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phone: + (351) 275242081, fax: + (351) 275319899, email: hugomcp@di.ubi.pt
web: www.di.ubi.pt/˜ hugomcp

ABSTRACT
To date, no research effort has produced a machine able to
covertly recognize human beings. Contrary to popular belief,
such automata are confined to science fiction, although itÕs
not hard to anticipate the potential impact that they would
have in the security and safety of modern societies (forensics
and surveillance). Among the research programs that pur-
suit such type of biometric recognition, previous initiatives
sought to acquire data from moving subjects, at long dis-
tances and under uncontrolled lighting conditions. This real-
world scenario brings many challenges to the Pattern Recog-
nition process, essentially due to poor quality of the acquired
data. Several programs now seek to increase the robustness
to noise of each phase of the recognition process (detection,
segmentation, normalization, encoding and matching). This
paper addresses the feasibility of such extremely ambitious
type of biometric recognition, discusses the major issues be-
hind the development of this technology and points some di-
rections for further improvements.

1. INTRODUCTION

The iris is known as one of the most valuable traits to perform
the automatic recognition of human beings and growing at-
tention has been paid to the development of iris recognition
systems [3]. A number of reasons justify such interest: (1)
it is a naturally protected internal organ that is visible from
the exterior; (2) it has a near circular and planar shape that
turns easier its segmentation and parameterization and (3) its
texture has a predominantly randotypic chaotic appearance
that is stable over lifetime. The accuracy of the deployed
iris recognition systems is remarkable: a study of 200 billion
cross-comparisons conducted by Daugman [6] reported false
acceptance rates of order 10−6 with false rejections of 1%
and other independent evaluations ([9] and [11]) confirmed
these results.

Regardless a few recent innovations (e.g., the iris-on-the-
move project [12]), deployed iris recognition systems are
quite constrained: subjects should stop-and-stare close to the
acquisition device while their eyes are illuminated by a near
infra-red (NIR) light source that enables the acquisition of
good quality images. Recently, several initiatives sought to
increase acquisition distance and relax constraints by making
use of visible wavelength (VW) light imagery, which broads
the applicability of this technology to any domain where the
subjects cooperation is not expectable and has obvious appli-
cations in terms of safety and security of modern societies.

However, as illustrated in figure 1, the use of VW
light and the unconstrained data acquisition setup lead to
notorious differences in the appearance of the captured data,
which justifies the need of specialized recognition strategies
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Figure 1: Comparison between the typicall appearance of
an (a) iris image acquired in highly constrained conditions
in the near-infrared wavelength (WVU database [17]) and
an (b) image acquired in the visible wavelength in uncon-
strained imaging conditions, at-a-distance and on-the-move
(UBIRIS.v2 database [16]).

to meet the full range of operational requirements.

Why Use Visible Wavelength Light?

Current recognition systems require high illumination
levels, sufficient to maximize the signal-to-noise ratio in
the sensor and to capture enough discriminating iris fea-
tures with sufficient contrast. However, if similar processes
were used to acquire iris images from longest distances, ac-
ceptable depth-of-field values would demand significantly
higher f-numbers for the optical system, corresponding di-
rectly (squared) with the amount of light required for the
process. Similarly, the motion factor will demand very short
exposure times, which again will require too high levels of
light. The American and European standards councils ([1]
and [8]) proposed safe irradiance limits for NIR illumination
of near 10 mW / cm2. In addition to other factors that deter-
mine imaging system safety (blue light, non-reciprocity and
wavelength dependence), these limits should be taken into
account, as excessively strong illumination can cause perma-
nent eye damage. The NIR wavelength is particularly haz-
ardous, because the eye does not instinctively respond with
its natural mechanisms (aversion, blinking and pupil contrac-
tion).

The pigmentation of the human iris consists mainly of
two molecules: brown-black Eumelanin (over 90%) and
yellow-reddish Pheomelanin [13]. Eumelanin has most of
its radiative fluorescence under the VW, which—if properly
imaged—enables the capture of a much higher level of de-
tail, but also of many more noisy artifacts, including spec-



Figure 2: Spectral radiance of the human iris according to
the levels of iris pigmentation [10].

ular and diffuse reflections and shadows. Also, the spectral
radiance of the iris in respect of the levels of its pigmentation
varies much more significantly in the VW than in the NIR
(Figure 2). These optical properties are the biological roots
behind the higher heterogeneity of the VW iris images, when
compared to the traditional NIR data.

2. NON-COOPERATIVE ACQUISITION
FRAMEWORK

The initial task comprised the construction of a data set able
to be used in all subsequent experiments. Thus, the major
purpose of the UBIRIS.v2 [16] data set is to constitute a
tool to evaluate the feasibility of VW iris recognition under
non-ideal conditions. The various types of degraded images,
imaging distances, subject perspectives and lighting condi-
tions on this database are of strong utility in the specification
of the VW iris recognition feasibility and constraints. Fig-
ure 3a gives a global perspective of the acquisition frame-
work and of the environment the UBIRIS.v2 data set was
collected. In order to disburden the imaging sessions for vol-
unteers and maximize the number of usable images per sub-
ject, we decided to perform data acquisition manually. In
the meanwhile, a completely automated acquisition frame-
work was devised, being composed by two commercial web
cameras, a pan-and-tilt device and an high resolution cam-
era (Figure 3b). The process starts by a software module that
performs the detection of human silhouettes, according to the
data acquired from one of the web cameras. Using this infor-
mation and a set of semantic rules, a region of the scene is
cropped and given to the real time face detector module (ac-
cording to the well known method of Viola and Jones [18]).
This phase gives the 2D position (x,y) of a face in the scene,
which is sent to a stereo vision module that collects data from
both web cameras and infer the subject depth in the scene,
i.e., the distance z between the acquisition camera and the
subject. Using the pan-and-tilt device, the acquisition camera
is directed to the 3D scene point at coordinates (x,y,z) and an
image that contains approximately the region of the subject’s
head is captured. Finally, using a set of biologically-based
semantic rules, a region that contains the subject’s eyes is
cropped and used in the biometric recognition phases.

As illustrated in Figures 4 and 5, images of the
UBIRIS.v2 data set are degraded by several factors and are
highly heterogeneous, regarding the lighting conditions of
the environment. Through visual inspection, fourteen dif-
ferent factors were detected and classified into one of two

(a)

(b)

Figure 3: Overview of the image acquisition frameworks (a)
used to collect the UBIRIS.v2 data set (A,B: cameras; C,D:
light sources; E: subject and (b) used to perform automatic
image acquisition, with similar labels to the manual configu-
ration.

major categories: local or global, as they affect exclusively
image regions or the complete image. The local category
comprises iris obstructions, reflections, off-angle and partial
images, while the global comprises poor focused, motion-
blurred, rotated, improper lighting and out-of-iris images.

Figure 4: Example of a sequence of close-up iris images ac-
quired at different distances (between eight and four meters),
on a moving subject and under dynamic lighting conditions.

3. RECOGNITION SPECIFICITY

Previous works had reported an almost infinitesimal prob-
ability of producing a false match in comparing signatures
extracted from good quality data (e.g., [7], [4], [9] and [11]),
which is due to the chaotic appearance of the iris texture and
regarded as one of the technology’s major advantages, when
compared to other biometric traits. This section goes one
step beyond and analyzes the probability of producing false
matches when comparing degraded iris samples (or from par-



(a) Good quality iris image. (b) Off-angle iris image. (c) Poor focused iris image. (d) Rotated iris image. (e) Motion-blurred iris image.

(f) Iris obstructions due to eyelids. (g) Iris obstructions due to eye-

lashes.

(h) Iris obstructions due to glasses. (i) Iris obstructions due to contact

lenses.

(j) Iris obstructions due to hair.

(k) Iris imaging in poor lighting

conditions.

(l) Iris with specular reflections. (m) Iris with lighting reflections. (n) Partial captured iris. (o) Out-of-iris image.

Figure 5: Comparison between a good quality image (Figure 5a) and several types of non-ideal images of the UBIRIS.v2
database. These images resulted of less constrained imaging conditions, under varying lighting conditions, at-a-distance and
on-the-move subjects.

tial or non-iris regions due to failures on the eye detection
and segmentation modules). This hypothesis was tested us-
ing the recognition method proposed by Daugman [7] - com-
posed by iris segmentation, normalization, encoding (bidi-
mensional Gabor wavelets) and matching (Hamming dis-
tance) - we extracted 1 000 signatures from UBIRIS.v2 im-
ages with good quality. Then, we extracted a set of signatures
from 1 000 degraded images, 10 000 non-iris or partial iris
images and 10 000 natural and synthetic textures. Finally,
using an ’one against all comparison scheme, we performed
a total of 21 000 000 comparisons between signatures. Dur-
ing these tests we didn’t get a single dissimilarity value close
to the usual acceptance threshold (0.33), which means that
not even a single false acceptance was observed if the tra-
ditional acceptance thresholds are used. Figure 6 gives the
histogram of the obtained dissimilarity values (vertical bars)
and the approximated Gaussian distribution (line plot with
µ = 0.49992 and σ = 0.02419). We confirmed that, even on
highly degraded data, the used iris encoding and comparison
strategies produce a false match with almost null probability.
Based on the parameters of the fitted Gaussian distribution,
the probability of producing a dissimilarity value lower than
0.33 will be approximately of 1.03923 × 10−12. Once again,
the role of this value for the type of recognition discussed in
this paper should be stressed: it can be assumed with extreme
confidence that non-cooperative recognition systems will not
produce false matches and — thus — any match reported has
a full probability of being genuine.

Figure 6: Histogram of the obtained dissimilarities when
comparing signatures extracted from 1 000 templates with
good quality and 21 000 signatures extracted from iris im-
ages with bad quality, partial irises and non-iris data. ”R-
square” gives the goodness-of-fit of the plotted Gaussian dis-
tribution with µ = 0.499 and σ = 0.024 to the obtained re-
sults.

4. RECOGNITION SENSITIVITY

As above stated, the uncontrolled acquisition setup leads to
data with heterogeneous quality. In this scope, quality as-
sessment is a fundamental task: the goal is to quantify char-



acteristics and fidelity of the segmented data, particularly in
terms of its utility. This is essential, as performing recogni-
tion in too much degraded data decreases matching accuracy
and increases computational complexity.

According to the afore observations, this section aims at
giving an approximation of the recognition rates that non-
cooperative iris recognition systems would achieve, accord-
ing to the quality of the used data. Again, we used the clas-
sical Daugman’s recognition strategy [7] for our experiments
and, according to this choice, the iris boundaries were nor-
malized to dimensionless polar coordinates. Then, a bank of
Gabor filters was used to analyze the iris texture and the angle
of each phasor quantized to one of four quadrants. Finally,
the fractional Hamming distance gave the dissimilarity be-
tween two irises. A subset of 10 427 UBIRIS.v2 images was
selected, which under visual inspection we verified that the
segmentation method has accurately segmented. For com-
prehensibility, we refer to a recognition test when each sam-
ple of a data set is matched against all the remaining images
of the the same data set, resulting in two types of compar-
isons: intra-class (genuine) and inter-class (impostor). As
suggested by Daugman [5], for two-choice decisions the de-
cidability index d′ measures how well separated are the two
types of distributions and recognition errors correspond to
their overlap area:

d′ =
|µE −µI |√
1
2 (σ

2
I +σ2

E)
(1)

where µI and µE are the means of the two distributions
and σI and σE their standard deviations.

Figure 7 compares the histograms of the fractional Ham-
ming distances for the genuine (light bars) and impostor
(dark bars) comparisons obtained when all images were used
in the recognition test (Figure at the far left) and when the
poorest quality samples (according to the visual perception
of quality) were rejected (Figure at the center). The line plots
correspond to the fitted Normal distributions and the upper
left corner gives the corresponding decidability index d′. As
general considerations, we confirmed that values obtained for
the impostor distributions do not significantly vary according
to the quality of the data and are almost the same reported for
the NIR constrained recognition setups. Oppositely, there is
a significant movement of the genuine distributions toward
the impostors, substantially decreasing the sensitivity of the
system, if traditional acceptance thresholds are used. Due
to this, the decidability of the VW recognition systems sig-
nificantly varied. Figure 7c shows how the true and false
matches in our system would change according to different
decision thresholds, when no quality is considered (continu-
ous line) and when only samples with good quality are con-
sidered for recognition (dashed line). Here, we plot the area
under curve (AUC) for both setups, which significantly aug-
ments as the poorest quality samples are rejected.

5. CONCLUSIONS AND DIRECTIONS

The possibility of performing automatic recognition of hu-
man beings in uncontrolled environments and without re-
quiring them any type of cooperation is of evident interest
or forensic and security purposes and represents a grand-
challenge for the pattern recognition community. This paper
discussed the use of VW light to acquire iris images from

moving subjects without requiring them any active partic-
ipation and the potential use of such data to perform bio-
metric recognition. We presented the main characteristics of
a data set that is free available for the research community
(UBIRIS.v2), and highlighted some of the issues behind the
development of this type of recognition.

Due to the evident impact that the type of recognition dis-
cussed in this paper would have in modern societies, multiple
research efforts are now putted in the development of such
technology. Among those, there is an extremely promising
new type of biometric recognition called periocular biomet-
rics that refers to the regions in the immediate vicinity of the
eye (Figure 8) and attempts to perform recognition based not
only in the iris but also to its neighborhood.

Figure 8: Periocular biometrics refers to the automatic recog-
nition of human beings using not only the information of the
iris texture but also of the surrounding information (eyelids,
eyelashes, skin, eyebrow). This type of recognition can pro-
vide a significant improvement toward the development of
recognition methods that perform surreptitiously and in un-
constrained environments.

As argued by [15] and [14], periocular recognition is a
trade-off between using the entire face region or only the iris:
it avoids the resolution problems of iris images captured at
long distances and can be used for a wide range of distances.
Also, face images acquired from unconstrained environments
often suffer from poor illumination, motion blur, low resolu-
tion and pose variations. that significantly degrade the ef-
fectiveness of face recognition techniques. To the best of
our knowledge, few studies have been conducted on the use
of the periocular region as a biometric trait. Park et al. [15]
used both local and global image features to match periocular
images acquired with visible light and established its utility
as a soft biometric trait. Miller et al. [14] used Local Bi-
nary Pattern (LBP) to encode and match periocular images.
Bharadwaj et al. [2] proposed the fusion between global and
local data encoding and matching strategies, having reported
highly promising performance in UBIRIS.v2 images.
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Figure 7: Comparison between the histograms of the fractional Hamming distances obtained (a) for a sub-set of 10 427 images
of the UBIRIS.v2 database and (b) when samples of poor quality are not considered to the recognition test. Figure at far right
gives the corresponding Receiver Operating Characteristic curves.
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