach: 1) the segmentation of the iris
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boundaries (both pupillary and limbic) followed by the transla-
tion into a double dimensionless pseudo-polar coordinate sys-
tem to achieve invariance to scale and translation; 2) the convo-
lution of this normalized data with a set of Gabor filters at mul-
tiple frequencies and orientations and the corresponding output
quantized to one of four quadrants, extracting two bits of phase
information per convolution; 3) matching of the iris signatures
using the fractional Hamming distance, with several compar-
isons of shifted data to achieve invariance to rotation.

In addition to Daugman’s phase-based approach other iris
recognition variants were introduced, mainly zero-crossing and
texture-analysis methods: Boles and Boashash (1998) com-
puted the zero-crossing representation of a 1D wavelet at dif-
ferent resolutions of concentric circles, and Wildes (1997) pro-
posed the characterization of the iris texture through a Lapla-
cian pyramid with four different levels.

Efforts on “relaxing” the acquisition setup are also registered,
being the “iris-on-the-move” project (Matey et al., 2006) a ma-
jor example on engineering a less intrusive system for subjects:
its goal is to acquire near-field NIR iris images as the subjects
walk through an access control point.

1.2. Contextualization: Periocular biometrics

The usage of the periocular region as a biometric trait has
emerged over the last years (Santos and Proenca, 2013). The
first relevant studies on periocular biometrics can be traced
back to Park et al. (2009) and their pioneering approach, fu-
sing both local and global features from the ocular area. On
global feature extraction images were aligned using iris center
as anchoring point, and a 7 X 5 region of interest (ROI) grid
defined around it. Scale invariance was achieved using iris ra-
dius as side length for the ROI. Those patches were then en-
coded applying two well known distribution-based descriptors,
Local Binary Patterns (LBP) (Ojala et al., 1994) and Histogram
of Oriented Gradients (HOG) (Dalal and Triggs, 2005), quan-
tized into 8-bin histograms. Merging those histograms into a
single-dimension array containing both texture and shape in-
formation, matching was carried off simply by computing an
Euclidean distance. For the local analysis, authors employed
Scale-Invariant Feature Transform (SIFT) (Lowe, 2004), allow-
ing sets of key-points to be extracted, encoded with their sur-
roundings, and matched, while providing translation, scaling
and rotation invariance. Reported performance was fairly good,
showing periocular fitness for recognition purposes, and further
analysis was held on noise factors impact on performance (Park
etal, 2011).

Inspiring by their work other approaches arose, either by im-
proving Park et al. approach, or by introducing new perspec-
tives. Miller et al. (2010) presented an analysis also focused
on periocular skin texture, taking advantage of Uniform Local
Binary Patterns (ULBP) to achieve “improved rotation invari-
ance with uniform patterns and finer quantization of the angular
space” (Ojala et al., 2002). Later on, their work was extended
by Adams et al. (2010), who proposed using Genetic & Evo-
lutionary Computing (GEC) to optimize feature set. Juefei-Xu
et al. (2010) stressed many local and global feature extraction
techniques (Walsh (Beer, 1981) and Laws’ masks (Laws, 1980),
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Discrete Cosine Transform (DCT) (Ahmed et al., 1974), Dis-
crete Wavelet Transform (DWT) (Mallat, 1989), Force Fields
(Hurley et al., 2000), Speed-Up Robust Transform (SURF)
(Bay et al., 2008), Gabor filters (Clausi and Jernigan, 1996) and
Laplacian of Gaussian (LoG)), and on their later work (Juefei-
Xu et al.,, 2011) efforts were made to compensate aging degra-
dation effects on periocular performance. The possibility of
score-level fusion with other biometric traits was also addressed
(e.g. iris (Woodard et al., 2010)).

Bharadwaj et al. (2010) proposed the fusion of ULBP with
five perceptual dimensions, usually applied as scene descrip-
tors: naturallness, openness, roughness, expansion and rugged-
ness — GIST (Oliva and Torralba, 2001). Images were pre-
processed with Fourier transform for local contrast normaliza-
tion, and then a spatial envelope computed with a set of Gabor
filters (4 scales x 8 orientations). On the final stage, y? distance
was used to match the feature arrays, and results fused with a
weighted sum. This approach was validated against UBIRIS.v2
data (Proenca et al., 2010), simulating realistic unconstrained
acquisition setups.

1.3. The Mobile Constraints

When attempting to perform iris or periocular biometrics
on mobile environments, several problems arise: the wide va-
riety of camera sensors and lenses mobile phones and tablets
come equipped with produce discrepancies in working images,
as they are acquired with color distortions, at multiple resolu-
tions, etc.; on-the-go acquisition by potentially untrained sub-
jects will result in demanding Pose, Illumination and Expres-
sion (PIE) changes, as not all users hold their mobile devices
at the same position, resulting in varying acquisition angles and
scales, or rotated images; the acquisition environment can have
poor or insufficient lighting, and uncontrolled outdoor daylight
will most likely produce spectacle reflections over the iris re-
gion; etc.

The remainder of this paper is organized as follows: Section 2
describes the Cross-Sensor Iris and Periocular Dataset (CSIP)
database, detailing the acquisition conditions, enrolled partici-
pants and perceived noise factors; Section 3 presents the pro-
posed methodology, with details on the four main stages: image
normalization with device-specific color calibration, iris and
periocular feature encoding and matching, and score-level fu-
sion; Section 4 contains a thorough analysis of the results ob-
tained by using the proposed methodology; finally, Section 5
states some final considerations, along with further lines of
work.

2. The Cross-Sensor Iris and Periocular Dataset

The main objective of the CSIP database was to gather
images from a representative group of participants, acquired
over cross-sensor setups and varying acquisition scenarios, thus
mimicking the conditions faced on mobile application scena-
rios. Along with the data acquired with different mobile de-
vices, an iris segmentation mask is also provided, allowing as-
sessing the performance of both iris and periocular segmenta-
tion and recognition algorithms on mobile environments.



Table 1: Details of the devices and setups used during the CSIP dataset acquisition.

Device A B C D

Manufacturer | Sony Ericsson | Apple ThL Huawei

Model Xperia Arc S | iPhone 4 W200 Us8510

0.S. Android 2.3.4 | i0S 7.1 Android 4.2.1 Android 4.3.3

Camera Rear Frontal Rear Frontal Rear Frontal Rear
Resolution 3264 x 2448 640 x 480 | 2592 x 1936 | 2592 x 1920 | 3264 x 2448 | 640 x 480 | 2048 x 1536
Flash No Yes No No Yes No No Yes No No

Setup ID ARO | AR1 BFO BRO | BR1 | CFO CRO | CR1 | DFO DRO

2.1. The Imaging Setup

Considering the heterogeneity of camera sensor/lens setups
consumer mobile devices can deliver, a total of 10 different se-
tups were used during the dataset acquisition stage: four dif-
ferent devices, some of them with frontal and rear cameras and
LED flash (Table 1). Each participant was imaged at all the
considered setups.

Aiming at mimicking the variability of noise factors asso-
ciated with on-the-go recognition, participants were not ima-
ged at a single particular location, but on multiple sites, as they
were, with artificial, natural and mixed illumination conditions.
As we can see from Figure 1, there is a substantial difference be-
tween each acquisition setup and surrounding conditions, even
when the same setup was used to capture images from different
subjects. From visual inspection, eight different noise factors
are distinguishable, and can affect the biometric recognition
process: multiple scales; chromatic distortions; image rotation;
poor lighting; off-angle acquisition; out-of-focus images; devi-
ated gaze; and iris obstructions (including reflexions).

The images were acquired through the standard camera ap-
plication on mobile phone devices, using default settings for
both focus and white-balance. The corresponding files were
stored at JPEG format, with the highest possible quality and
resolution. A total of 50 participants were enrolled, all Cau-
casian and most of them male (82%), with ages comprehended
between 21 and 62 years old (31.18 +£9.93). All the participants
gave informed consent about the experiment.

2.2. Iris segmentation masks

For each periocular image acquired by the mobile devices,
a binary iris segmentation mask is provided with the CSIP
dataset. Those masks were automatically obtained using the
state-of-the-art iris segmentation approach proposed by Tan
et al. (2010). That approach is particularly suitable for uncon-
trolled acquisition conditions, which has been corroborated by
the first place achieved at the Noisy Iris Challenge Evaluation -
Part 1 (NICE.I)!.

At a first stage, a small ROI containing a rough estimate of
the iris location is defined. This ROI is determined using a
cascade object detector based on Viola and Jones (2001) al-
gorithm, trained for the detection of the right eye using Haar
features to encode details (Castrillon et al., 2007). A reflex-
ion removal process is applied, followed by an eight-neighbor

"http://nicel.di.ubi.pt/

connection approach for clustering, and based on the degree
of similarity between each pixel and the previously established
heterogeneous regions, a region set is established accordingly
to the degree of similarity between their elements. In order to
label the different clusters, semantic refinements are applied.
Several semantic priors like orientation and shape of each re-
gion are used to determine the iris correspondent cluster.
Further to that, iris pupillary and limbic boundaries are es-
timated using an integrodifferential-constellation: based on
Daugman (2007) integrodifferential, a constellation is built
from several integrodifferential rings of increasing radii, mi-
nimizing the initial method’s tendency to output local optimal

ARO AR1 ARO

BR1 BR1

CR1 CRO CR1

DFO

DFO DRO

Figure 1: Dataset pictures acquired from two participant at all different setups.
Images in the left belong to the first participant, and images in the right belong
to the second participant.

113



Biometric Recognition in Unconstrained Environments

solutions. Possible localization inaccuracies are detected and
eliminated based on a threshold, estimated by the intersection
of two consecutive annular rings intensity distributions. After
iris boundaries are established, eyelid localization and shadow
subtraction are performed in order to reduce noise and occlu-
sion. The presence of eyelashes is minimized through 1-D fil-
tering, and edge-detection is applied to find the edge points cor-
responding to eyelids. Using those edge-points, the localization
of the eyelids is estimated using both an upper and lower sta-
tistically established curvature model. Ultimately, eyelash and
shadow subtraction take into account their darker appearance
when compared to the iris itself. The optimization of the classi-
fication threshold is obtained from the analysis of the intensity
histogram of small homogeneous regions, on iris and shadows
noise, and eyelash regions are removed. This technique is ex-
plained in more detail at Tan et al. (2010).

2.3. Dataset Availability

The complete CSIP dataset is public and freely available for
academic and research purposes’. Researchers are granted ac-
cess to: 1) 2004 images, acquired from 50 subjects at 10 differ-
ent setups; and 2) the corresponding 2004 binary iris segmen-
tation masks.

3. Proposed Methodology

In this section we describe the four main steps of our ap-
proach (Figure 2): the normalization stage, with device-specific
color correction and iris boundaries estimation for coordinate
conversion and periocular ROI definition; feature encoding,
with information from both the iris and the periocular region;
feature matching; and score-level fusion.

3.1. Image Normalization

The first stage, image normalization, will allow to compen-
sate for some of the noise factors identified in the dataset: chro-
matic distortions, varying scales and off-angle acquisition.

3.1.1. Device-Specific Color Correction

Having an uniform calibrated output for each sensor that
minimizes the discrepancy to colors as they really appear can
be of particular value in mobile scenarios, as a wide range of
sensor/lens setups are available.

The access to a reference image captured at a known illumi-
nant allows to estimate the color adaptation matrix that compen-
sate for the inaccurate color representation introduced by each
sensor. That adaptation matrix encodes the optimized color
channels combination to approximate color information in the
acquired image from the ones originally observed in the scene.
This section describes the device-specific color correction tech-
nique.

A Macbeth ColorChecker® Color Rendition Chart was
placed in a dark acquisition scene, illuminated by a standard
illuminant produced by a Barco RLM G5i Performer (Barco

’http://csip.di.ubi.pt
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Figure 2: Diagram illustrating the four stages of the proposed methodology.

Corporation, Belgium) RGB projector driven by a Visual Stimu-
lus Generator (VSG2/5) (Cambridge Research Systems, United
Kingdom). In order to mimic standard open-air conditions, the
Commission Internationale de 1’Eclairage (CIE) D65 illuminant
was chosen, as specified by the CIE standard colorimetric ob-
server (2°) (on Illumination, 2004; Smith and Guild, 1931). II-
luminants’ luminance was regulated at 100 cd/m?.

Previously, the VSG2/5 generated stimulus were verified and
calibrated using a telespectroradiometer (PR-650 SpectraCol-
orimeter™- Photo Research, Inc., CA) and a white reference
Spectralon® target (Labsphere, Inc., NH). The maximum er-
rors allowed were 0,002 illuminant chromaticities in the CIE
1931 color space and 1 cd/m? for luminance. A set of images
of the color charts was then captured at all setups (mobile de-
vices), using the standard camera application at default settings.

To obtain the estimate for the color correction matrix we app-
lied the methodology introduced by Wolf (2003), specially de-
signed for digital imaging systems. Knowing the ground-truth
red (R), green (G) and blue (B) coordinates for the 24 color
samples from the color chart under the D65 illuminant, let us
summarize it in a 24 X 3 matrix O (1). Then, from the color
chart photo acquired with the mobile device, we populate a sim-
ilar matrix P with the RGB coordinates for the same 24 color
samples.

OR, 0G, 0B
0= OR, 0G, OB, 1)
ORyy OGy OBy

The initial estimate for the adaptation matrix A, that converts
the device acquired colors to an approximation O of the original



ones, was then found using a least-squares solution (2) where 1
is a 24 positions column vector initialized with ones.

O0~0=[1PAe

A= PIILPYLP O ?

Further optimization of the adaptation matrix was achieved
by applying the following four steps iteratively, until conver-
gence up to the fourth decimal place: 1) compute a cost vector
C based on the Euclidean distance E to the ground-truth color
information (3), where € is the relative weight for misfit points;
2) normalize C for unity norm, and compute QZ; 3) generate an
empty 24 x 24 matrix C2, and populate its diagonal with C?;
4) recompute the adaptation matrix, using cost-weighted least-
squares fitting (4).

1
C=vre (3)
A=(1PI"CLP) 'L PI"C?0 )

An adaptation matrix was computed for each acquisition
setup (mobile device camera). Prior to the feature extraction
stages each one of the dataset images was color corrected, ac-
cordingly to its acquisition device and setup, using the corres-
ponding adaptation matrix followed by a non-linear transform.

3.1.2. Iris Boundaries Detection

Accurately determining the iris boundaries is a requirement
for the following steps, iris and segmentation mask conversion
to a pseudo-polar coordinate system and periocular ROI defini-
tion), as that will allow to achieve image alignment and scale
invariance.

To determine the iris boundaries, the information from both
the device acquired image and the binary segmentation mask
were combined using a three step approach (Santos and Hoyle,
2012): a) a Hough transform (Ballard and Brown, 1982) is fit
to the binary mask boundaries, determining the circle best fit-
ting iris limbic contours; b) a smaller circular ROI is defined
of the acquired image, centered in the previously located lim-
bic circle and with 2/3 its radius. Such region is converted to
grayscale, its histogram equalized, and an edge map extracted
using a Canny edge detector (Canny, 1986); c) a second circle
fit to the resulting edge map using another Hough transform,
thus approximating the pupillary boundaries.

3.1.3. Iris and Segmentation Mask Normalization

Knowing the iris boundaries, each iris pixel I was assigned
to a pair of real coordinates over a double dimensionless pseu-
dopolar coordinate system (5). We followed the rubber-sheet
model originally proposed by Daugman (2004) (6), where r
and 6 are the radius and angle respectively, x(r,8) and y(r, 6)
linear combinations of both the set of pupilar boundary points
(x,(0),y,(8)) and the set of boundary points (x,(6), ys(6)) bor-
dering the sclera.

1(x(r,0),y(r,0)) = I(1,0) (@)

(a) Grid of individual patches (b) SIFT detected features

Figure 3: Illustration of the ROI defined for the global periocular analysis (red),
the set of patches used on the distribution-based analysis (a), and SIFT detected
features (b).

x(r,0) = (1 = r)x,(0) + rxy(6)

y(r,0) = (L = r)yp(0) + ryy(6) ©
3.1.4. ROI Definition
To carry on with the periocular analysis, a ROI is defined
based on the known iris spatial location (x;, y;) and radius (r;).
That ROI is composed by 35 square patches, forming a 7 X 5
grid, where each patch has an area equivalent to 1.4ri2 (Fig-
ure 3).

3.2. Feature Encoding and Matching

At the feature encoding and matching stages, information
from two different biometric traits were handled as described
below: iris and periocular. On the methods designed to work
with single channel images, RGB values were converted to
grayscale using a weighted sum (7) prior to feature extraction.
The weights in equation (7) are the ones used as standard in
National Television System(s) Committee (NTSC) colorspace
conversion for computing the effective luminance of a pixel.

I1(x,y) = 0.2989R(x, y) + 0.5870G(x, y) + 0.1140B(x,y) (7)

3.2.1. Periocular Feature Analysis

The periocular analysis here proposed was inspired on the
works of Park et al. (2009) and Bharadwaj et al. (2010). In the
previously defined ROI, two types of analysis were used: and a
distribution-based analysis of every patch, and a global analysis
of the whole region.

The distribution-based analysis consists in the computation
of three well-known descriptors: HOG, LBP and ULBP. Each
descriptor is computed sequentially over each patch and quan-
tized into histograms, forming a global 1-D array where shape
and texture information is stored. The HOG descriptor (Dalal
and Triggs, 2005), widely applied on computer vision, com-
putes the gradient orientation by filtering the image with two
kernels: [-1,0,1] and [-1,0, 1]7. The LBP (Ojala et al., 1994)
also works in a quite simple yet efficient fashion: pixel inten-
sity changes from an 8-neighbor region to its central pixel are
quantized (8) having the sign of their intensities’ difference (9)
as reference. I, denotes the intensity of the original image at
position (x, y), and I, the intensity of a neighbor pixel.
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LBP,, = Z sgn(l, — I,) 2" 8)
n=0

1, ifl, 21,

0, otherwise.

Sgn(ln - Ix,y) = { 9

The ULBP descriptor differs from the LBP as it achieves “im-
proved rotation invariance with uniform patterns and finer quan-
tization of the angular space” (Ojala et al., 2002). Instead of the
2" possible binary patterns outputted from the regular LBP over
a 8-neighbor region, a uniformity measure U is calculated rep-
resenting the number of bitwise changes in that same pattern
(10). This measure can only assume 59 distinct values.

U(LBP,, = |sgn(I7 — I,) —sgn(ly — I, )|+

7
(10)
+ 3 lsgn(hy = Iy) = sgn(lyy = Ley)|
n=1

At the matching stage, the histogram arrays of size N con-
taining the extracted information were compared through y?
distance (11).

1 <5 (histA,, — histB,)?
2 _ 2 n n
Altisu pisis) = 3 Z; histA,, + histB, (an

On the global analysis, feature extraction techniques were
applied not to each individual patch, but to the whole ROI.
The applied descriptors were SIFT, and GIST. At first, set of
key-points and their surrounding information is extracted us-
ing SIFT (Lowe, 2004), known to deliver invariance to transla-
tion, scale and rotation. SIFT key-points detection relies on a
Difference of Gaussians (DOG) function, and features are ex-
tracted for their neighborhood based on gradient magnitude and
orientation (Figure 3). At the matching stage, their geometri-
cal alignment is used. Finally, a set of five scene descriptors
were used (GIST) as proposed by Oliva and Torralba (2001):
naturalness, that quantifies vertical and horizontal edge distri-
bution); openness, as the presence or lack of reference points;
roughness, the size of the largest prominent object; expansion,
the depth of the space gradient; and ruggedness, a quantifica-
tion of contour orientation that assesses the deviation from the
horizontal. The GIST descriptor was extracted from each color
channel individually, and at the matching stage a y? distance
(11) was used upon min-max normalization.

3.2.2. Iris Feature Analysis

The iris information was encoded based on Daugman (1993)
approach: iris features were extracted convolving iris data in
the pseudopolar coordinate system with a bank of 2-D Gabor
wavelets, followed by a quantization stage that produced a bi-
nary iriscode accordingly to the sign of the 2-D integral. To
the purpose of iris identification on mobile environments, we
choose to use a very small yet optimized wavelet bank. Dur-
ing filter optimization a smaller representative subset of images
was used, and filter parameters cycled through a range of scales,
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Figure 4: Illustration of the NN architecture used at the score fusion stage. Each
circle represents a neuron of the network, and depicted input scores come from
the feature matching stage.

orientations and frequencies, fit for our environment. Chosen
configurations were the ones that maximized decidability (13).
At the matching stage, the similarity between two binary
codes of size N representing the two irises being compared is
assessed through a simple Hamming Distance (HD) (12).

N
1
HD = — codeA,, ® codeB,, 12
I Z (12)
Further to that, and as Daugman’s technique was developed
to deal with iris images captured in controlled settings, the same
techniques used to encode periocular data were also applied on
the normalized iris region as well.

3.3. Score-level fusion

With several scores resulting from the different encod-
ing/matching methodologies, an Artificial Neural Network
(NN) was trained to fuse them into a final recognition score.
NN-based methods have been widely applied on classification
problems, for their learning abilities and good generalization.

For the purpose of this work a two hidden layers NN was
trained with back-propagation (Figure 4). The architecture of
the NN was as follows: the first hidden layer had eleven neu-
rons, the same number of scores resulting from the matching
stage; the second hidden layer had six neurons; and the final
(output) layer with just one, since we are dealing with a bi-
nary classification problem. Once again, a smaller data parti-
tion was used at the training stage, and was not included on the
test phase.
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Table 2: Individual performance metrics for each recognition method and trait, along with the ones from iris, periocular and global fusion. Performance metrics are
Decidability (DEC), Area Under Curve (AUC) and Equal Error Rate (EER). Top scores are marked bold.

Trait — Periocular Iris Global

Method — | LBP | HOG | SIFT | ULBP | GIST | Fusion | Iriscode | LBP | HOG | SIFT | ULBP | GIST | Fusion || Fusion

DEC | 0.989 | 0.969 | 0.716 | 1.272 | 1.859 | 2.164 | 0.674 |0.289 | 0.515 | 0.324 | 0.324 | 0.320 | 0.835 || 2.295

No color AUC | 0.764 | 0.751 | 0.715 | 0.816 | 0.915 | 0.923 | 0.684 | 0.588 | 0.641 | 0.583 | 0.589 | 0.615 | 0.717 | 0.932
correction EER | 0.308 | 0.315 | 0.348 | 0.261 | 0.166 | 0.159 | 0.366 | 0.443 | 0.401 | 0.443 | 0.440 | 0.418 | 0.344 || 0.148
Histogram DEC | 0.986 | 0.860 | 0.668 | 1.267 | 1.841] 2.101 | 0.616 |0.2460.371]0.293 ] 0.353 | 0.199 | 0.753 || 2.215
equalization AUC | 0.763 | 0.725 | 0.696 | 0.815 | 0.910 | 0.917 | 0.669 |0.581 | 0.601 | 0.576 | 0.600 | 0.582 | 0.696 || 0.925
EER | 0.309 | 0.340 | 0.365 | 0.262 | 0.172 | 0.165 | 0.374 | 0.446 | 0.433 | 0.445 | 0.433 | 0.442 | 0.361 || 0.155

_ —_ |DEC[00989]1.009]0.731 1.270 | 1.889 | 2.215 | 0.639 |0.173 ] 0.482 ] 0.347 | 0.266 | 0.230 | 0.809 || 2.331
Device specific =35516766 [0.761 [ 0.720 | 0.817 | 0.910 | 0.927 | 0.675 | 0578 | 0.637 | 0590 | 0.584 | 0.593 | 0.711 || 0,934
correction EER | 0.305 | 0.308 | 0.343 | 0.259 | 0.163 | 0.155 | 0.372 | 0.450 | 0.402 | 0.437 | 0.444 | 0.434 | 0.349 || 0,145

4. Results and Discussion

To assess our method performance, a total of 121.245 random
matches were generated, between images from any two acquisi-
tion setups, being the inter- to intra-class comparisons ratio 2:1.
Three performance measures were used: DEC, AUC and EER.
Decidability d’ was first introduced by Daugman (1993), and
quantifies intra- and inter-class separability by relating their
mean u and standard deviation o values.

d = ”,uinter - llinLra” (13)

+02

2
g intra

inter

The Receiver Operating Characteristic (ROC) curve relates
the sensitivity, or true positive rate (TPR) with the false positive
rate (FPR). Based in that plot, the AUC can be perceived as a
quantification of how well pairwise comparisons are performed
on a binary classification problem. On the perfect scenario, all
positive matches are ranked higher than the negative ones, and
the AUC equals one. Finally, setting the operating threshold
for the accept/reject decision so that the probability of false ac-
ceptance equals the probability of false rejection, we obtain the
EER.

The performance registered for every feature encoding and
matching technique, per trait behavior and global fusion out-
come is registered on Table 2. As we can see top results are
registered for global fusion, over device-specific color corrected
images, with a Decidability of 2.331, and an AUC of 0.934. On
quantifying the performance improvement introduced by the
sensor-specific color correction technique, we applied our pro-
posed methodology to all matches with three variations in the
normalization stage: without performing any color-correction;
with the proposed color correction; and, for comparison pur-
poses, with simple histogram equalization over all channels of
the working image. As we can see, the proposed color correc-
tion technique improves the performance over all the stressed
periocular recognition approaches, as well as on the final score
resulting from the fusion of all methods. It was a much bet-
ter approach than the commonly used histogram equalization,
whose application actually worsened five of the six periocular
approaches, as well as the score-fusion output. Even so, the im-
provement produced by the sensor-specific correction was not
so expressive as initially expected after visually inspecting the

color corrected images. A possible explanation is that some of
the used feature encoding methods were designed to work over
single-channel images, thus not implicitly taking into account
some of the chromatic features that could have been lost during
grayscale conversion.

Examining per trait performance, and paying attention to the
values obtained over color-corrected images, we can see how
the combined information extracted from the whole periocular
region is far more discriminant than the iris, in the mobile appli-
cation scenario. That is particularly visible in the ROC curves
at Figure 5, where we can see that the plot corresponding to the
periocular fusion almost overlaps the plot corresponding to the
global fusion, being the area between them of only 0.007. In
fact, we can’t say that periocular analysis does not take iris fea-
tures into account, as it was not removed nor overlapped prior
to the encoding stage.

Reviewing the individual performance of each one of the
methods that constitute the proposed periocular analysis (Fig-
ure 6a), we can see how GIST descriptors is the approach with
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Figure 5: Receiver Operating Characteristic curves for the score-level fusion of
the stressed iris recognition methods, the periocular recognition methods, and
the global fusion.
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Table 3: Method fusion performance, after color correction, for each acquisition setup.

ARO | ARI || BFO | BRO | BRI || CFO | CRO | CRI || DFO | DRO
DEC | 2.481 | 2.392 || 2.141 | 2.456 | 2.137 || 2.045 | 2.153 | 2.459 || 2.083 | 2.423

No color AUC | 0.940 | 0.941 | 0.917 | 0.940 | 0.933 || 0.917 | 0.922 | 0.939 || 0.916 | 0.938
correction EER | 0.135 | 0.135 || 0.158 | 0.138 | 0.149 || 0.169 | 0.162 | 0.138 |[ 0.167 | 0.139
. , DEC | 2.497 | 2.446 || 2.174 | 2.485 | 2.164 || 2.034 | 2.201 | 2.561 || 2.099 | 2.501
Device specific =gER—1004T [0.943 |[ 0,921 | 0.042 [ 0.935 || 0.917 | 0.927 | 0.945 || 0.917 | 0.943
correction AUC [ 0.134 [ 0.132 [ 0.156 | 0.138 | 0.145 || 0.165 | 0.155 | 0.130 || 0.166 | 0.131

highest benefits, followed by ULBP. LBP and HOG have very
similar performance, and SIFT was the descriptor with low-
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Figure 6: Receiver Operating Characteristic curves for the stressed periocular
(a) and iris (b) recognition methods and their fusion.
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est AUC, even though it was able to achieve higher sensitivity
with lower FPR for more restrictive thresholds than most of the
stressed periocular methods. Since we are aiming at performing
biometric recognition in mobile devices, known to have more
resources constraints than regular computers, that can be re-
garded as a good indicator: since SIFT is more computationally
expensive than the other tested methods, we can choose not to
include it with less impact on the overall performance. Even if
only GIST were used, with its five scene descriptors being eas-
ily and quickly computed, we could still get an AUC of 0.919.
Nonetheless, it is remarkable how such simple feature encod-
ing techniques produce relatively good scores, considering the
constraints associated with the mobile working conditions, spe-
cially the deterioration of the acquired images. Attending at the
same methods’ performance over iris data alone (Figure 6b), we
can observe that they are not so good at discriminate its features,
being the individual method with best performance Daugman’s
iriscode analysis. We must have in mind that the CSIP acquisi-
tion setups didn’t favor the capturing of iris details.

Table 3 reports on the recognition performance for when us-
ing images acquired at the different imaging setups, with and
without performing color correction. Those values were ob-
tained selecting from the total of generated matches the ones
where at least one of the images was enrolled at that specific
setup. We can see how color correction considerably improves
the decidability values on the top performing devices. As we
can see, top performances are achieved over images taken with
rear cameras, usually without using the device flash. In fact,
choosing to use the built-in flash tends to result in performance
degradation, even that color correction impact in performance
was greater when using images acquired with the flash light on.
As for frontal cameras, they do not seem as fit for mobile bio-
metrics as rear ones. That can be particularly tough if the intuit
of the application is to verify the phone’s user identity, since its
fairly more easily obtain a good self-captured image using the
frontal camera. Despite the frontal cameras having significantly
less resolution that the rear ones, it does not seem to be a rela-
tion between that fact and their lack of performance. Device D,
for instance, is the device with lower rear sensor resolution and
its performance is almost identical to the other setups.

5. Final Considerations

This paper introduces the Cross-Sensor Iris and Periocular
Dataset (CSIP) dataset, containing images acquired under ten
different mobile setups, with eight visible noise factors. Such
particularities make it suitable to evaluate iris and periocular



recognition methods on heterogeneous mobile conditions, and
the distribution of each image iris segmentation masks also al-
low to stress iris segmentation methods on those same condi-
tions.

Further, we identify the chromatic disparity introduced by
some devices, proposing the usage of a sensor-specific color
correction technique. Results shown that top results were ob-
tained after color correction. Being aware that application sce-
narios where the biometric recognition process is conducted
with images acquired on a single device can deliver better re-
sults, we aim at achieving higher cross-sensor performance.
That will allow to attain higher confidence on matches between
images acquired with very distinct mobile setups, or even on
comparisons against a previously stored dataset acquired with
other (or multiple) devices.

We proposed the fusion of iris and periocular information to
achieve reliable biometric identification in mobile setups, and
observed how simple feature encoding techniques deliver con-
siderably good performance. That is particularly convenient
when aiming at conduct the whole recognition performance on
mobile devices with higher computational constraints, as the
top performing methods indeed had considerably low compu-
tational cost. Ultimately, and if aiming at reducing even more
the computational cost on mobile environments, using only the
GIST classifier can be an option.

Finally, results point out that, for the tested setups, high
image resolution is not an essential requisite to mobile biome-
trics, and rear cameras are best suited for periocular recogni-
tion, preferable without flash.

5.1. Further Work

At a further stage, authors plan to expand the CSIP dataset
with a more significant amount of participants, and a wider
range of acquisition setups. We theorize that widening the
dataset to further devices and participants, and applying the pro-
posed recognition technique, would emphasize the contribution
of both color correction and the usage of iris features.

Another interesting line of work will be to conduct further
tests with different iris and periocular recognition methods, spe-
cially the ones that explicitly rely on color data, comparing the
cross-sensor performance with the performance registered for
other existing datasets.

Stressing different color correction techniques could also be
interesting, despite the one we applied in this paper having the
advantage of being computational efficient and easy to apply, as
long as the correction matrix for the camera sensor is known.
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Chapter 11

BioHDD: a Dataset for Biometric Identification on
Heavily Degraded Data

11.1 Overview

This chapter consists of the following article:

BioHDD: a Dataset for Biometric Identification on Heavily Degraded Data
Gil Santos, Paulo T. Fiadeiro and Hugo Proenca

IET Biometrics, 2014.

DOI: 10.1049/iet-bmt.2014.0045

According to SClmago Journal & Country Rank, this journal’s index' for the 2013 year are as
follows:

Category Quartile SJR
Computer Vision and Pattern Recognition Q3

Signal Processing Q3 0,250
Software Q3

'The SCImago Journal & Country Rank (SJR) indicator is a measure of journal’s impact, influence or
prestige. It expresses the average number of weighted citations received in the selected year by the
documents published in the journal in the three previous years. http://www.scimagojr.com
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Abstract: Substantial efforts have been put into bridging the gap between biometrics and visual surveillance, in order to develop
automata able to recognise human beings ‘in the wild’. This study focuses on biometric recognition in extremely degraded data,
and its main contributions are three-fold: (1) announce the availability of an annotated dataset that contains high quality mugshots
of 101 subjects, and large sets of probes degraded extremely by 10 different noise factors; (2) report the results of a mimicked
watchlist identification scheme: an online survey was conducted, where participants were asked to perform positive and negative
identification of probes against the enrolled identities. Along with their answers, volunteers had to provide the major reasons that
sustained their responses, which enabled the authors to perceive the kind of features that are most frequently associated with
successful/failed human identification processes. As main conclusions, the authors observed that humans rely greatly on shape
information and holistic features. Otherwise, colour and texture-based features are almost disregarded by humans; (3) finally,
the authors give evidence that the positive human identification on such extremely degraded data might be unreliable,

whereas negative identification might constitute an interesting alternative for such cases.

1 Introduction

The evolution of the concept of biometrics over the last
decades is linked with societies’ increasing concerns about
both individual and global security. From personal
computers to border access control everyone aims at
securing their identities, their assets and, primarily, their
homeland. Such safety relies on the ability to accurately
identify subjects based on biometric features, either
biological or behavioural.

Biometric systems rely on the accurate ‘extraction’ of
individuals’ distinctive features and their proper ‘encoding’,
so that the essential information is preserved. Those
requisites are traditionally assured by high acquisition
constraints, with the subject cooperation being a
key-element. When moving to unconstrained scenarios,
those acquisition constraints are lowered and subject
cooperation is not expectable. Recognition became more
challenging and alternatives are sought [1, 2], either by: (1)
improving the existing algorithms; (2) resorting to
multi-modal biometric systems; or (3) exploring new traits
could better cope with this new reality. Despite those
efforts, no system yet exists capable of effectively dealing
with all the issues introduced by biometrics ‘in the wild’. In
fact, even biometric systems able to cope with less
constrained conditions (e.g. Iris-on-The-Move project [3])
still lack an ideal level of user abstraction.

Visual surveillance is a very active field in computer vision,
with a lot more applications other than biometrics ‘per se’ [4].
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Existing automatic surveillance systems are rather focused on
activity recognition (e.g. W* project [5]), and not many
projects are prepared to deal with surveillance scenarios
from a watchlist approach (e.g. Kamgar-Parsi et al. [6]).
Furthermore, none of the latter works from the negative
identification perspective.

Most biometric systems attempt positive identification (or
verification) against a gallery of enrolled users based on a
(dis)similarity measure. In many ‘in the wild" applications
however, biometric systems make more sense when used
from the negative perspective: guarantee with enough
confidence that an unknown subject does not belong to a
gallery of ‘persons-of-interest’, instead of attempting to
identify him. On that basis, facing a watchlist scenario one
can aim at spotting a distinctive feature on the probe
subject, and exclude those who neither share that feature,
nor any of its possible transformations. Moreover, even if
we do not have enough distinctive features to support a
positive recognition (e.g. because of the quality of acquired
images) we can still perform reliable negative recognition.

1.1 Contextualisation: facial biometrics

The everyday use of facial cues includes recognising our
peers or unveiling their state of mind, which happens
seamlessly and unawarely. Is then easy to place face as the
most common and widely used biometric trait, and one of
the most successful applications of image analysis and
understanding. Several face recognition systems are
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commercially deployed and a lot of techniques accessible [7],
working on both still and video images. Algorithms are based
either on the global analysis of the whole image, or on the
relation between facial elements, their localisation and
shape. In either case, their effectiveness is conditioned by
several factors, which become even more evident ‘in the
wild’: its three-dimensional structure lead to substantial
differences in appearance, accordingly to the subject’s pose;
large portions are often occluded on non-orthogonal data
acquisition; facial expressions affect their appearance; and
its particularly easy to disguise.

Analysing the human ability to recognise each other,
researchers can identify the more reliable cues, valuable for
the develop well-grounded recognition methods. Previous
studies report interesting findings when exploring the
human ability to identify faces (e.g. Sinha et al [8]),
encouraging further researching on understand how people
cope with ‘in the wild’ circumstances. In this study we do
not aim at mimicking the identification process taking place
in human vision, but rather to provide useful insights for
further research on this topic. We analyse the noise factors’
impact on human identification performance, identifying the
features people recall as basis for their judgement.

1.2 Contextualisation: similar datasets

Publicly available datasets exist for both video surveillance
[4] and face biometrics [9] research, acquired under less
constrained conditions. Although a much higher extent of
databases is available, five significant datasets must be
mentioned, which contain a more significant amount of pie
changes: FERET [10], CMU-PIE [11], CAS-PEAL [12],
Multi-PIE [13] and LFW [14] (Table 1). The latter two
datasets are presumably the most completes, each one by its
own reasons: the Multi-PIE provides facial images from
337 subjects, imaged over four sessions under 15 pose and
19 illumination variations, along with high-resolution
registration photos; the Labeled Faces in the Wild (LFW)
dataset contains a larger amount of images and subjects, 13
233 and 5749, respectively, at completely ‘in-the-wild’
conditions, and thus without uniformity among subjects.
Although not being an extensive listing of the existing
datasets, the ones we present are the most directly
comparable to the one we are now establishing.

In this paper we introduce a newly created dataset of
heavily degraded facial images, where the ‘in the wild’
conditions associated with visual surveillance systems are
closely simulated. Full 360° illumination and pose
variations are introduced, among with other realistic noise
factors at different reasonable levels, along with
ground-truth information for research validation. Despite

Table 1 Overview of the most relevant and public available
face recognition datasets with pie variations, with comparison
to our working dataset

Dataset Subjects Sessions Pose lllumination Expression
FERET 1199 2 20 2 2
CMU-PIE 68 1 13 43 4
CAS-PEAL 1040 2 21 15 6
multi-PIE 337 4 15 19 6
LFW 5749 ? ? ? ?
BioHDD 101 2 24 72 1

Values marked with ‘?” can not be determined because of the
nature of the dataset
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containing a lower amount of participants when compared
to the existing databases, this new dataset contains a wider
range of pose and illumination variations, uniform and
comparable for all subjects.

The remainder of this paper is organised as follows:
Section 2 describes the BioHDD dataset, detailing the
acquisition framework, enrolled participants and introduced
noise factors; Section 3 presents the experimental method
used in our study, with a thorough analysis of its results;
finally, Section 4 states some final considerations, along
with further lines of work.

2 BioHDD dataset

The main objective of the BioHDD database was to gather
images from a significant group of individuals, ranging
from clear frontal shots to heavily degraded facial images,
enabling to assess the feasibility of biometric recognition
‘in the wild’.

2.1 Imaging framework and setup

The imaging framework was installed in a closed lounge
without uncontrolled lightening sources. Participants were
illuminated with a single 800 W halogen projector, and a
white cloth was used as image background to avoid
contextual interferences. The acquisition process consisted
of three acquisition stages: registration, still image
acquisition and video acquisition.

At the registration stage three reference facial images of
high-quality were acquired from each participant (frontal,
left- and right-hand side — Fig. 1). The acquisition device
gathered information from the visible wavelength slice of
the electromagnetic spectrum, with the light source directly
above it. Participants were asked to essay a neutral
expression and look forward, aided by three fixation points,
so that all observers were facing the same direction during
this stage.

On a second stage images were acquired ‘simultaneously’
on both NIR and VIS, while introducing four variations:
illumination angle and intensity, subject revolution and
head-tilt — Fig. 3, columns 1-4. Changes on the
illumination angle were achieved with the halogen projector
shifting on 45° steps (Fig. 2, A-H ), while participants kept
facing the acquisition device. Additionally, participants
were asked to face eight fixation points evenly distant from
each other, introducing subject revolutions in full 360°. For
all variations, participants were imaged facing forward and
tilting their head up and down, while simulating
illumination intensity changes using the acquisition device
exposure settings.

At a final stage, subjects walked trough a corridor with
non-uniform illumination conditions whilst captured by a
VIS greyscale camera placed on a upper level. As we can

Fig. 1 Example of images acquired used as gallery data: left-hand
side, frontal and right mugshots
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Fig. 2 Schematic perspective of the image acquisition framework
(over-top view)

For illumination changes, the light source alternate on positions A to H with
participants facing the camera

For rotation changes, participants were asked to align themselves with the
different reference points while the camera and light source remained
aligned at the initial position

see from the samples at Fig. 4, surveillance-like data
acquisition was closely simulated.

Table 2 presents a complete hardware specification.

Illum. angle Illum. Intens. Revolution Head-tilt Blur

5% a=45° up

o= 180° v = 100% a = 180° down o =20

Data was gathered on two acquisition sessions with a
minimum of two weeks apart. On the first acquisition session
participants wearing glasses were required to remove them,
and the ones with longer hair were asked to tie it. Likewise,
videos acquired during that same session had participants
looking at a fixation point while walking. To increase
variability, on the second session such constraints were not
applied. No modifications were introduced on the hardware
setup or location. Attendance to both sessions was around
88%, representing a total of 101 participants. As described
on Table 3, 66 male subjects and 35 female subjects were
enrolled, most of them Caucasian. For normalisation
purposes, acquired images were manually cropped to 600 x
600 px, while keeping the face centred. Registration images
from Stage 1 were stored with 2, 048 x 2, 048 px.

2.2 Heavily degraded data

Not all noise factors associated with recognition ‘in the wild’
were introduced during the acquisition stage. As so,
additional image degradation procedures were carried on.

A total of ten noise factors were identified and grouped in
three different sets: (1) ‘real’ noise factors introduced with the
imaging setup; (2) ‘simulated’ noise factors that although not
introduced at the acquisition stage are related with the
imaging process; and (3) noise factors associated with data
storage and transmission. Each noise agent comprises
different levels (L;), as illustrated on Fig. 3, and their
presence follows the reasoning we now describe.

Pixeliz. Compress.  White Noise

Occlusion . Occl.

0=15% 0= 20% 100 x 100 q=20%

o= 30% 0 =>5Y a = 200

Fig. 3 Examples of the types of image degradation factors in the BioHDD dataset

From left- to right-hand side: illumination angle and intensity, subject revolution, head-tilt, blur, occlusion and reverse occlusion, pixelisation, compression and

white noise

The top row corresponds to the first noise level L;, and the bottom row to the maximum noise level L,
On illumination intensity and head-tilt, both images represent L, since their difficulty is similar

Although only VIS data is depicted, each image has its NIR counterpart

Fig. 4 Samples from the video acquisition stage

Frames were cropped for illustration purposes
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Table 2 Details of the BioHDD acquisition devices, image and
video settings

Table 3 Details of the BioHDD subjects that offered
themselves as volunteers to both imaging sessions

Registration Image Acq. Video Acqg.

camera Canon EOS 5D  JAI AD-080GE Stingray
F504-B
lens Canon EF NIKKOR 55-80 HR F1.4/8 mm
100-400
spectrum visible visible + NIR visible
color space RGB RGB + greyscale
greyscale

channel 8bit 8bit 8bit
depth
frame size 4368 x 2912 px 984 x768 px 1224 x 1028 px
cropped size 2048 x 2048 px 600 x 600 px -
format PNG PNG AVI
frame-rate - - 15 fps

2.2.1 Real noise factors: As previously described, this set
of noises was directly introduced at the acquisition stage.
When working in unconstrained scenarios optimal
illumination cannot be assumed. Along with the images
captured at the ‘best’ conditions (with average exposure and
having the light source directly over the acquisition device),
data was also captured varying the ‘lightening angles’ and
the  ‘illumination intensities’ (low lighting and
over-exposure). The chosen angles cover all 360° degrees
(at 45, ° steps), and intensity changed from 5 to 100%. To
cover a higher amount of poses, subject ‘revolution’ was
also introduced over eight angles (similarly to illumination)
and ‘head-tilting’ in two, with participants facing up and
down. Those choices were based on the reasoning that
individuals trying to avoid detection are most likely to be
facing the ground or away from any visible cameras.

2.2.2 Simulated noise factors: To mimic acquisition
issues as the ones associated with inappropriate lens
settings, poor focus, subject movement etc, four levels of
‘blur’ were simulated applying Gaussian filters with
standard deviation raging from o; =5 to oy, = 20.

Face occlusion was simulated by overlapping a black patch
to the original image, covering o, = 15% to o, = 30%. A
different flavour of occlusion where only a small portion of
the image is left-hand side visible, 6, = 20% to 0,, = 5%,
was also simulated. This noise factor can also be related
with the use of certain headgear (e.g. balaclava).

In certain scenarios we observe that the used devices are of
low or insufficient spatial resolution, or post-processing
censorship is applied to avoid detection of a particular
subject or distinctive feature that is intended to remain
anonymous. This ‘pixelisation’ effect was obtained by
downscaling the original photo: size; =100 x 100px to
size;, = 25 x 25px.

2.2.3 Storage/transmission related noise factors:
Finally, ‘compression’ degradation found on systems that
rely on digital storage or broadcasting was simulated using
a standard JPEG algorithm. Quality ranged from ¢, = 20%
to g;, = 5%. Based on the same reasoning, inherent to data
storage on photographic film or broadcasted through
analogue channels, ‘white noise’ was simulated.

To generate probe images Ip, one transformation from each
set 71, T», T5 was randomly selected, and the corresponding
noise factor was applied to the original image at a random
level k, I, m, respectively (1). Noise application was
sequential, with the last noise transformation 75 being
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Gender Male 65% Age [0, 20] 10.89%
Female 35% [21, 25] 44.55%
Origins European 95% [26, 30] 15.84%
African 4% [31, 35] 9.90%
Asian 1% [35, 99] 18.81%

applied upon T, result, denoted by ° and 7, being applied
over T; output. Sample probe images obtained using this
fusing technique are illustrated at Fig. 5

Iy = (T5(L,,) o Ty(Ly) o Ty (L))
= (L)L) (L)) (h

2.3 Dataset availability

The complete BioHDD dataset is public and freely available
for academic and research purposes [http:/biohdd.di.ubi.pt].
Researchers are granted access to: (1) 606 registration
images; (2) 27270 probe samples with the variations
introduced during the acquisitions stage; (3) 27 270 similar
images on the NIR spectrum; (4) 2500 probe images with
combined noises; (5) 202 greyscale videos with surveillance
like data from each participant. Further probe images can be
generated ‘on-demand’, and all data comes with
ground-truth information about the associated noise levels.

3 Experiments and discussion
3.1 Experimental method

Our goals to study the human ability to identify their peers on
heavily degraded data were: (1) identify the noise factors
whose avoidance would be preferable, by associating each
one of them with a specific impact on human identification
performance; (2) pin down the regions identified as part of
the process and, if possible, even specific features; (3)
illustrate how negative recognition might still be reliable ‘in
the wild’, where the positive approach is unattainable. To
do so, a web-page was built with a custom participation
interface mimicking a watchlist recognition scenario — Fig. 6.

For this experiment, a total of 200 000 trials were
generated, combining 2500 probe images and 2500
galleries. At the begging of each test the interface was
populated with a random trial, with 3/4 probability of the
gallery containing the subject on the probe image. Each
participant was asked to do one of three actions, for each
gallery identity shown

1. mark it as green if they feel that the identity on the mugshot
corresponds to the probe image (positive identification);

2. mark it red if they are certain that the identity on the
mugshot does not correspond to the query image (negative
identification);

3. leave it blank, in case of uncertainty.

In the case of identification, participants were asked to fill
the appropriate text-box to justify their answer. No time
restriction was set for image examination, and upon
finishing a new test was loaded. Each participant was free
to take as many tests as he wanted. The experiment ended
after one month, collecting a total of 3650 participations
from 45 different countries. A total of 17 438 identifications
and 1422 justifications were obtained.
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Fig. 5 Sample trial images with different levels of noise combined

3.2 Results and discussion

Although including a third class for ‘no decision’ in our
testing interface, we simplified our problem to a binary one
by analysing the answers where participants were sure
enough of their answer to give a specific identification
(either positive or negative). To assess the identification
performance, four well-known statistical measures were
used: sensitivity (or true positive rate [TPR]), specificity
(SPC), accuracy (ACC) and Matthews correlation
coefficient (MCC). TPR and SPC, are given by (2) and (3),
respectively, and weight the correct responses by the total
of positive (true positives (TP) + false negatives (FN)) and
negative (true negatives (TN) + false positives (FP)) answers

TP

TPR=—— 2
TP + FN
TN
PC=—
SPC TN + FP 3)

The accuracy gives us the overall ratio of correctly classified
matches, 1 being the optimal value where all instances have
been correctly classified. For a balanced analysis we used
MCC, which takes into account the high discrepancy
between the amount of positive and negative matches. It
can be regarded as a correlation coefficient between
participants’ answers and the correct identification, and its
output ranges in the [ —1, 1] interval, where 1 the optimal
value [15]

TP + TN
ACC = + “4)
TP + FN 4+ FP + TN

TP - TN — FP - FN

McC = (TP + FP)(TP + FN)(IN + FP)(IN + FN)

)

In Fig. 7 we can see from the true positive rate and specificity
probability density functions, computed for all subjects on the
dataset. TPR is clearly more prone to variations, as positive
samples are more difficult to be found in the experimental

Mugshot Zoom Area

Fig. 6 Web interface of the conducted survey, with three major panels: (1) a probe sample from an unknown identity, (2) a set of 10 profile /
frontal mugshots, representing the gallery dataset; (3) zoomed-up perspective of each gallery sample, populated on mouse-over on region 2
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x = sensitivity
x = specificity )
‘\
|
|
||
|
= “
a
0 02 0.4 0.6 0.8 1

X

Fig. 7 Per-subject sensitivity and specificity probability density
functions

setup. We should have in mind that one out of four trials could
not lead to TP, since the subject from the probe image is not in
the gallery. To stress the possible relationship between false
positives and the impossibility of making a positive match,
implying participants had attempted identification either
way, we performed a paired-sample Student’s t-test: For all
the n subjects in the database, let us define the fall-out
distributions d; for trials where positive matches were
possible, and ¢, when not. Let us then consider the null
hypothesis H, where the difference D between d; and d,
follows a normal distribution with mean equal to zero and
unknown variance, tested through (6)
Xp =iy
= —— 6
sp//n ©

where X p and sp are D average and standard deviation values,
and uo the mean for the d; distribution. Experimental data
returned a pvalue of 1.81x 107", thus rejecting the null
hypothesis: the distributions are significantly different,
indicating that most participants indeed attempted to
perform a positive match, even when it was not possible.

Plotting each one of the subjects in the dataset as a function
of the TPR and SPC, we can understand their individual
propensity to correct identification — Fig. 8. Furthermore,
we can group them in four biometric menagerie classes as
suggested by Yager & Dunstone [16]: doves, chameleons,
phantoms and worms. ‘Doves’ are the most favourable
subjects and the optimal group for any recognition system,
as they do not produce verification error. High values are
observed for both TPR and SPC. ‘Chameleons’ are subjects
who are easily misidentified as they always appear similar
to others, their specificity is high, but true positive rate is
extremely low. ‘Phantoms’, in opposition to chameleons,
are associated with low SPC and high TPR. ‘Worms’,
contrary to doves, are the most critical subjects in a
biometric system. They behave in the worst possible way,
yielding low true positive rate and specificity. At a central
location we have ‘the herd’, where the most common users
(‘sheep’) are located.

To define the limits for each class, we start by defining two
regions for the true positive rate, TPRy; and TPRgy;,
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Fig. 8 Zoo plot for the overall user performance

Dashed lines represent the first and third quartiles for sensitivity and
specificity distributions

The identities on the ‘P’,’D’, ‘C* and ‘W’ regions are more likely to assume
dove (D), chameleon (C), phantom (P) and worm-like (W) behaviour

containing the subjects below the first quartile and over the
third quartile, respectively. If we define two similar regions
(SPCy; and SPCy;) for the specificity, a subject s is said to
assume a particular behaviour according to (7) [17]

Dove, if s C TPRy; N SPCpy;s
Chameleon, if s C TPRy; N SPCp; Rl
Phantom, if s C TPRy; N SPCy,
Worm, if s C TPRy; N SPCy,

As we can see on Table 4, even with the degradation
introduced in the probe images participants were able to
correctly match 92% of the instances they were presented
with. To assess the effect of each noise on that performance
level, we computed the same metrics for when removing
each one of them. Additionally, we analysed how each
menagerie class relocated as a consequence of a specific
noise, as follows.

Take an initial point 4(TPR,, SCP,) representing the global
recognition capabilities of an individual on the dataset, and a
point B(TPR,, SPC,) computed likewise for when a specific
noise is removed. We can then compute the global distance
to the optimal point O(1, 1) as (2), and the distance upon
noise removal d,, likewise.

d, = /(1 = TPR )’ + (1 — SPC,)? @®)

Finally, the individual optimisation produced by noise
removal can be accessed through {—[—1, 1], where —1
represents the worst case scenario and 1 the best
improvement possible. Zero means no performance change

d,—d,
_du+db

¢ ©)

Assessing the average { — values on each one of the zoo-plot
regions, we obtain the values at Table 5.
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Table 4 Overall sensitivity (TPR), specificity (SPC), accuracy
(ACC) and MCC values and the same statistics for when a noise
factor is removed

Table 6 Probability (%), sensitivity TPR, specificity (SPC),
accuracy (ACC) and MCC values for feature category usage on
recognition justifications

TPR SPC ACC MCC (%) TPR SPC ACC MCC
overall 0.657 0.941 0.918 0.547 shape 49.64 0.87 0.88 0.88 0.62
illumination angle 0.682 0.944 0.922 0.573 color 6.05 0.71 0.92 0.90 0.52
illumination intensity 0.633 0.938 0.913 0.518 texture 0.51 1.00 0.50 0.71 0.55
revolution 0.641 0.941 0.916 0.5637
head-tilting 0.671 0.941 0.919 0.558
Gaussian Blur 0.670 0.943 0.920 0.560
occlusion 0.641 0.939 0.914 0.532 with improvements over three times greater than those
rev. c.vccllusmn 0.675 0.942 0.920 0.558 observed for ‘Sheep’.
pixelisation 0.641 0.941 0.917 0.537 As ab tated ¢ of iustificati f h of th
compression 0618 0937 0911 0506 S above stated, a set of justilications for each ot the
white noise 0.688 0.945 0.923 0.580 responses given by the volunteers of our on-line survey

When a noise factor is withdrawn, one would expect the
optimisation to always be positive. However, both analyses
show only four noise factors that led to significant
improvements. The most conditioning element is the
introduction of the ‘white noise’ associated with analogue
channels, and as the opposite tendency is observed for
digital ‘compression’, we can conclude that digital channels
should be used. The second considerable constraint is the
‘illumination angle’: when the subject being identified was
not frontally lit, participants exhibited higher error rates. On
the other side, variations on the ‘lightening levels’ were not
relevant, as participants were able to accommodate to both
under- and over-exposure. We also observed their ability to
cope with ‘occlusion’ up to a certain degree, and only when
a portion of the face was visible (‘reverse occlusion’) their
performance started to degrade. Finally, participants’
performance was also significantly conditioned by
‘head-tilting’. This last observation is of special importance:
as mentioned before, individuals trying to avoid detection
are most likely to be facing the ground or away from any
visible cameras. Along with illumination intensity and
occlusion, some other noise factors’ removal did not led to
improvements in performance: ‘revolution’, indicating that
useful features can also be derived from the side of the
head, and are actively used in human identification; and
‘pixelisation’, that along with ‘compression’ lead us to infer
that global features are preferred over local and more
detailed ones.

When performing a ‘per’ species analysis, its perceptible
how sensitivity tens to decrease at an higher rate than
specificity increases. That explains the negative {-values for
species located over the TPR’ third quartile (doves and
phantoms), associated with a convergence to ‘the herd’. The
class that benefits the most from noise removal is ‘Worms’,

we’re collected. These answers are an important source of
information to perceive the type of features predominantly
used by humans in identification tasks, as well as to relate
the usability of each feature to the degree of success in the
corresponding identification. Hence, the responses were
grouped by the type of feature they mention and the facial
region, as detailed in Tables 6 and 7.

On a ‘per’ category analysis (Table 6), we can see how
almost half the justifications mention shape related features,
making it the most commonly used feature type. Colour
related features are much less used (6.04%), skin and hair
colour being the most significant ones. This is a
considerable difference, even considering that the dataset
consists mainly of young European participants. Attending
to the accuracy levels alone, one could be biased into
considering the latter to be a better feature.

To take into account both the high specificity value and the
difference in class sizes MCC was also analysed. This
measure weights the importance of TPR and SPC by the
size of each class, shows shape to be not only the most
used feature type, but also the more reliable on both
positive and negative identification. Finally, the number of
participants that used textural information is almost residual
(0.51), and usually refers to freckles and another skin signs,
tattoos and jewellery.

In Table 7 we summarise the ‘per’ region analysis. As we
can see, when looking to justify the identifications they make
participants use holistic features on almost 2/3 of the
justifications, with two most relevant cues: perception on
probe subject gender, and a broad analysis of head’s shape.
From that, special attention is paid to top regions, which can
intuitively be related to a higher amount of detail, as more
elements are present. Actually, if we analyse the weighted
accuracy average per region we can see how topmost areas
are indeed less deceiving than lower ones, which is
explained by the high volume of negative identifications
based on hairstyle. Hair related features played an important

Table 5 Average ¢-values for all zoo-plot regions (x1072) upon noise removal

Doves Chamel. Phant. Worms Sheep Average

illum. angle 6.66 3.78 -3.26 11.90 3.01 2.79
illum. intens. 4.48 -5.32 -6.19 -8.89 -6.82 -3.00
revolution -17.27 -0.37 8.47 1.23 -2.37 -2.51
head-tilting 4.58 0.70 -0.61 -0.13 4.64 2.17
Gaussian Blur -0.81 -0.88 4.26 -1.79 5.76 0.92
occlusion 5.26 —0.96 —6.41 -3.02 -6.73 -1.06
rev. occlusion 1.84 0.82 2.90 3.84 4.91 2.69
pixelisation -13.49 -0.03 -12.04 7.86 -3.93 -4.38
compression 13.61 -0.83 -19.47 -14.57 -3.99 -3.98
white noise -17.74 5.74 10.99 13.49 2.71 3.33
average -1.29 0.27 -2.14 0.99 0.28
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Table 7 Probability (%), sensitivity (TPR), specificity (SPC), accuracy (ACC) and MCC values for feature usage as recognition

justification

(%) (%) TPR SPC ACC MCC
holistic 64.29 gender 35.86 0.50 0.99 0.98 0.38
age 2.33 0.75 0.96 0.94 0.71
face/head 22.89 0.86 0.93 0.92 0.68
skin 3.21 0.60 0.90 0.86 0.43
upper face 25.73 hair 23.03 0.74 0.89 0.87 0.54
forehead 2.70 0.86 0.93 0.92 0.75
mid face 24.28 eyebrows 4.66 0.85 0.78 0.80 0.53
eyes 3.94 0.91 0.79 0.81 0.59
glasses 2.26 0.33 1.00 0.94 0.56
ears 3.43 0.93 0.67 0.74 0.54

nose 9.99 0.96 0.85 0.88 0.71

lower face 16.11 cheeks 0.36 1.00 0.50 0.60 0.41
beard/mustache 4.52 1.00 0.89 0.90 0.64
mouth 2.26 0.89 0.82 0.84 0.66
chin/jaw 6.05 0.86 0.88 0.88 0.53
neck 2.92 0.80 0.71 0.73 0.36

other 2.33 shoulders 0.15 1.00 0.00 0.50 —
clothes 2.19 0.50 0.86 0.83 0.24

Features are grouped per type/region and sub-region.

role as decision factor, being mentioned in almost 1/4 of the
answers. Allusions to the forehead were also mostly related
to hair-to-skin boundaries, and if we group them as ‘upper
face’ we cover 25.73% of the answers. The second most
used region was ‘mid-face’, whose observation aided on
justifying 24.28% of the identifications. Here, periocular
information was the most used (10.86%), closely followed
by the nose information. From the lower face, the most
mentioned feature is a mix of the chin/jaw shape and the
texture (the presence of facial hair).

When balancing positive and negative identifications
through MCC, we can see how the mid-face is the less
deceiving area. For the holistic features, age was the most
effective recognition factor. As most of the database
participants are young adults (academic students), the ones
older than them (academic staff) are easily spotted.

3.3 Positive against negative identification

The degree to which we can rely on positive identification
changes significantly when the decision environment
degrades. To illustrate a poor decision environment, we
computed entropy 7 as the single feature for subject
identification over images acquired at the first three levels
of illumination angle and subject revolution. Let / be an
image in this set and x; a pixel intensity level on the [0,
255] interval. Using histogram counts to estimate its relative
frequency P(x;), the global image entropy is given by (10).
Attending to probability densities (Fig. 9), we can verify
how that constitutes a poor decision environment for any
Bayesian classifier to perform positive identification, as
functions overlap

n(l) =Y Px)) log, P(x;) (10)

Yet, assuming a null hypothesis H, corresponding to the
genuine matches, and H; to the impostors, we can use
the Neyman-Pearson statistical test [18] to optimise the
classification decision in function of a threshold A (11)

Oa
= (°
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if P(S|H,) > AP(S|H,) (1)
if P(S|Hy) < AP(S|H,)

Class density distributions P(S/H,) was estimated through i
for positive identification (12), and i on the negative
approach (13), from class predictions w;

i= arg; max P(w;|m) (12)
? = arg; min P(w;|n) (13)

Computing Bayes error rate (14) for both identification modes
at varying As, we obtain the receiver operating characteristic
(ROC) curve at Fig. 10. This graphic we illustrate the
performance of both identification modes by plotting the
true positive rate against the false positive rate for various
A-values. A point closer to the origin (0, 0) corresponds to
an higher A-value and, consequently, a more restrictive
system. We can see that relaxing the parameter A makes
true positives increase at an higher rate on negative
identification than on positive identification. In the latter,
true positive never gets over 0.02, which is understandable
since we are using image entropy as the single feature.
Nonetheless, we can see how such a poor decision
environment built form a single feature, which do not
provide enough information to attain positive identification,

0.35
0.3
0.25

0.2

p(m)

0.15

0.1

0.05

Entropy (n)

Fig. 9 Probability density function for entropy values (1) on all
subjects on the dataset
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Fig. 10 ROC curve for positive and negative identifications, using
Neyman-Pearson criterium with different A values

still allows reliable negative identification

P(error|S) = Z j
ne

@; 7 Oy

. P(n|o)p(w)dn — (14)

i

4 Conclusions

This paper introduced the BioHDD, a new multi-session
dataset of heavily images, with two singularities that turn it
suitable for evaluating biometric recognition methods in
extremely degraded data: (1) it contains a set of profile and
frontal mugshots from 101 subjects, simulating good
quality enrolment data; (2) it contains large sets of probes
degraded under combinations of ten types of noise factors,
resulting in images that are extremely hard to classify.

Further, we conducted an extensive on-line survey on the
BioHDD data. Participants were asked to positively/
negatively identify probes against the enrolled identities,
along with a description of the major features used in their
responses. The analysis of identification performance
showed that humans have no issues cooping with
inadequate illumination intensity and moderate levels of
occlusions. Also, a notable ability to cope with
low-resolution and compressed images was observed,
suggesting that humans mostly rely on global features for
identification tasks. On the other side, probes with subjects
looking straight up or down and higher levels of occlusion
were found to be stressful elements. That is probably the
most concerning issue, as subjects trying to avoid detection
‘in the wild’ are more likely to be caring headgear or facing
down, away from visible cameras.

A second level analysis was carried out on the justifications
that participants gave for their responses: we concluded that
high-frequency information, although not latent to the
identification process, is taken into account when looking
for specific attributes than can support their decisions. In
both cases, shape related cues were the most accounted for,
and also the more reliable. On the other side, texture
information was rarely indicated as a decisive element.
Holistic features, although not the more reliable ones, were

IET Biom., pp. 1-9
doi: 10.1049/iet-bmt.2014.0045

also used on most justifications. From the identified
features, the more reliable were the ones located on the
mid-face: periocular features, the nose and the ears.

As further lines of work, authors plan to: (1) extend the
acquisition setup in order to make it even more complete at
mimicking ‘in the wild’ conditions (e.g. complement it with
different light source angles); (2) expand the BioHDD
dataset with a larger amount of participants, increasing even
more the statistical significance of the dataset. Such
improvements will be made available at the database website.
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Chapter 12

A Dual-Step Approach to Head Landmark
Detection In The Wild

12.1 Overview

This chapter consists of the following article:

A Dual-Step Approach to Head Landmark Detection In The Wild Gil Santos and Hugo Proenca
Submitted for the 8" IAPR International Conference on Biometrics - ICB-2015, May 19-22, 2015,
Phuket, Thailand
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A Dual-Step Approach to Head Landmark Detection In The Wild

Anonymous ICB 2015 submission

Abstract

The correct determination of facial and head landmarks
is of significant value in multiple computer vision do-
mains. In this paper a novel landmark detection approach
is proposed, capable of identifying the presence of six key-
elements of the human head and pinpoint their location
regardless of the image acquisition angle or head’s pitch.
For this purpose, a dual-step approach is used: 1) a pixel-
level statistical analysis assigns each image pixel into one
of seven primary components of a typical head photo-shot;
2) head landmarks are detected by fusing HOG-based fea-
tures extracted from both the acquired image and the output
from the first stage. Finally, performance evaluation of the
proposed method is carried out over surveillance-like data,
where subjects’ heads are imaged over multiple angles cov-
ering a full 360 degree view and participants exhibiting full
head pitch range.

1. Introduction

The human face is of the most importance for recogni-
tion, interaction and communication purposes. Being able
to accurately detect facial landmarks is a challenging goal
with many applications in the field of computer vision, such
as head pose estimation, expression analysis and face align-
ment for biometric recognition.

The pioneering research focused on facial landmarks
used elastic graphs matching for the detection of facial ima-
ges in cluttered scenes [11], and compensate for large ro-
tations in depth while carrying on face recognition [16].
Later on the Active Appearance Models (AAM) algorithm
was introduced [3], which is actively used nowadays on
face matching and tracking, with further improvements to
learn appearance variations of a set of templates [4]. More
recently, different approaches address the issues inherent
to unconstrained scenarios, either by using tree-structured
models to effectively handle deformation, combining face
detection, pose estimation and landmark localization [19],
SIFT-based face part detectors [1], or regression-based
models to achieve face alignment [2].

From the point of view of unconstrained biometrics,
where efforts are being held into extending robust recog-

Figure 1. Illustration of the optimal output for our method. The
detected landmarks are 1) right eye, 2) left eye, 3) nose, 4) mouth,
5) right ear, and 6) left ear.

nition to in the wild scenarios, landmark detection is com-
monly used in early stages in order to achieve proper face
alignment. Techniques developed for such purpose seek to
find the correct location of the eye’s center and corners,
eyebrow corners, nose tip, mouth corners, etc. However,
an effective head landmark detection technique can be put
to further uses. Being able to identify which are the visi-
ble landmarks can help decide on the best recognition tech-
nique to use. In fact, being able to tell to which extent a
particular biometric trait is reliable or not, based on its visi-
bility, can be more interesting that having a close estimation
of the head’s pose, or conducting facial alignment. To this
purpose, the present work aims at detecting six landmarks
in particular: the left and right eyes, with the corresponding
periocular region; the left and right ears; the nose; and the
mouth.

The head landmarking problem is particularly challen-
ging over unconstrained, noisy or degraded data, as not only
the head is a moving imaging target, as it rotates over three
axes: pitch, roll and yaw. Furthermore, on most video-
surveillance scenarios it can be imaged from any direction,
and most of the proposed facial landmark detection meth-
ods require a frontal or near-frontal imaging of the subject

135



Biometric Recognition in Unconstrained Environments

Acquired Image

Feature Extraction NN Classifiers

Feature Extraction NN Classifiers

Colorspace Transformation

Labeled Image

Feature Extraction

Key-Region Mask

Step 1: Pixel-Level Classification

Step 2: Head Landmark Detection

Figure 2. [llustrative diagram of the proposed method. Apart from the acquired and labeled photos, images were scaled and mapped to a

different color-map for better perception.

to properly function. The technique presented in this paper
allows identifying which ones of the six main head land-
marks are visible (i.e. eyes, nose, mouth, and ears) and
their location in the head image, regardless of the imaging
angle and head-tilting — Figure 1. To achieve that goal, a
two-step approach is followed. At first, a pixel-level clas-
sification assigns each one of the image pixels into one of
seven key-regions representing the main elements of a head
photo-shoot: skin, hair, eyes, mouth, clothes, accessories
and background. To do so, a set of Neural-Networks (NNs)
was used, working over a group of color and textural fea-
tures. On a second stage, a Histogram of Oriented Gradi-
ents (HOG) analysis combining information from both the
acquired image and the newly obtained pixel-level classifi-
cation map is fed to another set of NN, resulting in the final
landmark detection output.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the proposed method, with details on both
its pixel-level classification and landmark detection steps;
Section 3 details the experimental procedure, starting by re-
porting the utilized dataset, and followed by the method re-
sults. Finally, Section 4 contains some final considerations,
and further lines of work.

2. Proposed Method

The landmark detection technique proposed in this pa-
per consists in two main steps — Figure 2: 1) pixel-level
classification between seven predominant regions; 2) land-
mark detection combining both the acquired image and the
pixel-level classification.

For the purpose of this work the problem of head detec-
tion is assumed to be already solved, as literature provides a
considerable number of techniques [17, 18], among which
the widely implemented Viola and Jones detector [15].
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2.1. Pixel-level Classification

At the pixel-level classification stage, each one of the
pixels is individually classified into one of seven key-
regions found to be the predominant ones in head images:
skin, hair, eyes, mouth, clothes, accessories and, for the re-
maining pixels, background. Eye pixels include the visible
elements of the ocular globe (i.e. sclera, iris and pupil), and
mouth pixels comprise the lips and, occasionally, other ele-
ments from the human mouth made visible due to subject’s
expression (e.g. teeth). For such purpose, a set of features
was extracted and fed to a NN for classification. The se-
lected features were chosen for their simplicity, and com-
putation ease, aiming at establishing a fast technique able
to work on real time.

As some identified key-regions were visually more dis-
tinct over different color-spaces, four different color rep-
resentations were used for feature extraction: RGB, Hue-
Saturation-Value (HSV), YCbCr and CIE Lab. The inten-
sity values in the RGB color-space were directly red from
the database images, and used as reference to compute the
remainder. The HSV color-space was firstly introduced by
Joblove and Greenberg [9] to represent color in a more in-
tuitive and perceptually relevant manner, by mapping the
color values to a cylinder: the “hue” value corresponds to
the angle around the cylinder axis; “saturation” the dis-
tance from that same axis; and finally the “value” is the
height, representing the perceived luminance having sat-
uration as reference. YCbCr is a color-space more com-
monly used in digital video systems, and its three compo-
nents means respectively the luminance (Y) and the blue-
difference chroma (Cb) and red-difference chroma (Cr).
Conversion was attained based on ITU-R recommendation
BT.601 [8]. The Commission Internationale de I’Eclairage
(CIE) 1976 (L*a*b*) color space, also known as CIE Lab, is



partially uniform representation, based on the human visual
system and allowing absolute color characterization. Since
proper chromatic adaptation matrices were not disclosed
along with the used database, the transform was based on
the ITU-R recommendation BT.709 [7], using as reference
the CIE D65 illuminant [14].

For each pixel, and besides its own intensity, a set of
features were computed for each one of the color represen-
tations as follows. At first, the entropy was used to encode
the image texture using its randomness [6]: let I be an im-
age from the dataset, and /; a pixel intensity level on the
[0.255] interval; using histogram counts to estimate its rel-
ative frequency P(l;), the entropy value 7 is given through

().

255

n=_ P()log, P(L;) (1)
=0

This metric was computed for 8-, 35- and 224-neighbor
windows. For the same neighborhoods of N pixels z;
were also computed the average p, standard deviation o and
range (maximum value - minimum value), asymmetry « (2)
and kurtosis £ (3).
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Finally, two more well known distribution-based des-
criptors were used HOG and Uniform Local Binary Pat-
terns (ULBP). The HOG descriptor [5], widely applied on
computer vision, computes the gradient orientation by filter-
ing the image with two kernels: [—1,0,1] and [-1,0, 1]T.
The ULBP descriptor differs from the regular Local Binary
Patterns (LBP) as it achieves “improved rotation invariance
with uniform patterns and finer quantization of the angu-
lar space” [12]. Instead of the 2™ possible binary patterns
outputted from the regular LBP over an 8-neighbor region, a
uniformity measure U is calculated representing the number
of bitwise changes in that same pattern (4). This measure
can only assume 59 distinct values.

ULBP = |sgn(x7 — x;) — sgn(xg — x;) |+

’ )
+) " Isgn(zy — z;) — sgn(z,_1 — ;)|
n=1

As we can see, from this analysis many features were ex-
tracted, resulting in a classification problem with very large
dimensionality. As so, we choose to conduct dimensionality
reduction using the Principal Component Analysis (PCA)
technique [10], prior to the training of the NNs. NN-based

methods have been widely applied on classification prob-
lems, for their learning abilities and good generalization.
For the purpose of this work, a NN was trained to identify
each one of the identified key-regions. The architecture of
each NN was as follows: the hidden layer had fifteen neu-
rons, half the number of features resulting from the dimen-
sionality reduction stage, and the final (output) layer had a
single neuron, since we are dealing with binary classifica-
tion problems. At the classification phase of this stage, each
pixel is mapped to the key-region whose NN outputted the
greatest value in terms of cumulative density.

2.2. Landmark Detection

The second-stage combines textural information from
both the acquired image and the pixel-level classification
output to produce the final decision about the presence of
head-landmarks and their location.

At first, the acquired image is divided into multiple over-
lapping spatial blocks. Those blocks constitute the set of
detection windows that will be matched against each one of
the head landmarks. Then, the information from each one
of those windows is encoded, along with the correspondent
output from the pixel-level classification stage, simply by
using the HOG-based encoding technique detailed on the
previous section.The single use of HOG-based feature en-
coding was preferred over more complex techniques, so that
this procedure could to be carried over a large amount of de-
tection windows with a lower impact on the computational
cost.

Finally, those features fusing information from both the
acquired image and the output from the previous stage is fed
to a set NN, previously trained to identify each one of the
landmarks. For this second stage, each NN has two hidden
layers: a first hidden layer with 100 neurons, and a second
one with ten. Once again, and since each NN was trained to
fit a single landmark, we are facing a binary classification
problem and a single output neuron was used. The output
of each NNs was analyzed against its cumulative density
function to produce the final detection decision.

3. Experimental Results

To the best of our knowledge and despite the literature
cited in the introductory section, from the published re-
search none is aimed at the same goals our method is.

3.1. Dataset

For the purpose of this work, we found that the most fit
dataset was the BioHDD [13]. The BioHDD is a database
built to test biometric methods against extremely degraded
data, gathering head images from over one hundred partic-
ipants in a full 360° view. This dataset provides images
acquired in both the near-infrared (NIR) and visible wave-
length (VW), but only the latter were used.
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Table 1. Confusion matrix for the results obtained at the pixel-level classification stage. Performance values for the three top-performing

classifiers are outlined in bold.

Predicted Class
Skin Hair Eyes Mouth | Clothes | Accessoires | Background Total | Sensitivity
Skin 1 886 583 141688 | 31298 | 361551 | 115075 39893 53905 | 2629993 0.717
» | Hair 370676 | 5261 177 | 27794 | 208 666 | 246 236 168 670 242134 | 6525353 0.806
‘6“ Eyes 78 406 | 2046 1820 863 1372 20 6 605 0.310
= | Mouth 6584 2 096 739 | 21005 1801 1752 365 34 342 0.612
g Clothes 47362 208 181 | 10057 | 78 840 | 423 049 53 885 74 181 895 555 0.472
<< | Accessoires 591 17356 | 3702 6244 | 24125 21505 2144 75 667 0.284
Background 21554 334266 | 3407 | 45338 | 147108 21554 7259258 | 7832485 0.927
Total 2333428 | 5965170 | 79043 | 723 464 | 958 257 308 631 7632007 | 18 000 000
Precision 0.809 0.882 | 0.026 0.029 0.441 0.070 0.951

Although ten different types of noise are present in the
dataset, we have chosen a subset where variations occur
over two axes: 1) imaging angle — subjects’ heads were im-
aged from different angles, covering all 360° degrees at 45°
steps; 2) head-tilting — for each one of the imaging angles,
three variations were observable, with subjects were fac-
ing forward, or looking up or down. As we can see from
Figure 3, there is a considerable variability among the used
data. For the sake of clarification, the 0° angle corresponds
to the subject being imaged frontally. For illustrative pur-
poses, sample images from the BioHDD subset used in our
experiments are present at Figure 3.

3.2. Evaluation Metrics

To quantify the performance of the proposed method, the
following metrics were used: for the first stage (pixel-level
classification), the confusion matrix were computed, along
with the sensitivity and precision for each key-region; for
the second stage (and global method performance) perfor-

(b)

(d) ©

Figure 3. Sample images from the BioHDD subset used in our
experiments: subjects’ head imaged from different angles, with
participants facing forward, looking up or down.
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mance was assessed through Receiver Operating Charac-
teristic (ROC), Area Under Curve (AUC) and Equal-Error
Rate (EER).

The confusion matrix summarizes the performance of
the classifiers, counting the matches that were observed be-
tween each one of the actual classes (rows) and the pre-
dicted values (columns). That allows assessing the amount
of positive pixels that were actually classified as such (sensi-
tivity) and identify which classes are more commonly mis-
taken. The precision, on the other side, gives us the propor-
tion of positively identified classes that actually were gen-
uine.

The ROC curve relates the sensitivity, or True Positive
Rate (TPR) with the False Positive Rate (FPR). Based in
that plot, the AUC can be perceived as a quantification of
how well pairwise comparisons are performed on a binary
classification problem. On the perfect scenario, all positive
matches are ranked higher and the negative ones, and the
AUC equals one. Finally, setting the acceptance threshold
so that the probability of false acceptance equals the proba-
bility of false rejection, we obtain the EER.

During the experimental procedure all results were ver-
ified using ten-fold cross-validation: 90% of the data was
randomly selected for training, being the testing conducted
on the remaining 10%. This procedure was repeated ten
times.

3.3. Pixel-Level Classification

To train the classifiers for this stage, a subset of fifty ima-
ges from the BioHDD database was used. Although only
fifty images were used, each one has 600 x 600 pixels repre-
senting a total of eighteen million potential instances spread
between the seven classes.

In order to establish the ground-truth, images were man-
ually segmented, assigning each pixel to one of the estab-
lished key-regions. However, as the number of positive
and negative instances of each key-class were significantly
unbalanced in particular for the smaller key-regions (e.g.
eyes), we have chosen to use all positive instances for train-
ing, and randomly choose double that amount of negative



instances.

For each selected pixel, features were then encoded as
detailed in Section 2.1. The NN classifiers results over the
10-fold cross-validation are present at Table 1 and illus-
trated at Figure 4. For a better perception of the achieved
results we choose to display the same images that were pre-
viously used to illustrate the dataset (Figure 3).

Analyzing the sensitivity values for each class, we can
see how that performance metrics appears to be directly
proportional to the total of pixels of each key-region, with
exception of the clothes and accessories. That leads to theo-
rize that the low performance of some classifiers were pos-
sibly conditioned by an insufficient number of training sam-
ples, as the ones with better performance were also the ones
with a larger training set. As for the two exceptions, visu-
ally inspecting samples from those classes we observe that
they display a much more significant variability in textural
information between the dataset participants. Without mak-
ing any considerations about this classification stage impact
over the final method’s performance, there are three key-
regions satisfactorily classified over this step: background,
hair and skin, which is further corroborated by the results
illustrated at Figure 4.

Attending to the precision of each classifier, we can ob-
serve how the eyes, mouth and accessories are effectively
problematic classes, as less that 10% of the pixels actually
classified as such were genuine positives. For the pixels
classified as eyes, 40% actually belong to the skin region,
and 35% are hair. A possible explanation is the fact that
the eye region is relatively small, and the skin and hair are
its direct neighbors. As some features were extracted over

(®

(C)]
Figure 4. Sample output from the pixel-level classification stage.
For a better perception of the achieved results, the images being
shown are the same images previously used for dataset illustration
(Figure 3).

relatively large widows, that could have misled the classi-
fiers. A similar conclusion can be drawn for the mouth and
accessories regions.

There is also a significant confusion between the clothes,
background and hair regions. That is perceptible not only
by analyzing the misclassified pixel count, but also by vi-
sually inspecting the resulting region maps at Figure 4.
The BioHDD dataset, although intended to simulate uncon-
strained conditions, were acquired on a controlled environ-
ment, where the background of each image was a regular
white sheet of fabric. As so, those regions can be assumed
to have enough similarities to mislead the classifiers.

Even if not representing an optimal classification solu-
tion for all the regions per se, the output from the pixel-level
classification stage represents a significant contribution to
the overall performance of our proposed method, as shown
on the next section.

3.4. Landmark Detection

To conduct the second and final stage of our experiments,
we randomly picked over a thousand different images from
the selected BioHDD subset (excluding the ones used for
pixel-level classification training and performance assess-
ment). Each one of those images was then manually an-
notated to provide ground-truth information about the vis-
ible landmarks and their precise locations. To delimit the
landmarks a square 120 x 120 pixel region was used and,
regardless of the imaging angle and head pitch, that region
was always unrotated and centered on the landmark. That
dimension was selected based on experimentation and at-
tending to the dataset characteristics, aiming at fitting the
whole landmark without including unnecessary surround-
ings.

To train each one of the classifiers, one genuine land-
mark and two impostors were extracted from each image.
Those two negative samples correspond to non-overlapping
regions of the same dimensions of the landmarks, randomly
located in the same database image. At the evaluation stage,
a detected landmark is considered a true positive if the real
landmark center is located within the detection window.
Likewise, any landmark left undetected is considered to be
a false negative. Once again, experiments were conducted
over a 10-fold cross-validation. For comparison purposes,
along with the feature-level fusion from the acquired image
with the output from the pixel-level classification stage, dif-
ferent classifiers were trained using the features from each
one of those sources separately. The performance assess-
ments are present at Figure 5 and Table 3. The impact of
the imaging angle and head pitch over the feature-level fu-
sion classifier are presented at Tables 2 and 4 respectively.

As we can see all landmarks exhibit relatively good de-
tection performance, considering the demanding characte-
ristics of the dataset: once again, we are stressing the pro-
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Table 2. Detection performance of the proposed method, accordingly to the subject imaging angle. The displayed performance metrics are
Area Under Curve (AUC) and Equal-Error Rate (EER). Cells with empty values represent angles where that landmark was neither detected

nor visible. Top values for each landmark are outlined in bold.

Imaging Angle — 0° £45° +90° +135° 180°
AUC | EER | AUC | EER | AUC | EER | AUC | EER | AUC | EER
Right Eye 0.948 | 0.114 | 0.865 | 0.183 | 0.782 | 0.264 | 0.801 | 0.268 - -
Left Eye 0.913 | 0.160 | 0.854 | 0.207 | 0.799 | 0.260 | 0.838 | 0.245 - -
Nose 0.850 | 0.206 | 0.841 | 0.223 | 0.816 | 0.239 | 0.828 | 0.222 - -
Mouth 0.919 | 0.132 | 0.872 | 0.172 | 0.806 | 0.254 | 0.306 | 0.695 - -
Right Ear 0.839 | 0.239 | 0.935 | 0.139 | 0.920 | 0.156 | 0.947 | 0.099 | 0.826 | 0.235
Left Ear 0.831 | 0.243 | 0.907 | 0.154 | 0.929 | 0.156 | 0.920 | 0.114 | 0.732 | 0.313

posed method against images where the subject could have
been imaged from a wide variety of angles on a full 360°
range and with variable head pitch.

At Table 3 we can observe how the features extracted
from the subject as it was imaged appear to be more dis-
criminative than when using only the features from the
pixel-level classification output. The only exceptions are
the eye landmarks. Remarkably, the eye region was one
of the key-elements of the image that presented signifi-
cant classification issues during the first stage. Nonethe-
less, feature-level fusion is always preferable: as we can see
from the ROC curves the fusion classifier is able to obtain
higher true positive rates (sensitivity) with lower false posi-
tive rates (leftmost part of the each plot). Top performed is
observed for the ear landmarks, with the right ear achieving
an AUC of 0.910 and 0.155 EER. Right after that, the eyes
landmarks attained AUC of 0.870 and 0.858, being the third
and fourth top performing landmarks. Finally, the nose and
mouth were the landmarks with lower performance: 0.835
and 0.853 for AUC, and 0.228 and 0.203 EER respectively.

Analyzing the landmark detection performance as func-
tion of the imaging angle (Table 2), we can observe that
frontal imaging of the subject lead to better performance
on detecting the right and left eyes, nose and mouth land-
marks. At that imaging angle, the average of the AUC va-
lues observed for the eyes landmarks was 0.931, followed

Table 3. Detection performance for each individual landmark,
when features were used from the acquired image, from the pixel-
level classification stage output, and from their fusion. The dis-
played performance metrics are Area Under Curve (AUC) and
Equal-Error Rate (EER). Top results for each landmark are out-
lined in bold.

by the mouth with 0.919 and the nose with 0.850. The de-
tection performance for the ears landmarks achieved even
higher performance values, with an average top AUC of
0.938. However, those two landmarks performed better
as the subject was imaged over higher rotation angles (i.e.
sideways). When the subject is completely tuned by 180°,
facing away from the camera, and despite four of the six
head landmarks not being visible, the ear landmarks are still
detected with relatively good performance. On those latter
conditions, 0.826 AUC was observed for the right ear, with
an EER of 0.235. Attending the facial landmark detection
techniques in the literature, we can consider that from the
stressed imaging amplitude range the most adverse to be lo-
cated between £135° and 180°. As we saw, the proposed
method is able to cope with such conditions with satisfac-
tory performance.

Finally, from Table 4 we can see how our method is rela-
tively stable to variations on head’s pitch, with the detected
landmarks registering standard deviations not higher than
0.026 for the AUC and 0.031 for the EER among all the
stressed pitch ranges.

4. Final Considerations

In this paper we propose a novel algorithm for head land-
mark detection, capable of identifying and pinpoint their lo-
cation of six key-elements of the human head: right and
left eyes, nose, mouth, and right and left ears. The pre-
sented technique solution is composed of two major phases:
1) a group of locally extracted features classifies each im-

Table 4. Detection performance of the proposed method, accord-
ingly to the subjects’ head pitch. The displayed performance met-
rics are Area Under Curve (AUC) and Equal-Error Rate (EER).

Acquired Image | Px-Lvl Output Fusion Pitch — | Facing Forward | Looking Up | Looking Down

AUC | EER AUC | EER | AUC | EER AUC | EER | AUC | EER | AUC | EER
Right Eye | 0.843 | 0.228 0.870 | 0.210 | 0.863 | 0.190 Right Eye | 0.857 | 0.195 | 0.891 | 0.159 | 0.844 | 0.211
Left Eye | 0.839 | 0.229 0.845 | 0.235 | 0.858 | 0.214 Left Eye | 0.831 | 0.240 | 0.883 | 0.179 | 0.865 | 0.218
Nose 0.815 | 0.246 0.799 | 0.271 | 0.835 | 0.228 Nose 0.802 | 0.254 | 0.844 | 0.215 | 0.855 | 0.206
Mouth 0.819 | 0.249 0.811 | 0.254 | 0.853 | 0.203 Mouth 0.838 | 0.231 | 0.854 | 0.191 | 0.867 | 0.173
Right Ear | 0.910 | 0.161 0.870 | 0.204 | 0.909 | 0.155 Right Ear | 0.915 | 0.152 | 0.910 | 0.148 | 0.899 | 0.174
Left Ear 0.872 | 0.195 0.855 | 0.224 | 0.881 | 0.182 Left Ear 0.869 | 0.185 | 0.904 | 0.146 | 0.868 | 0.188
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Figure 5. Receiver Operating Characteristic (ROC) curves for the detection of each individual landmark, when features were used from the
acquired image, from the pixel-level (Px-Lvl) classification stage output, and from their fusion.

age pixel into one of the seven main-regions of a head

(2]

photo-shot (skin, hair, eyes, mouth, clothes, accessories and
background); 2) HOG features are extracted from both the

acquired image and the pixel-level classification stage for

(3]

landmark detection. When tested against a database of de-
graded data that simulates surveillance-like conditions, our
method delivered relatively good performance regardless of
the subject’s imaging angle and his head pitch.

As future lines of work, further validation of the pro- [4

—

posed method is intended, not only against the full range
of noise factors provided by the BioHDD dataset, but dif-
ferent and more widely used databases as well. Another

step would be the extension of the proposed method to head [5

—

pose estimation, using as information the coordinates of the

detected landmarks.
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Chapter 13

Quis-Campi: Extending In The Wild Biometric
Recognition to Surveillance Environments

13.1 Overview

This chapter consists of the following article:

Quis-Campi: Extending In The Wild Biometric Recognition to Surveillance Environments

Gil Santos, Joao C. Neves, Silvio Filipe, Emanuel Grancho, Silvio Barra and Fabio Narducci
Submitted for the 8" IAPR International Conference on Biometrics - ICB-2015, May 19-22, 2015,
Phuket, Thailand
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Quis-Campi: Extending In The Wild Biometric Recognition
to Surveillance Environments

Anonymous ICB 2015 submission

Abstract

Efforts in biometrics are being held into extending robust
recognition techniques to in the wild scenarios. Nonethe-
less, and despite being a very attractive goal, human identi-
fication in the surveillance context remains an open prob-
lem. In this paper main we introduce a novel biometric
system — Quis-Campi — that effectively bridges the gap be-
tween surveillance and biometric recognition while having
a minimum amount of operation restrictions. We propose
a fully automated surveillance system for human recogni-
tion purposes, attained by combining human detection and
tracking, further enhanced by a PTZ camera that delivers
data with enough quality to perform biometric recognition.
Along with the system concept, implementation details for
both hardware and software modules are provided, as well
as preliminary results over a real scenario.

1. Introduction

Biometrics is one of the most active fields in the area of
computer vision, which is justified by our societies’ increas-
ing concern about security. Biometric systems significantly
rely on the accurate extraction of individuals’ distinctive
features, which is conditioned by the acquisition environ-
ment and constraints. As such, the most reliable systems
are deployed on controlled scenarios and count on subject
cooperation. On the other side, surveillance cameras are
widely deployed and can constitute a good source of input
for biometric systems. Filling the gap between biometrics
and visual surveillance is quite a desirable goal, allowing
to produce automata capable of recognizing human beings
in the wild, without their cooperation and, possibly, even
without their awareness.

When moving to in the wild scenarios the acquisition
constraints are substantially lowered and, most of the time,
subject cooperation is not even expectable. In order to deal
with such challenging conditions alternatives are sought
over three axes [6]: 1) improve the existing algorithms so
they can handle more degraded data; 2) resort to multi-
modal biometric systems so that the usage of multiple traits
can compensate for their lack of “quality”; 3) explore new

biometric traits that could better cope with this new real-
ity. Despite the recent efforts, no system yet exists capable
of dealing effectively with all the issues introduced by in
the wild biometrics, and even those systems able to cope
with less constrained conditions (e.g. the Iris On The Move
project [11]) still lack an ideal level of user abstraction.

Despite the several applications of visual surveillance,
most of existing surveillance systems are focused on activ-
ity recognition (e.g. W* project [5]), and not that many
of them are prepared to handle surveillance scenarios from
a watchlist approach (e.g. Kamgar-Parsi ef al. [8]). In
this paper we present a novel biometric recognition sys-
tem, designed to work covertly in a non-habituated and
non-attended fashion, over non-standard environments. Our
main goal is to conceive a system that links together both
biometrics and visual surveillance, being able to conduct
biometric recognition over typical surveillance scenarios,
with the minimum possible amount of operation restric-
tions.

The remainder of this paper is organized as follows: in
Section 2 we detail the three layers of the recognition sys-
tem, its operation premises and devised modules; in Sec-
tion 3 we present the stressed techniques for each module,
along with preliminary results of our system over a real
surveillance scenario and, finally, Section 4 states some fi-
nal considerations.

2. The Recognition System

The optimal recognition system would operate on any
environment, thus minimizing the amount of operation re-
strictions. Since we are trying to bridge biometrics with the
visual surveillance, we have developed our system in a typ-
ical surveillance scenario: a parking lot (Figure 3(a)). Such
scenario is particularly harsh for recognition purposes, for
a number of reasons: 1) it is a non-standard environment,
with irregular lighting that changes not only during the day,
but also accordingly to weather conditions, reflections, etc.;
2) complex background regions and the varying resolution
of humans poses increasing challenges for both detection
and recognition phases. 3) subjects can come from any di-
rection, and they are rarely facing the camera which is typi-
cally placed on an upper position. Furthermore, the system
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Figure 1. Working diagram of the proposed system, and the three-
layer architecture: hardware control (top), scene understanding
(middle) and recognition modules (bottom).

should run in real-time. That being said, the recognition
system we propose is devised over three main layers (Fig-
ure 1): hardware control, scene understanding, and recog-
nition modules.

2.1. Hardware Control

To mimic a surveillance scenario, a wide-view camera
was mounted on the exterior wall of a building, at a first-
floor level (approximately Sm above the ground), and point-
ing towards a parking lot. Although this kind of camera of-
fers a more complete overview of the scenery, it does not
provide enough quality for recognition methods to work at
the distances the driveway ranges from (15 to 35 meters) —
Figure 2(a).

To provide recognition methods with reasonable quality
data, a PTZ camera was added to the system. This way,
pointing and zooming over a specific region allows acquir-
ing a detailed view of detected subjects. As we can see
from Figure 2(a), there is a substantial difference in the us-
able face and periocular pixel area between the two cam-
eras as a function of the working distance. A Canon VB-
H710F was used as the wide-view camera, and a Hikvision
DS-2DES5286-AEL as the PTZ camera, with a framerate of
30 frames per second (fps) at maximum resolution. How-
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Figure 2. Visible face and periocular width, in pixels, as function
of the system’s working distance (a), and illustration of the ac-
quired data for both cameras (b).

ever, the independence between cameras demands a camera
synchronization module able to map coordinates from the
wide-view camera referential to the Pan-Tilt-Zoom (PTZ)
coordinate system, allowing the acquisition of the high-
resolution view of a portion of the scene (Figure 2(b)).

2.2. Scene Understanding

At the scene understanding layer, the system has two
main modules: 1) people detection and tracking; and 2) fa-
cial landmark detection.

The first module is responsible for locating the people
as they enter the scene, and tracking them until they are
no longer visible. It takes as input the video feed from the
wide-view camera, and has three main steps: background
subtraction, upper-body detection and tracking, illustrated
in Figure 3.

Further to that, the second module of the scene under-
standing layer is applied to that closer view, identifying
which facial landmarks are visible, thus deciding the weight
of each recognition module. Being able to describe which
facial traits are visible and where, is far more important that
actually getting a close estimation of the head’s pose, as we
can tell to which extent the trait is reliable or not.
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(a) Wide-view Feed

(b) Background subtract.

(c) People tracking

Figure 3. Illustration of the preliminary results obtained by the people detection and tracking module: a) sample image acquired with the
wide-view camera; b) foreground regions attained by background subtraction; ¢) people tracking module results.

2.3. Recognition Modules

For recognition purposes the proposed system relies on
a multi-modal biometric approach that combines face, iris,
periocular, ear shape and gait information.

The face is not only one of the most common and widely
used biometric trait, but also one of the most successful
applications of image analysis and understanding. Several
face recognition systems are commercially deployed, and
a lot of techniques accessible [18] for both still and video
images. However, as stated by Bledsoe [2], the “great vari-
ability in head rotation and tilt, lighting intensity and angle,
facial expression and aging” make face recognition an ex-
tremely hard challenge. Since in surveillance scenarios the
impact of such factors is even more significant, it is manda-
tory to rely on robust approaches (e.g. [17]).

The ocular region is one of the most explored in biome-
try. Iris in particular is a very popular biometric trait, deliv-
ering very high recognition accuracy under controlled envi-
ronments. Although iris performance as a biometric trait be-
ing severely impacted in non-ideal setups, due essentially to
its reduced size and moving profile, researchers are putting
efforts in overcome those limitations. The periocular region
represents a good trade-off between the whole face and the
iris, being easy to acquire without user cooperation, and not
requiring a constrained close capturing. As such, is one of
the strongest candidates for the purposes of our system.

The shape of the ear can also be used as biometric trait,
as the structure of its cartilage is unique for each individ-
ual. Despite all ear recognition methods traditionally re-
quire some degree of user cooperation, if proper alignment
estimation can be established and the ear imaged with few
or no occlusion, it can be used as biometric trait in the wild.

Gait is the only trait that will be imaged from the wide-
view cam. Acquiring data about way a person walks is non-
invasive, and can be done at-a-distance. The majority of
the gait recognition methods in the literature do not require
high-resolution data, so they can run over surveillance cam-
era data.

3. Experimental Results

This section details the stressed techniques for each
module, along with preliminary results over the selected
surveillance scenario.

3.1. People Detection and Tracking

At a first stage, several state-of-the-art background sub-
traction techniques were evaluated. Visually inspecting
their performance on our surveillance scenario, we found
SOBS [10] and Mixture of Gaussians [14] to be the most
robust ones over our testing data. Using the output from the
background subtraction technique, we filtered the regions
most consistent with human presence exploiting a simple
upper body detector distributed with OpenCV using Haar
feature-based cascade classifiers [16].

After dealing with detection, the tracking phase is ini-
tialized in order to find the correspondence between the
same subjects in consecutive frames. Different features
such as motion, appearance and shape can be exploited for
that purpose. Considering the specifications of our sce-
nario, we have chosen to use motion and appearance fea-
tures, whereas shape was not considered due to high vari-
ations caused by viewpoint. We observed that although
maintaining their exterior looking while passing through
the scene, dynamic lighting and shadow interference per-
turb persons’ appearance. On the contrary, persons move
at constant speed, providing higher confidence on motion
features. Using the omega-shape (head and shoulder re-
gion) as the primary source of key-points, the Kanade-

Table 1. Tracking performance in our surveillance scenario, when
using KLT. Performance metrics are Multiple Object Tracking
Accuracy (MOTA), Multiple Object Tracking Precision (MOTP),
True Positive Rate (TPR), False Positive Rate (FPR) and mismatch

(MIS).
Scenario MOTA | MOTP TPR FPR MIS
S1 0.940 0.600 0.970 | 0.030 0
S2 0.800 0.590 0.900 | 0.100 0
S3 0.745 0.336 0.862 | 0.138 0
S4 0.589 0.288 0.792 | 0.202 3
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(a) Wide-view key-points

(b) PTZ key-points

_ s
(c) Key-point match

Figure 4. Key-point detection and alignment between the two cameras, wide-view (a) and PTZ (b), prior to geometric transform estimation.

Lucas-Tomasi (KLT) algorithm [13] tracks the initial set of
features accordingly to motion and appearance constraints.
Since some features may be lost during the process, re-
initialization of the features is ensured by the detection
phase. Figure 3(c) exemplifies the result of KLT tracking
in our scenario. The KLT algorithm was preferred since it
assumes that a set of discriminant points of the object move
with a constant speed and maintain a constant appearance.
Based on the set of previous locations provided by the track-
ing module, a Kalman filter [7] is used to provide a coarse
estimation of the future position.

To assess the reliability of the proposed method for
tracking, we considered four simple different scenarios with
increasing level of difficulties: S7- a single person is mov-
ing away from the camera, the background subtraction mask
is of high quality (i.e. absent of noise), and there are no sig-
nificant changes in lighting conditions; $2- a single person
is moving away from the camera at a higher speed, the back-
ground subtraction result contains some noise, and there are
no significant changes in lighting conditions; S3- a single
person walks towards the camera, the is significant noise in
the background subtraction mask due to wind and signifi-
cant lighting changes; S4- three persons are moving away
from the camera, and despite the background subtraction
technique outputs little noise, one of the subjects crosses
the path of the other two. Results are present in Table 1.

To evaluate tracking performance, the CLEAR MOT
metrics [9] were used: MOTA, MOTP, TPR, FPR and MIS.
As we can see, the first scenario (S/, that represents the
best case) produces high levels of accuracy (MOTA) and
precision (MOTP). The FPR is so low that is negligible
in this first experimental trial (the high quality mask from
background subtraction leads to a very precise tracking).
Regarding scenarios S2 and S3, all MOTA, FPR and TPR
confirm encouraging levels of performance of the tracking
algorithm. The significant loss of precision obtained in S3
comparatively to S2 is strongly related to the distance that
the subject enters the scene. At long working distances, the
number of pixels in the scene that represents a person is very
small. This condition leads to a failure of the upper body
detector, which is the main cause of the loss of precision.
In the most challenging scenario (S4) the FPR increases,
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along with some mismatches (mainly related to the path of
one person that crosses the path of other two). Nonetheless,
we can assert that the tracking method achieves good level
of performances.

3.2. Camera Synchronization

In order to acquire a closer view of the people being
tracked, his position needs to be converted from the wide-
view camera referential, to the PTZ one. An approximation
for this conversion was achieved by mapping key-points be-
tween the two views (wide’s and PTZ’s), and estimating a
2-D geometric transform — Figure 4. For key-point detec-
tion, feature encoding and matching, the Speeded-Up Ro-
bust Features (SURF) algorithm was used.

3.3. Biometric Recognition

To have a preliminary assessment about the recogni-
tion performance of our system, a number of participants
were imaged between distances 15 to 35 meters, using the
PTZ camera. These working distances ensure regions with
widths between 500 px and 200 px for the face, and approxi-
mately 220 px to 100 px for the periocular region. Facial re-
gion was determined using a cascade object detector based
on Viola and Jones algorithm [16], and facial features en-
coded using the Principal Component Analysis (PCA) ap-
proach [15]. Prior to encoding the periocular features, a
second Region of Interest (ROI) containing the periocular
region was defined using also a Viola and Jones based cas-
cade object detector, trained for the detection of the right
eye using Haar features to encode the details [3]. Upon that
region, five different descriptors were extracted, based on
the works of Park et al. [12] and Bharadwaj et al. [1]: His-
togram of Oriented Gradients (HOG), Local Binary Patterns
(LBP), Scale-Invariant Feature Transform (SIFT), Uniform
Local Binary Patterns (ULBP) and GIST. The HOG, LBP
and ULBP descriptors deliver a distribution-based analysis,
and were computed over 35 non-overlapping patches of the
periocular ROI, evenly distributed on a 7 x 5 grid. Each de-
scriptor was computed sequentially, forming a global 1-D
array storing both shape and texture information. Finally,
two score-level fusion were also stressed: one combining
the scores from the individual periocular recognition meth-



Table 2. Performance for each one of the stressed methods, traits and working distances. Metrics are Decidability (DEC), Area Under

Curve (AUC) and Equal Error Rate (EER).

Trait — Periocular Face Global

Method — LBP HOG SIFT ULBP GIST Fusion PCA Fusion

DEC 0.802 0.699 0.404 1.090 0.918 1.162 1.171 1.407

15m - 25m| AUC 0.753 0.703 0.617 0.786 0.772 0.805 0.779 0.835
EER 0.302 0.358 0.416 0.281 0.304 0.287 0.307 0.246

DEC 0.677 0.641 0.341 0.972 0.808 1.033 1.173 1.267

25m - 35m| AUC 0.697 0.674 0.598 0.744 0.755 0.771 0.772 0.810
EER 0.376 0.380 0.431 0.334 0.321 0.303 0.328 0.254

DEC 0.529 0.520 0.310 0.830 0.747 0.891 0.676 1.025

15m - 35m| AUC 0.663 0.640 0.591 0.710 0.721 0.754 0.674 0.779
EER 0.396 0.409 0.435 0.360 0.348 0.317 0.395 0.293
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Figure 5. Receiver Operating Characteristic (ROC) curves for the periocular recognition, face recognition and global fusion, at different

working distances.

ods; and a second one combining them with the PCA re-
sults. Score fusion was achieved training Neural-Network
(NN) with two hidden layers using back-propagation. NN
based methods are widely applied on classification prob-
lems, for their learning abilities and good generalization ca-
pabilities. The architecture of the used NN consisted on a
first hidden layer with the number of neurons equaling the
number of scores to be fused, and a second hidden layer
of three neurons. The final (output) layer had one neuron,
since we were dealing with a binary classification problem.
NNs were trained with a smaller partition of the data, not
included on the test phase.

Three metrics were used to assess recognition modules’
performance: DEC [4], AUC and EER. The evaluation of
the stressed feature encoding techniques for the different
working distances and traits is registered at Table 2. For
a better interpretation of their performance, the ROC curves
are also presented in Figure 5. Results refer to a total of
69960 comparisons, performed on a 1:N fashion.

As we can see from Table 2, top recognition performance
was attained at closer working distances (15m to 25m), with

an AUC of 0.835. However, widening the working range
to the whole driveway (15m to 35m), a considerable good
performance is still achieved (AUC = 0.779). We must have
in mind that results come from a fully automated system,
operating on an adverse surveillance scenario. Furthermore,
matches were not performed against a separate dataset of
good registration images, but between different PTZ images
acquired during system operation.

As for the differences between the different stressed
traits, the periocular region seems to be less affected by
changes in distance, although further facial recognition
techniques should be stressed. Also from the ROC curves at
Figure 5, we can see how the PCA applied to the face alone
delivers lower true positive rate while introducing higher
amounts of false positives, when compared to the fusion of
methods operating on the periocular region. Nonetheless,
fusing that information with the periocular methods scores
produces a considerable improvement on the latter. Thus, if
considering deploying a more restrictive system with higher
security constraints, the face trait should not be used alone,
but can be a powerful ally to further improve its final out-
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come.

4. Final Considerations

In this paper we present the concept of a fully auto-
mated surveillance and biometric recognition system, able
to complement human detection and tracking with biomet-
ric recognition over in the wild surveillance environments.
Although further state-of-the-art techniques can be stressed
for each module, we give evidence on the feasibility of such
system, providing both tracking performance and biometric
recognition results over a real surveillance scenario.

4.1. Further Work

Although a functional system is presented, further work
should be considered over three axes: 1) a larger dataset
should be acquired, not only with a larger number of sub-
jects going through the scene, but also with the system
running over different environments (e.g. indoor lounge);
2) some modules are still to be developed, that would
increase the recognition performance even further (e.g.
head landmark detector); 3) additional state-of-the-art tech-
niques should be tested for each module, and results cross-
validated over the different scenarios. In particular, differ-
ent face recognition techniques should be stressed, along
with ear shape and iris biometrics and gait recognition.
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Chapter 14

Conclusions and Future Work

14.1 Overview

This chapter presents the conclusions resulting from the research work conducted in the scope
of this doctoral thesis. Furthermore, additional topics of research that can be addressed in
further studies are also discussed.

14.2 Final Considerations

This thesis purpose is to address the subject of biometric recognition in unconstrained environ-
ments, describing the research work developed towards a non-habituated, non-attended and
non-standard covert system targeted at public environments.

In order to devise a way to build a biometric system able to work under such challenging condi-
tions, the research work was divided in five steps. 1) We started by studying the iris as biometric
trait, in particular its usability for challenging in the wild scenarios with low acquisition con-
straints and over highly degraded data. 2) Next, we conducted a more in-depth analysis on
how iris performance is conditioned by visible wavelength light. This analysis was carried on
over two axes: the type of illuminant being used in the scene, and the level of luminance. 3)
Further to that, emerging biometric traits were also studied, in particular the periocular region.
Advances in research show it to be a fit candidate to handle the downsides of non-ideal envi-
ronments. 4) We then implemented the most relevant periocular methods, testing them over
a fixed dataset. A new dataset was also built, with a number of noise factors that replicate
those observed in unconstrained scenarios, in a quantified and controlled fashion. 5) At last,
studying the possibility of negative recognition usage to better met the requirements of in the
wild scenarios was also intended. Although this last goal was not fully met, additional lines of
work were conducted and, ultimately, a fully automated biometric system was devised able to
work over video-surveillance scenarios delivering biometric recognition.

Alongside with these objectives a set of scientific contributions were achieved and published in
international journals and indexed conferences.

14.3 Contributions and Achievements

Whilst studying the iris usability by assessing its behavior under visible wavelength light, we
observed how the appearance of its patterns is poorly conditioned by the type of illuminant
being used during the acquisition process, even though the luminance level was of the most
importance [4]. That evidence should support the build of a non-standard biometric system
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based on the iris, able to work under different types of light, both natural or artificial, as long
as a fit luminance level is assured or additional measures taken to circumvent this limitation.
A new recognition scheme for VW data was also proposed, based on the extraction of MPEG-7
color and shape descriptors from autonomously defined iris sub-regions. This novel technique
shows not only performance levels close to those of the best-known techniques, but also low
levels of linear correlation in relation to them, suggesting that they can be fused for further
performance improvements [5].

On the scope of periocular biometrics, our assessment about the literature showed how recent
research focus mainly on texture analysis and key-point extraction, with even simple algorithms
(e.g., LBP based techniques) leading to fair performance levels. Periocular is regarded as par-
ticularly suited for unconstrained and uncooperative scenarios, either by being used alone or
combined with the iris, even though the later can not be properly imaged under such constraints.
Testing the state-of-the-art methods against a common dataset allowed us to comparatively ac-
cess their performance and identify the relevant patterns that systematically condition their
capacities [6, 44].

Having identified the detection of eye-corners in facial images of great importance in biometric
applications (e.g., periocular ROl definition), state-of-the-art methods for eye-corner detec-
tion were empirically evaluated against low-quality data. We found that their performance is
significantly diminished in such conditions, leading to the proposition of a novel eye-corner de-
tection method able to deal with degraded in the wild images. Comparing our method results
against state-of-the-art techniques we could see how it outperformed both on noise-free and
degraded data (blurred, rotated, with differences in scale, etc.). These improvements were
achieved without loss of computational efficiency, which is essential when aiming at deploying
a real-time biometric system [7]. Also, on the scope of better defining the periocular ROI with
better pose / gaze estimates, a component labeling method was developed with the capacity to
discriminate between seven key-elements using a two-step approach: at the first stage, a group
of local classifiers use texture descriptors to compute the pixel-level probability of each class;
on a second stage this information is fused with geometrical constraints and shape information
to feed a two-layered MRF [8].

Aiming at increase the reliability of non-cooperative iris recognition over the degraded data we
encounter in the wild, we proposed a novel fusion of different recognition approaches in such
a way that the pitfalls of less constrained acquisition setups under visible wavelength lighting
could be minimized. The proposed fusion of iris and periocular features was shown to improve
the overall performance on both identification and verification modes, conclusion that was fur-
ther corroborated by a third place on the Noisy Iris Challenge Evaluation - Part Il [9].

A similar attempt was conducted at the Mobile Iris CHallenge Evaluation - Part I, aimed this time
at mobile setups. We have built and made available for the scientific community a novel iris
and periocular database, the CSIP, containing images acquired at ten different mobile setups
and eight visible noise factors, along with ground truth data for the iris segmentation. Such
dataset allows evaluating both iris segmentation and recognition techniques, and periocular
recognition methods. We also identified the chromatic disparity introduced by some devices,
and proposed the usage of a color correction technique to compensate for the color distortions
inherent to each one of the setups. Results showed this approach leading to top results, spe-
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cially on cross-sensor comparisons. At the recognition stage, we showed how the score-level
fusion of well-known iris and periocular recognition strategies can be used to overcome the
issues associated with mobile setups. Furthermore, we showed how even simple feature encod-
ing techniques, with low computational cost, deliver considerably good performance, which is
particularly interesting if the application is to be deployed on mobile devices with higher com-
putational constraints [3].

Setting our efforts into deploying a fully functional system able to deal with extremely harsh
data, we identified the need for a dataset that gathered multiple noise factors on a precisely
quantified manner. As so, we built the BioHDD dataset, containing multi-session information
from 101 subjects: high quality registration mugshots; large sets of extremely degraded probes
with ten different noise factors; and video sequences with the subjects walking through a non-
standard hallway. Conducting an online survey, mimicking a watchlist identification scenario
where participants were asked to perform both positive and negative recognition tasks, allowed
us to perceive which features humans most frequently associate with successful and failed iden-
tifications. We observed that, for the humans, to deal with inadequate illumination intensity
and moderate levels of occlusion is no issue. The good performance observed over low-resolution
and compressed images also suggests a significant usage of global features. As main issues we
point out subjects looking up or down from the camera level, and high-levels of occlusion, which
can be a significant limitation to the system as subjects trying to avoid detection are most likely
to be facing away from visible cameras or carry headgear. Shape information and holistic cues
were both the most accounted for and the most reliable ones. This research paper allowed us
to further support the usage of the periocular region, as features located on the mid-face were
found to be the more reliable ones [2].

Following these research findings and aiming at establishing a way to better understand the
contents of a head photo acquired by the recognition system in the wild, we proposed a novel
algorithm for head landmark detection [45] able to identify and pinpoint the location of six key-
elements of the human head, among witch is the periocular region. This algorithm was tested
against a subset of the BioHDD database and was found to work with relatively good perfor-
mance, being invariant to the image acquisition angle on a full 360° view of the subject and to
changes in users’ head pitch.

At last, the research work of this doctoral program culminated with the concept of a fully auto-
mated surveillance and biometric recognition system. Based on of a video surveillance system
able to detect and track human subjects in the wild, its scene understanding layer was enhanced
to control a PTZ camera allowing the acquisition of head-shots of the tracked individuals. Using
the previously mentioned head landmarking technique, the multi-modal biometric part of the
system is able to identify the visible traits and chose which recognition module to use. Ulti-
mately, evidence is given on the feasibility of such system, with a proof-of-concept being tested
on a real surveillance scenario [45].

14.4 Further Work

The deployment of a fully functional biometric system in the wild able to work covertly in harsh
conditions is still a work in progress. Although the system has already been fully devised, some
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modules are still under production. We intent to completely validate and debug it, carrying a
full evaluation of its performance under different environments.

Even though two of the proposed recognition methods have been independently evaluated
on international contests (NICE.Il and MICHE I) and all contributions were peer-evaluated, we
still think that it would be interesting to perform their evaluation against different and larger
datasets, so that the statistical relevance of the results can be even higher.

As stated in the introductory section, one of the objectives of this doctoral research could have
started a more in-depth research, namely the negative recognition approach as a fit alternative
for real-world scenarios. Being able to guarantee with enough confidence that an unknown
subject does not belong to a given watchlist of “persons-of-interest” is a most tempting goal
for nowadays security demands. Understanding its practical advantages, most of which being
privacy related, we intend to complement the final prototype with this mode of operation.
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Appendix A

Robust Periocular Recognition by Fusing Sparse
Representation of Color and Geometry Information

A.1 Overview

This appendix consists of the following article:

Robust Periocular Recognition by Fusing Sparse Representation of Color and Geometry Informa-
tion

Juan C. Moreno, V. B. Surya Prasath, Gil Santos and Hugo Proenca

Journal of Signal Processing Systems, submitted for consideration, 2014.
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Robust periocular recognition by fusing sparse
representations of color and geometry information

Juan C. Moreno - V. B. Surya Prasath -
Gil Santos - Hugo Proenga -

Abstract In this paper, we propose a re-weighted elastic net (REN) model
for biometric recognition. The new model is applied to data separated into ge-
ometric and color spatial components. The geometric information is extracted
using a fast cartoon - texture decomposition model based on a dual formulation
of the total variation norm allowing us to carry information about the overall
geometry of images. Color components are defined using linear and nonlinear
color spaces, namely the red-green-blue (RGB), chromaticity-brightness (CB)
and hue-saturation-value (HSV). Next, according to a Bayesian fusion-scheme,
sparse representations for classification purposes are obtained. The scheme is
numerically solved using a gradient projection (GP) algorithm. In the empir-
ical validation of the proposed model, we have chosen the periocular region,
which is an emerging trait known for its robustness against low quality data.
Our results were obtained in the publicly available UBIRIS.v2 data set and
show consistent improvements in recognition effectiveness when compared to
related state-of-the-art techniques.
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1 INTRODUCTION

Biometrics attempts to recognize human beings according to their physical
or behavioral features [17]. In the past, various traits were used for biomet-
ric recognition, out of which 4ris and face are the most popular [35,41,19,29].
The use of the periocular region is found to be useful on unconstrained scenar-
ios [38]. The exploration of the periocular region as a biometric trait started
with Park et al.’s pioneering approach [33], who performed local and global
feature extraction. Images were aligned to take advantage of iris location, in
order to define a 7 x 5 region of interest (ROI) grid. Patches were encoded
by applying two well known distribution-based descriptors, local binary pat-
ters (LBP) [26] and histogram of oriented gradients (HOG) [10], quantized into
8-bin histograms. Finally, they merged all histograms into a single-dimension
array containing both texture and shape information, and matching was car-
ried out based on the Euclidean distance. For the local analysis, authors em-
ployed Scale-Invariant Feature Transform (SIFT) [24]. The reported perfor-
mance was fairly good, showing periocular fitness for recognition purposes,
and further analysis was held on noise factors impact on performance [31].

Recently, various extensions and improvements based on Park et al work [33]
has been carried out. Miller et al. [25] presented an analysis which focused
on periocular skin texture, taking advantage of uniform local binary pat-
ters (ULBP) [27] to achieve improved rotation invariance with uniform pat-
terns and finer quantization of the angular space. Their work was extended
by Adams et al. [1], who proposed using Genetic & Evolutionary Comput-
ing (GEC) to optimize feature set. Juefei-Xu et al. [20] used multiple local
and global feature extraction techniques such as Walsh transforms and Laws’
masks, discrete cosine transform (DCT), discrete wavelet transform (DWT),
Force Fields, Speed Up Robust Transform (SURF), Gabor filters and Laplacian
of Gaussian (LoG). In their later work [21] efforts were made to compensate
aging degradation effects on periocular performance. The possibility of score
level fusion with other biometric traits was also addressed, for example in iris
recognition [47]. Bharadwaj et al. [2] proposed the fusion of ULBP with five
perceptual dimensions, usually applied as scene descriptors: naturalness, open-
ness, roughness, expansion and ruggedness — GIST [28]. In their approach the
images were pre-processed with with Fourier transform for local contrast nor-
malization, and then a spacial envelope computed with a set of Gabor filters
(4 scales x 8 orientations). On the final stage, x? distance was used to match
the feature arrays, and results fused with a weighted sum.

Based on the pioneering work of Wright et al. [48], the sparse representa-
tion theory is emerging as a popular method in the biometrics fields and is
considered specially suitable to handle degraded data acquired under uncon-
trolled acquisition protocols [34,40]. A query image is first sparsely coded over
the template images, and then the classification is performed. Sparse Repre-
sentation based Classification (SRC) is robust to occlusion, illumination and
noise, and achieves excellent performance.
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1.1 Sparse Representation

Model selection in high-dimensional problems has been gaining interest in
the statistical signal processing community [11,4]. Using convex optimization
models, the main problem is recovering a sparse solution X € R” of an under-
determined system of the form y = Ax*, given a vector y € R™ and a matrix
A € R™*", There is a special interest in signal recovery when the number of
predictors are much larger than the number of observations (n>> m). A direct
solution to the problem is to select a signal whose measurements are equal to
those of x*, with smaller sparsity by solving a minimization problem based on
the ¢°-norm:

min Ix[lo subj. to Ax =1y, (1)

(Ix]jlo = #{i : x; # 0}), being a direct approach to seek the sparsest solution.
Problem (1) is proved to be NP-hard and difficult to approximate since it
involves non-convex minimization [5]. An alternative method is to relax the
problem (1) by means of the {!-norm (||x||; = 3", |z;|). Hence problem (1)
can be replaced by the following #!-minimization problem:

min ||x|]; subj. to Ax =y,
X

which can be solved by standard linear programming methods [9]. In practice,
signals are rarely exactly sparse, and may often be corrupted by noise. Under
noise, the new problem is to reconstruct a sparse signal y = Ax* + k, where
Kk € R™ is white Gaussian noise with zero mean and variance ¢2. In this case
the associated ¢'-minimization problem adopts the form:

. 1
min { il -+ gy ~ Ax[3} . ®

where T is a nonnegative parameter and || - ||z denotes the £2-norm (||x|s =

(>, xf)%) The convex minimization problem (2) is known as the least
absolute value shrinkage and selection operator (LASSO) [43].

Although sparsity of representation seems to be well established by means
of the LASSO approach, some limitations were remarked by Hastie et al. [51].
LASSO model tends to select at most m variables before it saturates and
in case predictors are highly correlated, LASSO usually selects one variable
from a group, ignoring others. In order to overcome these difficulties, Hastie et
al. [51] proposed the elastic net (EN) model as a new regulation technique
for outperforming LASSO in terms of prediction accuracy. The elastic net
is characterized by the presence of ridge regression term (¢2-norm) and it is
defined by the following convex minimization problem:

. 1
win {raxl + ol + 5lly - 4xi3 ). 0

where 7 and 7y are non-negative parameters. An improvement for the EN
model was proposed in [52] where a combination of the ¢2-penalty and an
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adaptive version of the ¢!-norm have been implemented by considering the
minimization problem

n
. 1
m,}n{ﬁ > wz‘|l‘i|+72|X|§+2||.Y-AX|§}7 (4)

i=1

where the adaptive weights are computed using a solution given by the EN
minimization problem (3). If we let the solution of EN to be X(EN), then
the weights are given by the equation w; = 1/(|&;(EN)| + (1/m))” where ¥
is a positive constant. A variant of the above model was proposed in [16] by
incorporating the adaptive weight matrix W in the £2-penalty term:

) n n 1
HLIH{lewz‘|$z‘|+T2ZW¢2%2+2||y—AX|§}- (5)
=1 =1

In this paper we use a re-weighted elastic net regularization model for perioc-
ular recognition application.

1.2 Summary of Contributions

The main contribution of this paper is to propose a re-weighted elastic net
(REN) regularization model, that enhances the sparsity of the solutions found.
The proposed REN model is a regularization and variable selection method
that enjoys sparsity of representation, particularly when the number of pre-
dictors are much larger than the number of observations. The weights are
computed such that larger weights will encourage small coordinates by means
of the ¢'-norm, and smaller weights will encourage large coordinates due to
the £2-norm. Our model differs from the schemes in [52] and [16] (see equa-
tions (4) and (5) above), since the ¢! and ¢2 terms are automatically balanced
by weights which are continuously updated using w; = 1/(|%;| 4+ €) with € a
positive parameter [7]. We also provide a concise proof of the existence of a
solution for the proposed model as well as its accuracy property.

A complete presentation of the numerical implementation of the REN
model using a gradient projection (GP) method [14], seeking sparse repre-
sentations along certain gradient directions is described in this paper. We use
a reformulation of the REN model as a quadratic programming (QP) prob-
lem. As a main application of our model, we consider the periocular recognition
problem. The periocular region has been regarded as a trade-off between using
the entire face or only the iris in biometrics. Periocular region is particularly
suitable for recognition under visible wavelength light and uncontrolled acqui-
sition conditions [32,46,30].

We enhance periocular recognition through the sparsity-seeking property
of our REN model over different periocular sectors, which are then fused ac-
cording to a Bayesian decision based scheme. The main idea is to benefit from
the information from each sector, which should contribute in overall recog-
nition robustness. Two different domains are considered for this purpose: (1)
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Fig. 1 Examples of periocular images of different subjects and varying gazes, containing the
corneal, eyebrows and skin regions.

geometry and (2) color. Full geometry information is accessed by decomposing
a given image into their cartoon - texture components by means of a dual
formulation of the weighted total variation (TV) scheme [37]. For color, a key
contribution is the use of nonlinear features such as chromaticity and hue com-
ponents, which are thought to improve image geometry information according
to human perception [22]. Our methodology is inspired by two related works:
1) Wright et al. [48], which introduced the concept of sparse representation for
classification (SRC) purposes; and 2) Pillai et al. [34], that used a SRC model
for disjoint sectors of the iris and fused results at the score level, according to
a confidence score estimated from each sector.

Our experiments are carried out in periocular images of the UBIRIS.v2
data set [36]: images were acquired at visible wavelengths, from 4 to 8 meters
away from the subjects and uncontrolled acquisition conditions. Varying gazes,
poses and amounts of occlusions (due to glasses and reflections) are evident in
this data set and makes the recognition task harder, see Figure 1. The results
obtained using our model allowed us to conclude about consistent increases in
performance when compared to the classical SRC model and other important
approaches (e.g., Wright et al. [48] and Pillai et al. [34]). Also, it should be
stressed that such increase in performance were obtained without a significant
overload in the computational burden of the recognition process.

The rest of the paper is organized as follows. Section 2 summarizes the
most relevant in the scope of this work concerning penalized feature selection
for sparse representation. The re-weighted elastic net (REN) model is intro-
duced together with statistical motivation ensuring high prediction rates. An
algorithm based on gradient projection (GP) for the REN model is also in-
troduced. Section 3 describes the different geometrical information extracted
from periocular images for performing recognition based on cartoon - texture
and chromaticity features in a total variation framework. Section 4 describes
the experimental validation procedure carried out together with remarkable
comparisons. Finally, Section 5 concludes the paper.
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2 The Reweighted Elastic Net model for Classification Model
2.1 The LASSO Model for Recognition

We first briefly describe the sparse representation based classification frame-
work which is a precursor to our REN based approach. Having a set of la-
beled training samples (n; samples from the i*” subject), they are arranged
as columns of a matrix A(i) = [v;1,...,Vin,] € R™*™. A dictionary results
from the concatenation of all samples of all classes:

A = [A(].),7A(k)} = [V1$17-~' ,V17"1| ‘Vk,lv' . ,Vkmk}.

The key insight is that any probe y can be expressed as a linear combination
of elements of A. As the data acquisition process often induces noisy samples,
it turns out to be practical to make use of the LASSO model. In this case it
is assumed that the observation model has the form y = Ax* + k.
Classification is based on the observation that high values of the coefficients
in the solution X are associated with the columns of A of a single class, corre-
sponding to the identity of the probe. A residual score per class 1; : R" — R"
is defined: X — 1,;(X), where 1, is a indicator function that set the values of all
coefficients to 0, except those associated to the i*? class. Over this setting, the
probe y is then reconstructed by y; = A1l;(X), and the minimal reconstruction
error deemed to correspond to the identity of the probe, between y and y;:

id(y) = arg minr;(y),

with ri(y) = |ly — 9ill2-

In [48] a sparsity concentration index (SCI) is used to accept/reject the
response given by the LASSO model. The SCI of a coefficient vector x € R™
corresponds to:

1%l

k—1

SCI(%) = e [0,1].

If SCI(%X) =~ 1, the computed signal X is considered to be acceptably repre-
sented by samples from a single class. Otherwise, if SCI(X) =~ 0 the sparse
coefficients spread evenly across all classes and a reliable identity for that
probe cannot be given.

The recognition model proposed by Pillai et al. [34] obtains separate sparse
representations from disjoint regions of an image and fusing them by consid-
ering a quality index from each region. Let L be the number of classes with
labels {c;}~_,. A probe y is divided into sectors, each one described by the
SRC algorithm. SCI values are obtained over each sector, allowing to reject
those with quality bellow a threshold. Let {d}; represent the class labels of the
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retained sectors, and P(d;|c) be the probability that the i-th sector returns a
label d;, when the true class is c:

tSCI(di)
1 ifd; =c
SCI(d;) SCI(d;) ¢ ’
t +(L-1)t
P(dile) = ™ tS(CI(di)) 2
2 if d; # c,

thI(d,:) (L 1)t§CI(di)

being t1 and t9 constants such that 0 > ¢; > t5 > 1. According to a maximum
a posteriori (MAP) estimate of the class label, the response corresponds to
the class having the highest accumulated SCI:

) Sy SCI(d;)d(d; = c)
¢ = argmax I
ccC > =1 SCI(dy)

2.2 The Re-weighted Elastic Net (REN) Method

The proposed REN model is a sparsity of representation approach balances
the LASSO shrinkage term (¢!-norm) and the strengths of the quadratic reg-
ularization (¢2-norm) coefficients by the following minimization problem:

n n 1
m{wa +Y (1 —wi)al + 2|yAx||3}, (6)
i=1 =1

where w1, . .., w, are positive weights taking values in (0, 1). The REN-penalty
Sy wila |+ (1—w;)?a? is strictly convex and it is a compromise between
the ridge regression penalty and the LASSO. The convex combination in the
REN-penalty term is natural in the sense that both the ¢! and ¢? norms
are balanced by weights controlling the amount of sparsity versus smoothness
expected from the minimization scheme. As in [7], the weights are chosen
such that they are inversely related to the computed signal according to the
equation w; = 1/(|#;| + €) with € a positive parameter. Under this setting,
large weights w; will encourage small coordinates with respect to the REN-
penalty term, whereas small weights imply big coordinates with respect to the
REN-penalty term, respectively. Then, it is seen that the new model combines
simultaneously a continuous shrinkage and an automatic variable selection
approach. We next consider the existence of solution and the sign recovery
property of the REN model.

Next we describe an algorithm for the REN model allowing us to directly
deal with the case n > m. It turns out that our REN model can be expressed
as a quadratic program (QP), thus allowing us to apply a gradient projection
approach to perform the sparse reconstruction.
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(a) Original Signal
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Fig. 2 Sparse signal reconstruction with EN and LASSO models. (a) Sparse signal of Length
n = 4096 with k = 1024 observations. (b)-(e) Response signals computed with the proposed
reweighted elastic net, [52], [16] and LASSO, respectively.

2.3 Numerical Implementation

The algorithm that alternates between the computed signal and redefining the
weights is as follows:

1. Choose initial weights w; =1/2,i=1,...,n.
2. Find the solution % of the problem

min [ W[l + (1= W)x||3 + S lly — Ax]3, (7)
3. Update the weights: for each i =1,--- | n,

w; = ——,
b @il e
where € is a positive stability parameter.
4. Terminate on convergence or when a specific number of iterations is reached.
Otherwise, go to step 2.

Note that our REN problem in (7) can also be expressed as a quadratic
program [15], by splitting the variable x into its positive and negative parts.
That is, x = x4 —x_, where x; and x_ are the vectors that collect the positive
and negative coefficients of x, respectively. Then, we handle the minimization
problem,

min {Q(z) ="z +2z" Bz}, (8)
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where z = [x;,x_]7, w,, = [wi,...,wn]T, ¢ = wo, + [-ATy; ATy]T and

B = {Bj + B, with

(). e (S )

The minimization problem (8) can then be solve using the Barzilai-Borwein
Gradient Projection Algorithm [39]. Under this approach the iterative equation
is given by,

z2F ) = g(B) _ (k) (k)

where ( (%) is the step size computed as

c® = (Za«) —aMyQ (Z(k))) —®,
+

with

B2
midd apn SN, it (¢t BC® £0
Ct(k+1) _ mins (C(k))TBC(k)y mazx )

Umaz, otherwise.

The operator mid is the define as the middle value of three scalar arguments
and Qi and g, are two given parameters. The parameter v take the form

(O v (k)
v = mid{()’ (C(a)k))T?zéfm )’1}’ if (¢)" B¢® £,

1, otherwise.

The performance of the REN minimization along with comparisons is
shown is Figure 2 for a sparse signal. We want to reconstruct a length-n sparse
signal (in the canonical basis) from m observations, with m < n. The matrix
Apxn is build with independent samples of a standard Gaussian distribution
and by ortho-normalizing the rows, while the original signal x* contains 160
randomly placed +spikes and the observation is defined as y = Ax* + k with
x a Gaussian noise of variance o2 = 107%. The reconstruction of the origi-
nal signal over the REN minimization problem produces a much lower mean
squared error (MSE = (1/n)||% — x*|| with X been an estimate of x*) equal to
3.499 x 1079, while the MSE given by the adaptive elastic model proposed
in [16], [52] and LASSO are 5.194 x 107%, 4.791 x 107% and 1.445 x 107%
respectively. Therefore, the proposed REN approach does an excellent job at
locating the spikes.

Remark 1 The iterative reweighted algorithm falls in the general class of Ma-

jorization - Minimization (MM) algorithms [23]. An interesting example of

separable iterative reweighing for sparse solutions is presented in [7] where the

selection

w* Y ﬁ (9)
T, ’ +€
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Y

(a) Grayscale periocular images

gasc@l &

(b) Cartoon Component with 80 iterations (c) Texture Component with 80 iterations

agsrcil &

(d) Cartoon Component with 400 iterations (e) Texture Component with 400 iterations

Fig. 3 Cartoon - Texture component for grayscale periocular images using a weighted TV
model (3.1). (a) Grayscale periocular images. (b)-(c) Cartoon - Texture decomposition with 80
iterations. (d)-(e) Cartoon - Texture decomposition with 400 iterations.

is suggested. Here € is generally chosen as a fixed, application-dependent con-
stant. In the noiseless case, it is demonstrated based on [13] that this amounts
to iteratively solving

n
minZlog (x; +€), subj. to Ax =y, (10)
X

i=1

and convergence to a local minimum or saddle point is guaranteed. In [45] the
reweighting

1
R ; : (11)
(x§k+1)) Te x§k+1)’

is also considered together with the case ¢ — 0. Related with the sparse
solution of the model

w

. 1
min el + 3lly — 4x(3 | (12)

the reweighting

1
wgkﬂ) — 3 (13)
(z§k+l)> + e(k+1)

is implemented in [8], where e(**1) > 0 is regularization factor the is reduced
to zero as k becomes large.
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(¢) CB color decomposition

Fig. 4 Different color decomposition for a given periocular image. (a) RGB color periocular
image. (b) HSV color decomposition. (¢) CB color decomposition.

3 Geometric and Color Spaces for Image Decomposition
3.1 Cartoon + Texture (CT) Space

The periocular images contain cartoon (smooth) and texture parts (small scale
oscillations) which can be obtained using the total variation (TV) [37] model
effectively. In this setting, the grayscale version of a periocular image is divided
into two components representing the geometrical and texture parts. The TV
based decomposition model is defined as an energy minimization problem,

min{E%‘l/(u):/g(x)|Vu|dx+)\/ |u—I|dx}
“ 2 o]

where [ is the input grayscale image, and g(x) = W is an edge indicator
type function. Following [3] we use a splitting with an auxiliary variable v to
obtain the following relaxed minimization,

-1 1
min{E%V(u7v):/ g(x)\Vu|dx+—/(u+v—])2dx+)\/ |v|dx}(14)
v Q 20 Jo Q

After a solution u is computed, it is expected to get the representation I =
u~+v, where the function u represents the geometric cartoon part, the function
v contains texture information, and the function g represent edges. The min-
imization (14) is achieved by solving the following alternating sub-problems
based on the dual minimization technique:

1. Fixing v, the minimization problem in u is:

1
min{/ g(x)|Vu|dx+—HquvfIH%z(m}. (15)
u 0 29

The solution of (15) is given by u = v — fdiv p where p = (p1, p2) satisfies
g(x)V(0divp — (I —v)) — |V(8divp — (I —v))|p = 0, solved using a fixed
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point method: p® = 0 and iteratively

nt1 _ P+ O0tV(div(p") — (I —v)/6)

T 14 %W(div(l’") — (I =v)/0)

2. Fixing u, the minimization problem in v is:

. 1
min { ggllu+0 = 130 + Mollaca |

and the solution is found as

IT—u—0X if I —u>6A
v=Rl—u+60X if[—u< -0\
0 if |[I —u| <6

Figure 3 illustrates cartoon - texture decomposition of three grayscale peri-
ocular images for different iterations. As the number of iterations we notice
that the cartoon component becomes smoother and texture component picks
up more oscillations.

3.2 Color Spaces

For color periocular images we can obtain intensity and chromaticity decom-
position which exploits color information. In computer vision there has been
increasing interest in non flat image features that live on curved manifolds
which are well suited for edge detection and enhancement in color and mul-
tichannel images [42]. The flatness concept is related to functions taking all
possible values in an open set in a linear space. The chromaticity feature of
color images is an example of non-flat features. Given a color periocular image
1:2 — R3 the RGB representation is defined by a vector with three compo-
nents I = (Iy, I, I3). From the RGB color space, the chromaticity-brightness
(CB) model arises by decomposing into the brightness component B : 2 — R
computed as B = |I| and chromaticity components C = (Cy, Cz, C3) : 2 — S?
(where §? is the unit sphere in R?) is computed by C; = I;/B. We also make
use of the Hue-Saturation-Value (HSV) color space commonly used since it
is believed to be more natural and is related to human perception [49]. Fig-
ure 4 illustrates CB decomposition, and HSV color space conversions of a given
RGB periocular image. In our experiments we compare grayscale CT decom-
position and CB, RGB and HSV color space based decompositions along with
the proposed REN model.
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Optimal Non-Optimal
Signal Recovery Signal Recovery
SCI(%) > B — Positive True Positive (TP) False Positive (FP)
SCI(%) < 8 — Negative False Negative (FN)  True Negative (TN)

Signal %

Table 1 Types of errors, according to the SCI value and the sparse signal reconstruction following
Wright et al. [48] and Pillai et al. [34] models.

Mehtod Feature sens. far acc. thres. AUC EER
Grayscale (SRC)  90.05 8.55  90.99 0.1553 0.9643  0.0904
Texture (SRC) 92.10 1.89  92.40 0.0756 0.9756  0.0589
CT (Fusion) 99.90 7.18 98.77 0.1641 0.9994  0.0018
CB (Fusion) 99.82 7.37 98.49 0.2333 0.9992 0.0061
RGB (Fusion) 99.83 4.11  99.31 0.1670 0.9990  0.0020
HSV (Fusion) 99.83  2.13  99.57 0.1832 0.9991  0.0019

REN (Proposed)

Wright2009 Grayscale (SRC) 84.70  9.59 85.14  0.05642  0.9307  0.1529
LBP 80.70  9.99  86.90 0.7468 0.9189  0.1553

Park2009 HOG 69.29 9.99 83.11 0.6421 0.8656  0.2088
SIFT 86.00 9.36  88.96 0.0477 0.9453  0.1232

Fusion 90.58 9.99  90.21 0.1052 0.9564  0.0954

GIST 75.56  9.99  85.20 0.7623 0.8927  0.1846

Bharadwaj2010 ULBP 85.82  9.99 88.61 0.8673 0.9259  0.1311
Fusion 83.96 9.99 88.00 0.8008 0.9235  0.1386

Table 2 AUC and EER values, as well as the best sensitivity for far < 10% for left side periocular
images. The Underline fonts indicate the best model observed.

4 Experiments and Discussion
4.1 Performance Measures

Images were down-sampled to 10 x 9 pixels and stored in “png” format. The
resulting sensitivity and specificity values were considered, obtaining the Re-
ceiver Operating Characteristic curves (ROC). In this case, given a signal X,
if SCI(X) > B, the classifier outputs a positive response (P), otherwise a neg-
ative (N) result. For a fixed (3, the sensitivity corresponds to the proportion
of signals correctly detected by the SRC algorithm, whereas specificity counts
the proportion for which the corresponding SCI values are bellow 3, where
is an accepted threshold value.

#TP # TN
#TP + # FN # TN + #FP’

where TP, FP, TN and FN correspond to the True Positive, False Positive, True
Negative and False Negative, respectively. Table 1 summarizes these notions,
combining the different classes of periocular signals and their relation with the
classifier induced by the minimal reconstruction error and the accumulated SCI
value. The overall accuracy is given by:

# TN + # TP
# TN+ #FP +# TP + # FN'

sensitivity = and specificity =

accuracy =

In a ROC plot, the optimal recognition method would yield a point in the
upper-left corner, corresponding to full sensitivity (no false negatives) and full
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specificity (no false positives). The statistical correlation between the outputs
given by each channels considered in our method was also assessed. Considering
that eventual dependences will be linear, the Pearson’s sample correlation was
used for that purpose. Given a pair of samples, the correlation coefficient is

given by:
no [/~ _ 2 ~(2) _ (2
r(xD,%@) = b 3 B —xW 37 —x® ,
n—1 —1 T%(1) T%(2)
where :Egl), 5052) denote the systems outputs, XV, X3 are the sample means

and o4y, 0g2) the standard deviations.

4.2 Results

For our first experiment, we focus on only left side periocular images. Six
samples from 150 different subjects were used, such that one image per class
was randomly chosen as probe and the remaining five samples included in the
dictionary. Experiments were repeated, changing the image used as probe (per
subject). Hence, 100 dictionaries with dimension 90 x 750 were considered, each
one tested in 150 probe samples.

Results are summarized in Table 2 in terms of true and false positive rates
where the best sensitivity (sens.) and corresponding accuracy (acc.) for far
(=1-specificity) < 10% have been computed for various schemes and models
studied here. The proposed reweighed elastic net demonstrates to be superior
than the original SRC approach over grayscale impulses. In this case the area
under the curve (AUC) and the equal error rate (EER) are equal to 0.9643
and 0.0904 for our model, against 0.9307 and 0.1529 produced by the original
SRC model. The proposed models approximates more to the optimal perfor-
mance point (complement of specificity = 0, sensitivity = 1). For the REN
approach applied to the grayscale and the texture components alone the mini-
mal distance from the ROC values to the (0, 1) point was of 0.1511 and 0.0812
respectively, while the value 0.1805 was observed for the classical SRC model.
In relation to other image representation components, the minimal distance
from the ROC values to the (0,1) point was of 0.0022 0.0106, 0.0023, 0.0019
for the CT, CB, RGB and HSV spaces.

Comparisons have been carried out by implementing the well known mod-
els of Park et al. [33] and Bharadwaj et al. [2]. Even both models make full use
of local and global periocular information to perform recognition, they have
shown not to improve better than our approach. In our experiments, we have
compared the AUC as well as the EER values in the case REN model ap-
proach uses the texture periocular components as feature extraction, against
those features used in Park et al. [33] and Bharadwaj et al. [2]. For the com-
parison models the highest AUC is equal to 0.9564 and lowest EER is equal
to 0.0954 when applying their fusion techniques. Meanwhile, using the texture
information provided by the cartoon - texture space, our model got the values
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(a) ROC curves - Left Side (b) ROC curves - Left Side (c) ROC curves - Left Side

Fig. 5 ROC curves for periocular images recognition. (a) ROC curves for the original REN
approach and the SRC model and the REN approach. (b) ROC curves for the REN approach
applied to the texture components together with different features extrated by Park et al. [33]
and Bharadwaj et al. [2]. (c¢) ROC curves for the REN model applied to the proposed fusion over
the different geometry and color spaces, as well as the fusion implemented in Park et al. [33] and
Bharadwaj et al. [2].

Grayscale  Texture CT CB RGB HSV
Grayscale 1 0.7173 0.5331  0.4272 0.7139  0.6230
Texture - 1 0.6041  0.6285 0.9776  0.9043
CcT - - 1 0.2206 0.6134 0.6146
CB - - - 1 0.6146 0.7213
RGB - - - - 1 0.9180
HSV - - - - - 1

Table 3 Pearson’s sample correlation coefficients between the left side responses given by the
recognition algorithms using the REN model with various components studied here.

0.9756 and 0.0589 for the AUC and EER, respectively. Our fusion method
using different spaces completely describing the geometry and color periocular
feature have also shown to reached great statistical values in comparison to
those values got it by Park et al. [33] and Bharadwaj et al. [2] approaches. In
this case, the highest AUC and the lowest EER values are given by the CT
space with values 0.9994 and 0.0018, see Figure 5.

As it can be observed from Table 3, the proposed REN model applied to
grayscale in texture setting are in high correlation when compared to the sig-
nals recovered in the CT, RGB and HSV spaces. The result is due to the high
accuracy rates achieved over these image representations. Similarly the signals
recovered in the CB space are in low correlation with the signals lying in the
grayscale setting and the CT space, and in high correlation with the signals
computed over texture domain alone. This is because the chromaticity com-
ponents lying in the unit sphere S? have the advantage of depicting nonlinear
features in different directions and therefore both strong and weak edges are
distributed and represented along chromaticity components. Also, it should be
noted the strong correlation between the outputs given by the fusion model
when using exclusively color components. This is also can be explained, as
the skin region comprises a large majority of the periocular region (see Fig-
ure 4). It is particularly interesting to observe that the positive (and small)
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correlation values between the signals are obtained when using different color
spaces representation, pointing for a complementarity that might contribute
for the outperforming results of the method proposed in this paper. Although
the CT space produces good recognition rates, its computed signals are in
low correlation with respect to other signals over different domains, owing to
the fact that CT space is given by geometric information in case of cartoon
component, whereas weak and strong edges describe texture components, see
Figure 3.

5 Conclusions

This paper describes a novel re-weighted elastic net (REN) model that im-
proves the sparsity of representations in periocular regions which is an emerg-
ing biometric trait with high potential to handle data acquired under uncon-
trolled conditions. From this perspective, we have fused multiple sparse repre-
sentations, associated with various spaces from different domains in geometry
and color, which allow us to faithfully handle distortions in periocular images
such as blur and occlusions. Our experiments were carried out in the highly
challenging images of the UBIRIS.v2 dataset, and allowed us to observe con-
sistent improvements in performance, when compared to the classical sparse
representation model, and state-of-the-art periocular recognition algorithms.
In addition, theoretical existence results have been proved for the REN min-
imization problem, mainly emphasizing our approach is good in the sense it
performs as well as if the true underlying model were given in advance. As
far as numerical approximation is concerned, the REN model is expressed as
a quadratic programing (QP) expediting the implementation of the proposed
gradient projection (GP) algorithm and providing good results. Evaluating
the proposed methodology on other biometric traits (iris, face, etc.) and on
different databases are our future works.

A Existence of Solution

We state necessary and sufficient conditions for the existence of a solution for the proposed
model (6). We follow the notations used in [44,18]. Suppose that A; = (A1s,..., Ami)T,
i=1,---,n are the linear independent predictors and y = (y1,--- ,ym)T is the response
vector. Let A = [Aj,---,Ay] be the predictor matrix. In terms of ¢! and ¢2 norms, we
rewrite the minimization problem in (6) as,

. m 1
s {mll Wl -+ 101 = WxI3 + 3y - Ax3) (16)

Let us denote by x* and %X the real and estimated solution of (16) respectively. Given
T = supp(x*) = {i: z} # 0}, we define the block-wise form matrix

1 ATA7 AT Az
Az,ze = — )

M\ AT A7 AL Aze
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where Az (Azec) is a m X #Z (m X #Z°¢) matrix formed by concatenating the columns
{A;: i€ T} ({A; : i € Z°}) and AL A7 is assumed to be invertible.

First we assume that there exist X € R™ satisfying (16) and sign(x) = sign(x*). Lets
define b = Wzsign(x%) together with the set,

p-ldegrn. {%=bi fordiZ0 1
|di| < w;, otherwise
From the Kauush-Kuhn-Tucker (KKT) conditions we obtain
AT (y — A%) — m(1 — w;)?&; = mw;sign(z}), if & #0
|AT (y — A%)| < ma;, otherwise
which can be rewritten as,
AT A% — x*) — ATk + m(1 — w;)?2; + md; =0, (17)

for some d € D with components d;, i = 1,...,n. By substituting the equality y = Ax* + k.
From the above Eqn. (17) the following two equations arise:

AT
AT Az (kg —x*) — % + (1 —W)2%x%z = —b, (18)
AT g
AT Ar(kz —x*) — IT = —dze. (19)

Solving for x7 in (18) and replacing in (19) to get b in terms of x7 leave us with

—1 A
2z = (AFAz+0-w)?) " (AFazx; + 225 b)), (20)

m

-1 AT AT g
AL A7 <(A§AI +(1— W)Q) <A§Azx; + ; —b> _x;> — I — b (21)

From (20) and (21), we finally get the next two equations:

77
m

—1 AT
sign <(A§AI +(1— W)Q) <A%A1x§— + E_ b>> = sign(xy) (22)

and

<wi,  (23)

-1 Afk AT
AT Az <(A§AI +(1-m)?) <A§A1xj;_+ z 7b> fx%> T

m m

for i € Z°.
Now, let us assume that equations (22) and (23) both hold. It will be proved there exist
% € R™ satisfying sing(X) = sign(x*). Setting X € R" satisfying Xzc = x¥. =0 and

-1 ATk
X7 = (A%AI +(1— W)2> (A%Azx; + % - b) ,

which guarantees the equality sign(%Xz) = sign(x%) due to (22). In the same manner, we
define d € R™ satisfying dz = b and

—1 AT AT k
dge = — <A§CAI ((A%AI +(1- W)?) (A%Azx; + L= - b) - x;;_) _ 4z ) 7

m

implying from (23) the inequality |d;| < w; for ¢ € Z¢ and therefore d € D. From previous,
we have found a point a point X € R™ and d € D satisfying (18) and (19) respectively
or equivalently (17). Moreover, we also have the equality sign(X) = sign(x*). Under these
assertions we can prove the sign recovery property of our model as illustrated next.
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B Sign Recovery Property

Under some regularity conditions on the proposed REN model, we intend to give an esti-
mation for which the event sign(X) = sign(x*) is true. Following similar notations in [52,
50], we intend to prove that our model enjoys the following probabilistic property:

Pr (rlréljl_} |Z5] > O) — 1. (24)
For theoretical analysis purposes, the problem (6) is written as
min {|[Wx|l1 + [[(1 = W)x|13 + [ly — Ax[|3} .
The following regularity conditions are also assumed:

1. Denoting with Anin(S) and Amax(S) the minimum and maximum eigenvalues of a
symmetric matrix S, we assume the following inequalities hold:

1 1
01 < Amin (—ATA> < Amax (—ATA> < 6o,
m m

where 01 and 65 are two positive constants.

It
2. og(n) =v for some 0 <v <1
m— oo log(m)
1
3. lim m =0
m—oo \| n max;c7 W;
Let

% = argmin {|ly — Ax|3 + (1 = W)xlI3} . (25)
By using the definitions of X and X, the next two inequalities arise
lly — AR|[3 + [1(1 = W) RI[3 > [ly — AZ|3 + (1 = W) %13 (26)
and
lly — AZI[3 + 11 = W) RIZ + > wildi| > lly — AR[I3 + 11— W) RIS+ > will-
i=1 i=1

(27)
The combination of equations (26) and (27) give

S wil|F] = |#:]) > ly — A%|3 +[1(1 = W[5 — [ly — AR5 — [|(1 — W)%[|3
i=1 (28)

=x-x7 (ATA +(1- W)2> (% - %)

On the other hand

n n n
S wi (13| = |#:]) <D wi|# — @] < | D w? % — %], (29)
=1 i=1 i=1

By combining equations (28) and (29) we get

Amin ((ATA) +(1— W)2) % — |2 < (x—%)7 (ATA +(1- W)2) (% — %)

n
D w? % - %l
=1

IN
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which together with the identity

0< 01 < Amin (ATA> < Amin ((ATA) - W)2)

e g, < V= (30)

Arnin (ATA) ’

allow us to prove

Let us notice that
—1 —1
E (H:’c - x*ug) -F (— (ATA +(1- W)z) (1-Ww) x* + <ATA +(1- W)2> AT,;)

<92 H(l - W)X*Hg + ndAmax (ATA) 0'2

Amin (AT A)
(31)
From equations (30) and (31) we conclude that
E(Ix—x13) <2 (B (Ix—x"12) - B (Ix - x"113))
* 32
A=W B 4 ndnn (AT A + B (S w) B2
- Amin (ATA)
Let 7 = min;e7 |¢]| and 9 = max;ez w;. Because of (30),
o o2 o VPR
- < VI
%z —%zllz < 5=
Then i 7
. * A nmn s = * nn a¢
f;ggﬁﬂ > rirél%lﬁi\ T orm £ — 1%z — xZll, — m (33)
Now, we notice that
NG 1 TN
o — 2\ = —n~ ') (7m).
m Vvn m
Since
E ((m)?) <20+ 20°E (31— m)?) < 20° + 2°E (|I% - x*|1?)
2
H(l ~W)2x*||” +banmo? + E (X7, w?)
< m? + 82 2
le
and n?m/n — oo as long as m — oo, it follows that
Vit 1
=o—)0p.(1). 34
am —°\m)or 1 (34)
By using (32), we derive
A <12 | (1 = W)2x*||2 + anmo? n
E ( Xz — X7 2) <4 (6rm)? = EOPT(l). (35)

Substituting (34) and (35) in (33) allow us to conclude that
o] > 0=/ 20e (1) = 0 (5= Ors (1)
min |z} —4/—O0p,(1)—o | — -(1).
e i TN vn)F
Then (24) holds.

Remark 2 There is special interest in applying the REN model in the case the data satisfies
the condition n > m. For the LASSO model it was suggested in [6] to make use of the
Dantzig selector which can achieve the ideal estimation up to a log(n) factor. In [12] a per-
forming of the Dantzig selector called the Sure Independence Screening (SIS) was introduced
in order to reduce the ultra-high dimensionality. We remark that the SIS technique can be
combined with the REN model (6) for dealing the case n >> m. Then previous computations
can be still applied to reach the sign recovery property.
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Appendix B

Iris Recognition: Analyzing the Distribution of the
Iriscodes Concordant Bits

B.1 Overview

This appendix consists of the following article:

Iris Recognition: Analyzing the Distribution of the Iriscodes Concordant Bits

Gil Santos and Hugo Proenca

IEEE Proceedings of the 3rd International Congress on Image and Signal Processing - CISP 2010,
October 16-18, 2010, Yantai, China.
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Iris Recognition: Analyzing the Distribution of the
Iriscodes Concordant Bits

Gil Santos and Hugo Proenca
Department of Computer Science
Instituto de Telecomunicac¢des - Networks and Multimedia Group
University of Beira Interior, Covilha, Portugal
Email: gmelfe@ubi.pt, hugomcp@di.ubi.pt

Abstract—The growth in practical applications for iris bio-
metrics has been accompanied by relevant developments in the
underlying algorithms and techniques. Efforts are being made
to minimize the tradeoff between the recognition error rates
and data quality, acquired in the visible wavelength, in less
controlled environments, over simplified acquisition protocols and
varying lighting conditions. This paper presents an approach
that can be regarded as an extension to the widely known
Daugman’s method. Its basis is the analysis of the distribution of
the concordant bits when matching iriscodes on both the spatial
and frequency domains. Our experiments show that this method
is able to improve the recognition performance over images
captured in less constrained acquisition setups and protocols.
Such conclusion was drawn upon trials conducted for multiple
datasets.

I. INTRODUCTION

The use of the iris as main biometric trait is emerging as one
of the most recommended, due not only to the possibility of
contactless data acquisition and to its circular and planar shape
that makes easy the detection, segmentation and compensation
for off-angle capturing, but also for its predominately ran-
dotypic appearance. Although these factors contribute to the
high effectiveness of the deployed iris recognition systems,
their typical scenarios are quite constrained: subjects stop-
and-stare relatively close to the acquisition device, while their
eyes are illuminated by a near-infrared light source, enabling
the acquisition of good quality data. Remarkably, several
researchers are trying to minimize the constraints associated
with this process, in a way often referred as non-cooperative
iris recognition.

Traditional iris recognition methods are based on the
statistical Pattern Recognition paradigm and regard the
biometric signatures as points of hyper-dimensional spaces.
Here, a match occurs when the distance between two
signatures is lower than a threshold. However, dealing with
degraded data might lead to huge deformations of the feature
space and significant increases of the error rates. In this
paper we propose a method that accounts for the spatial and
frequency analysis of the bits that are in agreement when
comparing two biometric signatures (iriscodes). The goal
is to increase the robustness to degraded data, captured in
unconstrained acquisition setups. The Daugman’s approach,
widely known for it’s low error rates and commercially
deployed in iris recognition systems worldwide, has proven

to perform well in different types of images and, therefore,
will be the basis of our work and our comparison term.

The remaining of this paper has the following structure:
section II overviews the iris recognition process, namely
the less constrained acquisition setup and the Daugmans’s
approach; section III describes the proposed method; section
IV describes the used datasets and discusses the obtained
results; finally, section V states the conclusions.

II. IRIS RECOGNITION

The iris recognition process starts with the segmentation
of the iris ring. Further, data is transformed into a double
dimensionless polar coordinate system, through the Daug-
man’s Rubber Sheet process. Regarding the feature extrac-
tion stage, existing approaches can be roughly divided into
three variants: phase-based [1], zero-crossing [2] and texture-
analysis methods [3]. Dauman [1] used multi-scale quadrature
wavelets to extract texture phase-based information and obtain
an iris signature with 2048 binary components. Boles and
Boashash [2] computed the zero-crossing representation of
a 1D wavelet at different resolutions of concentric circles.
Wildes [3] proposed the characterization of the iris texture
through a Laplacian pyramid with four different levels. Finally,
in the feature comparison stage, a numeric dissimilarity value
is produced, which determines the subjects identity. Here, it
is usual to apply different distance metrics (Hamming [1],
Euclidian [4] or weighted Euclidian [5]), or methods based
on signal correlation [3].

The accuracy of the deployed iris recognition systems is
remarkable, as reported by the study conduced by Daug-
man [6] and three other independent evaluations [7]-[9].
Nevertheless, recent publications emphasize the significance
of some iriscode bits [10], aiming at improving by either
masking less consistent bits [11] or condensing high discrim-
inatory information regions [12]. However, we stress that the
claimed effectiveness is conditioned to the acquisition of good
quality images, captured in stop-and-stare interfaces at reduced
imaging distances. In less constrained conditions, where a
trade-off between data acquisition constrains and recognition
accuracy is inevitable, the challenge is to maximally increase
flexibility in three axes: subjects position and movement,
imaging distances and lighting conditions. The main problem
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is the appearance of other noise factors [13] (Subsection IV-A),
that represent a substantial issue. As before stated, this area
receives growing interests from the research community and
constituted the scope of several publications [14]-[16].

A. Daugman’s Approach

The Daugman’s approach [17] to perform iris recognition
is the most widely acknowledged, with great acceptance
over the scientific community. Apart from being the unique
implemented in commercially deployed systems, it usually
acts as comparison term for alternative proposals. His method
starts by the detection and segmentation of the iris. Later, the
normalization of the segmented region is performed and fea-
tures are extracted through the convolution of the normalized
data with a bank of 2D Gabor Wavelets (1), followed by a
quantization stage that produces a binary iriscode. This code is
used in the matching stage, that applies the Hamming distance
(3) as comparison measure.

hige,1m}y = Sgn{Re,Im}//I(pa p)el (o2,
pJe
.e—<"]—f’>2/a2e—<90—¢>>2/32pdpd¢

ey

= (codeA ® codeB) N maskA N 'maskB 2)
el
HD = 3
|lmask A N'maskB|| )

where ® is the logical XOR operation and N the logical AND.

III. PROPOSED METHDOD

The similarity measure used by Daugman at the matching
stage simply gives the ratio of concordant iriscode bits over
the whole iris and does not take into account their spatial
and frequency distributions. In this paper, such analysis is
performed, hoping that the location of the concordant bits
and how they spread in the iriscode can provide useful
information in the discrimination between match and non-

match comparisons.
e

(a) Iriscodes match with regular distributed concordant bits

:::: Y -.'l » ..:- AT -.-:::
B “‘%r-*i"f‘i: O .

(b) Iriscodes match with an high concordance region (delimited by
the light gray rectangle)

Fig. 1. TIllustration of two iriscode matching results. Black pixels express
concordant bits in the corresponding biometric signatures.

Figure 1 illustrates two comparisons between iriscodes,
from now on called “comparison maps” (2), where black
pixels denote concordant bits of the corresponding biometric
signatures. Although their Hamming Distance is the same
(50% of concordant bits) we claim that - intuitively - the
comparison map from Figure 1(b) has a much higher proba-
bility of being an intra-class comparison. This is due to the
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(delimited) region that gives an area where both iriscodes have
high concordance.

A. Spatial Domain Analysis

To ascertain the level of concordance in regions of different
sizes, we performed a set of convolutions with Haar-based
wavelets of different sizes. Let ¢ be a comparison map of
M x N dimensions. Let i be a Haar-based mother wavelet
with size s x s. The similarity r in local regions of ¢ is given
by:

,s ={2k}, k=2,3,...,16 “)

rs = hg * C

where * denotes the bi-dimensional convolution and 7, has
the same dimensions of c.

Let ws, = max{rs(i,5)}, i=1,2,....N; j=1,2,..., M.

Let H be the 25-bin histogram of r, where v is
the maximum size of the Haar-wavelet, such that H =
{h1,ha, ..., ho5}. All the w; and h; values where used as
fetures for the further stages (sub-section IV-B) and give the
proportion of concordant bits across regions of different sizes
of the comparison map.

B. Frequency Domain Analysis

Together with the above described analysis we also analyzed
the frequencies spread of the concordant bits. The rationale is
that matching between inter-class iriscodes should give a dis-
tribution close to white-noise of concordant bits. Oppositely,
an intra-class comparison should present a higher amount of
low frequency components, according to the same key insight
given in the previous section.

At this stage, two modifications to the Daugman’s approach
were performed: remotion of the signal-wise binary conversion
step; and replacement of the XOR operation by the difference
between coefficients. When applying a Fourier transform to
both the binary and the differential comparison maps, we
found that the later produces more discriminating results,
which is easily justified by its higher amount of information.

Let ¢ be a comparison map of M x N dimensions. The 2D
Fourier transform F' is given by:

1 M N
= S 3Dl gl (s)

z=0y=0

where j is the square root of —1 and e denotes the natural
exponent.

Results were decomposed into sixteen sub-regions, regularly
distributed in small windows, and a set of attributes was
ascertained: minimum and maximum values, average, standard
deviation and local entropy. Since the central shape of F'
(where the lower frequencies lie) might contain important
information which could not be properly processed by this
windowing, another method was used to extract specific fea-
tures from this area.

Let A be a P x N window, centered in the P x M matrix that
contains the noticeable central shape such that P = 2M{/8.
Ten features F; are then extracted as explained in the initial



part of section (6b), representing the distribution of evenly
spaced 10-bins histogram:

T; = min(A) + z% (6a)
10
P N
Fi = Z Z sgn (A(m,n) - Tz) (6b)

m=1n=1

with AA = max(A) —min(A) and i =1, 2, ..., 10.

IV. EXPERIMENTS

Thus, the required parameters of the Gabor wavelets (1)
were tuned for best performance, being chosen those with
maximal decidability index (7); i.e. maximizing the distance
between the distributions obtained for the two classical types
of biometric comparisons: between signatures extracted from
the same (intra-class) and different eyes (inter-class).

d/ _ ‘N/intar - ,u/intra| (7)
O nter Tt
2
where [linter and fintre denote the means of the inter- and
intra-class comparisons and o;pter and opnirq the respective
standard deviations.

Regarding iris segmentation, all images were manually seg-
mented, avoiding that segmentation errors corrupt the obtained
results. A central and contiguous region was extracted from
the normalized image, free of eyelid and eyelash occlusions,
and used for the extraction of the iriscode. This option was
taken to empower the spatial and frequency domain analysis.

A. Datasets

Two different datasets were used in our experiments:
UBIRIS [18] and UBIRIS.v2 [19]. These are noisy datasets
[13] with the following factors that degrade the quality of the
data:

o Out-of-Focus - caused by subject movement allied to
imaging systems limitations (namely in the depth-of-field,
poor lightning/exposure ratio);

o Off-Angle - subject head and eye rotation or lack of
alignment;

« Rotation - tilt of the head, despite of the subject being
or not facing the camera;

« Motion blur - blurred iris images caused by eyelid
movement;

« Obstructions - various types of blocking objects can
be found, being the most commons: eyelids, eyelashes,
glasses and contact lenses;

« Reflections - generally strong reflections caused by light
sources or weak ones introduced by surroundings;

« Partial Iris - images appear where iris is not completely
visible;

o Out-of-iris - images where iris is not present at all, either
because fully occlusions or the eye not being present in
the frame.

The higher range of acquisition distances enables the capturing
of data at different scales and should make the results more
visible.

Four dataset configurations were employed:

o UBIRIS.v2 — the first one is made of 500 images from
UBIRIS.v2 without any kind of particular selection;

o UBIRIS.v2 Frontal — a second arrangement consists of
175 images, also from UBIRIS.v2, captured with the
subject looking at camera’s direction;

o UBIRIS.v2 Frontal Close — the third setup is composed
by 100 images from the same database, with the sub-
ject also looking at the camera, but at relatively closer
distances (4 to 6 meters);

o« UBIRIS - the last setup include 500 images from
UBIRIS.

The number of comparisons c¢,, is given from the number of
irises n in the database through (8), from which about 4.5%
are intra-class comparisons. In every case, we selected a group
of images that we believe to represent each dataset.

n—1
Cn = 7 ®)
1

i
B. Feature Selection and Classification

Upon trials using different feature selection and dimension-
ality reduction techniques, carried out on frontally captured
irises, we decided to apply Logistic Regression (LR) to the best
125 features, sorted using Peng ef al. method [20] - minimum-
Redundancy, Maximum Relevance, and then mapped to 15
dimensions through Local Fisher Discriminant Analysis [21].
By conducting our earliest tests in an UBIRIS.v2 sub-set of
frontal images, we avoided problems associated with others
noise factors (as gaze look), which might require specific
corrections.

C. Results and Discussion

When applied to the different datasets, the comparison of
our method and of the Daugman’s gave the results contained
in tables I and II.

TABLE I
LOGISTIC REGRESSION RESULTS FOR DIFFERENT DATASET
CONFIGURATIONS. "HD” REPRESENTS DAGUMAN’S APPROACH
PERFORMANCE, AND 125 FEAT” REFERS TO OUR APPROACH. AUC
STANDS FOR AREA UNDER ROC CURVE AND CA FOR CLASSIFICATION

ACCURACY
HD 125 Feat
AUC CA AUC CA
UBIRIS.v2 0.7315 | 0.9574 | 0.7598 | 0.9589
UBIRIS.v2 Frontal 0.8499 | 0.9582 | 0.8562 | 0.9590
UBIRIS.v2 Frontal Close | 0.8740 | 0.9632 | 0.8897 | 0.9643
UBIRIS 0.9865 | 0.9868 | 0.9932 | 0.9897

Starting by frontal UBIRIS.v2 images, the subset our
method was initially projected on, and attending to Area Under
ROC Curve (AUC) assessment, we can observe an apparently
residual increment of 1%. However, the AUC differs from
Daugman’s approach from 1.57% on close-captured images
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to 2.83% on images without restrictions of any kind, which
is a more significative improvement. For the first version of
UBIRIS, where Daugman’s approach has a good performance
considering acquisition conditions, our method once again
presents enhancements of almost 1% (Figure 2).

For the Classification Accuracy (CA), more permeable to
class unbalancing, the most notable boost occurs for UBIRIS,
as for the second version of this database advancements are
proportional to the ones of AUC.

TABLE 11
CONFUSION MATRICES REPRESENTING PROPORTIONS OF TRUE FOR
DIFFERENT DATASET CONFIGURATIONS. ”HD” REPRESENTS DAUGMAN’S
APPROACH PERFORMANCE, AND 125 FEAT” REFERS TO OUR APPROACH.

Predicted
HD 125 Feat
0 1 0 1
UBIRIS.v2 0 [ 1.000 | 0.000 0 | 1.000 | 0.000
1 | 0991 [ 0.009 1 10950 | 0.050
0 1 0 I
UBIRIS.v2 [0 [0.997 [ 0.003 [0 ]0.997 [ 0.003
Frontal [ 110858 [ 0142 [ 110841 [ 0.159
B
=4
0 1 0 1
UBIRIS.v2 0.997 | 0.003 0.996 | 0.004
Frontal Close 10797 | 0.203 1] 0744 1 0256
0 1 0 1
UBIRIS 0 [ 0998 | 0.002 0 [ 0998 | 0.002
1] 02062 [ 0.738 1T ] 0.194 | 0.806

Table II allows us to interpret the results in a more per-
spicuous way. Having in mind the priority given to lower the
False Accept Rate (FAR) as much as possible, is at the False
Reject Rate (FRR) that the improvements due to our method
can be better observed. Without jeopardizing the FAR, FRR
has a drop of about 1.7% for the subset where our method was
schemed, when compared to the information provided by HD
alone. Analyzing the other two UBIRIS.v2 datasets, this drop
became more suggestive reaching 4.1% to 5.3%, and 6.8% on
UBIRIS.

V. CONCLUSIONS

Unconstrained image acquisition setups and protocols lead
to the appearance of degraded data that significantly in-
creases the challenges in performing accurate iris biometric
recognition. In this paper we assessed the spatial and fre-
quency distributions of the agreement bits resultant of the
comparison between iriscodes having as main purpose the
increase of the robustness to data acquired in less controlled
conditions. Based in well-known feature extraction and data
mining techniques, our method is to be used together with the
traditional Daugman’s approach and consistently contributed
for an improvement in all experimented datasets.
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Appendix C

Facial Expressions: Discriminability of Facial
Regions and Relationship to Biometrics
Recognition

C.1 Overview

This appendix consists of the following article:

Facial Expressions: Discriminability of Facial Regions and Relationship to Biometrics Recognition
Elisa Barroso, Gil Santos and Hugo Proenca

IEEE Symposium on Computational Intelligence in Biometrics and Identity Management - CIBIM
’13, 16-19 April 2013.

ISBN: 978-1-4673-5879-8/13
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Facial Expressions: Discriminability of Facial
Regions and Relationship to Biometrics Recognition

Elisa Barroso*, Gil Santos! and Hugo Proenca?
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6200 Covilha — Portugal
ebarroso@di.ubi.pt*, gmelfe@ubi.ptT, hugomcp@di.ubi.ptjr

Abstract—Facial expressions result from movements of mus-
cular action units, in response to internal emotion states or
perceptions, and it has been shown that they decrease the
performance of face-based biometric recognition techniques. This
paper focuses in the recognition of facial expressions and has
the following purposes: 1) confirm the suitability of using dense
image descriptors widely known in biometrics research (e.g., local
binary patterns and histogram of oriented gradients) to recognize
facial expressions; 2) compare the effectiveness attained when
using different regions of the face to recognize expressions; 3)
compare the effectiveness attained when the identity of subjects
is known/unknown, before attempting to recognize their facial
expressions.

Index Terms—TFacial Expressions, Biometric Recognition, Per-
formance Analysis.

I. INTRODUCTION

The recognition of facial expressions has been motivating
growing research efforts in recent years and benefited from
advances in machine learning, image processing, and human
cognition domains. Facial expressions constitute responses
to internal emotion states, intentions, or social environment.
They may be intentional or without conscious control and
are produced by the synergistic or co-operative action of
various facial muscles, as illustrated and described in Figure 1.
Another interesting property is their universality: Paul Ekman
studied the nature of facial expression and concluded that
all humans are able to identify enjoyment, surprise, sadness,
anger, fear, disgust. Also, when a set of volunteers was asked
to make facial expressions to depict various scenarios, they
were unmistakable [1].

The recognition of facial expressions is used to study facial
behavior and several observational coding systems for that pur-
pose were previously proposed, such as the Facial Affect Scor-
ing (FAST) [1], the Facial Action Coding System (FACS) [2],
the Emotional Facial Action Coding System (EMFACS) [3]
and Facial Expression Coding System (FACES) [2]. Most
of these are based in six discrete emotions: happiness/joy,
sadness, anger, fear, surprise and disgust. Also, methods due
to Matias et al. [4], Matsumoto et al. [5] and Coan and
Gottman [6] are used in infants to detect and track their facial
affect behavior.

The recognition of facial expressions mainly evolves two
types of techniques: dense appearance descriptors and sta-
tistical machine learning. In particular, local binary patterns

Angry

Disgusted

Neutral

Fearful Happy Sad
Action Unit Description
I- Inner Brow Raise 14- Dimble
2 Outer Brow Raise 15 Lip Comer Depress
4- Brow Lower 17- Chin Raise
5- Upper Lid Raise 20- Lip Stretch
6- ChickRaise 23- Lip Tighten
7- Lid Tighten 24- Lip Press
9- Nose Wrinkle 25- Lip Part
10- Upper Lip Raise 26- Jaw Drop
. 12- Lip Corner Bull
Surprised
Figure 1. Targeted action units for the emotional expressions considered in

this work, as suggested by Root and Stephens [7]

(LBP) [8], histogram of oriented gradients (HOG) [9] and
scale invariant feature transform (SIFT) [10] were successfully
applied to this problem. HOG [9] describes local object
appearances and shapes by distribution of local intensity
gradients or edge directions. LBPs [8] describe the pixels
of an image by thresholding the neighborhood of each pixel
with the value of the centre point and using these binary
numbers to construct a label. SIFT [10] is a widely used local
descriptor that starts by localizing keypoints with the local
scale-space maxima of difference-of-Gaussian (DoG), and
subsequently uses such keypoints as reference to generate a 3D
histograms of gradient locations and orientations. Also, various
classifiers were used, such as neural networks (NN) [11],
support vector machines (SVM) [12], linear discriminant anal-
ysis (LDA) [13], K-nearest neighbors (KNN), multinomial
logistic ridge regression (MLR) and Hidden Markov models
(HMM) [14].

According to the above, this paper mainly focuses in the
recognition of facial expressions, and the suitability of using
different facial regions for that task. Our work plan was
divided into three main phases: 1) we started by confirming the
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suitability of fusing dense global and local image descriptors
in the recognition of facial expressions; 2) we analyzed the
effectiveness attained when using the mouth, the periocular
region, the whole face and the mouth plus periocular region re-
gions fused at feature level was compared; and 3) we assessed
the improvements in performance that are due to knowing
subjects identity before recognizing their facial expressions.
To accomplish this plan, we start by manually defining the
regions-of-interest, and then proceed for feature encoding
according to the three feature extraction techniques. Then, for
dimensionality reduction purposes, the principal components
analysis (PCA) [13], [15] of data was carried out. Finally, feed-
forward NN [11], [12] were used for classification purposes.

The remainder of this paper is organized as follows: a
detailed description of the used dataset is given in Section II;
Section III reports our experiments and discusses the results;
and finally, Section IV presents the conclusions.

II. FACEEXPRESSUBI DATASET

The FaceExpressUBI dataset was used as main data source
for experiments. It contains 90,160 color images acquired
using a video camera, from 184 subjects (490 per subject),
with resolution of 2056 x 2452 pixels. Each image is associated
to a text/annotation file containing the coordinates for the
face, periocular region, nose and mouth, respectively. Similarly
to the majority of similar data sets, seven facial expressions
were considered: happiness/joy, sadness, anger, fear, surprise
and disgust plus the neutral expression. The dataset contains
material from two imaging sessions, volunteers were 10 to
48 years of age, 35% female, 93% Caucasian European, 3%
Latin-American, 3% African and 1% Asian. The number of
participants wearing eyeglasses were 21 (12%). Furthermore,
each expression was recorded during 5 seconds with a rate
frame of 7 fps. For any given subject on the dataset, acquisition
sessions were separated by at least two weeks. Also, from
the first to the second session, location and orientation of the
acquisition device and the artificial light sources were changed
in order to increase the heterogeneity.

III. EXPERIMENTS AND DISCUSSION

In our experiments 2,652 images of the FaceExpressUBI
dataset were used. They include seven facial expressions and
were selected according to the evidence of the facial expres-
sions they correspond to. According to the annotation files, the
regions-of-interest that comprise the mouth, periocular region
and face were cropped and normalized for a constant size using
bi-cubic interpolation techniques. Then, due to the intrinsic
properties of two of the feature encoding techniques used
(LBPs and HOG), data was sub-divided into square patches,
as detailed in Table 1.

The cohesive perspective of our experiments is given in
Figure 2. We used the LBP, HOG and SIFT descriptors to
extract features from each region-of-interest (ROI). Then, PCA
was used for dimensionality reduction and a feed forward
neural network used for classification purposes. In this case,
the problem was regarded as a binary classification task: for
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Table I
DESCRIPTION OF THE PRE-PROCESSING/SIZE CHANGES IN THE INPUT
IMAGES.
Anatomic Regions Resize Number of Blocks | Block Size
Mouth 45 x 54 5 X 6 9x9
Periocular 36 x 45 4 x5 9x9
Face 54 x 54 6 X6 9 x9

each pair of images regarding the same facial expression, a
positive response from the neural network should be given;
whereas pairs of images that regard different facial expressions
should output a negative response.
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Figure 2. Cohesive perspective of our experiments, in order to assess
the discriminating ability of each region of the face to recognize facial
expressions: a) using exclusively the periocular region; b) using the whole
face; c¢) using mouth; and d) using mouth and periocular region fused at the
feature level.

The used feature encoding strategies projected each ROI
into feature spaces of dimension: 961 for the mouth, 641 for
the periocular region, 1, 153 for the face, and 1, 602 for mouth
+ periocular region. Then, as above stated, PCA was used
for dimensionality reduction purposes, enabling projections to
hyper-spaces of dimension 500, 330, 600, and 800 components
respectively for the mouth, periocular, face, and mouth +
periocular regions. The number of components used per region
corresponds to the set that explained at least 98% of the



information in the initial set (Figure 3).
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Figure 3. Number of principal components selected for each region analyzed.

Finally, in the classification phase, data was divided into
three disjoint subsets: training (70%), validation (15%) and
test (15%). A set of feed-forward NN with three layers was
created, using Levenberg-Marquardt back-propagation, and
varying the number of neurons in the hidden layer (between
50% and 200% of the dimension of the feature space). As
stoping criterium for the learning process, a maximum number
of 50 validation checks was used. Due to the non-deterministic
property of neural networks, the best observed configuration
was repeated twenty times for every ROI and the median error
rate taken.

In order to perceive the variance in performance when the
identity of subjects is known / unknown, experiments were
repeated in two different setups: 1) at first, only comparisons
between facial expressions of the same subject were consi-
dered, corresponding to the setup where the identity of the
subjects is known before attempting to recognize their facial
expressions; 2) then, the identity constraint was relaxed, and
comparison between facial expressions of different subjects
were also considered.

A. Setup 1: Knowing Subjects’ Identity

By selecting the data frames where facial expressions are
most evident in our dataset, 33,306 pair wise image compar-
isons were considered, from which 5, 124 were randomly sam-
pled. This step was due to the computational burden of neural
networks to learn in such high dimensional hyper-spaces and
to the observation that results tend to maintain relatively stable
when more than a few thousand of comparisons were used in
the learning processes. Classes were balanced, meaning that
the number of pair wise comparisons that regard the same
facial expressions is equal to the number of comparisons that
regard different facial expressions. Also, in order to perceive

the discriminability of each facial region per expression, this
experiment was repeated when considering all facial expres-
sions together and each one separately, yielding seven variants
of the experiment. At first, we attempted to recognize any
facial expressions and then, exclusively attempted to recognize
one at a time (among happy, anger, sad, surprise, disgust and
fear). Results are given in Table II and the most interesting
conclusions highlighted in bold font: the mouth outperformed
in the recognition of the Happy expression, which is not too
surprising due to the action units evolved in that expression.
The whole face obtained the best error rates only twice:
when considering all facial expressions, and for the Anger
expression. Interestingly, the fusion at the feature level of
mouth + periocular attained the best results most times (three).
In opposition, a surprising observation was the low levels of
performance attained by mouth + periocular when attempting
to recognize all facial expressions, which was explained due
to the sparsity of instances in the feature space of higher
dimension when compared to the remaining ROIs. It should be
stressed that in this experiment, only comparisons regarding
facial expressions from the same subjects were selected,
corresponding to the scenario where a biometric recognition
system performs before the facial expression.

Table 11
MEDIAN RECOGNITION RATES OBSERVED, WHEN ATTEMPTING TO
RECOGNIZE ALL FACIAL EXPRESSIONS (ALL COLUMN) AND EACH ONE
SEPARATELY. IN THIS CASE, THE IDENTITY OF THE SUBJECTS IS ASSUMED
TO BE KNOWN BEFORE ATTEMPTING TO RECOGNIZE THEIR FACIAL
EXPRESSIONS.

Region All | Happy| Sad | Surprise] Fear | Anger| Disgust
Mouth 86.5| 95.5 93.5| 95.1 942 | 92.7 94.4
Periocular 90.0| 94.8 93.9| 91.8 88.7 | 91.1 89.8
Face 90.1| 949 929 94.8 93.7 | 94.7 94.3
Mouth + Periocular | 69.6| 94.8 94.0| 95.0 94.3 | 94.6 94.2

B. Setup 2: Unknowing Subjects Identity

This section regards an empirical setup similar to the
described above, with the exception that this time the identity
of subjects was not known, meaning that pair wise image
comparisons between different subjects were also considered.
In this case, starting from an initial number of 6, 561, 282 pair
wise comparisons, 5,124 were randomly selected in order to
obtain confidence intervals similar to the previous experiment.
Table III gives the results, where the best recognition rate
was obtained for the face region and happy expression (95%).
Overall, a slight decrease in the effectiveness (around 3 ~ 4%)
was observed when attempting to recognize facial expres-
sions separately. The most notorious decreases in performance
occurred when all facial expressions were considered, in
some circumstances up to 50% of the performance observed
for the knowing identity setup. This leaded us to conclude
that biometric recognition techniques contribute for consistent
improvements in the analysis of subjects facial expressions.

In summary, based on the observed error rates, we con-
cluded that positive expressions (happy and surprise) are easier
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to recognize than negative expressions (sad, anger, fear and
disgust). Also, for most cases, the fusion at the feature level
of both the mouth and periocular region did not contributed
for consistent improvements in performance. Even though,
using exclusively sub-parts of the face (as the mouth) led to
performance levels similar to the attained when the whole face
is considered.
Table I
MEDIAN RECOGNITION RATES OBSERVED, WHEN RECOGNIZING ALL
FACIAL EXPRESSIONS (ALL COLUMN) AND EACH ONE SEPARATELY. IN

THIS CASE, THE IDENTITY OF THE SUBJECTS IS NOT KNOWN WHEN
ATTEMPTING TO RECOGNIZE THEIR FACIAL EXPRESSIONS.

Region All | Happy| Sad | Surprise] Fear | Anger| Disgust
Mouth 61.4| 943 89.9| 92.1 88.3 | 88.0 89.1
Periocular 584 934 87.1| 86.7 84.4 | 82.1 84.1
Face 63.1| 95.0 91.5| 933 89.7 | 90.1 89.3
Mouth + Periocular 652 923 91.9| 91.0 91.0 | 91.0 90.7

IV. CONCLUSIONS

This paper mainly focused on two types of analysis: 1) we
compared the discriminating ability of regions of the face to
the attained by using the whole face; and 2) compared the
results obtained when subjects identity is previously known,
in opposition to unknown identities. A dataset of seven facial
expressions was used and a set of ROIs cropped, comprising
the whole face, the mouth and the periocular region. Then,
LBPs, HOGs and SIFTs were used for feature encoding
purposes and PCA for dimensionality reduction. Finally, for
each pairs of images, a feed-forward NN binary discriminated
between those that regard the same facial expression or not.
This experimental setup was repeated in two different variants:
at first, we assumed that the identity of subjects is previously
known and only facial expressions that regard the same
subject were considered; then, this constraint was relaxed and
facial expressions from different subjects were also taken into
account.

Accordingly, our main conclusions are: 1) LBP, HOG and
SIFT are effective methods for feature encoding purposes in
this specific scenario; 2) fusing the mouth and periocular
regions at the feature level does not lead to performance
improvements when compared to when each region is used
separately; 3) the use of the whole face in the recognition of
most facial expressions does not provide better results than
using exclusively regions of the face, such as the mouth and
periocular region (exceptions are the happy and surprise); and
4) by knowing subjects’ identity, consistent improvements in
recognizing their facial expressions are attained, giving support
to the use of biometric recognition methods before attempting
to recognize facial expressions.
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