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Iris Biometrics: Synthesis of Degraded Ocular Images

Luis Cardoso, André Barbosa, Frutuoso Silva, Anténio M. G. Pinheiro, Member, IEEE, and Hugo Proenca

Abstract—Iris recognition is a popular technique for recognizing
humans. However, as is the case with most biometric traits, it is dif-
ficult to collect data that are suitable for use in experiments due to
three factors: 1) the substantial amount of data that is required;
2) the time that is spent in the acquisition process; and 3) the secu-
rity and privacy concerns of potential volunteers. This paper de-
scribes a stochastic method for synthesizing ocular data to support
experiments on iris recognition. Specifically, synthetic data are in-
tended for use in the most important phases of those experiments:
segmentation and signature encoding/matching. The resulting data
have an important characteristic: they simulate image acquisition
under uncontrolled conditions. We have experimentally confirmed
that the proposed strategy can mimic the data degradation fac-
tors that usually result from such conditions. Finally, we announce
the availability of an online platform for generating degraded syn-
thetic ocular data. This platform is freely accessible worldwide.

Index Terms—Data sets, data synthesis, iris biometrics.

I. INTRODUCTION

OR YEARS, bodily features such as the face, fingerprint,

and iris have been used for the purpose of recognition.
Since the mid-nineteenth century, when Alphonse Bertillon pro-
posed using body measurements to identify criminals [9], bio-
metrics has been extensively used in law enforcement to identify
criminals and to establish identity in a broad range of applica-
tions (e.g., refugee control and computer logins). Various traits
have been considered to have potential for biometric recognition
because they satisfy four requirements: 1) universality, meaning
that each person should possess the characteristic; 2) distinctive-
ness, meaning that any two persons should be sufficiently differ-
entiable by the selected characteristic; 3) permanence, meaning
that the characteristic should be invariant over a period of time;
and 4) collectability, meaning that the characteristic can be mea-
sured quantitatively.

Among the various traits used for identification, ocular bio-
metrics has advanced rapidly as a result of progress in the field
of iris recognition [14]. The iris is the annular structure in the
eye surrounding the pupil. It regulates the size of the pupil, con-
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trolling the amount of incident light on the retina. The surface
of the iris exhibits a rich texture because of the numerous struc-
tures on its anterior layers. The randotypic morphogenesis of
its textural relief and its stability over one’s lifetime have led
to the popularity of the iris as a biometric, which has been the
focus of a large number of research studies (Bowyer et al. [1]).
To support such research efforts, various data sets of iris im-
ages were used in the development of recognition strategies, in-
cluding the CASIA [8],ICE[13], WVU [19], BATH [25], MMU
[12], UPOL [5], and UBIRIS [18] data sets. Aside from the iris,
other ocular traits such as the retina [27], sclera [29], and peri-
ocular region [14], have been investigated for human recogni-
tion. Recently, several studies have proposed the use of artifi-
cial iris models to support biometric experiments (e.g., [30] and
[2]), simulating iris data that resemble real data that are acquired
under typical acquisition setups (i.e., under heavily controlled
conditions).

Most of the above mentioned studies aim to create data that
resemble iris data that are acquired with near infrared light.
However, even though iris recognition at visible wavelengths
has been the scope of several studies [17], no previous efforts
were concentrated on synthesizing visible wavelength (VW) iris
data. When compared to iris data that were acquired using NIR
light, two major discriminating features should be emphasized:
1) The main pigment in the human iris (brown-black melanin)
retains most of its radiative fluorescence under visible wave-
lengths, enabling the capture of more detail but also noisy ar-
tifacts (specular and diffuse reflections) in VW; and 2) Signif-
icantly greater amounts of light are demanded for the proper
acquisition of heavily pigmented irises, making their textures
difficult to acquire.

In this paper, we propose an automated strategy for synthe-
sizing ocular data (henceforth designated as NOISYRIS) by
simulating its acquisition under visible wavelengths and un-
controlled protocols. Hence, when compared to previously pub-
lished methods, NOISYRIS images possess certain differences:
1) They simulate acquisition under different types and num-
bers of light sources, including nonhomogenous differences in
lighting, reflections and shadows; 2) They simulate acquisition
from off-angle cameras and at different gaze angles; 3) They
simulate acquisition from varying distances; 4) They simulate
various types of iris occlusions that result from eyelids, eye-
lashes and glasses; 5) They simulate acquisition from moving
subjects, leading to optically defocused and motion-blurred im-
ages; and 6) They enable the conduction of unbiased experi-
ments, because each image has a corresponding grayscale mask
in which each component appears at a different intensity (iris,
pupil, eyelids, eyelashes, sclera, and glasses). This type of mask
is extremely useful for encoding/matching strategy evaluations,
which can guarantee that segmentation is correctly performed.

1556-6013/$31.00 © 2013 IEEE
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Fig. 1. Examples of synthetic iris images attained by the methods summarized in this section. The far left image regards the technique proposed by Lefohn [10].
Next, from left to right, images regard the methods of Cui [2], Shah [21], Zuo [30], and Wei [28].

The remainder of this paper is organized as follows: Section I1
summarizes the most relevant strategies for the synthesis of iris
data. Section III provides a description of the proposed method
and formalizes the synthesis and rendering strategies used along
with the data variability factors observed. Section V presents an
empirical validation procedure for the NOISYRIS data. Finally,
conclusions are given in Section VI.

II. RELATED WORK

Various studies have been published on the topic of iris syn-
thesis. In this section, we summarize the most important studies
and give examples of the appearance of the data that were gen-
erated in Fig. 1.

Lefohn et al. [10] proposed a method for creating and ren-
dering realistic-looking irises by adding layers iteratively to the
model and rendering the intermediate results. This approach al-
lows incremental definition of the iris texture to be developed,
using single layers that are taken from a library of standard tex-
tures. This method is useful in applications ranging from enter-
tainment to ocular prosthetics. Cui et al. [2] proposed an iris syn-
thesis method that is based on the analysis of principal compo-
nents (PCA). Cui et al. used an iris recognition algorithm based
on PCA that operates on real images and extracts a set of global
feature vectors. These vectors are then used in the image re-
construction process. Iris samples that belong to the same class
are constructed by allowing their coefficients to lie in the same
sphere, centered at a sample iris image in a high-dimensional
space. To simulate different classes, the authors searched in
a limited high-dimensional space. The authors concluded that
super-resolution methods enhance the quality of the resulting
images. Theoretical analysis and experimental results revealed
that the synthetic data produced mimic the traditional within-
class and interclass distances found in real iris data. Shah et al.
[21] proposed a technique for creating digital versions of iris im-
ages, which was used to evaluate the performance of iris recog-
nition algorithms. The scheme used by Shah ef al. was divided
into two phases: 1) Initially, a Markov Random Field model gen-
erated a background texture that represented the global iris ap-
pearance; 2) Next, several iris features such as radial and con-
centric furrows, collarettes and crypts, were embedded in the
texture field. Experiments with iris recognition algorithms val-
idated the potential of this scheme. Zuo et al. [30] proposed an
anatomy-based method for synthesizing iris images. The pur-
pose of this method was to provide academia and industry with
a large data set for iris recognition algorithm testing. After per-
forming a comparison between the results that were observed
for real and synthetic iris images, a concern about the bias that
might be introduced using synthetic data was also revealed. The

comparison was quantified at three different levels: 1) global
layout, 2) features of fine iris textures, and 3) recognition per-
formance, including performance extrapolation capabilities. In
most of the cases studied, the results confirmed the authors’ ex-
pectations of finding a strong similarity between real data and
the synthetic iris data that were generated through the use of
their model-based approach. Wei et al. [28] proposed an iris
synthesis method and claimed to possess an effective paradigm
for synthesizing large iris databases with the purpose of over-
coming the problems of data collection. Patch-based sampling
was initially employed to create prototypes. From each proto-
type, a number of intraclass samples were derived. Experiments
showed that the synthetic irises preserved the major properties
of real irises and retained controllable statistics, meaning that
they were suitable for algorithm evaluation. For comprehensi-
bility, Table I, summarizes the above-mentioned methods, the
major techniques of which they are composed, and the types of
data that they aim to simulate.

III. PROPOSED METHOD

A. Iris Synthesis

The iris texture has a chaotic appearance and predominantly
randotypic morphogenesis. Accordingly, a stochastic method is
proposed, which generates each fiber of the iris in an isolated
manner and groups them into layers, that are further super-
imposed. The process is divided into two major phases: 1) a
set of layers is synthesized; and 2) the collarette is created,
using an irregular polygon shape. Layers are merged using the
Lefohn et al. [10] method, which was attained the best results,
both by visual inspection and according to the results of iris
recognition algorithms. A color ¢ at each point of the surface
is obtained by:

c=(1—-a) rg+a-cp-rp, @))

where 7 is the result of shooting a ray in the transmitted direc-
tion (using refraction index of 1.0 for all layers), ¢, is the paint
color, 7, is the result of shooting a ray from a light source and
« is an opacity value.

1) Fibers: Each fiber of the iris has a singular color distri-
bution, depending on its composition in terms of minerals and
of muscle contractions. Here, the shape of the fiber is firstly
defined and each of its segment associated to a color. Let U
be a random variable that follows an uniform distribution, i.e.,
U ~ U(0,1). ¢, denote a set of angles in & regular intervals,
ie,0; =i -(2n/k),i € {0,...k}. Letp; = - (u; — §), where
u; are realizations of U. Hence, p; is a function of u;, scaled by
# and translated by §. To assure a closed contour, the constraint
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TABLE I
SUMMARY OF THE PREVIOUSLY PUBLISHED IRIS SYNTHESIS METHODS

Method Type

Data

Summary

Lefohn ez al. [10] Color

Superimposition of several layers (12 to 50);
All layers were taken from ocularists standard
library of textures; Requires human intervention.

Cui et al. [2] Grayscale

Based on Principal Component Analysis (PCA)
method;

Uses an iris recognition algorithm based on PCA
to extract global features from a real iris data;
Linear combination of the extracted features to
synthesizes iris data; Super-resolution techniques
for enhancement.

Shah ef al. [21] Grayscale

Markov Random Field model used as background,;
Creates a variety of iris features such as radial and
concentric furrows, collarette and crypts.

Zuo et al. [30] Grayscale

Anatomy-based method;

Uses 40 parameters to control the number of fibers
and all the shapes needed; The fibers are produced
in 3D.

Wei et al. [28] Grayscale

/ Color

Applies patch-based sampling to create prototypes
based on real iris; Creates a number of intra-class
images derived from each prototype.

Pupillary Dilation

Fig.2. Examples of two pupillary boundaries at different levels of dilation. The
shape of the pupil is an intrinsic feature of each individual and previous studies
pointed that it might be used as soft biometric trait.

pr = po 1s defined. The coordinates of the pupillary boundary

{(; ( ), y,(p))} are given by:

7 =T+ on + (pi + q) - cos() @
y" =T 4o, + (pi+q) - sin(dy), 3)
where g = ) +(#{") — )1, r{) and r{?) are the minimum

and maximum allowed distances from the pupillary center of
mass to points at the boundary, for a pupil aperture v (diam-
eter, in pixels). o5, and o, are offsets that control the position
of the pupillary boundary in the image (of dimension s X s,).
Next, {(«; . ) )} are interpolated by cosine approximation to
smooth the boundary and attain a more a realistic result. Fig. 2 il-
lustrates two different shapes of pupils that resemble the shapes
of biological pupils. It should be noted that the shape of the pupil
tends to be invariant with respect to pupil aperture, constituting
a feature intrinsic to each individual.

According to evidence from the literature, the scleric
boundary can be faithfully approximated by ellipses:

() _ 5k (D)

m = + 1y, - cos(8;) @)
y = 2D sind,), 5)
where r( " and T% [) denote the minimum and maximum lengths

of radial line segments in the iris.

Next, fibers are synthesized and placed between the pupillary
and scleric boundaries. As previously, the stochastic process is
based in the uniform distribution U ~ U(0,1) and starts by
defining the colors of each segment of the fibers:

(n-(0.55+ 0.4 uy) — 1) -
Cij = - (6)
n—1
where ¢;; is the color of the j®* segment of the i*" fiber, n is

the number of intensities per channel (256 in our experiments),
u;; and v;; are realizations of U, and C,,; is a color value, drew
from a set of predefined colors (Appendix A). The insight is
similar to the used in the pupillary boundary: 7 defines the length
sampling step (» = 1/4 in our experiments), mgl) = 7 -7 and
yéi) =0, yji) =r E,If ) -u; (u; arealization of U'). The coordinates
of the i*” iris fiber are given by:

-3+ 6-5)
A2 -5 () o

vl =y, ®)
i _H : : o ati
{(w;;",y;;")} are interpolated by cosine approximation to

smooth the shape and then rotated:

s .

/L(,f) 7} + T(f) cos(f;) — y(Jf) sin{6;) Q)

J:Sf) ;U + L(f) sin(f;) + y(f) cos(f;). (10)
Finally, the set of coordinates { ( yl(,f ))} is associated

to a color ¢;; (6). Fig. 3 illustrates an example of the fibers in
a single layer of the iris, showing evidence of highly varying
shapes between fibers. At the end, five layers (blurred by a 5 x
5 Gaussian kernel) are superimposed to obtain the final appear-
ance of the iris texture.

Deformations in the iris texture due to the pupillary dilation
are nonlinear and have different magnitudes and directions, ac-
cording to muscular movements. Such nonlinear changes were
modeled by random Euclidean warping processes. Let I, be a
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Fig. 3. Example of the fibers generated for a single layer of the iris. Each fiber is
created isolatedly, rotated, and translated into a position delimited by the pupil-
lary and scleric boundaries.

2-D patch of the iris texture with » pixels. Four parameters were
used to transform 7, into its warped version 7, with homoge-
nous coordinates given by:

pcos(8)  psin(a) . Z;
(zh.y;) = | —psin() peos(a) t, | - | wi (11)
0 0 1 1

where (z;,y;) are the pixel positions in I, and p, «, ¢, and ¢,
denote the scale, rotation and translation parameters, drew from
Gaussian distributions.

2) Collarette: Considering its highly irregular shape, the
method that defines the collarette boundary has a singularity:
instead of defining a 2-D region with a single shape, several
shapes of different sizes were used to define a surface that sim-
ulates the flaws (crypts) behind the tissue. Let 6; = i - (27 /k),
i € {0,...,k} be the angle values regularly spaced (k = 64
in our experlments) pL re resent the magnitude values, i.c.,
pi = (u; — 0.5) 7m — rw }/2), keeping the notation 51m11ar
to the prev10usly used. A set of 3-D coordinates of the collarette
boundary is obtained:

289 —

i Ty "t on+an - cos(f;) (12)

(e) _ Sv .

= & tou +a, -sin(8;) (13)
) e - ) .

where j € {0,...,x} corresponds to the number of irregular
curves used (x = 3 in our experiments) and a%b is the re-
mainder of the division of ¢ by b. ¢ = (1/2) - (7"1(71,)) + ((T(,G) -
7$,’Z>) v) + + 0 ) and c(C = ¢m + (¢ — Cm) - ui, being v the
pupil aperture and u; a reallzation of U ~ U(0, 1), and [¢sr,, car)
the intensity range ([64, 200] in our experiments). a;, and a,, are
given by:

4 pi+q

(15)

q+m+q

3 (16)
The set of 3-D coordinates { (z; (C) yff), ff))} defines the col-

larette surface, where (z 51)7 yz(])) specify the position and 4( <)

determines the transparency at the corresponding point. Flnally,

each element of {( yu )} is associated to a color C, i.e.,

( ) -C,, beingv a reahzatlon of U.
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B. Sclera

Multiple layers were created to simulate the depth of ves-
sels inside the sclera, each one blurred by a Gaussian kernel.
Let U ~ U(3,10). x; are regularly spaced values in [0, u]
interval. i.e., z; = 4 - (1/2“~1), being v a realization of U.
Let y; = w,;, being u; a realization of a uniform distribution
in [—(s5,/2'%%)(s;,/217%)] interval and ¢; = wv;, where v;
is drew from a Uniform distribution in [0,7/2] interval (n is
the total number of intensities). o, and o, are random offsets
drew from Uniform distributions in [—(s;/2%), s,/2%] and
[—(50/2%), 5, /2% intervals. Let 8 be regularly spaced angular
intervals #;, = (k/t) - 2w, k € [0,¢], where ¢ is the number
of veins per layer. Let ai be sampled from a Uniform distri-
bution in [—(s1,/2%), 5,/2%] interval. The following terms are
obtained:

2 2
a,gi) :ag)) + \/( (; Coe(ﬁk)) + ( @ - sin(fy, )) (17)

nP s’

a? =

o = [Ty T (18)
agz) = )+a(2) Zi. (19)
Based on a(k) , the coordinates of the sclera veins are given

by:

.’L‘(L:) 2 by Oy + a( ) -cos(fk) — yi - sin(6g) (20)
yz(k) =" +o,+ “Ek) sin(fg) + y; - cos(8r).  (21)

Finally, the set of coordinates {( T;, Jlk))} is associated to
a color ¢; = ctv >, being C*) the vessel color. Also, the outer
region of a circle that spreads along 90% of the image is filled
by C'*) and blurred by a Gaussian Filter, to increase the realism
near the eye corners. The resulting image is used in the rendering
process to represent the cornea.

C. Rendering

Humans are extremely used to observe eyes, which increases
the challenge of realistic rendering. Also, due to the diversity of
components and of their optical properties, the ocular region is
the most difficult part of the face to render realistically. Hence,
a 3-D model of a real head was created using a 3-D scanner [15]
and the major properties of this model adjusted when rendering
each sample.

1) Skin: The skin is specially complex to render due to its
translucency: when ray tracing, around 6% of the light is re-
flected and the remaining penetrates the surface, scatters along
its sublayers and approximately 94% exits at a different loca-
tion [6]. This phenomenon is called subsurface scattering (SSS)
[22] and was used to simulate the light and skin interaction.
The proposed method is a combination of SSS, diffuse, spec-
ular and rim lighting. The SSS effect is mainly determined by
three texture maps that define the color of each pixel: 1) a color
map (Fig. 4(A)); 2) a normal map (Fig. 4(B)); and 3) a SSS
map (Fig. 4(C)). The latter defines how regions are affected by
translucency. The SSS value v € I? extracted from the SSS map
is multiplied by a constant value « to control the amount of SSS.
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Fig. 4. Example of the types of textures used in subsurface scattering:
(A) Color map. (B) Normal map. (C) Subsurface scattering map.

This value is added to the dot product between the light vector
'€ R3 and the normal vector 7 € R3, obtained from the normal
map (Fig. 4(B)) yielding the SSS value:

sl
l| At

; (22)

Sy =K U+ —=
||77,

—

where & is a regularization term that determines the strength of
the subsurface scattering effect (x € [0.95,1.05] in our experi-
ments).

The diffuse lighting value d; yields from the interpolation
between the melanin color 1. € R? and the color map ¢ € R?
(Fig. 4(A)), so that the dot product between the normal vector 7
and the light vector lis inversely correlated to the melanin color,
ie., m. = ¢ - ss. Next, the dot product is scaled by the SSS
falloff s; € R, determining the smoothness of the transition
from the diffuse to the melanin color. This value is multiplied
by s, € R?, in order to add the SSS effect to the diffuse color
and darken shadowing areas:

di = 5. (23)

To determine the specular level, thg halfway angle ), is ini-
tially obtained, by adding the light [ € R® and camera po-
sition & € R* vectors. The direction and amount of light on
each segment of the surface is given by d = 6, - 7, being
@i € R the vector normal to the surface. Next, the gloss is ob-
tained by multiplying the normal texture’s alpha channel by a
gloss multiplier constant r,. The specular value yields from the
multiplication of the normal texture’s alpha channel by a spec-
ular multiplier constant r,. The final specular value is given by
s1= ¢y - ((d% - ,) - d)"s, being c, € R? the specular color.

To determine the rim lighting color, the dot product between
the light  and the eye vectors & is obtained (which equals —1
when facing the light directly). Then, the dot product between
the normal vector 7 and the view or eye vector ¢, raised to the
rim lighting power r, € R, controls the power of the rim light.
A bias value x, € R® determines the initial value of the rim
light value and assures that the dot product between 7 and &
have different signals on front-side and backside. Finally, these
two elements are multiplied, yielding the rim lighting value:

=

where 7. € R? is the rim lighting color. Based on the diffuse
d;, rim r; and specular s; lighting values, the final color is given
by:

g I+ r} qd@-er 4 m], (24

fe=(si+(di+71)) ca (25)

being ¢; the light color and ¢, the alpha value of the color map.

)'Cly
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Fig. 5. Example of one cube map used to simulate the environment surrounding
the model.

2) Eyes: The eyes are synthesized by ambient reflection,
light reflection and refraction techniques, considering that they
are highly reflective with respect to the surrounding environ-
ment. As illustrated by Fig. 5, cube maps were used to represent
the surrounding environments. The ambient reflection is calcu-
lated in two steps: 1) multiplying the ambient color ¢, € R3
by the eye color ¢, € R?; and 2) dividing the ambient texture
a, € R? by the reflection contrast value «, € R, which deter-
mines the amount of reflection used.

[£23

a,lzca-ec+_—
,

(26)

The color of the eye is determined by the diffuse d; and spec-
ular s; lighting values. The specular component of lighting is
obtained separately for the iris and cornea, due to their spe-
cific reflectance properties. The dot product between the normal
vector 72 and the light position vector r represents the direction
and amount of light at this point of the surface. The diffuse color
isgivenby ¢y = e.-7i- I Then, a constant x;, controls the power
of the diffuse color:

cq + Kp

—_— 27
lea + rol @7

| =

To obtain the specular value for the cornea and iris, the
halfway vector between the viewer and light source is initially
obtained by summing the light / and eye € vectors. The power
of the specular level for the cornea is controlled by a constant
gloss factor 4. As the cornea strongly reflects the surrounding
environment, ambient specular reflection was added to the
specular calculation by multiplying the specular level by the
reflection cube map texture . € R3:

( I+& )K
Se = e 'tL
11+ 2l

The specular value for the iris s; is yielded similarly, except
that a normal vector from the iris is used. Considering that the
iris should have a specular reflection close to the color of the iris,
the specular level for the iris was multiplied by the alpha channel
of the normal texture and also by the eye color e, value. The final
specular value corresponds to the sum of the specular values for

Nc
N¢||

(28)
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TABLE 11
SUMMARY OF THE DATA VARIABILITY AND DEGRADATION FACTORS
IN NOISYRIS IMAGES THAT SIMULATE THE ACQUISITION OF IRIS
DATA IN UNCONTROLLED CONDITIONS

Factor Range
Illumination Amount [2E~3, 1.000] lux
Number of Light Sources | [1, 100]

Type of Illumination
Pupillary dilation

{Spot light, Sun light, Point light}
[r;/4,r;/2], r;=major iris radius

Gaze Yaw [-30°, 30°]
Gaze Pitch [-30°, 30°]
Pose Yaw [-30°, 30°]
Pose Pitch [-30°, 30°]
Acquisition distance [1m, 8m]

Iris occlusions
Optical defocus

[0% - 100%]
[0 - 3] o Gaussian kernel

Motion blur [0 - 1] m/s
Environments {1-8}
Glasses {Yes, No}

the iris and cornea s; = s; + s.. The final eye color yields from
adding the specular and diffuse lighting values, multiplied by
the light color, i.e., $; + d; - {.. Eyelashes are represented by a
UV mapped curvilinear surface, rendered with transparency. An
anti-aliasing technique Fast Approximate Anti-Aliasing [11] is
used to soften the eyelashes, blending the edge pixels. In order
to create the eye opening and eye moving movements, a facial
animation rig for the eyes and eyelids is created using skeletal
animations. The animations are finally blended, in order to use
them simultaneously.

IV. DATA VARIABILITY AND DEGRADATION FACTORS

As stated above, one of the key distinguishing features of the
NOISYRIS data is the simulation of uncontrolled acquisition
conditions. Table II summarizes the data variability and degra-
dation factors that were implemented, with corresponding vari-
ation/degradation intervals: 1) Optical defocus: while a camera
lens is focusing at a distance, a gradual decrease in sharpness
is apparent in its surroundings. This effect is called Depth of
Field (DoF) and refers to the region that appears sharp in the
image. The DoF varies according to the camera and focusing
distance as well as other variables; 2) Motion blur occurs while
acquiring data from moving sources. Even slight movements of
the subjects can lead to motion blurred data; 3) Iris occlusions
are among the most concerning factors for recognition effec-
tiveness, because different types of objects can occlude large
portions of the iris rings (e.g., eyelids, eyelashes, and hair);
4) Varying gaze: images possess varying 3-D angles between
the camera and the subject’s gaze. These variations are espe-
cially relevant because they transform the iris boundaries into
ellipses and increase the challenges of the segmentation and nor-
malization phases; 5) Varying pose occurs in a similar way to
varying gaze. The subjects might not be in front of the camera
during data acquisition, which raises challenges for recogni-
tion algorithms, often requiring pose compensation techniques;
6) Varying distances; acquisition from different distances was
simulated to obtain data with differences in scale; 7) Varying
lighting conditions are especially relevant in the case of ocular
images because of the glossy/specular reflections in the iris that
are determined by the lighting conditions in the environment
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that surrounds the subject. A varying number of light sources
were simulated, with varying intensities and types of light, in-
side various environments; 8) Different levels of iris pigmen-
tation were simulated, which are particular important in the
amount of texture visible in VW data; and 8) Glasses, which are
an especially difficult factor in terms of recognition effective-
ness, because lenses might introduce nonlinear deformations in
the appearance of the iris texture.

Fig. 6 illustrates the variability and degradation factors imple-
mented. In this case, for clarity of visualization, images were
selected to emphasize each factor independently. In practical
terms, images are usually degraded by more than one factor si-
multaneously.

V. DATA VALIDATION: EXPERIMENTS

A. Amount of Information

The first empirical evaluation of the NOISYRIS data com-
prised the assessment of the amount of information in local
patches of the irises I,, represented in grayscale and in the polar
domain, by assessing their entropy A():

h(I,) = Zp(i) S (p(i)) . (29)

Here, p(¢) is the probability of a pixel intensity in the [0, 255]
interval. For reference, the values obtained were compared to
similar statistics that were drawn from the UBIRIS.v1 [16] data
set. This analysis was motivated by the Gabor-based feature
encoding scheme suggested by Daugman [3]: “local patches
are projected onto quadrature Gabor wavelets, generating com-
plex-valued coefficients whose real and imaginary parts set two
bits of the biometric signature.” The results are given in Fig. 7:
the left side of the figure shows the density of the h(/},) values
for the two image examples, in which the continuous line per-
tains to a UBIRIS.vl image and the dashed line pertains to a
NOISYRIS image. The right side plots show summary statistics
comprising the ([, ) means (1+) and the standard deviations (o)
of the densities of the set of compared images. The results con-
firm the similarity between the summary statistics (¢, ) that
were obtained for the data set of real irises (upper plot) and the
NOISYRIS data (bottom plot).

B. Between-Class Variability

Iris distinctiveness was measured not only in terms of
recognition performance but also by estimating the degrees of
freedom of the biometric signatures. Furthermore, we assessed
to what extent distinctiveness results from the intrinsic fea-
tures of the texture of the iris or the environmental conditions
during image acquisition. Sets of irises from different subjects
were initially generated without considering any visualization
artifacts, and the corresponding biometric signatures were
extracted using the Gabor kernel: wavelength w = /2, orien-
tation # = /2, phase ¢ = 0, and ratio @ = 1. The rendering
variability was also considered (lighting conditions, gazes, an-
gles, and pupillary dilations) for the same set of irises. Finally,
in an all-against-all scheme, signatures were compared and the
proportion of mismatched bits was calculated. The results are
given in Fig. 8 and are divided into two sets. The white bars
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-

Fig. 6. Illustration of the data variability and degradation factors that were simulated to resemble the characteristics of the data that were acquired in noncontrolled
setups. For the purposes of illustration, each degradation factor occurs in an isolated manner in these examples.
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Fig. 7. Atleft, example of the differences between the estimates of the entropy value densities in the local patches (size w X w, w & 3x Gabor kernel wavelength)
of a real (continuous lines) and a synthetic (dashed line) iris image. At right, the contour plots of the mean and standard deviation values (¢, 7 ), the bivariate
densities, which were observed for a set of 1,000 images of the UBIRIS.v1 data set (top plot), and 1,000 NOISYRIS images (bottom plot).

denote the results that were observed when only the intrinsic
distinctiveness of the iris texture was considered, meaning that
the variability factors in the rendering were not introduced. The
histogram in red bars represents an experiment that considered
all of the types of variability factors, allowing us to evaluate the
roles of the intrinsic and environmental factors. Based on this
experiment, we concluded that most of the distinctiveness of an
iris stems from the texture synthesis phase. Moreover, the ren-
dering factors slightly increase the average differences between

the iris textures and slightly increase the standard deviation of
the resulting distribution. As expected, these relationships also
increase the number of degrees of freedom in the distribution
that occurs in a later experiment, described below.

C. Within-Class Variability

Fig. 9 illustrates what aspects of within-class variability stem
from biological (pupillary dilation, occlusions, and nonlinear
local deformations) and environmental (lighting, poses, angle
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Fig. 8. Left: close-up of irises that were generated for nine different subjects.
Right: density estimate for the all-against-all comparison between irises of 104
different subjects, in which the variability of the iris patterns (white bars) were
considered exclusively and in conjunction with the rendering variability factors
(red bars).
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Fig. 9. Left: close-up of three iris samples from three subjects with different
levels of pupillary dilation. Right: estimate of the within-class variability with
respect to the families of parameters described in Sections III-A (white bars),
IMI-C, and IV (red bars).

distances, and levels of focus) factors. The white bar histogram
represents the former and the red bar histogram gives the bit-
wise distances when both the biological factors and the environ-
mental factors are considered. From these plots, it can be con-
cluded that both biological and environmental factors play im-
portant roles in the within-class variability of the appearance of
an iris. Moreover, the standard deviation slightly increases when
both biological and environmental factors are considered; these
factors also occur together in images of real irises that are ac-
quired in uncontrolled conditions. Finally, it should be stressed
that the average dissimilarity can be fully controlled by parame-
terizing the biological and environmental factors when creating
each data set. In the Appendix, further details are given on ac-
cession of the automatic generation framework.

D. Iris Segmentation

This study aims to provide data for different phases of iris
biometrics analysis. Hence, it is important to observe how a
state-of-the-art iris segmentation algorithm performs with syn-
thetic data, allowing a comparison with segmentation perfor-
mance on real data. For this purpose, the approach of He et
al. [7] was selected for two reasons: 1) It is considered to be a
state-of-the-art segmentation algorithm and is widely reported
in the specialized literature; and 2) It was the algorithm that
performed best in the NICE.I contest [17], which specifically
examined handling degraded iris data. The results are given
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in Fig. 10. At the right side of Fig. 10, a boxplot of the bit-
wise dissimilarities between the output of the segmentation al-
gorithm and the ground-truth segmentation data is given (man-
ually constructed in the case of UBIRIS and automatically gen-
erated for NOISYRIS). The results appear to be close, espe-
cially the median and the first and third quartile values. Out-
liers correspond most often to cases in which the segmenta-
tion algorithm failed to define the region-of-interest and com-
promised the subsequent segmentation process. In this case, a
slightly lower error rate was observed for synthetic data, which
is explained by the reduced variability in the periocular region
of these images, resulting in an easier segmentation task. The
lower variance in segmentation accuracy that was attained for
the synthetic data is confirmed by a comparison of the lower in-
terquartile and whiskers ranges with results from the analysis
of real images. However, the segmentation algorithm handled
the synthetic iris data acceptably without any additional param-
eterization, which can be regarded as a strong indicator of the
quality of the NOISYRIS data.

E. Iris Recognition Performance

Finally, recognition effectiveness on the NOISYRIS data was
compared to the performance attained on real VW images in
two ways: 1) using the classical Gabor-kernel decomposition
and Hamming distance matching; and 2) using state-of-the-art
iris recognition methods that were specifically devised for VW
data.

To use the Gabor/Hamming performance evaluation proce-
dure, a set of 10,000 images was generated (1,000 subjects,
with 10 samples per subject), the corresponding iriscodes were
extracted, and bitwise comparisons were performed in an all-
against-all scheme. The resulting scores were divided into gen-
uine and imposter sets whether or not they corresponded to sam-
ples from the same eye. These experiments were performed in
accordance with the widely used strategy proposed by Daugman
[3]. The Gabor configurations used resulted from exhaustive
evaluation, including testing combinations of the wavelength w,
orientation #, phase ¢, and ratio « parameters, to arrive at the
final configuration (w = V2,0 =0, and w/2, « = 1). The re-
sults are given in Fig. 11 and agree with the results obtained in
uncontrolled environments and with the VW data. When com-
pared to the imposter distribution, the genuine distribution is
left-shifted consistently and is substantially broader. The decid-
ability ' = (p1 — pa)/+/0.5(c% + o7) was approximately
3.52, with y and p; as the means for the genuine and im-
poster comparisons, and ¢, o7 represent the corresponding
standard deviations. The fact that the observed mean value for
the imposter distribution was slightly lower than the value re-
ported by Daugman [4] was justified because the Gabor codi-
fication scheme uses a single type of kernel instead of a com-
bination of multiple kernels, increasing the decidability of the
pattern recognition system. Moreover, the fact that no shifts in
the iris templates were performed during the signature matching
process also decreased the decidability score.

A comparison of the results obtained by the state-of-the-art
iris recognition process on the UBIRIS.v2 data and the
NOISYRIS synthetic images was conducted on the set of
10,000 images used in the previous evaluation procedure.
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Fig. 10. Left side: examples of misclassified pixels in segmenting images of the UBIRIS.v1 (top row) and NOISYRIS (middle and bottom rows) data using the
method proposed by He [7]. The pixels in red (and green) denote false positive (and false negative) cases, respectively. At right, misclassification rates that were

obtained by each algorithm on both data sets.
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Fig. 11. Decision environment for iris recognition on the NOISYRIS data. The
histogram of genuine scores is denoted by white bars, and the histogram of the
imposters is represented by dark bars.

The four recognition techniques that performed best in the
NICE:II contest were selected because of their performances
and because they are validated software implementations of
the corresponding techniques. The methods were from Tan et
al. [24], Wang et al. [26], Santos and Hoyle [20], and Shin et
al. [23]. The results are given in the two ROC plots of Fig. 12,
in which the results obtained on the real iris data appear as
continuous lines and white markers and the results obtained
on the NOISYRIS data are represented by dashed lines and
black markers. Results are given in terms of the relationship
between the true positive rate (TPR) and the false positive
rate (FPR). The ROC analysis reveals that the results in real
and synthetic data for the methods of Wang et al. and Shin
et al. are highly similar, which was positively regarded with
respect to the quality of the synthetic iris textures. In contrast,
the results from the approaches of Tan ef al. and Santos and
Hoyle were not as similar, which can be explained by the fact
that these methods also extract information from the periocular
region during the recognition process. As described above, the
components of the periocular region (especially the eyebrows

o
o o 1
-
e —&— Tan et al. (UBIRIS)
01 S - ® -Tanetal. (NOISYRIS) |
’ —&6— Wang et al. (UBIRIS)
.7 - & -Wang et al. (NOISYRIS)
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Fig. 12. ROC curves obtained by the four best-performing methods of the
NICE:II recognition contest for real iris data (UBIRIS.v2, continuous lines) and
NOISYRIS images (dashed lines). The markers denote the corresponding algo-
rithms.

and skin) of the NOISYRIS data are not fully discriminant
between individuals, which reduced recognition performance.
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VI. CONCLUSION

When considering the efforts undertaken to perform bio-
metric recognition under uncontrolled conditions, it is espe-
cially important for researchers to possess data sets that enable
experiments under such conditions. Because of privacy con-
cerns, it is difficult to collect a sufficient amount of data under
such conditions. In this paper, a method that synthesizes ocular
data is proposed. When compared to similar initiatives, the
main concern of this method is the simulation of uncontrolled
acquisition conditions that lead to degraded data: optically
defocused, motion blurred, off-angle, and occluded data, with
nonhomogenous changes in the lighting and shadows. The
generated data were empirically validated by state-of-the-art
iris segmentation and recognition methods. The results ob-
tained allowed us to confirm that the generated data faithfully
reproduce the primary properties of real iris data that are ac-
quired under similar conditions. Moreover, the availability of
an online framework that can generate degraded ocular data is
described here; this framework is useful for the development
and robustness evaluation of iris recognition algorithms.

At present, efforts have concentrated on the within-class and
between-class variability of iris patterns. Further work should
focus on the synthesis of the main components in the periocular
region: skin texture and eyebrow models, and in the increase of
the variability of eyelashes and eyelids shapes. These variations
are especially important for the evaluation of ocular recognition
strategies (e.g., periocular recognition).

As stated in the introduction, the described process involves
the synthesis of iris data and the simulation of its acquisition in
visible wavelengths. The adaptation of the process to near in-
frared data would demand a completely different parameteriza-
tion of all of the texture rendering techniques that have been de-
scribed ((8) to (21)). In contrast, the techniques that were used to
define shapes (e.g., (3) and (5)) would apply similarly to near-in-
frared data.

APPENDIX A
LisT OF COLORS USED

According to the predominant color of each iris, a set of
colors is mixed to the luminosity and transparency effects
to generate the color of each iris pixel. We used four main
families of eye colors: Fy: blue, Fs: green, F3 brown and F,
dark-brown. Below is the list of RGB colors used for each
family, represented in hexadecimal format: Fi: {#5C5D79,
#8494A4, #B8C3C7, #9DAG6A1, #91949B, #676B74}; Fs:
{#404E3C, #5D7342, #8A8C3D, #94831A, #8F983B,
#TC4AOE, #526023, #607D69}; Fs3: {#4F341F, #764F32,
#745630, #543516, #977B53, #86572D}; and F4: {#332113,
#211A22, #2B2321, #57372A, #472E27, #5E332D, #3B2532}.

APPENDIX B
ONLINE PLATFORM

An online platform is available at http://iris.di.ubi.pt/
NOISYRIS. Each user has the possibility to adjust the levels
of variability for each factor, enabling the simulation from
constrained to totally unconstrained acquisition conditions.
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