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Abstract—Over the years, unmanned aerial vehicles (UAVs)
have been regarded as a potential solution to surveil public
spaces, providing a cheap way for data collection, while covering
large and difficult-to-reach areas. This kind of solutions can
be particularly useful to detect, track and identify subjects of
interest in crowds, for security/safety purposes. In this con-
text, various datasets are publicly available, yet most of them
are only suitable for evaluating detection, tracking and short-
term re-identification techniques. This paper announces the free
availability of the P-DESTRE dataset, the first of its kind
to provide video/UAV-based data for pedestrian long-term re-
identification research, with ID annotations consistent across data
collected in different days. As a secondary contribution, we
provide the results attained by the state-of-the-art pedestrian
detection, tracking, short/long term re-identification techniques
in well-known surveillance datasets, used as baselines for the
corresponding effectiveness observed in the P-DESTRE data.
This comparison highlights the discriminating characteristics of
P-DESTRE with respect to similar sets. Finally, we identify the
most problematic data degradation factors and co-variates for
UAV-based automated data analysis, which should be considered
in subsequent technologic/conceptual advances in this field. The
dataset and the full specification of the empirical evaluation
carried out are freely available at http://p-destre.di.ubi.pt/.

Index Terms—Visual Surveillance, Aerial Data, Pedestrian De-
tection, Object Tracking, Pedestrian Re-identification, Pedestrian
Search.

I. INTRODUCTION

V Ideo-based surveillance refers the act of watching a
person or a place, esp. a person believed to be involved

with criminal activity or a place where criminals gather1.
Over the years, this technology has been used in far more
applications than its roots in crime detection, such as traffic
control and management of physical infrastructures. The first
generation of video surveillance systems was based in closed-
circuit television (CCTV) networks, being limited by the
stationary nature of cameras. More recently, unmanned aerial
vehicles (UAVs) have been regarded as a solution to overcome
such limitations: UAVs provide a fast and cheap way for data
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collection, and can easily assess confined spaces, producing
minimal noise while reducing the staff demands and cost.
UAV-based surveillance of crowds can host crime prevention
measures throughout the world, but it also raises a sensitive
debate about faithful balances between security/privacy issues.
In this context, it is important that legal authorities strictly
define the cases where this kind of solutions can be used (e.g.,
missing child or disoriented elderly? Criminal seek?).

Being at the core of video surveillance, many efforts have
been concentrated in the development of video-based pedes-
trian analysis methods that work in real-world conditions,
which is seen as a grand challenge2. In particular, the problem
of identifying pedestrians in crowds is especially difficult when
the time elapsed between consecutive observations denies the
use of clothing-based features (bottom row of Fig. 1).
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Fig. 1. Key difference between the pedestrian short-term re-identification
(upper row) and long-term re-identification problems (bottom row). In the
former case, it is assumed that subjects keep the same clothes between
consecutive observations, which does not happen in the long-term problem.
Matching IDs across long-term observations is highly challenging, as the
state-of-the-art re-identification techniques rely in clothing appearance-based
features. The P-DESTRE set is the first to supply video/UAV-based data
for pedestrian long-term re-identification.

To date, the research on pedestrian analysis has been mostly
conducted on databases (e.g., [17], [30] and [11]) that provide
data with short lapses of time between consecutive observa-
tions of each ID (typically within a single day), which allows
to use clothing-based appearance features for identification
(top row of Fig. 1). Also, datasets related to other problems are
used (e.g., gait recognition [38]), where the data acquisition

2https://en.wikipedia.org/wiki/Grand Challenges
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conditions are evidently different of the seen in surveillance
environments.

As a tool to support further advances in video/UAV-based
pedestrian analysis, the P-DESTRE is a joint effort from
research groups in two universities of Portugal and India. It
is a multi-session set of videos, taken in outdoor crowded
environments. ”DJI Phantom 4”3 drones controlled by human
operators flew over various scenes of both universities campi,
with the data acquired simulating the everyday conditions in
surveillance environments. All subjects offered explicitly as
volunteers and they were asked to act normally and ignore
the UAVs. Moreover, the P-DESTRE set is fully annotated at
the frame level by human experts, providing four families of
meta-data:
• Bounding boxes. The position of each pedestrian at every

frame is given as a bounding box, to support object de-
tection, tracking and semantic segmentation experiments;

• IDs. Each pedestrian has a unique identifier that is kept
consistent over all the data acquisition days/sessions.
This is a singular characteristic that turns the P-DESTRE
suitable for various kinds of identification problems. The
unknown identities are also annotated, and can be used
as distractors to increase the identification challenges;

• Soft biometrics labels. Each pedestrian is fully char-
acterised by 16 labels: {’gender’, ’age’, ’height’, ’body
volume’, ’ethnicity’, ’hair colour’, ’hairstyle’, ’beard’,
’moustache’, ’glasses’, ’head accessories’, ’body acces-
sories’, ’action’ and ’clothing information’ (x3)}, which
allows to perform soft biometrics and action recognition
experiments.

• Head pose. 3D head pose angles are given in terms of
yaw, pitch and roll values for all the bounding boxes, ex-
cept backside views. This information was automatically
obtained according to the Deep Head Pose [29] method.

As a consequence of its annotation, the P-DESTRE is the
first suitable for evaluating video/UAV-based long-term re-
identification methods. Using data collected over large periods
of time (days/weeks), the re-identification techniques cannot
rely in clothing-based features, which is the key characteristic
that distinguishes between the long-term and the short-term
re-identification problems (Fig. 1).

In summary, this paper offers the following contributions:
1) we announce the free availability of the P-DESTRE

dataset, the first of its kind that is fully annotated at the
frame level and was designed to support the research on
video/UAV-based long-term re-identification. Moreover,
the P-DESTRE set can be used in pedestrian detection,
tracking, short-term re-identification and soft biometrics
experiments;

2) we provide a systematic review of the related work in
the scope of the P-DESTRE set, comparing its main
discriminating features with respect to the related sets;

3) based in our own empirical evaluation, we report
the results that state-of-the-art methods attain in
the pedestrian detection, tracking and short-term
re-identification tasks, when considering well-known

3https://www.dji.com/pt/phantom-4

surveillance datasets. The comparison between such
results and those attained in P-DESTRE supports the
originality of the novel dataset.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most relevant research in the scope of
the novel dataset. Section III provides a detailed description of
the P-DESTRE data. Section IV discusses the results observed
in our empirical evaluation, and the conclusions are given in
Section V.

II. RELATED WORK

This section describes the most relevant UAV-based datasets
and also pays special attention to datasets that focus the
problems of pedestrian detection, tracking, re-identification
and search.

A. UAV-Based Datasets

Various datasets of UAV-based data are available to the
research community, most of them serving for object detection
and tracking purposes. The ’Object deTection in Aerial im-
ages’ [35] set supports research on multi-class object detection,
and has 2,806 images, with 188K instances of 15 categories.
The ’Stanford drone dataset’ [28] provides video data for
object tracking, containing 60 videos from 8 scenes, annotated
for 6 classes. Similarly, the ’UAV123’ [24] set provides
123 video sequences from aerial viewpoints, containing over
110K frames, annotated for object detection/tracking. The
’VisDrone’ [40] consists of 288 videos/261,908 frames, with
over 2.6M bounding boxes covering pedestrians, cars, bicycles,
and tricycles. Finally, the largest freely available source is
the ’Multidrone’ [23], providing data for multiple category
object detection and tracking. It contains videos of various
actions, collected under various weather conditions and in
different places, yet not all the data are annotated. The
’UAVDT’ [9] is an image-based dataset that supports research
on vehicle detection and tracking. It has 80K frames/ 841.5K
bounding boxes, selected from 10 hours raw videos, that were
manually annotated for 14 attributes (e.g., weather condition,
flying altitude, camera view, vehicle category and levels of
occlusion). Recently, to facilitate research on face recognition
from video/UAV-based data, the ’DroneSURF’ dataset [15]
was released. This dataset is composed of 200 videos from
58 subjects, captured across 411K frames, and includes over
786K face annotations.

B. Pedestrian Analysis Datasets

As summarized in Table I, there are various datasets for
supporting pedestrian analysis research. The pioneer set was
the ’PRID-2011’ [14], containing 400 image sequences of 200
pedestrians. Next, the ’CUHK03’ [17] set aimed at providing
enough data for deep learning-based solutions, and contains
images collected from 5 cameras, comprising 1,467 identities
and 13,164 bounding boxes. The ’iLIDS-VID’ [32] set was
the first to release video data, comprising 600 sequences
of 300 individuals, with sequence lengths ranging from 23

Authorized licensed use limited to: b-on: UNIVERSIDADE DA BEIRA INTERIOR. Downloaded on December 07,2020 at 14:36:11 UTC from IEEE Xplore.  Restrictions apply. 

https://www.dji.com/pt/phantom-4


1556-6013 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.3040881, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ??, NO. ??, ?? 2020 3

TABLE I
COMPARISON BETWEEN THE P-DESTRE AND THE EXISTING DATASETS THAT SUPPORT THE RESEARCH IN PEDESTRIAN DETECTION, TRACKING AND

SHORT/LONG-TERM RE-IDENTIFICATION (APPEARING IN CHRONOLOGICAL ORDER).

Dataset Camera Format
Task

Identities Bound. Box Environment Height (m)
Detection Tracking ReID Search Action Rec.

PRID-2011 [14] UAV Still 7 7 3 7 7 1,581 40K Surveillance [20, 60]

CUHK03 [17] CCTV Still 7 7 3 7 7 1,467 13K Surveillance -

iLIDS-VID [32] CCTV Video 7 7 3 7 7 300 42K Surveillance -

MRP [16] UAV Video 3 3 3 7 7 28 4K Surveillance < 10

PRAI-1581 [32] UAV Still 7 7 3 7 7 1,581 39K Surveillance [20, 60]

CSM [1] (Various) Video 7 7 7 3 7 1,218 11M TV -

Market1501 [37] CCTV Still 3 3 3 7 7 1,501 32,668 Surveillance < 10

Mini-drone [6] UAV Videos 3 3 7 7 3 - > 27K Surveillance < 10

Mars [39] CCTV Video 7 7 3 7 7 1,261 20K Surveillance -

AVI [30] UAV Still 7 7 7 7 3 5,124 10K Surveillance [2, 8]

DukeMTMC-
VideoReID [34]

CCTV Video 7 7 3 7 7 1,812 815K Surveillance -

iQIYI-VID [20] (Various) Video 7 7 7 3 7 5,000 600K TV -

DRone HIT [11] UAV Still 7 7 3 7 7 101 40K Surveillance 25

LTCC [26] CCTV Still 3 7 3 3 7 152 17K Surveillance -

P-DESTRE UAV Video 3 3 3 3 3 269 > 14.8M Surveillance [5.5, 6.7]

to 192 frames. The ’MRP’ [16] was the first UAV-based
dataset specifically designed for the re-identification problem,
containing a 28 identities and 4,000 bounding boxes. Roughly
at the same time, the ’PRAI-1581’ [32] data reproduces
undoubtedly real surveillance conditions, but UAVs flew at too
high altitude to enable re-identification experiments (up to 60
meters). This set has 39,461 images of 1,581 identities, and is
mainly used for detection and tracking purposes. The ’Market-
1501’ [37] set was collected using 6 cameras in front of a
supermarket, and contains 32,668 bounding boxes of 1,501
identities. Its extension (’MARS’ [39]) was the first video-
based set specifically devoted to pedestrian re-identification.
Singularly, the ’Mini-drone’ [6] set was created mostly to
support abnormal event detection analysis, and has been also
used for pedestrian detection, tracking and short-term re-
identification purposes.

The ’DukeMTMC-VideoReID’ [34] is a subset of the
DukeMTMC [27] tracking dataset, used for pedestrian re-
identification purposes. Authors also defined a performance
evaluation protocol, enumerating the 702 identities used for
training, the 702 testing identities, and the 408 distractor
identities. Overall, this set comprises 369,656 frames of
2,196 sequences for training and 445,764 frames of 2,636
sequences for testing. The ’AVI’ [30] set enables pose esti-
mation/abnormal event detection experiments, with subjects in
each frame annotated with 14 body keypoints. More recently,
the ’DRoneHIT’ [11] set supports image-based pedestrian re-
identification experiments from aerial data, containing 101
identities, each one with about 459 images.

The ’CSM’ [1] and ’iQIQI-VID’ [20] sets were included
in this summary because they previously released data for
the long-term re-identification problem. However, their video
sequences have notoriously different features from the ac-
quired in surveillance environments: predominantly regard

TV shows/movies. Similarly, the ’Long-Term Cloth-Changing
(LTCC)’ [26] set also supports long-term re-identification
research and has 17,119 images from 152 identities, collected
using CCTV footage and annotated across clothing-changes
and different views.

Among the datasets analyzed, note that the Market1501,
MARS, CUHK03, iLIDS-VID and DukeMTMC-VideoReID
were collected using stationary cameras, and their data have
notoriously different features of the resulting from UAV-based
acquisition. Also, even though the PRAI-1581 and DRone HIT
sets were collected using UAVs, they do not provide consistent
identity information between acquisition sessions, and cannot
be used in pedestrian search problem.

III. THE P-DESTRE DATASET

A. Data Acquisition Devices and Protocols

The P-DESTRE dataset is the result of a joint effort from
researchers in two universities: the University of Beira Inte-
rior4 (Portugal) and the JSS Science and Technology Univer-
sity5 (India). In order to enable the research on pedestrian
identification from UAV-based data, a set of DJI R© Phantom
46 drones controlled by human operators flew over various
scenes of both university campi, acquiring data that simulate
the everyday conditions in outdoor urban environments.

All subjects in the dataset offered explicitly as volunteers
and they were asked to completely ignore the UAVs (Fig. 2),
that were flying at altitudes between 5.5 and 6.7 meters,
with the camera pitch angles varying between 45◦ to 90◦.
Volunteers were students of both universities (mostly in the
18-24 age interval, > 90%), ≈ 65/35% males/females, and of
predominantly two ethnicities (’white’ and ’indian’). About

4http://www.ubi.pt
5https://jssstuniv.in
6https://www.dji.com/pt/phantom-4-pro-v2
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28% of the volunteers were using glasses, 10% of them were
using sunglasses. Data were recorded at 30fps, with 4K spatial
resolution (3, 840× 2, 160), and stored in ”mp4” format, with
H.264 compression. The key features of the data acquisition
settings are summarized in Table II, and additional details can
be found at the corresponding webpage7.

TABLE II
THE P-DESTRE DATA ACQUISITION MAIN FEATURES.

Image Acquisition Settings

Camera Sensor: 1/2.3” CMOS, Effective
pixels: 12.4 M

Frame Size: 3,840 × 2,160

Lens: FOV 94◦, 20 mm (35 mm format
equivalent) f/2.8 focus at ∞

ISO Range: 100-3200

Camera Pitch Angle: [45◦, 90◦] Drone Altitude: [5.5, 6.7] meters

Format: MP4, 30 fps Bit Depth: 24 bit

Volunteers

Total IDs: 269 Gender: Male: 175 (65%); Female: 94
(35%)

45
◦

90◦

[5.5, 6.7] m.

Operator Volunteers (Crowd)

Fig. 2. At top: schema of the data acquisition protocol used. Human operators
controlled DJI Phantom 4 aircrafts in various scenes of two university campi,
flying at altitude between 5.5 and 6.7 meters, with gimbal pitch angles between
45◦ to 90◦. The image at the bottom provides one example of a full scene
of the P-DESTRE set.

B. Annotation Data

The P-DESTRE set is fully annotated at the frame level, by
human experts. For each video, we provide one text file with
the same filename (plus the ”.txt” extension), containing all
the corresponding meta-information in comma-separated file
format. In these files, each row provides the information for
one bounding box in a frame (total of 25 numeric values). The
annotation process was divided into four phases: 1) pedestrian

7http://p-destre.di.ubi.pt/download.html

detection; 2) tracking; 3) identification and soft biometrics
characterisation; and 4) 3D head pose estimation.

At first, the well-known Mask R-CNN [13] method was
used to provide an initial estimate of the position of every
pedestrian in the scene, with the resulting data subjected
to human verification and correction. Next, the deep sort
method [33] provided the preliminary tracking information,
which again was corrected manually. As result of these two
initial steps, we obtained the rectangular bounding boxes
providing the regions-of-interest (ROI) of every pedestrian in
each frame/video. The next phase of the annotation process
was carried out manually, with human annotators that knew
personally the volunteers of each university setting the ID
information and characterising the samples according to the
soft labels. Finally, we used the Deep Head Pose [29] method
to obtain the 3D head pose angles for all elements (except
backside views), expressed in terms of yaw, pitch and roll
values.

Table III provides the details of the labels annotated for
every instance (pedestrian/frame) in the dataset, along with
the ID information, the bounding box that defines the ROI
and the frame information. For every label, we also provide a
list of its possible values.

C. Typical Data Degradation Factors

As expected, the acquisition of video/UAV-based data in
crowded outdoor environments, from at-a-distance and sim-
ulating covert protocols, has led to extremely heterogeneous
samples, degraded in multiple perspectives. Under visual in-
spection, we identified the six major factors that the most fre-
quently reduced the quality data, and augment the challenges
of automated image analysis:

1) Poor resolution/blur. As illustrated in the top row of
Fig. 3, some subjects were acquired from large distances
(over 40 m.), with the corresponding ROIs having very
poor resolution. Also, some parts of the scenes laid
outside the cameras depth-of-field, in result of a large
range in objects depth. This led to blurred samples.
In both cases, the amount of information available per
bounding box is reduced;

2) Motion blur. This factor yielded from the non-
stationary nature of the cameras and the subjects’ move-
ments. In practice, for some bounding boxes, an apparent
streaking of the body silhouettes is observed;

3) Partial occlusions. As a result of the scene dynamics
and due to the multiple objects in the scenes, par-
tial occlusions of subjects were particularly frequent.
According to our perception, this might be the most
concerning factor of UAV-based data, as illustrated in
the third row of Fig. 3;

4) Pose. Under covert data acquisition protocols and with-
out accounting for subjects cooperation, many samples
regard profile and backside views, in which identifica-
tion and soft biometric characterisation are particularly
difficult;

5) Lighting/shadows. As a consequence of the outdoor
conditions, many samples are over/under-illuminated,
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TABLE III
THE P-DESTRE DATASET ANNOTATION PROTOCOL. FOR EACH VIDEO, A
TEXT FILE PROVIDES THE ANNOTATION AT FRAME LEVEL, WITH THE ROI

OF EACH PEDESTRIAN IN THE SCENE, TOGETHER WITH THE ID
INFORMATION AND 16 OTHER SOFT BIOMETRIC LABELS

Attributes Values

Frame 1, 2, . . .

ID -1: ’Unknown’, 1, 2, . . .

Bounding Box [x,y,h,w] (Top left column, top left row, height,
width)

Head Pose [flag, yaw, pitch, roll] (flag: -1=not-available, 1=avaliable)

Age 0: 0-11, 1: 12-17, 2: 18-24, 3: 25-34, 4: 35-44, 5: 45-54,
6: 55-64, 7: > 65, 8: ’Unknown’

Height 0: ’Child’, 1: ’Short’, 2: ’Medium’, 3: ’Tall’, 4: ’Un-
known’

Body Volume 0: ’Thin’, 1: ’Medium’, 2: ’Fat’, 3: ’Unknown’

Ethnicity 0: ’White’, 1: ’Black’, 2: ’Asian’, 3: ’Indian’, 4: ’Un-
known’

Hair Color 0: ’Black’, 1: ’Brown’, 2: ’White’, 3: ’Red’, 4: Gray’, 5:
’Occluded’, 6: ’Unknown’

Hairstyle 0: ’Bald’, 1: ’Short’, 2: ’Medium’, 3: ’Long’, 4: Horse
Tail,’ 5: ’Unknown’

Beard 0: ’Yes’, 1: ’No’, 2: ’Unknown’

Moustache 0: ’Yes’, 1: ’No’, 2: ’Unknown’

Glasses 0: ’Yes’, 1: ’Sunglass’, 2: ’No’, 3: ’Unknown’

Head Accessories 0: ’Hat’, 1: ’Scarf’, 2: ’Neckless’, 3: ’Occluded’, 4:
’Unknown’

Upper Body Clothing 0: ’T-shirt’, 1: ’Blouse’, 2: ’Sweater’, 3: ’Coat’, 4:
’Bikini’, 5: ’Naked’, 6: ’Dress’, 7: ’Uniform’, 8: ’Shirt’,
9: ’Suit’, 10: ’Hoodie’, 11: ’Cardigan’

Lower Body Clothing 0: ’Jeans’, 1: ’Leggins’, 2: ’Pants’, 3: ’Shorts’, 4: ’Skirt’,
5: ’Bikini’, 6: ’Dress’, 7: ’Uniform’, 8: ’Suit’, 9: ’Un-
known ’

Feet 0: ’Sport’, 1: ’Classic’, 2: ’High Heels’, 3: ’Boots’, 4:
’Sandals, 5: ’Nothing’, 6: Unknown’

Accessories 0: ’Bag’, 1: ’Backpack’, 2: ’Rolling’, 3: ’Umbrella’, 4:
’Sportif’, 5: ’Market’, 6: ’Nothing’, 7: ’Unknown’

Action 0: ’Walk’, 1: ’Run’, 2: ’Stand’, 3: ’Sit’, 4: ’Cycle’, 5:
’Exercise’, 6: ’Pet’, 7: ’Phone’, ’8: ’Leave Bag’, 9: ’Fall’,
10: ’Fight’, 11: ’Date’, 12: ’Offend’, 13: ’Trade’

with shadowed regions due to the remaining objects in
the scene (e.g., buildings, cars, trees, traffic signs. . . );

6) UAV elevation angle. When using gimbal pitch angles
close to 90◦, the longest axis of the subjects body
is almost parallel to the camera axis. In such cases,
images contain exclusively a top-view perspective of
the subjects, with reduced amount of discriminating
information (bottom row of Fig. 3).

When comparing the major features of CCTV and UAV-
based data, the pitch factor of images is particularly evident.
Due to the UAVs altitude, subjects appear almost invariably
with negative pitch angles (over 95% of the P-DESTRE images
have pitch angles between -10◦ and 50◦), which - according to
the results reported in Section IV - appears to be a relevant data
degradation factor. Also, the non-stationary feature of UAVs
increases the heterogeneity of the resulting data, which again
augments the challenges in performing reliable automated
image analysis.
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Fig. 3. Examples of the six factors that - under visual inspection and in
a qualitative analysis - constitute the major challenges to automated image
analysis in video/UAV-based data. These are the predominant data degradation
factors in the P-DESTRE set and the most important co-variates for the
responses of automated systems.

D. P-DESTRE Statistical Significance

Let α be a confidence interval. Let p be the error rate of a
classifier and p̂ be the estimated error rate over a finite number
of test patterns. At an α-confidence level, we want that the true
error rate does not exceed p̂ by an amount larger than ε(n, α).
Guyon et al. [12] defined ε(n, α) = βp as a fraction of p.
Assuming that recognition errors are Bernoulli trials, authors
concluded that the number of required trials n to achieve (1-α)
confidence in the error rate estimate is given by:

n = −ln(α)/(β2p). (1)

Using typical values α = 0.05 and β = 0.2, authors
recommend a simpler form, given by: n ≈ 100

p .
Considering the statistics of the P-DESTRE set (Fig. 4),

in terms of the number of data acquisition sessions/days
per volunteer and the number of bounding boxes per vol-
unteer/session, it is possible to obtain the lower bounds for
the statistical confidence in experiments related with identity
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verification at the frame level, assuming the 1) short-term re-
identification; and 2) long-term re-identification problems.
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Fig. 4. P-DESTRE statistics. Top row: number of days with data per volunteer
(at left), number of data acquisition sessions per volunteer (at center), and
number of bounding boxes per volunteer (at right). The histogram at the
middle row provides the summary statistics for the length of the tracklet
sequences. Finally, the bottom row provides the total of bounding boxes (BBs)
per 3D head pose angle, expressed in terms of yaw, pitch and roll values.

In the short-term re-identification setting, considering that
each frame (bounding box) with a valid ID (≥ 1) gener-
ates a valid template, that all frames of the same ID ac-
quired in different sessions of the same day can be used
to generate genuine pairs and that frames with different IDs
(including ’unknown’) compose the impostors set, the P-
DESTRE dataset enables to perform 1,246,587,154 (genuine)
+ 605,599,676,264 (impostor) comparisons, leading to a p̂
value with a lower bound of approximately 1.647 × 10−10.
Regarding the pedestrian long-term re-identification problem,
where the genuine pairs must have been acquired in different
days, the dataset enables to perform 2,160,586,581 (genuine) +
605,599,676,264 (impostor) comparisons, leading to a p̂ value
with a lower bound of approximately 1.645 × 10−10. Note
that these are lower bounds, that do not take into account the
portions of data used for learning purposes. Also, these values
will increase if we do not assume the independence between
images and error correlations are taken into account.

IV. EXPERIMENTS AND RESULTS

In this section we report the results obtained by methods
that represent the state-of-the-art in four tasks: pedestrian 1)
detection; 2) tracking; 3) short-term re-identification; and 4)
long-term re-identification. For contextualisation, we report
not only the performance obtained in the P-DESTRE set, but
also provide baseline results attained by the same techniques
in well-known datasets. Also, for each problem, we illustrate
the typical failure cases that we have subjectively perceived
during our experiments.

A. Pedestrian Detection

The RetinaNet [19], R-FCN [7] methods were initially con-
sidered to represent the state-of-the-art in pedestrian detection,
as both outperformed in the PASCAL VOC 2007/2012 [10]
challenge (’Person Detection’ category). Then, the well-known
SSD [21] method was also chosen as baseline, as it is the
most widely detector reported in the literature, and its results
can be easily contextualised. Accordingly, this section reports
a comparison between the performance of the three object
detectors in the P-DESTRE/PASCAL sets.

In summary, RetinaNet is composed of a backbone network
and two task specific subnetworks. It uses a feature pyramid
network as backbone model, to obtain a convolutional feature
map over the entire input image. Two sub-networks use this
feature representation: the first one classifies the anchor boxes
and the second model performs the bounding box regression,
to refine the localization of the detected objects. R-FCN
uses a fully convolutional architecture, where the translation
invariance is obtained by position-sensitive score maps that use
specialized convolutional layers to encode the deviations with
respect to default positions. A position-sensitive ROI pooling
layer is appended on top of the fully connected layers. The
SSD model eliminates the proposal generation and feature
resampling steps by encapsulating all the processing into a
single network. It discretizes the output space of bounding
boxes into a set of default boxes over different aspect ratios
and scales per feature map location. In our experiments, in
a data augmentation setting, the sizes of the learning patches
were randomly sampled by [0.1, 1] factor, and horizontally
flipped with probability 0.5.

For the PASCAL VOC 2007/2012 set, the official develop-
ment kit8 was used to evaluate the methods on the ’Person’
category, using 10-fold cross validation. Regarding the P-
DESTRE set, a 10-fold cross validation scheme was used, with
the data in each split randomly divided into 60% for learning,
20% for validation and 20% for test, i.e., 45 videos were used
for learning, 15 for validation and 15 videos for test purposes.
The full specification of the samples used in each split and
the scores returned by each method is provided in9.

TABLE IV
COMPARISON BETWEEN THE AVERAGE PRECISION (AP) OBTAINED BY

THREE METHODS CONSIDERED TO REPRESENT THE STATE-OF-THE-ART IN
PEDESTRIAN DETECTION, IN THE P-DESTRE AND PASCAL VOC

2007/2012 SETS.

Method Backbone PASCAL VOC P-DESTRE

RetinaNet [19] ResNet-50 86.44 ± 1.03 63.10 ± 1.64

R-FCN [7] ResNet-101 84.43 ± 1.85 59.29 ± 1.31

SSD [21] Inception-V2 74.70 ± 2.69 55.63 ± 2.93

The results are summarized in Table IV for all
datasets/methods, in terms of the average precision obtained at
intersection-of-union values equal to 0.5 (i.e., AP@IoU=0.5).
Also, Fig. 5 provides the precision/recall curves for both
data sets and all detection methods, with the P-DESTRE

8http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit
9http://p-destre.di.ubi.pt/pedestrian detection splits.zip
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values being represented by red lines and the PASCAL VOC
2007/2012 results represented by green lines. The shadowed
regions denote the standard deviation performance in the 10
splits, at each operating point. Overall, all methods decreased
notoriously their effectiveness from the PASCAL VOC set to
the P-DESTRE set, in some cases with error rates increasing
over 160%. In the case of the R-FCN method, in a small
region of the performance space (recall ≈ 0.2), the levels
of performance for P-DESTRE and PASCAL VOC were
approximately equal, yet the precision values then remain
stable for much higher recall values in the PASCAL VOC
set.

When comparing the performance of the three techniques
tested, we observed that RetinaNet slightly outperformed the
competitors in both datasets, in all cases with the R-FCN
being the runner-up. The SSD algorithm not only got evidently
the lowest average performance among all methods, but also
its variance was the largest, which points for the lower
robustness of this technique to most of the data co-variates in
both the PASCAL VOC and P-DESTRE sets. The observed
ranks among the three methods not only accord previous
object evaluation initiatives [10], but also the substancial lower
performance observed in P-DESTRE than in PASCAL VOC
supports the hypothesis claimed in this paper: the P-DESTRE
set has evidently different features with respect to previous
similar sets.
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Fig. 5. Comparison between the precision/recall curves observed in the
PASCAL VOC 2007/2012 (green lines) and P-DESTRE (red lines) sets.
Results are given for the RetinaNet (top plot), R-FCN (middle plot) and SSD
(bottom plot) object detection methods.

Crowded

Shadows/Lighting Motion

Poor resolution

Fig. 6. Typical cases where the object detectors returned the worst scores,
i.e., failed to appropriately detect the pedestrians. The green boxes represent
the ground-truth, while the red colour denotes the detected boxes.

In a qualitative perspective, we observed that all methods
faced particular difficulties in crowded scenes, when only a
small part of the subjects silhouette is unoccluded, as illus-
trated in Fig. 6. Considering that RetinaNet is anchor-based,
and that the predefined anchor boxes have a set of handcrafted
aspect ratios and scales that are data dependent, performance
might have been seriously affected. Even though RetinaNet
has clearly outperformed its competitors, the challenging con-
ditions in the P-DESTRE set have still notoriously degraded its
effectiveness, when compared to the PASCAL VOC baseline.
By analysing the instances in both sets, we observed that
the P-DESTRE set has notoriously more hard cases than
PASCAL VOC, with a significant portion of severely degraded
samples (i.e., with severe occlusions, extreme poor resolution
and strong local lighting variations/shadows).

In summary, our experiments point for the requirement of
novel strategies to handle the specific problems that yield
from UAV-based data acquisition. Not only the state-of-the-
art solutions provide levels of performance that are still far
from the demanded to deploy this kind of solutions in real-
environments, but most methods are also sensitive to particu-
larly frequent co-variates in UAV-based imaging (e.g., motion-
blur and shadows). Another concerning point is the density
of subjects in the scenes, with crowded environments easily
providing severe occlusions that constraint the effectiveness of
the object detection phase.

B. Pedestrian Tracking

For the tracking task, the TracktorCV [2] and V-IOU [5]
methods were initially selected to represent the state-of-the-
art, according to: 1) their performance in the MOT challenge10;
and 2) the fact that both provide freely available implemen-
tations, which is important to guarantee that we obtain a
fair evaluation between datasets. Moreover, we considered
additionally one method (IOU [4]) that is among the most
widely reported in the literature. We compared the effective-
ness attained by the three techniques in the P-DESTRE and

10https://motchallenge.net
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MOT challenge sets, in order to perceive the relative hardness
of tracking pedestrians in UAV-based data in comparison to a
stationary camera setting. In terms of evaluation protocols, the
rules provided for the MOT challenges were rigorously met
for the MOT evaluation. For the P-DESTRE set, a 10-fold
cross validation scheme was used, with the data in each split
randomly divided into 60% for learning, 20% for validation
and 20% for test, i.e., 45 videos were used for learning, 15
for validation and 15 videos for test purposes. The full details
of each split are available at11.

The TracktorCV method comprises two steps: 1) a regres-
sion module, that uses the input of the object detection step
to update the position of the bounding box at a subsequent
frame; and 2) an object detector that provides the set of
bounding boxes for the next frames. The IOU method was
developed based on two assumptions: i) the detection step
returns a detection per frame for every object to be tracked;
and ii) the objects in consecutive frames have high overlap
(according to an Intersection-over-Union perspective). Based
on these two assumptions, IOU tracks objects without consid-
ering image information, which is a key point that contributes
for its computational effectiveness. Further, the short tracks
are eliminated according to an acceptance threshold. The V-
IOU algorithm is an extension of the IOU algorithm that
attenuates the problem of false negatives, by associating the
detections in consecutive frames according to spatial overlap
information. For all three methods, the hyper-parameters were
tuned according to the way authors suggested, and are given
in12.

In terms of performance measures, our analysis was based
in the Multiple Object Tracking Accuracy (MOTA), Multiple
Object Tracking Precision (MOTP) and F1 values, as described
in [3]. The summary results attained by both algorithms and
datasets are given in Table V. Once again, a consistent degra-
dation in performance from the MOT-17 to the P-DESTRE set
was observed, even though the deterioration was in absolute
terms far less than the observed for the detection task (here,
an decrease in the F1 values of around 10% was observed).
It is interesting to observe the larger variance values obtained
for tracking methods with respect to the values provided for
the detection step. This was justified by the smaller number
of learning/test instances available for tracking (working at
sequence/video level) than for detection (that works at frame
level).

When comparing the results of all methods, the Tracktor-
Cv outperformed its competitors (V-IOU as runner-up) both
in non-aerial and aerial data, decreasing the error rates around
9% with respect to the second best techniques. As expected,
the IOU technique obtained invariably the worst performance
among all methods tested, which also accords previous track-
ing performance evaluation initiatives carried out. In all cases,
we observed a positive correlation between their typical failure
cases, which were invariably related to crowded scenes, and
two particularly concerning cases: 1) scenes where, due to
extreme pedestrian density, subjects’ trajectories cross others

11http://p-destre.di.ubi.pt/pedestrian tracking splits.zip
12http://p-destre.di.ubi.pt/parameters tracking.zip

at every moment; and 2) when severe occlusions of the
body silhouettes occur. Both factors augment the likelihood
of observing fragmentations, i.e., with the trackers erroneously
switching identities of two trajectories in the scene, and wrong
merge cases, with the trackers erroneously merging two ground
truth identities into a single one.

When subjectively comparing the data in MOT-17 and P-
DESTRE datasets, it is evident that P-DESTRE contains more
complex scenarios, more cluttered backgrounds (e.g., many
scenes have ’grass’ grounds and tree branches) and more
poor resolution subjects. Also, we noted that the trackability
of pedestrians also depends on the tracklet length (i.e., the
number of consecutive frames where an object appears), with
the values in MOT-17 varying from 1 to 1,050 (average 304)
and in P-DESTRE varying from 4 to 2,476 (average 63.7 ±
128.8), as illustrated in Fig. 4.

TABLE V
COMPARISON BETWEEN THE TRACKING PERFORMANCE ATTAINED BY

THREE ALGORITHMS CONSIDERED TO REPRESENT THE
STATE-OF-THE-ART IN THE P-DESTRE AND MOT-17 DATA SETS.

Method Dataset MOTA MOTP F-1

TracktorCv [2]
MOT-17 65.20 ±

9.60
62.30 ±

11.00
89.60 ±

2.80

P-DESTRE 56.00 ±
3.70

55.90 ±
2.60

87.40 ±
2.00

V-IOU [5]
MOT-17 52.50 ±

8.80
57.50 ±

9.50
86.50 ±

1.90

P-DESTRE 47.90 ±
5.10

51.10 ±
5.80

83.30 ±
8.40

IOU [4]
MOT-17 45.51

±13.61
46.02 ±

12.40
78.21 ±

3.12

P-DESTRE 38.27 ±
8.42

39.68 ±
4.92

74.29 ±
6.87

3 3 7MD 7WL

3 3 3 7WL 3 3 7WL 7WL 3 7WL 7WL 7WL

Fig. 7. Examples of sequences where the tracking methods faced difficulties,
either missing the ground-truth targets at some point or producing a frag-
mentation that resulted in a wrong label assignment. MD stands for ”missed
detection” and WL represents ”wrong label” assignment.
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C. Pedestrian Short-term Re-Identification

We selected three well known re-identification algorithms to
represent the state-of-the-art and assessed their performance.
The MARS [39] dataset was selected to represent the station-
ary datasets, as it is currently the largest video-based source
that is freely available.

According to the results reported on a challenge [36], the
GLTR [18], COSAM [31] and NVAN [22] methods were
selected. The GLTR exploits multi-scale temporal cues in
video sequences, by modelling separately short- and long-
term features. Short-term components capture the appearance
and motion of pedestrians, using parallel dilated convolutions
with varying rates. Long-term information is extracted by
a temporal self-attention model. The key in COSAM is to
capture intra video attention using a co-segmentation mod-
ule, extracting task-specific regions-of-interest that typically
correspond to pedestrians and their accessories. This module
is plugged between convolution blocks to induce the notion
of co-segmentation, and enables to obtain representations of
both the spatial and temporal domains. Finally, the Non-local
Video Attention Network (NVAN) exploits both spatial and
temporal cues by introducing a non-local attention operation
into the backbone CNN at multiple feature levels. Further, it
reduces the computational complexity of the inference step by
exploring the spatial and temporal redundancy that is observed
in the learning data.

In a 5-fold setting, both datasets were divided into random
splits, each one containing the learning, query and gallery sets,
in proportions 50:10:40. For the MARS dataset, the evaluation
protocol described in13 was used. For the P-DESTRE dataset,
we considered 1,894 tracklets of 608 IDs, with an average
number of frames per tracklet of 67,4. The full specification
of the samples used for learning/validation/test purposes in
each split is given in14.

Regarding the GLTR method, the ResNet50 was used as
backbone model, with the learning rate set to 0.01. In the
COSAM method, the Se-ResNet50 architecture was used as
backbone model. The COSAM layer was plugged between
the forth and fifth convolution layers, with the learning rate
set to 0.0001 and the reduction dimension size set to 256. For
the NVAN method, we also used ResNet50 architecture as
backbone network and plugged two non-local attention layers
(after Conv3 3 and Conv3 4) and three non-local layers (after
Conv4 4, Conv4 5, and Conv4 6). The input frames were
resized into 256×128. The model was trained using the Adam
algorithm, with 300 epochs and learning rate set to 0.0001.

The summary results are provided in Table VI. In opposition
to the detection and tracking problems, it is interesting to note
that no significant decreases in performance were observed
from the MARS to the P-DESTRE data, which points for the
suitability of the existing short-term re-identification solutions
for UAV-based data. Fig. 8 provides the cumulative rank-n
curves for all algorithms/datasets. The red lines represent the
P-DESTRE results and the green series denote the MARS
values. Results are given in terms of the identification rate

13http://www.liangzheng.com.cn/Project/project mars.html
14http://p-destre.di.ubi.pt/pedestrian reid splits.zip

with respect to the proportion of gallery identities retrieved
(i.e., hit/penetration plot). Apart the outperforming results of
NVAN, it is particularly interesting to note the apparently
contradictory results of the GLTR and COSAM algorithms
in the MARS and P-DESTRE sets. In all cases, in terms
of the top-20 performance, the P-DESTRE results were far
worse than the corresponding MARS values. However, for
larger ranks (starting at 5% of the enrolled identities), the P-
DESTRE values were solidly better than the ranks observed
for MARS. Also, in case of heavily degraded MARS instances,
algorithms returned almost random results, which was not
observed for the P-DESTRE. This might be justified by the
fact that P-DESTRE contains more poor quality data than
MARS, yet it does not provide extremely degraded (i.e., almost
impossible) instances that turn the identification into a quasi-
random process.

TABLE VI
COMPARISON BETWEEN THE RE-IDENTIFICATION PERFORMANCE

ATTAINED BY THREE STATE-OF-THE-ART METHODS IN THE P-DESTRE
AND MARS DATA SETS.

Method Dataset mAP Rank-1 Rank-20

GLTR [18]
MARS 77.74 ±

1.07
84.72 ±

2.61
95.80 ±

2.34

P-DESTRE 77.68 ±
9.46

75.96 ±
11.77

95.48 ±
3.17

COSAM [31]
MARS 78.35 ±

1.66
84.03 ±

0.91
96.97 ±

0.98

P-DESTRE 80.64 ±
9.91

79.14 ±
12.43

97.10 ±
1.85

NVAN [22]
MARS 81.13 ±

1.35
85.94 ±

0.94
97.20 ±

0.97

P-DESTRE 82.78 ±
10.35

80.42 ±
12.38

98.34 ±
1.93

Based in these experiments, Fig. 9 highlights some notori-
ous cases for re-identification purposes. The upper row repre-
sents the particularly hazardous cases in terms of convenience,
where different IDs were erroneously perceived as the same.
This was mostly due to similarities in clothing, together with
shared soft biometric labels between different IDs. The bottom
row provides the particularly dangerous cases for security pur-
poses, where methods had difficulties in identifying a known
ID. Here, errors often yielded from notorious differences in
pose and scale between the query/gallery data. Along with the
background clutter, these factors were observed to decrease the
effectiveness of the feature representations, and were among
the most concerning for re-identification performance.

D. Long-term Pedestrian Re-identification

As stated above, the pedestrian video-based long-term re-
identification problem was the main motivation for the de-
velopment of the P-DESTRE dataset. Here, there is not any
guarantee about the clothing appearance of subjects, nor about
the time elapsed between consecutive observations of one
ID. In such circumstances, the analysis of alternative features
should be considered (e.g., face, gait or soft-biometrics based).

Considering that there are not yet methods in the literature
specifically designed for this kind of task, we have chosen
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Fig. 8. Comparison between the closed-set identification (CMC) curves
observed in the MARS (green lines) and P-DESTRE (red lines) sets for the
GLTR, COSAM and NVAN re-identification techniques. Zoomed-in regions
with the top-1 to 20 results are shown in the inner plots.

Bad impostor pairs

Q Rank-1 Q Rank-1 Q Rank-1

Bad genuine pairs

Q Rank-156 Q Rank-39 Q Rank-85

Fig. 9. Examples of the instances that got the worst re-identification
performance. The upper row illustrates typical false matches, almost invariably
related with clothing styles and colours. The bottom row provides some
examples of cases where (due to differences in pose and scale), the true
identities could not be retrieved among the top positions. ”’Q” represents the
query image and ”Rank-i” provides the rank of the corresponding gallery
image.

a combination of two well-known re-identification techniques
that combine face and body features. Similarly to the previ-
ous tasks, the goal was to obtain an approximation for the
effectiveness attained by the existing solutions in UAV-based
data. Such levels of performance constitute a baseline for this
problem and can be used as basis for further developments.

The facial regions-of-interest were detected by the SSH
method [25] (acceptance threshold=0.7), from where a feature
representation was obtained using the ArcFace [8] model. For
the body-based analysis, the COSAM [31] model provided the
feature representation. Both models were trained from scratch.
The data were sampled into 5 trials, each one containing
learning/gallery/query instances in proportions 50:10:40. As
for the previous tasks, the full specification of the samples
used in each split is given in15.

For the ArcFace method, the MobileNetV2 was used as
backbone model, and the learning rate set to 0.01. Regarding
COSAM, the Se-ResNet50 was used as backbone model,
and the COSAM layer was plugged into the forth and fifth
convolutional layers, with learning rate equal to 1e−4 and di-
mension size equal to 256. Each model was trained reparately,
and during the test phase, the mean value of the ArcFace
facial features in the tracklet were appended to the body-
based representation yielding from COSAM. The Euclidean
norm was used as distance function between such concatenated
representations.

Fig. 10 provides the cumulative rank-n curves obtained,
in terms of the successfull identification rates with respect
to the proportion of gallery identities (i.e., hit/penetration
plot). As expected, when compared to the short-term re-
identification setting, performance was substantially lower
(rank-1 ≈ 79.14% for re-identification → ≈ 49.88% for
search), which accords the human perception for the additional
difficulty of search with respect to re-identify.

TABLE VII
BASELINE LONG-TERM PEDESTRIAN RE-IDENTIFICATION PERFORMANCE

OBTAINED BY AN ENSEMBLE OF ARCFACE [8] + COSAM [31] IN THE
P-DESTRE DATA SET.

Method mAP Rank-1 Rank-20

ArcFace [8] + COSAM [31] 34.90 ±
6.43

49.88 ±
8.01

70.10 ±
11.25

ArcFace [8] + COSAM [31]
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Fig. 10. Closed-set identification (CMC) curves obtained for the long-term
re-identification problem in the P-DESTRE dataset. The inner plot provides
the top-20 results as a zoomed-in region.

15http://p-destre.di.ubi.pt/pedestrian search splits.zip
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Based in our qualitative analysis of the results, Fig. 11
provides three types of examples: the upper row shows some
successful identification cases, in which the model retrieved
the true identity in the first position. In most cases, we noted
that subjects kept some piece of clothing/accessories between
observations (e.g., glasses or backpack) and the same hairstyle.
The remaining rows illustrate the failure cases: the second
row provides examples of the hazardous cases for convenience
purposes, in which due to similarities in pose, accessories and
soft biometric labels between the query and gallery images,
false matches have occurred. Finally, the bottom row provides
examples of security sensitive cases, where the IDs of the
queries were retrieved in high positions (ranks 56, 73 and 98),
i.e., the system failed to detect a subject of interest in a crowd.

Good genuine pairs

Q Rank-1 Q Rank-1 Q Rank-1

Impostor pairs: likely false matches

Q Rank-1 Q Rank-1 Q Rank-1

Genuine pairs: likely false rejections

Q Rank-56 Q Rank-73 Q Rank-98

Fig. 11. Examples of the instances where good/poor pedestrian search
performance was observed. The upper row illustrates particularly successful
cases, while the bottom rows show pairs of images where the used algorithm
had notorious difficulties to retrieve the correct identity. ”’Q” represents the
query image and ”Rank-i” provides the rank of the retrieved gallery image.

The challenges of long-term re-identification are illustrated
in Fig. 12, providing the differences between the probabil-
ities of obtaining a top-i correct identification (hit), ∀i ∈
{1, . . . , n}, i.e., retrieve the identity corresponding to a query
up to the ith position, for the search and re-identification
problems. Here, Ps(i) and Pr(i) denote the probabilities of
observing a hit in the search Ps and re-identification Pr tasks,
i.e., negative

(
Ps(i) - Pr(i)

)
denote higher probabilities for re-

identification success than for search success. The zoomed-in
region given at the right part of the Figure shows the additional
difficulty (of almost 40 percentual points) in retrieving the true
identity in a single shot (difference between top-1 values).

Then, the gap between the accumulated values of Ps and Pr

decreases in a monotonous way, and only approaches 0 near
the full penetration rate, i.e., when all the known identities are
retrieved for a query. In summary, it is much more difficult to
identify pedestrians when no clothing information can be used,
which paves the way for further developments in this kind of
technology. According to our goals in developing this data
source, the P-DESTRE set is a tool to support such advances
in the state-of-the-art.

P s
(i
)

-
P r

(i
)

Acc. Rank (Penetration)
Acc. Rank (Penetration)

P s
(i
)

-
P r

(i
)

Fig. 12. Differences between the probability of retrieving the true identity
of a query among the top-i positions, ∀i ∈ {1, . . . , 100}, for the pedestrian
long-term re-identification (Ps) and short-term re-identification (Pr) problems.

V. CONCLUSIONS

This paper announced the availability of the P-DESTRE
dataset, which provides video sequences of pedestrians taken
from UAVs in outdoor environments. The key point of the
P-DESTRE set is to provide full annotations that enable
the research on long-term pedestrian re-identification, where
the time elapsed between consecutive observations of IDs
forbids the use of clothing-based features. Apart this, the P-
DESTRE set is also suitable for research on UAV/video-based
pedestrian detection, tracking, short-term re-identification and
soft biometrics analysis.

Additionally, as a secondary contribution, we offered the
results of our own evaluation of the state-of-the-art in the
pedestrian detection, tracking and short-term re-identification
problems, comparing the performance attained in data acquired
from stationary (CCTV) and from moving/UAV devices. Such
results point for a particular hardness of the existing solutions
to detect and track subjects UAV-based data. In opposition,
the existing short-term re-identification techniques appear to
be relatively robust to the features typical of UAV-based data.

Overall, the decreases in performance observed from CCTV
to UAV-based data support the originality and usefulness of P-
DESTRE. hence, potential directions for further developments
of long-term UAV-based re-identification include the use of
attention-based networks that disregard portions of the input
data known to be ineffective for long-term re-identification
(e.g., clothes or hairstyles). Another important field will be
the development of domain adaptation techniques robust to
changes in the UAV-acquisition settings and environments
heterogeneity.
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