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Toward Covert Iris Biometric Recognition:
Experimental Results From the NICE Contests

Hugo Proença, Member, IEEE, and Luís A. Alexandre

Abstract—This paper announces and discusses the experimental
results from the Noisy Iris Challenge Evaluation (NICE), an iris
biometric evaluation initiative that received worldwide partici-
pation and whose main innovation is the use of heavily degraded
data acquired in the visible wavelength and uncontrolled setups,
with subjects moving and at widely varying distances. The NICE
contest included two separate phases: 1) the NICE.I evaluated iris
segmentation and noise detection techniques and 2) the NICE:II
evaluated encoding and matching strategies for biometric signa-
tures. Further, we give the performance values observed when
fusing recognition methods at the score level, which was observed
to outperform any isolated recognition strategy. These results
provide an objective estimate of the potential of such recognition
systems and should be regarded as reference values for further
improvements of this technology, which—if successful—may
significantly broaden the applicability of iris biometric systems to
domains where the subjects cannot be expected to cooperate.

Index Terms—Biometrics, forensics, iris recognition, noncooper-
ative image acquisition, visible-light data.

I. INTRODUCTION

I RIS recognition under controlled data acquisition protocols
is a relatively mature technology that has been shown to

be effective in different scenarios (e.g., airport check-in and
refugee registry) and in independent technology evaluation ini-
tiatives (e.g., the ICE [18]). On the other hand, the feasibility of
this technology under uncontrolled data acquisition conditions
raises considerable skepticism, although the possibility of reli-
ably recognizing human beings in unconstrained conditions is
considered a grand challenge, due to the evident economic and
security implications that it would have in modern societies.
This paper announces and discusses the results of the best

participants in the Noisy Iris Challenge Evaluation (NICE) con-
test, which was the first initiative to evaluate iris recognition
strategies in unconstrained data, that is, using images acquired
in the visible wavelength spectrum, from widely varying dis-
tances (four to eight meters), under uncontrolled lighting condi-
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tions with moving subjects and without requiring any active par-
ticipation of the subjects in the acquisition process. Such recog-
nition systems will broaden the applicability of biometric tech-
nology to domains where the subjects cannot be expected to co-
operate (e.g., surveillance and forensics), which motivates the
wide interest in such systems on the part of the research com-
munity. There are presently several research programs for this
purpose, and vast human and economic resources have been de-
voted to this task.
It is clear that data acquired in uncontrolled scenarios pose

new challenges to the pattern recognition process. One of the
main goals behind the NICE contest was to obtain performance
measures that could be regarded as reference values in evalu-
ating subsequent technological improvements. Moreover, com-
pared with previous iris recognition evaluation initiatives, the
NICE has two distinguishing features.
1) It uses data acquired in the visible wavelength spectrum.
In order to acquire iris data from large distances, the ac-
ceptable depth-of-field values demand significantly higher
f-numbers for the optical system, in direct proportion to
the square of the intensity of light required for the process.
Additionally, the motion factor demands very short expo-
sure times, which again require unreasonably high levels
of light. The American and European standards councils
([2] and [3]) proposed safe irradiance limits for NIR illu-
mination of near 10 mW/cm , which are particularly haz-
ardous for NIR wavelengths because the eye does not in-
stinctively respond with its natural mechanisms (aversion,
blinking and pupil contraction).

2) It was divided into two separate phases, in order to prevent
errors in segmentation from biasing further processing
and impeding the fair comparison between strategies. The
first part of the contest (NICE.I) exclusively evaluated
iris segmentation strategies and independently assessed
this crucial task. Later, using data that were automatically
segmented by the method that outperformed the NICE.I,
the NICE:II exclusively evaluated the iris encoding and
matching strategies, guaranteeing that all methods operate
with the exact same data and obtaining unbiased perfor-
mance measures.

The remainder of this paper is organized as follows: Section II
provides an overview of the contest protocol and describes the
data sets that were used. Sections III and IV provide and dis-
cuss the results obtained by the best participants in NICE.I and
NICE:II. Finally, the overall conclusions are given in Section V,
along with a discussion of the major trends behind this type of
recognition systems.

1556-6013/$26.00 © 2011 IEEE
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Fig. 1. Examples of degraded images used in the NICE contest, acquired from widely varying distances (three and ten meters) from moving subjects. In the
bottom-right corner of each image, we plot its iris segmentation mask, which discriminates between the noise-free regions of the iris and the remaining data.

II. CONTEST PROTOCOLS

Both phases of the contest were free of charge and were
broadly announced to research and academic communities.
Each participant received a set of training data to be used in
the development of their segmentation (NICE.I) or recogni-
tion (NICE:II) strategies. Participants were required to build
binary executables that would run in “Microsoft Windows
XP, Service Pack 2” or “Fedora Core 6” operating systems,
according to a prespecified set of command line arguments.
These binary executables were required to output a segmented
image (NICE.I) or a text file containing a numeric dissimilarity
value (NICE:II), and they had to be received by the Organizing
Committee by September 30th, 2008 (NICE.I) and June 30th,
2010 (NICE:II). Finally, the submitted approaches were exe-
cuted against unseen test data sets and ranked according to the
observed performance. The best participants in each part of the
contest were invited to describe their approaches in two special
issues of the Image and Vision Computing (NICE.I [19]) and
Pattern Recognition Letters (NICE:II [20]) journals. Additional
information about the contest protocols can be found. 1 2. Also,
it should be stressed that the computational complexity of the
methods evaluated in both parts of the contest was not a concern
and was not evaluated at any point. Actually, the comparison
between execution speed might be unfair, as executables were
build using different programming languages and for different
operating systems. Due to this, the time-cost of each strategy is
not discussed in this paper, even though significant variations
among the tested strategies were observed.

A. Data Sets

The imaging framework used in the acquisition of the
UBIRIS.v2 data set was installed in a lounge under both nat-
ural and artificial lighting sources. We placed several marks
on the floor (between three and ten meters away from the
acquisition device) and performed two distinct acquisition
sessions, each lasting two weeks and separated by an interval
of one week. From the first to the second session, the location
and orientation of the acquisition device and artificial light
sources was changed. A large majority of the volunteers were
Latin Caucasian (approximately 90%), but they also included
black (8%) and Asian people (2%). Approximately 60% of
the volunteers participated in both imaging sessions, whereas
40% participated exclusively in one or the other. Subjects were

1http://nice1.di.ubi.pt.
2http://nice2.di.ubi.pt.

asked to walk at a slightly slower than normal speed and to
look at several lateral marks that obliged them to rotate their
head and eyes, enabling the manual capture of three images
per meter, between eight and four meters, giving a total of
15 images per eye and session. It should be stressed that we
requested this cooperative behavior for the unique purpose
of maximizing the number of usable images per subject and
imaging session. A completely covert procedure could have
been used, with a necessarily lower number of usable images
per session. Additional details on the acquisition protocol
can be found in [21]. Examples of the data used are given in
Fig. 1, along with the corresponding iris segmentation mask at
the bottom right corner of each figure. Also, for the purpose
of reproducibility of the results given in this paper, both the
training and evaluation data sets are publicly available.3

B. NICE.I

The first part of the contest aimed to answer the following
question: “is it possible to automatically segment a small target
as the iris in unconstrained data?” Ninety-seven research labo-
ratories from 22 countries registered in the contest4 and received
a set of 500 images to be used as training data in the develop-
ment of their methods. The images were 400 300 in resolu-
tion, stored in “tiff” format with 8 bits for intensity. Addition-
ally, a set of 500 binary iris segmentation masks were manually
constructed by the Organizing Committee and sent to partici-
pants to act as ground-truth data and enable automatic evalua-
tion. Obviously, all participants agreed that such manually made
ground-truth data actually correspond to the perfect iris segmen-
tation, which in some circumstances may be a fuzzy notion.
The task assigned to participants was clear and is illustrated in

Fig. 2. They had to develop a binary executable that analyzes an
iris sample and outputs the corresponding binary iris segmenta-
tion mask, that is, that discriminates between the unoccluded re-
gions of the iris (represented by white pixels) and the remaining
data (black pixels). In the evaluation, disjoint test sets of 500
images were used to measure the pixel-by-pixel agreement be-
tween the segmentation masks made by each participant and the
ground-truth data. The classification error rate of the th partici-
pant was given by the average proportion of correctly classified
pixels

(1)

3http://www.di.ubi.pt/hugomcp/doc/NICEdata.zip.
4http://nice1.di.ubi.pt/registered.htm.
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Fig. 2. Fundamental task of the NICE.I iris segmentation contest. Participa-
tions received a degraded iris image acquired in the visible wavelength (VW)
and had to output the corresponding segmentation mask that discriminates be-
tween the noise-free regions of the iris and any other data.

where is the number of images in the test set, and are
the image width and height, respectively, denotes the
intensity of the pixel at line and column of the th segmen-
tation mask, is the corresponding ground-truth value,
and is the logical exclusive-or operator. The participants were
ranked according to their values, and the eight best par-
ticipants (listed in Table I) were invited to describe and pub-
lish their approaches in a special issue of the Image and Vi-
sion Computing journal [19]. The top performing method is
that from the Chinese Academy of Sciences (Tan et al. [26]),
which used a clustering-based iris localization scheme to per-
form a rough iris localization followed by an integro-differen-
tial constellation approach for fine pupillary and scleric border
detection, which not only accelerates the traditional integro-dif-
ferential operator but also enhances its global convergence. Fi-
nally, parametric models are learned to deal with eyelids and
eyelashes. The entry from the Technical University of Lodz
(Sankowski et al. [22]) localized and filled the reflections in a
YIQ (luma-chrominance) color space and concluded that this
approach has significant benefits for the subsequent processing.
Then, it models iris boundaries by Daugman’s classical integro-
differential operators, followed by a parametric modeling of
both eyelids. The third entry [1] presented a knowledge-based
approach inspired by the expert system paradigm, which di-
rectly encodes a set of “decision rules”. Authors from the Hei-
longjiang University (Li et al. [13]) performed a rough, fast
eye detection and further normalized their region of interest
using a c-means clustering technique. Their subsequent pro-
cessing combines traditional iris segmentation techniques with
RANSAC-like techniques. Authors from Dongguk University
(Jeong et al. [11]) used an Adaboost-based technique to roughly
localize the iris and to compensate for errors that result from the
circular modeling of both iris borders. Later, they used color
information to detect reflections and proposed a classification
model to decide whether the eye is closed or not. The approach
proposed by the Florida International University team (Chen et
al. [4]) relied on the major difference in appearance between
the sclera and the remaining parts of the eye to perform a coarse
initial detection of the eye region. This region is used as the
ROI of further processing stages, which makes their task sig-
nificantly easier. They also proposed an interesting circle cor-
rection strategy to improve the segmentation results. The entry
from the University of Milan (Scotti and Labbati [9]) signifi-
cantly reduced the region of interest, starting with a coarse esti-
mation of the iris and pupil centers. Later, they constrained the
search for the iris boundaries exclusively within small stripes
of the image, by means of iris linearization. They removed eye-
lashes and reflections exclusively in these stripes and finally

TABLE I
NICE.I CLASSIFICATION

remapped the resulting boundaries into the original domain. Fi-
nally, the approach from the Universidad Politecnica de Madrid
(Luengo-Oroz et al. [15]) proposed a very original strategy that
detects the iris center through projection techniques. The center
is used to translate the region of interest into a polar coordinate
system, where morphological operators are used to roughly seg-
ment the outer iris border, which is then projected back to the
Cartesian space in order to suppress the eyelids and eyebrows.

C. NICE:II

The second phase of the contest complemented its prede-
cessor in terms of the traditional pattern recognition stages,
evaluating different signature encoding and matching strate-
gies. In order to guarantee that unbiased performance measures
were obtained, all the participants used the exact same seg-
mented data, which were automatically obtained according to
the highest performing method in the NICE.I. Again, partici-
pation in NICE:II was free of charge and opened to any type
of research and academic institution. Sixty-seven participants
from 30 countries registered in the contest5 and received a
training set composed of 1000 images and the corresponding
binary iris segmentation masks.
The task assigned to participants is illustrated in Fig. 3: to

construct a binary executable that receives (by command-line
parameters) a pair of iris samples and their iris segmentation
masks and outputs a text file containing a score that corresponds
to the dissimilarity between the irises. This score should be a
metric, i.e., it shouldmeet the following conditions: 1)
; 2) ; and 3)

. In the evaluation, disjoint sets of unseen 1000 im-
ages and the corresponding segmentation masks were used to
rank participants. Let be a set of iris images,

their binary iris segmentation masks and
the identity function on an image. An one-against-all com-

parison scheme yields a set of match and
of nonmatch dissimilarity scores, respec-
tively, for the cases where and .
As suggested by Daugman [6], for two-choice decisions (e.g.,
match/nonmatch) the decidability index measures how well

5http://nice2.di.ubi.pt/registered.htm.
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Fig. 3. Fundamental task of the NICE:II iris recognition contest. Participants
must produce a binary executable that receives a pair of VW iris images and their
segmentation masks and outputs a numerical value that gives the dissimilarity
between the irises.

TABLE II
NICE:II CLASSIFICATION

separated the two types of distributions are, and recognition er-
rors correspond to their overlap area

(2)

where and are
the means of the two distributions and

and
their standard deviations. The participants were ranked ac-
cording to their decidability scores, and the best eight (listed in
Table II) were invited to publish their approaches in a special
issue of the Pattern Recognition Letters journal.
The best performing approach came from Tan et al. [27] that

performed biometric recognition according to both iris and peri-
ocular data. Global color-based features and local ordinal mea-
sures were used to extract discriminating data from the iris re-
gion, later fused to periocular data extracted from texton repre-
sentations. Finally, fusion is performed by the sum rule using
the normalized scores generated for the different types of fea-

tures. Wang et al. [28] used an adaptive boosting algorithm
to build a strong iris classifier learned from a set of bidimen-
sional Gabor-based set of features, each corresponding to a spe-
cific orientation and scale and operating locally. Later, given
the fact that the pupillary boundary is especially difficult to
segment in VW data, the authors trained two distinct classi-
fiers: one for irises deemed to be accurately segmented and an-
other for cases in which the pupillary boundary was not accu-
rately segmented. Santos and Hoyle [23] fused a set of recog-
nition techniques that can be divided in two main categories:
wavelet-based textural analysis methods applied to the iris re-
gion, complemented by distribution-based (histogram of ori-
ented gradients and local binary patterns) and scale invariant
feature transforms that analyze the periocular region, which was
recently suggested as an important addition for handling de-
graded samples, essentially because it is less vulnerable to prob-
lems resulting from deficient illumination or low-resolution ac-
quisition. Shin et al. [24] started by classifying the left and right
eyes by their eyelash distributions, which they used to reduce the
search space. Further, they coupled two encoding and matching
strategies based in color and textural analysis to obtain multiple
distance scores fused by means of a weighted sum rule, which
is claimed to improve the separation between match and non-
match distributions. Li et al. [14] used a novel weighted co-oc-
currence phase histogram to represent local textural features.
This method is claimed to model the distribution of both the
phase angle of the image gradient and the spatial layout, which
overcomes the major weakness of the traditional histogram. A
matching strategy based on the Bhattacharyya distance mea-
sures the goodness of match between irises. Finally, the au-
thors concluded that the performance is improvedwhen a simple
image registration scheme accounts for the image deformation.
Marsico et al. [17] proposed the use of implicit equations to
approximate both the pupillary and limbic iris boundaries and
perform image normalization. Next, they exploited local fea-
ture extraction techniques such as linear binary patterns and dis-
criminable textons to extract information from vertical and hor-
izontal bands of the normalized image. Li and Ma [16] intro-
duced an image registration method based on the Lucas-Kanade
algorithm to account for iris pattern deformation. Operating on
the filtered iris images, this method divides the images into
small subimages and solves the registration problem for each
small subimage. Later, a sequential forward selection method
searches for the most distinctive filters from a family of Gabor
filters, concluding that a very small number of selected features
is able to obtain satisfactory performance. Finally, Szewczyk et
al. [25] presented a semi-empirical approach based on a reverse
bi-orthogonal dyadic wavelet transform, empirically selecting
a compactly supported bi-orthogonal spline wavelet for which
symmetry is possible with FIR filters and three vanishing mo-
ments. The authors concluded that such a method produces a
short biometric signature (324 bits) that can be successfully used
for recognition under such challenging conditions, improving its
reliability.

III. PERFORMANCE EVALUATION: NICE.I

Fig. 4 illustrates the results obtained by the best method of
the NICE.I contest, where red and green iris pixels denote Type
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Fig. 4. Examples of the segmentation masks output by the method that got the best results in the NICE.I. Images in the upper row illustrate successful cases,
whereas images in the bottom show failures. Pixels in green and red denote classification errors of Type I and II, i.e., pixels that were erroneously classified as
noise-free iris pixels and pixels that were erroneously classified as not being noise-free iris pixels.

Fig. 5. Comparison between the ROC curves obtained by the best participants in the NICE:II contest. (a) ROC curves of the first to fourth participants. (b) ROC
curves of the fifth to eighth participants.

I and Type II classification errors. Images in the upper row il-
lustrate successful cases where the noise-free iris regions were
accurately discriminated. Oppositely, images in the bottom row
illustrate less successful cases, where evident disagreement was
observed between the automatically obtained andmanually con-
structed segmentation masks. Apart from the cases where the
image did not actually contain an eye (e.g., the image at far
right), we observed that most of the errors were due to diffi-
culty in accurately segmenting the iris pupillary boundary, as
confirmed by the frequent higher density of red/green pixels ad-
jacent to the pupillary region. This occurred in a considerable
number of images, which led us to conclude that—unlike in the
NIR iris data—the segmentation of the pupillary boundary of
VW iris samples is more difficult to perform than of the limbic
boundary, which is especially evident for the heavily pigmented
iris. Even so, for the vast majority of cases, a plausible segmen-
tation of the noise-free iris regions was achieved by the best par-
ticipants, which suggests that the best approaches dealt appro-
priately with varying acquisition distances, different amounts of
light, gaze and multiple iris occluding factors (e.g., eyelids, eye-
lashes, glasses, contact lenses and hair).
As the outputs of the data segmentation phase are supplied

as input of the subsequent processing phases (data encoding
and matching), most of the performance indicators given in this
paper regard the second part of the contest (NICE:II), which also
integrates and indirectly evaluates the effectiveness of segmen-
tation approaches. Also, in Section IV-D we analyze the perfor-
mance of the best encoding and matching strategies with respect
to the segmentation algorithm used. This way, it is possible to

perceive the impact of the iris segmentation phase in the perfor-
mance of the complete recognition system.

IV. PERFORMANCE EVALUATION: NICE:II

A. Verification Mode

In the verification mode, the performance was mainly ex-
pressed in terms of receiver operating characteristic (ROC)
curves, which show the tradeoff between the two types of
errors by plotting the true positive (TP) rate against the false
positive (FP) rate for varying acceptance thresholds. According
to the one-against-all comparison scheme described above,
the TP rate (sensitivity) is given by the fraction of match
dissimilarity scores that are less than or equal to the threshold
: . Similarly, the FP rate is the
fraction of nonmatch scores that are less than or equal to :

, where denotes cardinality. In our
experiments, we used and constructed ten different
versions of the data set, each one composed of randomly
drawn images from the initial set of 14 000 images. Fig. 5 plots
the error curves of the ROCs obtained for the best participants
in NICE:II, where each data point is surrounded by two vertical
bars that denote the best and worst values obtained at that
operating point. The performance achieved by the CASIA
algorithm is significantly better than that of the others at any
operating point, whereas the curves of the other approaches
often intersect, suggesting that each algorithm outperforms the
others in a specific operating range.
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Fig. 6. Summary of the performance measures obtained by the best participants in the NICE:II contest. Each column in the graphs reports the performance value
of a participant, where the median value is represented by the horizontal line through the middle of each box. Top and bottom of the boxes denote the first and
third quartile of the observations. Outliers appear as dot data points. (a) Boxplot of the algorithms’ decidability; (b) boxplot of the algorithms’ area under curve
(AUC); (c) boxplot of the algorithms’ equal error rate (EER); (d) boxplot of the algorithms’ Sensitivity FAR .

In Fig. 6, we compare the most common performance mea-
sures obtained for the best algorithms in NICE:II. The results
are expressed in terms of boxplots, showing the median of the
observed performance range (horizontal solid line) and the first
and third quartile values of the observations (top and bottom of
the box marks). The upper and lower whiskers are denoted by
the horizontal lines outside each box, and the outliers are de-
noted by dot points. Fig. 6(a) shows the contest rankings, dis-
playing the observed decidability values. Fig. 6(b) and (c) pro-
vides complementary overall performance measures (AUC and
EER), that are often correlated, which was confirmed in our ob-
servations. Fig. 6(d) summarizes the sensitivity values observed
when operating at a FAR of approximately 0.01. Two algo-
rithms (CASIA andNU)met or exceeded the 0.5 value, meaning
that they correctly recognized more than half of the subjects.
Overall, the different ranges of the participants’ boxplots high-
light the small variance of two of them (NU and PeihuaLi),
according to the different data sets. Although they are ranked
third and fifth, this suggests that a better tradeoff bias/variance
could have been obtained, and thus, a significant margin for im-
provements exist. The approach of CASIA has consistently out-
performed all the other performance measures, but the relative
ranks for each performance measure were not stable among the
other algorithms. These results give clear evidence that these
recognition strategies were able to extract and match discrim-
inating information even from such degraded data, which is a
positive result and encourages further improvements.

B. Identification Mode

Using a closed universe model, we tested the effectiveness
of each algorithm when trying to answer the following ques-
tion: “is the correct answer among the best matches?” This
type of performance measure is usually expressed by means
of rank and cumulative rank histograms, where ranks appear
in the horizontal axis and probabilities in the vertical one. Let

be the set of gallery images such that
and the set of sam-

ples that are to be compared against . Each constitutes a
query that is matched against all elements of , yielding a set
of dissimilarity scores, where denotes
the dissimilarity between the th sample and the th template.
Let be the ordered version of , such that

. is said to have rank if the score
is in the th position of and . The probability
of having rank P(rank-k) is estimated by the ratio between the
number of sample queries with rank and the total number of
queries. Accordingly, the probability of cumulative rank can
be calculated as P(rank-i).
Fig. 7 gives the probability distribution of the cumulative

rank values obtained for , representing the identification
performance obtained. Interestingly, the relative performance
of the algorithms has some differences compared to the contest
classification: the identification performance of UBI (third) and
BERC (fourth) was consistently better than that of NU (second).
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Fig. 7. Average cumulative rank curves obtained by the best participants in the NICE:II. Bottom and top horizontal lines around the data series denote the
worst and best values obtained. (a) Average cumulative rank curves of the first to fourth participants; (b) average cumulative rank curves of the fifth to eighth
participants.

TABLE III
PEARSON’S SAMPLE CORRELATION COEFFICIENTS BETWEEN NICE:II BEST
PARTICIPANTS. PARTICIPANTS ARE DENOTED BY CORRESPONDING RANK

We also observed that this type of performance measure suffers
significant variations with respect to different test data sets,
which is easily observed in the variance intervals around each
data point. Here, the maximal variance was observed when
obtaining the cumulative rank values of approximately . Re-
garding the rank 1 values, the best performance was observed
for the CASIA algorithm, which attained correct identifications
for approximately 74% of the number of queries. On the other
hand, the lowest values were observed for BIPLAB, which
returned the correct identification in rank-1 for approximately
25% of the queries. Finally, when considering the cumulative
rank value required to return the correct identity in all queries,
large heterogeneous values were observed: the best value was
rank 37 for CASIA, followed by rank 57 for BERC. At the
other extreme, BIPLAB, HLJUCS and TUL obtained values
close to 100, which means that the match dissimilarity score in
these situations was among the highest.

C. Correlation and Fusion of Results

The statistical correlation between the outputs given by the
best participants in NICE:II was analyzed to address the ques-
tion of whether performance can be improved by fusing several
of them together. It was assumed that any eventual dependence
between scores would be at most linear, which justifies the use
of the Pearson’s correlation coefficient to analyze the strength
of these dependences. Table III gives the correlation scores,
given by

, where and denote the system outputs,
are the sample means and the standard deviations. The
highest correlation value was observed for the {CASIA, UBI}

algorithms (almost 0.7), followed by {UBI, Peihua}, {CASIA,
BERC} and {CASIA, Peihua}, all of them above 0.6. On the
other hand, BIPLab appeared to be the least correlated algo-
rithm, achieving the lowest scores in {BIPLab, BERC} and {BI-
PLab, TUL} (around 0.39).
Using the theoretical framework developed by Kittler et al.

[12], all the combinations of biometric experts were tested, ac-
cording to the usual fusion rules: product , sum , min (m)
and max (M). Without any assumption on the prior probabili-
ties, the posterior probability that a pattern belongs to class
was obtained by

(3)

An input pattern is assigned to class if
, where denotes the combination

rule. Table IV lists the best classification ensembles obtained
according to the number of fused experts (column #Fused) and
the best combination rule observed (column ). The methods
are denoted by their rank in the contest. Also, Fig. 8 reports
the EER, AUC and sensitivity performance values of the best
classification ensembles, when compared to the best individual
method. A slight but consistent improvement in performance
due to fusion was observed, and the maximal performance
attained when the best four experts were fused according to the
product rule.

D. Sensitiveness to Segmentation

Data segmentation is a key phase in most pattern recognition
systems, as errors easily bias the feature encoding and matching
strategies. Additionally, as it is one of the earliest phases, the
segmentation module should more directly handle the dynamics
of the acquired data, which is particularly important for the type
of biometric recognition that is the focus of this paper. Due to
the above points, we found it meaningful to assess how much
the recognition performance may be affected by errors in seg-
mentation in order to obtain an idea of how further improve-
ments in segmentation would improve the overall system per-
formance. Thus, we compared the performance obtained by the
best participants in the NICE:II when using not so well seg-
mented data, i.e., using the segmentation results of the second,
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Fig. 8. Comparison between the performance obtained by the best method of NICE:II and by the best classification ensembles of two, three and four classifiers.
(a) EER; (b) AUC; (c) Sensitivity FAR .

Fig. 9. Percentile variations in performance of the best participants of NICE:II when the best segmentation method of NICE.I was not used, but rather
data segmented by the second (black bars), third (gray bars) and fourth (white bars) best segmentation algorithms. (a) EER; (b) AUC; (c) decidability;
(d) Sensitivity FAR .

TABLE IV
BEST RESULTS OBTAINED BY CLASSIFICATION ENSEMBLES,
ACCORDING TO NUMBER OF FUSED METHODS. METHODS

ARE DENOTED BY CORRESPONDING RANK

third and fourth participants of the NICE.I phase. Fig. 9 illus-
trates these results: bars of different intensity denote the per-
centile variation in results when using the second (black bars),

third (gray bars) and fourth (white bars) best NICE.I segmen-
tation methods. The horizontal solid lines denoting the results
obtained when using the best segmentation method, for compar-
ison. Not surprisingly, an evident deterioration in performance
was observed, which usually surpasses the differences in seg-
mentation performance, i.e., the segmentation errors were ob-
served to propagate in increasing amplitudes for further pro-
cessing stages. However, it is interesting to note that the BI-
PLab approach consistently achieved better performance using
the data segmented by the second algorithm of NICE.I than
using the best segmentation method. Finally, the performance
of TUL algorithm was independent of the input segmentation
masks, which suggests that this algorithm does not use such
masks in data encoding and matching processes.
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E. Sensitivity to Number of Gallery Images

It is known that rank and cumulative rank scores suffer signif-
icant variations according to the database size, i.e., the number
of enrolled gallery identities. This is of the most interest to pre-
dict the performance of biometric systems in realistic deploy-
ment scenarios, namely, for large scale identification purposes.
Hence, we started by estimating the probability that a query on
a sample returns a cumulative rank value, as a function
of the database size. Then, we plotted the values observed for
the best classification ensemble of NICE:II against this theoret-
ical performance line, aiming to validate our observations and
to infer the performance for large scale identification scenarios.
We now assume that and are independent random variables
that represent the dissimilarity scores generated by a biometric
classifier for match and nonmatch comparisons. Even though
iris match distributions are usually asymmetric and that non-
match distributions are often skewed with longer left tails, for
evaluation purposes an oversimplification was made and both
distributions assumed as normal, which is more plausible in
less favorable environment conditions [7]. Let
and denote such match and nonmatch distri-
butions. According to the elementary theory of rank tests [10],
the th-order statistic of a statistical sample is
equal to its th smallest value. Let be the order
statistics of a set of independent observations , that
is, . The distribution function of
is equal to

(4)

In practical terms, (4) can be very hard to calculate for very
large values and . Thus, using the concepts of the
complement of an event and of the probability of nonoccur-
rence, (4) is equivalent to

(5)

Using (5) and (6), it is possible to obtain the density of the
th smallest value of the nonmatch comparisons, for a given
population of size . Considering that is the density of

, the density of is given by

(6)

The probability that a match distance observation returns
a cumulative rank is given by

(7)

Fig. 10. Estimated probability that an identification query returns the true
identity out of the first 10 (continuous line) and 30 positions (dashed line), as
a function of the number of enrolled identities, i.e., rank and
rank . Circular data points are the cumulative rank 10 values

observed empirically, according to the different databases sizes.

Accordingly, the probability that the match observation has
exact rank is given by

(8)

The continuous line of Fig. 10 estimates the probability of
a cumulative rank 10 as a function of the
gallery size , and the dashed line is analogous for a cumulative
rank 30. We used and
values obtained by Gaussian curve fitting to the best classifica-
tion ensemble composed by the fusion of the {CASIA, NU,
UBI, BERC} algorithms (Table IV). The circular data points are
the cumulative rank 10 values observed empirically, according
to the different databases sizes we were able to test. For con-
textualization purposes, the four vertical solid lines illustrate
identification scenarios at different scales: global (World popu-
lation), continental (Europe), country (Portugal) and small city
(Covilhã, a Portuguese city with approximately 50 000 inhab-
itants). From this analysis, it appears that the observed values
adequately fit the probability line, which is a good indicator of
the potential performance of this type of recognition system on
larger scales. It should be concluded that this type of recogni-
tion technology is not yet sufficiently mature to be deployed in
large scale identification scenarios, and further advances in the
technology are needed to meet the full range of operational re-
quirements at those operating scales. Currently, approximately
2% of the queries would return the correct identity in top-10, if
the entire world population is enrolled in the system. This value
rises to approximately 4% and 12% if the universe is reduced to
the continental or national population.

F. Fusion of Multiple Recognition Systems

As stated above, the type of biometric recognition system dis-
cussed in this paper aims to operate covertly in uncontrolled data
acquisition environments, meaning that absolutely no human
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effort is demanded of the subjects during the recognition pro-
cesses. This is a key feature that raises the possibility of using
multiple recognition systems regularly spaced across an airport
terminal hallway or a city street. This section discusses this pos-
sibility and how these systems could interact to improve their
performance.
It is known that not all subjects perform consistently in

terms of false matches and nonmatches of a biometric system.
Based on their intrinsic features, some are difficult to match
(goats), while others are particularly vulnerable to imper-
sonation (lambs) and consistently increase the probability of
false matches [29]. We oversimplify the problem and regard
all subjects of a population as sheep, i.e.,
subjects that tend to follow the system averages: they match
relatively well against themselves and poorly against others.
Let us consider iris recognition systems with roughly similar
performance, with a sensitivity of at a false match rate of .
Here, we introduce the concept of exogenous independence,
hypothesizing that purposely changing the lighting conditions
in the environment (by using different levels of light or types
of illuminants) and the acquisition protocols (poses, distances)
should potentiate the independence between the system out-
puts. Assuming that the independence of each system provides
an upper bound on the performance that would be attainable by
the fusion of multiple systems, the binomial distribution can be
used to obtain the probability that a subject is screened by
recognition systems and correctly recognized by of these,

:

(9)

For different values of , the probability that a reported
match is false is given by , assuming that false matches
in each of the recognition systems are independent events.
Accordingly, a match will be reported iff a minimum of
recognition systems output a match

(10)

provided that all events are mutually exclusive. Considering the
median sensitivity value plotted in Fig. 8(c) for the best en-
semble composed of algorithms {CASIA, NU, UBI, BERC}

, Fig. 11 relates the expected sen-
sitivity of such a multipoint biometric system to the number
of recognition systems used, considering different false match
rates. From its analysis, one can conclude that approximately
five independent recognition systems would be enough to at-
tain almost full sensitivity at a false acceptance rate of 0.01.
This value substantially increases when a lower number of false
alarms is convenient (large scale applications), requiring be-
tween 13 and 23 independent recognition systems to operate,
respectively, at FAR and .

Fig. 11. Expected sensitivity of a set of iris recognition systems placed consec-
utively and operating covertly under intentionally varying lighting conditions,
with different required values for the false acceptance rates.

V. CONCLUSION AND TRENDS

We announced and discussed the experimental results from
the NICE initiative, a recent iris recognition technology eval-
uation initiative that operates with severely degraded visible
wavelength data acquired in uncontrolled protocols and sce-
narios. The NICE was composed of two separate phases: 1)
noise-free iris segmentation (NICE.I) and 2) signatures en-
coding and matching (NICE:II). Its main goal was to supply
performance values that can be regarded as reference values
for further technology improvements. Experiments lead us to
conclude that the extremely ambitious recognition systems
discussed in the paper are still in an early stage of development,
and that significant improvements are required, specifically to
allow their application in large-scale identification scenarios.
However, the economic and security implications that they
would have in modern societies justifies the growing interest of
the research community and presages future achievements.
Apart from improvements in each of the traditional pattern

recognition stages, additional research effort should focus on
addressing the most convenient ways to augment the indepen-
dence between several instances of these recognition systems,
taking advantage of the fact that no human effort is involved
in the data acquisition process, and thus, there is no apparent
evidence against the possibility of multiple recognition systems
operating complementarily.
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