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The automatic characterization of pedestrians in surveillance footage is a tough challenge, particularly when the
data is extremely diverse with cluttered backgrounds, and subjects are captured from varying distances, under
multiple poses, with partial occlusion. Having observed that the state-of-the-art performance is still unsatisfac-
tory, this paper provides a novel solution to the problem, with two-fold contributions: 1) considering the strong
semantic correlation between the different full-body attributes,we propose amulti-task deepmodel that uses an
element-wise multiplication layer to extract more comprehensive feature representations. In practice, this layer
serves as a filter to remove irrelevant background features, and is particularly important to handle complex,
cluttered data; and 2) we introduce a weighted-sum term to the loss function that not only relativizes the con-
tribution of each task but also is crucial for performance improvement in multiple-attribute inference settings.
Our experiments were performed on two well-known datasets (RAP and PETA) and point for the superiority
of the proposed method with respect to the state-of-the-art. The code is available at https://github.com/Ehsan-
Yaghoubi/MAN-PAR-.
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1. Introduction

The automated inference of pedestrian attributes is a long-lasting
goal in video surveillance and has been the scope of various research
works [1,2]. Commonly known as pedestrian attribute recognition
(PAR), this topic is still regarded as an open problem, due to extremely
challenging variability factors such as occlusions, viewpoint variations,
low-illumination, and low-resolution data (Fig. 1(a)).

Deep learning frameworks have repeatedly been improving the
state-of-the-art inmany computer vision tasks, such as object detection
and classification, action recognition and soft biometrics inference. In
the PAR context, several models have been also proposed [3,4], with
most of these techniques facing particular difficulties to handle the het-
erogeneity of visual surveillance environments.

Researchers have been approaching the PAR problem from different
perspectives [5]; [6–8] proposed deep learning models based on full-
body images to address the data variation issues,while [9–12] described
body-part deep learning networks to consider the fine-grained features
of the human body parts. Other works focused particularly on the
cações, Portugal.
.

attention mechanism [11,13,14], and typically performed additional op-
erations in the output of the mid-level and high-level convolutional
layers. However, learning a comprehensive feature representation of
pedestrian data, as the backbone for all those approaches, still poses
some challenges, mostly resulting from the multi-label and multi-task
intrinsic properties of PAR networks.

In opposition to previous works that attempted to jointly extract
local, global and fine-grained features from the input image, in this
paper, we propose a multi-task network that processes the feature
maps and not only considers the correlation among the attributes but
also captures the foreground features using a hard attention mecha-
nism. The attention mechanism yields from the element-wise multipli-
cation between the feature maps and a foreground mask that is
included as a layer on top of the backbone feature extractor. Further-
more, we describe a weighted binary cross-entropy loss, where the
weights are determined based on the number of categories
(e.g., gender, ethnicity, age, ...) in each task. Intuitively, these weights
control the contribution of each category during training and are the
key to avoid the predominance of some labels over the others, which
was one of the problemswe identified in our evaluation of the previous
works. In the empirical validation of the proposedmethod, we used two
well-known PAR datasets (PETA and RAP) and three baseline methods
considered to represent the state-of-the-art.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.imavis.2020.103981&domain=pdf
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https://doi.org/10.1016/j.imavis.2020.103981
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/imavis


Fig. 1. (a) Examples of some of the challenges in the PAR problem: crowded scenes, poor illumination conditions, and partial occlusions. (b) Typical structure of PAR networks, which
receive a single image and perform labels inference.
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The contributions of this work can be summarized as follows:

1. We propose a multi-task classification model for PAR that its main
feature is to focus on the foreground (human body) features, attenu-
ating the effect of background regions in the feature representations
(Fig. 2);

2. We describe a weighted sum loss function that effectively handles
the contribution of each category (e.g., gender, body figure, age,
etc.) in the optimization mechanism, which prohibits some of the
categories to predominate over the others during the inference step;

3. Inspired by the attention mechanism, we implement an element-
wise multiplication layer that simulates hard attention in the output
of the convolutional layers, which particularly improves the robust-
ness of feature representations in highly heterogeneous data acquisi-
tion environments.

The remainder of this paper is organized as follows: Section 2 sum-
marizes the PAR-related literature, and Section 3 describes our
method. In Section 4, we provide the empirical validation details and
discuss the obtained results. Finally, conclusions are provided in
Section 5.

2. Related work

The ubiquity of CCTV cameras has been rising the ambition of
obtaining reliable solutions for the automated inference of pedestrian
Fig. 2. Comparison between the attentive regions obtained typically by previousmethods [15,16
background regions by our solution with respect to previous techniques.
attributes, which can be particularly hard in case of crowded urban en-
vironments. Given that face close-shots are rarely available at far dis-
tances, PAR upon full-body data is of practical interest. In this context,
the earlier PAR methods focused individually on a single attribute and
used handcrafted feature sets to feed classifiers such as SVM or
AdaBoost [17–19]. More recently, most of the proposed methods were
based on deep learning frameworks, and have been repeatedly advanc-
ing the state-of-the-art performance [20–23].

In the context of deep learning, [24] proposed a multi-label
model composed of several CNNs working in parallel, and special-
ized in segments of the input data. [6] compared the performance
of single-label versus multi-label models, concluding that the se-
mantic correlation between the attributes contributes to improve
the results. [7] proposed a parameter sharing scheme over inde-
pendently trained models. Subsequently, inspired by the success
of Recurrent Neural Networks, [25] proposed a Long Short-Term
Memory (LSTM) based model to learn the correlation between
the attributes in low-quality pedestrian images. Other works also
considered information about the subjects pose [26], body-parts
[27] and, viewpoint [9,14], claiming to improve performance by
obtaining better feature representations. In this context, by aggre-
gating multiple feature maps from low, mid, and high-level layers
of the CNN, [28] enriched the obtained feature representation. For
a comprehensive overview of the existing human attribute recog-
nition approaches, we refer the readers to [5].
] and ours solution, while inferring theGender attribute. Note the less importance given to
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3. Proposed method

As illustrated in Fig. 2, our primary motivation is to provide a PAR
pipeline that is robust to background-based irrelevant features, which
should contribute for improvements in performance, particularly in
crowded scenes that partial occlusions of human body silhouettes
occur (Figs. 1(a) and 2).

3.1. Overall architecture

Fig. 3 provides an overview of the proposed model, inferring the
complete set of attributes of a pedestrian at once, in a single-shot para-
digm. Our pipeline is composed of fourmain stages: 1) the convolutional
layers, as general feature extractors; 2) the body segmentation module,
that is responsible for discriminating between the foreground/back-
ground regions; 3) the multiplication layer, that in practice implements
the attention mechanism; and 4) the task-oriented branches, that avoid
the predominance of some of the labels over others in the inference
step.

Atfirst, the input image feeds a set of convolutional layers,where the
local and global features are extracted. Next, we use the body segmen-
tation module to obtain the binary mask of the pedestrian body. This
mask is used to remove the background features, by an element-wise
multiplication with the feature maps. The resulting features (that are
free of background noise) are then compressed using an average
pooling strategy. Finally, for each task, we add different fully connected
layers on top of the network, not only to leverage the useful information
from other tasks but also to improve the generalization performance of
the network. We have adopted a multi-task network, because the
shared convolutional layers extract the common local and global fea-
tures that are necessary for all the tasks (i.e., behavioral attributes, re-
gional attributes, and global attributes) and then, there are separate
branches that allow the network to focus on the most important fea-
tures for each task.

3.2. Convolutional building blocks

The implemented convolution layers are based on the concept of re-
sidual block. Considering x as the input of a conventional neural net-
work, we want to learn the true distribution of the output H(x).
Therefore, the difference (residual) between the input and output is R
(x) = H(x) − x, and can be rearranged to H(x) = R(x) + x. In other
words, traditional network layers learn the true output H(x), whereas
residual network layers learn the residual R(x). It is worth mentioning
that it is easier to learn the residual of the output and input, rather
than only the true output [29]. In fact, residual-based networks have
the degree of freedom to train the layers in residual blocks or skip
them. As the optimal number of layers depends on the complexity of
the problem under study, adding skip connections makes the neural
network active in training the useful layers.

There are various types of residual blocks made of different arrange-
ments of the Batch Normalization (BN) layer, activation function, and
convolutional layers. Based on the analysis provided in [30], the forward
and backward signals can directly propagate between two blocks, and
optimal resultswill be obtainedwhen the input x is used as skip connec-
tion (Fig. 4).

3.3. Foreground human body segmentation module

We used theMask R-CNN [31]model to obtain the full-body human
masks. This method adopts a two-stage procedure after the
convolutional layers: i) a Region Proposal Network (RPN) [32] that pro-
vides several possibilities for the object bounding boxes, followed by an
alignment layer; and ii) a Fully Convolutional Network (FCN) [33] that
infers the bounding boxes, class probabilities, and the segmentation
masks.
3.4. Hard attention: element-wise multiplication layer

The idea of an attention mechanism is to provide the neural
network with the ability to focus on a feature subset. Let I be an
input image, F the corresponding feature maps, M an attention
mask, fϕ(I) an attention network with parameters ϕ, and G an atten-
tion glimpse (i.e., the result of applying an attention mechanism to
the image I). Typically, the attention mechanism is implemented as
F = fϕ(I), and G = M ⊙ F, where ⊙ is an element-wise multiplica-
tion. In soft attention, features are multiplied with a mask of values
between zero and one, while in the hard attention variant, values
are binarized and - hence - they should be fully considered or
completely disregarded.

In thiswork, aswe produce the foregroundbinarymasks,we applied
a hard attention mechanism on the output of the convolutional layers.
To this end, we used an element-wise multiplication layer that receives
a set of feature maps FH×W×D and a binary maskMH×W×D, and returns a
set of attention glimpses GH×W×D, in which H, W, and D are the height,
weight, and the number of the feature maps, respectively.

3.5. Multi-task CNN architecture and weighted loss function

We consider multiple soft label categories (e.g., gender, age, lower-
body clothing, ethnicity and hairstyle), with each of these including
two or more classes. For example, the category of lower-body clothing
is composed of 6 classes: {‘pants’, ‘jeans’, ‘shorts’, ‘skirt’, ‘dress’, ‘leg-
gings’}. As stated above, there are evident semantic dependencies be-
tween most of the labels (e.g., it is not likely that someone uses a
‘dress’ and ‘sandals’ at the same time). Hence, to model these relations
between the different categories,we use a hard parameter sharing strat-
egy [34] in our multi-task residual architecture. Let T, Ct, Kc, Nk be the
number of tasks, the number of categories (labels) in each task, the
number of classes in each category, and the number of samples in
each class, respectively.

During the learning phase, the model H receives one input image I,

its binary mask S, the ground truth labels Y, and returns Ŷ as the pre-
dicted attributes (labels):

Ŷ ¼ ŷt;ct ;kt j t ∈ 1;…; Tf g; c ∈ 1;…;Ctf g; k ∈ 1;…;Kcf g;
T;Ct ;Kc ∈ℕ; ŷi ∈ 1;0;

� �
ð1Þ

in which ŷt;c;k denotes the predicted attributes.
The key concept of the learning process is the loss function. In the

single attribute recognition [35] setting, if the n-th image In, (n =
1,…,N) is characterized by the m-th attribute, (m = 1,…,M), then
ynm = 1; otherwise, ynm = 0. In case of having multiple attributes
(multi-task), the predicting functions are in the form ofΦ= {Φ1,Φ2,…,
Φm,…,ΦM}, andΦm(I′) ∈ {1,0}. We define the minimization of the loss
function over the training samples for the mth attribute as:

Ψm ¼ argminΨm

XN
n¼1

L Φm In;Ψmð Þ; ynmð Þ; ð2Þ

whereΨm contains a set of optimized parameters related to them-th at-
tribute, whileΦm(In,Ψm) returns the predicted label (ŷnm) for them-th
attribute of the image In. Besides,L(.) is the loss function that measures
the difference between the predictions and ground-truth labels.

Considering the interconnection between attributes, one can define
a unified multi-attribute learning model for all the attributes. In this
case, the loss function jointly considers all the attributes:

Ψ ¼ argminΨ
XM
m¼1

XN
n¼1

L Φm In;Ψmð Þ; ynmð Þ; ð3Þ

in which Ψ contains the set of optimized parameters related to all
attributes.



Fig. 3.Overview of themajor contributions (Ci) in this paper. C1) the element-wisemultiplication layer receives a set of featuremaps FH×W×D and a binarymaskMH×W×D, and outputs a set of attention glimpses. C2) Themultitask-oriented architecture
provides to the network the ability to focus on the local (e.g., head accessories, types of shoes), behavioral (e.g., talking, pushing), and global (e.g., age, gender) features (visual results are given in Fig. 7). C3) aweighted cross-entropy loss function not
only considers the interconnection between the different attributes, but also handles the contribution of each label in the inference step. RCB is the abbreviation for Residual Convolutional Block, illustrated in Fig. 4. RPN, FCN, and FCL stand for Region
Proposal Network, Fully Connected Network, and Fully Connected layer, respectively.
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Fig. 4. Residual convolutional block in which the input x is considered a skip connection.
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In opposition to the above-mentioned functions, in order to consider
the contribution of each category in the loss value, we define aweighted
sum loss function:

Ψ ¼ argminΨ

XT
t¼1

XCt

c¼1

XKc

k¼1

XNk

n¼1

1
Rc

L Φtck In;Ψtckð Þ; ytcknð Þ; ð4Þ

whereRc ∈ {R1,…,RCt
} are scalar values corresponding to the number of

classes in the categories 1,…, Ct.
Using the sigmoid activation function for all classes in each category,

we can formulate the cross-entropy loss function as:

Loss ¼ −
XT
t¼1

XCt

c¼1

XKc

k¼1

XNk

n¼1

1
nRc

ytckn log p̂tcknð Þ þ 1−ytcknð Þ log 1−p̂tcknð Þð Þ;

ð5Þ

where ytckn is the binary value that relates the class label k in category c.
The ground-truth label for observation n and p̂tckn is the predicted prob-
ability of the observation n.

4. Experiments and discussion

The proposed PAR network was evaluated on two well-known
datasets: the PETA [17] and the Richly Annotated Pedestrian (RAP)
[15], with both being among the most frequently used benchmarks in
PAR experiments.

4.1. Datasets

RAP [15] is the largest and themost recent dataset in the area of sur-
veillance, pedestrian recognition, and human re-identification. It was
collected at an indoor shopping mall with 25 HD cameras (spatial reso-
lution 1,280 × 720) during one month. Benefiting from a motion detec-
tion and tracking algorithm, authors have processed the collected
videos, which resulted in 84,928 human full-body images. The resulting
bounding boxes vary in size from 33 × 81 to 415 × 583. The annotations
provide information about the viewpoint (‘front’, ‘back’, ‘left-side’, and
‘right-side’), body occlusions, and body-part pose, alongwith a detailed
specification of the train-validation-test partitions, person ID, and 111
binary human attributes. Due to the unbalanced distribution of the
Table 1
RAP dataset annotations.

Branch Annotations

Soft
Biometrics

Gender, Age, Body figure, Hairstyle, Hair color

Clothing
Attributes

Hat, Upper body clothes style and color, Lower body clothes style
and color, Shoe style

Accessories Glasses, Backpack, Bags, Box
Action Telephoning, Talking, Pushing, Carrying, Holding, Gathering
attributes and insufficient data for some of the classes, only 55 of
these binary attributes were selected [15]. Table 1 shows the categories
of these attributes. It is worth mentioning that, as the annotation pro-
cess is performed per subject instance, the same identity may have dif-
ferent attribute annotations in distinct samples.

PETA [17] contains ten different pedestrian image collections gath-
ered in outdoor environments. It is composed of 19,000 images corre-
sponding to 8705 individuals, each one annotated with 61 binary
attributes, from which 35 were considered with enough samples and
selected for the training phase. Camera angle, illumination, and the res-
olution of images are the particular variation factors in this set.

4.2. Evaluation metrics

PAR algorithms are typically evaluated based on the standard classi-
fication accuracy per attribute, and on themeanaccuracy (mA) of the at-
tribute. Further, themean accuracy over all attributeswas also used [36,
37]:

mA ¼ 1
2M

XM
m¼1

P̂m

Pm
þ N̂m

Nm

 !
; ð6Þ

wherem denotes one attribute, andM is the total number of attributes.
For each attributem, Pm, Nm, P̂m, and N̂m stand for the number of pos-
itive samples, negative samples, correctly recognized as positive sam-
ples, correctly identified as negative samples.

4.3. Preprocessing

RAP and PETA samples vary in size, with each image containing ex-
clusively one subject annotated. Therefore, to have constant ratio im-
ages, we first performed a zero-padding and then resized them into
256 × 256. It worth mentioning that, after each residual block, the
input size is divided by 2. Therefore, as we have implemented the back-
bone with 4 residual stages, to multiply the binary mask and feature
maps with a size of 16 × 16, the input size should be 256 × 256. Note
that the sharp edges caused by these zero pads do not affect the net-
work due to the presence of themultiplication layer before the classifica-
tion layers.

To assure a fair comparison between the tested methods, we used
the same train-validation-test splits as in [15]: 50,957 images were
used for learning, 16,986 for validation purposes, and the remaining
16,985 images used for testing. The same strategy was used for the
PETA dataset. Table 2 shows the parameter settings of our multi-task
network.

4.4. Implementation details

Our method was implemented using Keras 2.2.5 with Tensorflow
1.12.0 backend [38], and all the experiments were performed on a ma-
chine with an Intel Core i5 − 8600K CPU @ 3.60 GHz (Hexa Core | 6
Threads) processor, NVIDIA GeForce RTX 2080 Ti GPU, and 32 GB RAM.
Table 2
Parameter Settings for the experiment on RAP dataset.

Parameter Value

Image input shape 256 × 256 × 3
Mask input shape 16 × 16 × 3
Learning rate 1 × e−4

Learning decay 1 × e−6

Number of epochs 200
Drop-out probability 0.7
Batch size 8



Table 3
Task specification policy for PETA and RAP datasets.

Dataset Task 1 (full body) Task 2
(head)

Task 3
(upper body)

Task 4
(lower body)

Task 5
(foot wears)

Task 6
(accessories)

Task 7
(action)

PETA Female, Male, AgeLess30,
AgeLess45, AgeLess60,
AgeLarger60

Hat,
LongHair,
Scarf,
Sunglasses,
Nothing

Casual, Formal, Jacket,
Logo, Plaid,
ShortSleeves, Strip,
Tshirt, Vneck, Other

Casual, Formal,
Jeans, Shorts,
ShortSkirt,
Trousers

LeatherShoes,
Sandals,
FootwearShoes,
Sneaker

Backpack,
MessengerBag,
PlasticBags,
CarryingNothing,
CarryingOther

–

RAP Female, Male, AgeLess16,
Age17–30, Age31–45, Age46–60,
BodyFat, BodyNormal, BodyThin,
Customer, Employee

BaldHead,
LongHair,
BlackHair,
Hat, Glasses

Shirt, Sweater, Vest,
TShirt, Cotton, Jacket,
SuitUp, Tight,
ShortSleeves, Others

LongTrousers,
Skirt, ShortSkirt,
Dress, Jeans,
TightTrousers

Leather, Sports,
Boots, Cloth,
Casual, Other

Backpack, ShoulderBag,
HandBag, Box,
PlasticBag, PaperBag,
HandTrunk, Other

Calling, Talking,
Gathering, Holding,
Pushing, Pulling,
CarryingByArm,
CarryingByHand

Table 6
Comparison of the results observed in the RAP dataset (mean accuracy percentage). The
highest accuracy values per attribute among all methods appear in bold.

Attributes ACN [7] DeepMar [15] Proposed

Female 94.06 96.53 96.28
AgeLess16 77.29 77.24 99.25
Age17–30 69.18 69.66 69.98
Age31–45 66.80 66.64 67.19
Age46–60 52.16 59.90 96.88
BodyFat 58.42 61.95 87.24
BodyNormal 55.36 58.47 78.20
BodyThin 52.31 55.75 92.82
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The proposed CNN architecture was fulfilled as a dual-step network.
At first, we applied the body segmentation network (i.e., Mask R-CNN,
explained in the next subsection) to extract the human full-body
masks. We then trained a two-input multi-task network that receives
the preprocessed masks and the input data. It is worth mentioning
that, on account of the spreading or gathering nature of the attributes
features in the full-body human images, we intuitively clustered all
the binary attributes into 7 and 6 groups for the experiments on RAP
and PETA, respectively, as given in Table 3.

As above stated, we used the pre-trainedMask R-CNN [39] to obtain
all the foreground masks in our experiments. The used segmentation
model was trained in the MS-COCO dataset [40]. Table 4 provides the
details of our implementation settings.
Table 4
Mask R-CNN parameter settings.

Parameter Value

Image input dimension 1024 × 1024 × 3
RPN anchor scales 32, 64, 128, 256, 512
RPN anchor ratio 0.5, 1, 2
Number of proposals per image 256

Table 5
Comparison between the results observed in the PETA dataset (mean accuracy percent-
age). The highest accuracy values per attribute among all methods appear in bold.

Attributes DeepMar [15] MLCNN [16] Proposed

Male 89.9 84.3 91.2
AgeLess30 85.8 81.1 85.3
AgeLess45 81.8 79.9 82.7
AgeLess60 86.3 92.8 93.9
AgeLarger60 94.8 97.6 98.6
Head-Hat 91.8 96.1 97.4
Head-LongHair 88.9 88.1 92.3
Head-Scarf 96.1 97.2 98.2
Head-Nothing 85.8 86.1 90.7
UB-Casual 84.4 89.3 93.4
UB-Formal 85.1 91.1 94.6
UB-Jacket 79.2 92.3 95.0
UB-ShortSleeves 87.5 88.1 93.4
UB-Tshirt 83.0 90.6 93.8
UB-Other 86.1 82.0 84.8
LB-Casual 84.9 90.5 93.7
LB-Formal 85.2 90.9 94.0
LB-Jeans 85.7 83.1 86.7
LB-Trousers 84.3 76.2 78.9
Shoes-Leather 87.3 85.2 89.8
Shoes-Footwear 80.0 75.8 79.8
Shoes-Sneaker 78.7 81.8 86.6
Backpack 82.6 84.3 89.2
MessengerBag 82.0 79.6 86.3
PlasticBags 87.0 93.5 94.5
Carrying-Nothing 83.1 80.1 85.9
Carrying-Other 77.3 80.9 78.8
Average of 27 Att. 85.4 86.6 90.0
Average of 35 Att. 82.6 – 91.7

Customer 80.85 82.30 96.98
Employee 85.60 85.73 97.67
BaldHead 65.28 80.93 99.56
LongHair 89.49 92.47 94.67
BlackHair 66.19 79.33 94.94
Hat 60.73 84.00 99.02
Glasses 56.30 84.19 96.76
UB-Shirt 81.81 85.86 83.93
UB-Sweater 56.85 64.21 92.66
UB-Vest 83.65 89.91 96.91
UB-TShirt 71.61 75.94 77.17
UB-Cotton 74.67 79.02 89.48
UB-Jacket 78.29 80.69 71.93
UB-SuitUp 73.92 77.29 97.18
UB-Tight 61.71 68.89 96.10
UB-ShortSleeves 88.27 90.09 90.79
UB-Others 50.35 54.82 97.91
LB-LongTrousers 86.60 86.64 84.88
LB-Skirt 70.51 74.83 97.37
LB-ShortSkirt 73.16 72.86 98.10
LB-Dress 72.89 76.30 97.34
LB-Jeans 90.17 89.46 91.56
LB-TightTrousers 86.95 87.91 94.71
Shoes-Leather 71.92 80.50 84.00
Shoes-Sports 62.59 71.58 80.68
Shoes-Boots 85.03 91.37 96.68
Shoes-Cloth 68.74 72.31 98.67
Shoes-Casual 54.57 64.58 77.74
Shoes-Other 52.42 61.56 92.00
Backpack 68.87 80.61 98.03
ShoulderBag 69.30 82.52 93.29
HandBag 63.95 76.45 97.64
Box 66.72 76.18 96.30
PlasticBag 61.53 75.20 97.78
PaperBag 52.25 63.34 99.07
HandTrunk 79.01 84.57 97.74
Other 66.14 76.14 71.54
Calling 74.66 86.97 97.13
Talking 50.54 54.65 97.54
Gathering 52.69 58.81 95.47
Holding 56.43 64.22 97.71
Pushing 80.97 82.58 99.15
Pulling 69.00 78.35 98.24
CarryingByArm 53.55 65.40 97.77
CarryingByHand 74.58 82.72 87.57
Other 54.83 58.79 99.13
Average 68.92 75.54 92.23



Table 7
Ablation studies. The first row shows our baseline system with a multi-label architecture
and binary-cross-entropy loss function, while the other rows indicate the proposed sys-
tem with various settings.

Multi-task
architecture

Multiplication
Layer

Weighted Loss
(Binary-cross-entropy)

mAP
(%)

– – – 81.11
✓ – – 89.18
✓ – ✓ 89.35
✓ ✓ – 89.73
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By feeding the input images to the convolutional building blocks, we
obtain a set of featuremaps thatwill bemultiplied by the corresponding
mask, using the element-wise multiplication layer. This layer receives
two inputs with the same shapes. Transferring the input data with
shape of 256 × 256 × 3 into a 4-residual block backbone, we obtain a
16 × 16 × 1,024-shaped output. Also, masks are resized to have the
same size as the corresponding feature maps. Therefore, as a result of
multiplying the binary mask and featuremaps, we obtain a set of atten-
tion glimpses with the 16 × 16 × 1,024 shape. These glimpses are down-
sampled to 1,024 features using a global average pooling layer to de-
crease the sensitivity of the locations of the features in the input
image [41]. Afterward, in the interest of training one classifier for each
task, a Dense[ReLU] → DropOut → Dense[ReLU] → DropOut → Dense
[ReLU] → Dense[Sigmoid] architecture is stacked on top of the shared
layers for each task.
Fig. 5. The effectiveness of themultiplication layer on filtering the background features from the
presents the ground truth binary mask (the first input of the multiplication layer), the column
before applying the multiplication operation, and the columns with After label show the outpu

Fig. 6. Illustration of the effectiveness of the multiplication layer upon the focus ability of the
network predicting the age and gender attributes.
4.5. Comparison with the state-of-the-art

We compared the performance attained by our method to three
baselines, that were considered to represent the state-of-the-art: ACN
[7], DeepMar [15], and MLCNN [16] on the RAP and the PETA datasets.
These methods have been selected for two reasons: 1- in a way similar
to our method, ACN and DeepMar are global-based methods (i.e., they
extract features from the full-body images) 2- Authors of thesemethods
have reported the results for all the attributes in a separate way, assur-
ing a fair comparison between the performance of all methods.

As the solution proposed in this paper, the ACN [7] method analyzes
the full-body images and jointly learns all the attributes without relying
on additional information. DeepMar [15] is a global-based end-to-end
CNNmodel that provides all the binary labels for the input image, simul-
taneously. In [16], authors propose a multi-label convolutional neural
network (MLCNN) that divides the input image into overlapped parts
and fuses the features of each CNN to provide the binary labels for the
pedestrians. Tables 5 and 6 provide the obtained results observed for
the three methods considered in the PETA and RAP datasets.

Table 5 shows the evaluation results of the DeepMar and MLCNN
methods, including our model on the PETA dataset. According to this
table, our model shows superior recognition rates for 22 (out of 27) at-
tributes, concluded to more than 3% improvement in total accuracy. If
we consider 35 attributes, the proposed network achieves a 91.7% rec-
ognition rate while this value for the DeepMar approach is 82.6%.

The experiment carried out without considering image augmenta-
tion (i.e., 5-degree rotation, horizontal flip, 0.02 width and height shift
featuremaps. The far left column shows the input images to the network, theMask column
s with Before label (the second input of the multiplication layer) display the feature maps
t of the multiplication layer.

proposed model in case of partial occlusions. Samples regard the PETA dataset, with the



Fig. 7. Visualization of the heat maps resulting of the proposed multi-task network. Sample regard the PETA dataset. The leftmost column shows the original samples, the column Task 1
(i.e., recognizing age and gender) presents the effectiveness of the network focus on the human full-body, and the remaining columns display the ability of the system on region-based
attribute recognition. The task policies are given in Table 3.
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range, 0.05 shear range, 0.08 zoom range and changing the brightness in
the interval [0.9,1.1]), showed 85.5% and 88.2% average accuracy for 27
and 35 attributes, respectively. We augmented the images randomly,
and after the visualization of some images, we determined the values
in augmentations.

As shown in Table 6, the average recognition rates for the ACN
and DeepMar methods respectively were 68.92% and 75.54%,
while our approach achieved more than 92%. In particular, exclud-
ing five attributes (i.e., Female, Shirt, Jacket, Long Trousers, and
Other class in attachments category), our PAR model provides noto-
riously better results than the DeepMar method, and better than the
ACN model in all cases.

The proposed method shows superior results in both datasets;
however, in 22 attributes of the RAP benchmark, the recognition
percentage is yet less than 95%, and in 7 cases, this rate is even
less than 80%. The same interpretation is valid for the PETA dataset
as well, which indicates the demands of more research works in the
PAR field of study.

4.6. Ablation studies

In this section, we study the effectiveness of the mentioned contri-
butions in Fig. 3. To this end, we trained and tested a light version of
the network (with three residual blocks and input image size
128 × 128) on the PETA dataset with similar initialization, but different
settings (Table 7). The first row of Table 7 shows the performance of a
network, constructed from three residual blocks with four shared fully
connected layers on top, plus one fully connected layer for each attri-
bute. In this architecture, as the system cannot decide on each task inde-
pendently, the performance is poor (81.11%), and the network cannot
predict theuncorrelated attributes (e.g., behavioral attributes versus ap-
pearance attributes) effectively. However, the results in the second row
of Table 7 show that repeating the fully connected layers for each task
independently (while keeping the rest of the architecture unchanged),
improves the results by around 8%. Furthermore, equipping thenetwork
with the proposed weighted loss function (Table 7, row 3) and adding
theMultiplication layer (Table 7, row 4) showed further improvements
in the performance to 89.35% and 89.73%, respectively.

4.6.1. Feature map visualization
Neural networks are known as poorly interpretable models. How-

ever, as the internal structures of the CNNs are designed to operate
upon two-dimensional images, they preserve the spatial relationships
for what it is being learned [42]. Hence, by visualizing the operations
on each layer, we can understand the behavior of the network. As a re-
sult of slicing the small linear filters over the input data, we obtain the



Table 8
Performance of the network trained with different loss functions on PETA dataset.

Loss function mAP (%)

Binary focal loss function [43] 79.30
Weighted BCE loss function [6] 90.19
Proposed weighted loss function (with BCE) 90.34
Proposed weighted loss function (with binary focal loss) 89.27
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activation maps (feature maps). To analyze the behavior of the pro-
posed multiplication layer (Fig. 3), we visualized the input and output
featuremaps in Fig. 5, such that the columns labeled asMask and Before
refer to the inputs of the layer, and the columns labeled as After show
the multiplication results of the two inputs. As it is evident, unwanted
features resulting from the partial occlusionswere filtered from the fea-
ture map, which improved the overall performance of the system.

4.6.2. Where is the network looking at?
As a general behavior, CNNs infer what could be the optimal local/

global features of a training set and generalize them to decide on unseen
data. Here, partial occlusions can easily affect this behavior and decrease
the performance, being helpful to understand where the model is actu-
ally looking at in the prediction phase. To this end, we plot some heat
maps to investigate the effectiveness of the proposed multiplication
layer and task-oriented architecture. Heat maps are easily understand-
able and highlight the regions on which the network focuses while
making a prediction.

Fig. 6 shows the behavior of the system regarding the exampleswith
partial occlusions. As it is seen, the proposed network is able to filter the
harmful features of the distractors effectively, while focusing on the tar-
get subject. Moreover, Fig. 7 shows themodel behavior during the attri-
bute recognition in each task.

4.6.3. Loss function
Table 8 provides the performance of the proposed network, when

using different loss functions suitable for binary classification. Focal
loss [43] forces the network to concentrate on hard samples, while the
weighted Binary Cross-Entropy (BCE) loss [6] allocates a specific binary
weight to each class. Training the network using binary focal loss func-
tion showed 79.30% accuracy in the test phase, while this number was
90.19% for the weighted BCE loss (see Table 8).

The proposed weighted loss function uses the BCE loss function,
while recommends different weights for each class. We further trained
the proposed model with the binary focal loss function using the pro-
posed weights. The results in Table 8 indicate a slight improvement in
the performance when we train the network using the proposed
weighted loss function with BCE (90.34%).

5. Conclusions

Complex background clutter, viewpoint variations, and occlusions
are known to have a noticeable negative effect on the performance of
person attribute recognition (PAR)methods. According to this observa-
tion, in this paper, we proposed a deep-learning framework that im-
proves the robustness of the obtained feature representation by
directly discarding the background regions in the fully connected layers
of the network. To this end, we described an element-wise multiplica-
tion layer between the output of the residual convolutional layers and
a binary mask representing the human full-body foreground. Further,
the refined feature maps were down-sampled and fed to different
fully connected layers, that each one is specialized in learning a particu-
lar task (i.e., a subset of attributes). Finally, we described a loss function
that weights each category of attributes to ensure that each attribute re-
ceives enough attention, and there are not some attributes that bias the
results of others. Our experimental analysis on the PETA and RAP
datasets pointed for solid improvements in the performance of the pro-
posed model with respect to the state-of-the-art.
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