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Abstract: In biometrics research, the periocular region has been regarded as an interesting trade-off between the face and the iris,
particularly in unconstrained data acquisition setups. As in other biometric traits, the current challenge is the development of more
robust recognition algorithms. Having investigated the suitability of the ‘elastic graph matching’ (EGM) algorithm to handle non-
linear distortions in the periocular region because of facial expressions, the authors observed that vertices locations often not
correspond to displacements in the biological tissue. Hence, they propose a ‘globally coherent’ variant of EGM (GC-EGM)
that avoids sudden local angular movements of vertices while maintains the ability to faithfully model non-linear distortions.
Two main adaptations were carried out: (i) a new term for measuring vertices similarity and (ii) a new term in the edges-cost
function penalises changes in orientation between the model and test graphs. Experiments were carried out both in synthetic
and real data and point for the advantages of the proposed algorithm. Also, the recognition performance when using the EGM
and GC-EGM was compared, and statistically significant improvements in the error rates were observed when using the GC-
EGM variant.
.

1 Introduction

Biometric recognition systems are known to provide
outstanding levels of performance and constitute a
particularly successful case in the pattern recognition area
[1]. Owing to this, current efforts are mainly concentrated
in the development of algorithms to increase the robustness
to uncontrolled data acquisition environments. Here, the
periocular region emerged as an interesting trait: it contains
the eye and its immediate vicinity (eyelids, eyelashes,
nearby skin area and eyebrows) and is a trade-off between
the whole face and the iris alone; it is easy to acquire
without user cooperation and does not require a controlled
lighting setup. Examples of relevant works on periocular
recognition are because of Park et al. [2] and Woodard
et al. [3].
Proposed by Lades et al. [4], the ‘elastic graph matching’

(EGM) algorithm is a popular choice for handling
non-linear local distortions. Its insight is the concept of
‘dynamic link architecture’, that models the structure of the
brain in terms of graphs. Most of the works in this scope
regarding the face recognition problem, but other
applications are reported in the literature: Cao et al. [5], for
recognising facial expressions; Zhao et al. [6], for face
alignment; and Stamou et al. [7], for object tracking. The
EGM receives a pair of images to match: the ‘model’ and
the ‘test’. Two graphs are superimposed on these and local
deformation parameters are estimated: at first, a global

phase finds the initial position and scaling factor for the test
graph; then, the local deformation parameters are sought
iteratively by a simulated annealing-based strategy.

1.1 Motivation and problem description

There is no other part of the human body where as many
muscles interact as in the face. Regarding the periocular
region, muscles from the ‘orbicularis oculi’ family play a
major role, but also muscles of the ‘nasalis, procerus,
quadratus labii superioris’ and ‘levator labii superioris’
families determine the non-linear distortions because of
expressions [8]. As an illustration, Fig. 1 gives two samples
of a subject with neutral (top-left) and happy (top-right)
expressions. The bottom image illustrates the changes in
appearance, where brightness directly corresponds to the
magnitude of changes.
Owing to the bio-mechanical nature of movements, some

cases are particularly improbable: (i) sudden local angular
distortions rarely occur, that is, the angles between adjacent
regions tend to be preserved. (ii) There is a strong spatial
correlation of displacements, determined by skin elasticity.
Having investigated the suitability of the EGM algorithm to
handle the effect of facial expressions, two major
weaknesses were observed: the algorithm allows changes in
the position of vertices that are practically impossible
because of biological constraints. Also, the magnitude of
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the displacements with respect to neighbour vertices is often
less correlated than it should.
Accordingly, this paper proposes two changes to the EGM

algorithm, and optimises its performance for periocular
recognition purposes. Changes regarding the matching cost
function, aiming at: (i) avoid sudden changes in the angular
location of vertices and (ii) handle slight changes in scale/
rotation in a better way, which often decrease the
correlation of displacements of neighbour vertices.
As illustrated in Fig. 2, angular distortions in the EGM test

graphs are frequent when the edges cost Se is small (Fig. 2b).
In this case, the location of most vertices in the test data is
accurately determined, but a few relevant exceptions occur
(highlighted by the dashed circles). This problem is not
alleviated if the edges cost is increased, as the algorithm
weakens its modelling ability (continuous ellipse in
Fig. 2d ). The variant of the EGM algorithm introduced in
this paper (Fig. 2c), henceforth designated as ‘globally
coherent EGM’ (CG-EGM), faithfully addresses the typical
distortions in the periocular region. Also, it should be
stressed that improvements in performance were obtained

without significant increases in the computational burden of
the matching process.

1.2 Related work

Several works about the EGM algorithm are reported in the
literature: Tefas et al. [9] reformulated the Fisher’s
discriminant ratio to a quadratic optimisation problem
subject to a set of inequality constraints, finding the optimal
separating hyperplanes and the polynomial decision
surfaces. Shin et al. [10] augmented the robustness of
Gabor jets information to changes in scale and rotation by
Fourier analysis. A new edges cost term forces that the
difference in angle of the corresponding edges in the model
and test graphs is below a threshold. Zafeiriou et al. [11]
used eigen-analysis to find the most discriminant features
from the jets and proposed a new similarity measure for
these. This work was subsequently extended in [12], by
proposing a similarity measure that fuses the feature
distance to nodes deformation. Also, the local similarity
values in the graph were weighted by coefficients derived
from discriminant analysis. More recently, Zafeiriou and
Pitas [13] proposed a technique for the selection of the
most discriminant facial landmarks for recognising facial
expressions. A kernel-based technique for feature extraction
is presented, concluding about significant improvements in
performance, when compared with the Gabor-based and
morphological variants of EGM.
Variations in the pre-processing phase of EGM aim at data

normalisation, in order to make easier the subsequent
processing phases. Kela et al. [14] used the Retinex colour
constancy algorithm before the feature extraction process.
Shin et al. [15] proposed an extension to faithfully handle
globally warped faces, by introducing warping-compensated
edges in the graph matching cost function. The method is
based in a feature set more robust to changes in scale and
rotation than Gabor coefficients. Also, a modified cost
function compensates for global affine warps between faces.
Kotropoulos et al. [16] introduced the concept of
morphological elastic graph matching, which main
discriminating point is the use of multi-scale morphological
operations to replace the Gabor-based image representation
phase. They proposed a probabilistic hill climbing
algorithm that does not distinguish between coarse and fine
matching. Finally, Serradell et al. [17] proposed a

Fig. 1 Changes inside the periocular region because of facial
expressions
Top-left image regards a neutral expression and the top-right image has a
‘happy’ expression. Image at the bottom shows the magnitude of the
differences between the aligned images, where brightness corresponds to
most notorious changes

Fig. 2 Illustration of a sudden angular deformation (denoted by the dashed circles in Fig. 2b), frequent in the EGM algorithm
These are movements of isolated vertices unlikely in biological data. At the other extreme, if the edges cost is too high, the algorithm weakens its modelling ability
(solid ellipse in Fig. 2d )
Small Se cost
a Model graph
b EGM
Large Se cost
c GC-EGM
d EGM
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geometric graph matching schema based on edges shape,
finding an affine transform that maps the test and the model
data. Non-linear deformations were modelled as Gaussian
processes and sets of neighbour edges grouped into
‘super-edges’ used in matching.
Based in the analysis of the above-described works, it is

evident that no previous work has focused on the
specificities of movements inside the periocular region,
which are far more constrained than in the case of the face.
This is the main motivation for the work described in this
paper: to propose a variant of the EGM particularly suitable
to model the distortions inside the periocular region.
As above summarised, none of the previously published

variants of the EGM adapts the behaviour of the algorithm
to the types of movements that are biologically possible for
a specific region. Hence, the variant proposed in this paper
can be regarded as an attempt to model biologically
plausible movements, by (i) adding a new term to the
edges-cost function and (ii) improving the robustness of the
terms that measures the similarity between jets. Our
motivations (and experiments) were focused in the
periocular recognition problem, but a similar approach
might be used for other types of biometric traits, according
to its plausible deformations. This is also regarded as a
strong point of the method proposed in this paper.
The remainder of this paper is organised as follows:

Section 2 summarises the EGM algorithm. Section 3
provides a description of the proposed changes. Section 4
presents and discusses the results and the conclusions are
given in Section 5.

2 Elastic graph matching algorithm

Let I be a greyscale image. The process starts by convolving
I with a set of Gabor kernels ψk [18], where k denotes the
wavelength and orientation of the kernel. The operator
W symbolises the convolution of I with all possible
parameterisations for k

(WI)(k) = ck × I (1)

A local description of I is obtained by sampling W at
logarithmically spaced frequency levels y and linearly
spaced orientations μ

ky,m = kye
ifm (2)

being ky = km/f
y, φμ = πμ/n, n is the number of orientations

and f is the spacing factor between kernels in the frequency
domain. The coefficients of (WI)ky,m constitute a feature
vector that describes the local properties of each image
point x, and is called a ‘jet’ J . Hence, a jet is a set of
complex coefficients for each image point, that is,
J = {J j} = {aje

ifj}. A similarity function between jets is
given by

S1 JM , J T( )
:=

∑
j aja

′
j$$$$$$$$$$$$$$∑

j a
2
j

∑
j a

′2
j

√ (3)

being JM and J T the jets extracted from the model and test
images. Considering that phase is ignored in S1, this function
behaves poorly against slight changes in translation, which
gave insight to a variant that considers both magnitude and

phase coefficients [19]

S2 JM , J T( )
:=

∑
j aja

′
j cos fj − f′

j

( )

$$$$$$$$$$$$$$∑
j a

2
j

∑
j a

′2
j

√ (4)

Edges encode information about the relative position of
vertices and enforce topology preservation. During the
matching process, this is imposed by penalising changes in
the length of edges between corresponding vertices in the
model and test graphs

Se1
DM

i, j, D
T
i, j

( )
:=

DM
i, j − DT

i, j

( )2

DM
i, j

( )2 (5)

being Δi,j the length of the edge between the ith and jth
vertices. According to the above, the similarity between
graphs is given by

C xT
( )

:= l
∑

i, j[E

Se DM
i, j, D

T
i, j

( )
−

∑

i[V

S1, 2 J T xT
( )

, JM( )

(6)

Finally, the algorithm seeks iteratively for the position of
vertices in the test graph that minimises C xT

( )
.

3 Globally coherent elastic graph matching

Let J y = J y
1, . . . , J y

k

{ }
be an arrangement of J , such that

elements in the jet are sorted according to the magnitude y of
the Gabor kernels. Also, J m is an arrangement with items
sorted according to the orientation of the Gabor kernels.
The similarity between jets in the model JM and test J T

graphs is given by the maximum value of the derivative
with respect to time of the sample cross-correlation

S3 JM , J T( )

:= max max
∂

∂t
aM∗ waT∗
∣∣ ∣∣

( )
, max

∂

∂t
fM
∗ wfT

∗
∣∣ ∣∣

( ){ }

(7)

being w the cross-correlation operator, t denotes time (vector
position), a

*
and φ

*
are the normalised version of coefficients

of J y and J m, so that autocorrelations at zero lag yield 1.0
value. As illustrated in Fig. 3, S3 finds the similarity peak
of JM and J T with different time-lags applied to one of
them. Intuitively, in case of a change in scale between
corresponding regions, correlation attains a maximum when
J T is shifted by the corresponding amount. Fig. 3b
illustrates three derivatives of the cross-correlation values:
for extremely correlated jet coefficients without time-lag
(dark grey line), for moderately correlated signals with
slight time-lag (light grey line) and poorly correlated signals
(grey line).
Also, a term was added to the edges-cost function, relating

the orientation of corresponding edges in the model and
test graphs. This term is in the ] − 1, 1[ interval and
penalises changes in orientation, constituting a topology
reinforcement factor. Let v1 = (x1, y1) and v2 = (x2, y2) be
adjacent vertices and v = (x1, y1)− (x2, y2) a vector
connecting these points. The new edges-cost function is
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given by

Se2
DM

i, j, D
T
i, j

( )

:=
DM

i, j − DT
i, j

( )2
lu (1+ d)− vM vT

( )
/ vM
∥∥ ∥∥ vT

∥∥ ∥∥( )( )( )

DM
i, j

( )2

(8)

being λθ a parameter that controls the amount of angular
distortions allowed, vM and vT the vectors in the model and
test graphs and δ a small positive constant. Fig. 4 illustrates

the rationale behind the proposed edges-cost function. The
grey line segment represents an edge in the model graph.
The grey surfaces compare the values of Se1

(upper figure)
and the proposed variant Se2

(bottom figure), with respect
to the location of vertex v2 in the test graph (axes x and y),
keeping the same location for v1. The insight is to consider
both the edge length and orientation, increasing the cost
when these values differ from the model graph.

4 Experiments and discussion

Initially, the comparison of performance between the EGM
algorithm and the proposed variant (GC-EGM) was carried
out in synthetic data, highlighting the behaviour of both
algorithms. Next, experiments were focused on the
periocular region, being divided into two parts: (i)
comparing the errors in keypoints registration and (ii)
comparing the recognition performance, which at the
bottom level is the meaningful factor. The optimisation of
the EGM and GC-EGM was done by exhaustive parameter
evaluation in a completely disjoint training data set,
selecting the parameters that minimise the registration or
recognition error rates.

4.1 Synthetic deformations

Four images with evident textures [http://www.
freestocktextures.com/texture/] – graffitis, wood, wall and
soil – were used and warped by a radial basis function.
Both algorithms were tested in this data and the errors in
keypoint registration obtained

E = 1
t w h

∑t

j=1

x(T)j , y(T)j

( )
− x(G)j , y(G)j

( )∥∥∥
∥∥∥
2

(9)

being (w, h) the image dimensions, (x(T)j , y(T)j ) the location
of the jth vertex in the test graph, (x(G)j , y(G)j ) the
ground-truth location and t the number of vertices in the
graph.
Results are given in Fig. 5, showing the error (9) below

each image. Eo denotes the error of the EGM and Ep gives
the error of the GC-EGM variant. In each image, the dark
grey lines represent the test graphs of the EGM and the

Fig. 3 Rationale behind the proposed function to measure jets similarity. In image
a Change in scale leads to maximal cross-correlation when a time-lag is applied to one of the jet coefficients of J y. A change in rotation leads to a similar
phenomenon, using J m. The dashed lines denote the corresponding jet coefficients that maximally correlate
b Derivatives of the cross-correlation with respect to time are given: highly correlated (dark grey line), moderately correlated (light grey line) and poorly correlated
(grey line) jet coefficients are shown

Fig. 4 Comparison between the edges cost in the EGM algorithm
(upper figure) and in the GC-EGM variant (bottom figure)
Orientation of the edge in the model graph is denoted by the grey line and the
axes x and y correspond to the position of the v2 vertex in the test graph, while
maintaining the location of v1
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light grey lines of the GC-EGM. It should be stressed that
error rates correspond to the median values observed, when
repeating the coarse (global) to fine (local) optimisation
processes twenty times per image/deformation.
Using the EGM as baseline, improvements were observed

in about 80% of the times, with an average decrease of the
error (9) near 8.40% (0.056 for the EGM and 0.051 for the
GC-EGM). Also, improvements were consistent among
images tested and for all the deformations. The slight
differences in performance among images – for a given
deformation – were explained by the different amounts of
information extracted by the Gabor jets configuration, that
obviously are data-dependent (four logarithmic spaced
wavelengths and four rotation angles linearly spaced were
used).

4.2 Periocular region: keypoints registration

Subsequently, a set of 100 images from the
‘FaceExpressUBI’ data set [http://www.di.ubi.pt/∼hugomcp/
EEGM] was used to compare the errors in keypoint
registration between the EGM and GC-EGM algorithms.
For each image, thirteen keypoints were manually marked
in the model and test images, corresponding to prominent
landmarks in the periocular region: eye corners (two
keypoints), iris centre (one), eyelids (four) and eyelashes
(six). Two versions of the experiment were carried out: (i)
using dense grids of t vertices, t:7 × 7 = 49 and t:14 × 14 =
196 to initialise the model and test graphs and (ii) using

sparse grids, comprising exclusively the manually annotated
landmarks. As in the experiments described in Section 4.1,
performance corresponds to the median error between
vertices in the test graph and the ground-truth.
Results are illustrated in Fig. 6 and summarised in Table 1.

Various parameters for the Gabor kernels were used,
assessing the impact on performance. Overall, the GC-EGM
was consistently better with non-overlapping confidence
intervals, yielding decreases in the error rates of about 15%
for dense grids and 25% for sparse grids. The dimension of
the feature space used in the jets only slightly improved the
results, whereas the effect of the number of vertices used
was much more evident. As expected, GC-EGM avoids
sudden changes in the location of vertices, and reinforces
topology preservation. The former observation was
particularly evident for graphs of sparse vertices, because of
the smaller number of edges. Also, the error rates observed
for sparse graphs were consistently higher than for dense
graphs, which we believe to have similar justification
(smaller number of edges).

4.3 Periocular region: recognition performance

In the final – and most important – experiment, we assessed
whether the GC-EGM contributes for improvements in
recognition performance, when compared with the EGM.
Here, the state-of-the-art periocular recognition algorithm
(because of Park et al. [2]) was used. The best
configurations observed for the EGM and GC-EGM in the

Fig. 5 Comparison between the error rates (9) obtained by the EGM algorithm (dark grey lines, errors denoted by Eo) and the proposed
GC-EGM variant (light grey lines, errors denoted by Ep)
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experiments of Section 4.2 were used: 14 × 14 dense grids
(196 vertices), each one described by 48 Gabor kernels. Of
about 2000 images of the ‘FaceExpressUBI’ data set from
100 subjects (20 frames per subject) were used, giving a
total of 8550 genuine and 950 000 impostor comparisons
(only comparisons between images of different sessions
were considered, guaranteeing the independence between
image pairs). Local binary patterns (LBPs) [20] and
histograms of oriented gradients [21] (HOGs) provided a
global description of the periocular region, extracted
from rectangular patches defined by adjacent graph vertices.
Plus, the scale invariant feature transform [22] (SIFT) was
used as local feature descriptor. For every pair of
images, HOGs and LBPs were concatenated and matched
by the Chi-square distance. The number of keypoints
correspondences was used as matching score for the SIFT.

Subsequently, results were fused at the score level, by a
weighted linear scheme. Having a set of scores si, the final
response of the system was given by

ŝ =
∑N

i=1

wisi (10)

where wi is the weight assigned to output of ith classifier
(weights were optimised by a logistic regression procedure
[23]), and N is the number of scores to be fused (N = 3).
Park et al. [2] used as reference point of the centre of

the iris with radius r, and defined the periocular
region-of-interest (ROI) as a 3r × 4r rectangle centred at the
iris. This is only satisfactory in case of frontal gazes. As
the iris is a moving component, in case of deviated gaze,

Fig. 6 Examples of the results obtained by the EGM algorithm (dark grey lines) and the proposed GC-EGM variant (light grey lines) in
modelling the distortions in the periocular region because of facial expressions
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the regions-of-interest would be notoriously different from
the frontal-gaze case. Hence, considering that some images
have deviated gaze, we used a method described in [24] to
determine the eye corners, and used these as reference for

defining the ROIs, obtaining a much more reliable
definition of ROIs (Fig. 7).
It is particularly important to perceive the effect of

GC-EGM not only for different facial expressions, but also
in cases where this factor is not evident. This is to prevent
that GC-EGM might improve performance for different
expressions, but has an opposite effect for similar
expressions. Hence, the data set was divided into two
subsets, as illustrated in Fig. 8: the first subset (set A)
contains exclusively neutral facial expressions, and the
second set (set B) includes seven facial expressions: neutral,
angry, fear, disgust, happy, sad and surprise.
Results obtained for set A are shown in Fig. 9, where the

left plot gives the density estimates of the genuine (light
grey) and impostors (dark grey) matching scores, for the
EGM (dashed lines) and GC-EGM (continuous lines)
algorithms. The black lines give the genuine and impostors
distributions when no compensation was carried out. The
most obvious effect of the EGM/GC-EGM is in the genuine
distribution, with a consistent movement away from the
impostor scores. In this case, even though facial expressions
are not evident, it is expected that ‘micro-facial’ expressions

Table 1 Summary of the error rates (9) observed by the
original EGM algorithm and the proposed variant GC-EGM in
modelling the effect of facial expressions in periocular images

Algorithm Error 95%
Conf.
Int.l

Parameters

EGM 0.051 ±0.002 7 × 7 dense grid; Gabor jet: four
wavelengths and four

orientations
GC-EGM 0.043 ±0.001 7 × 7 dense grid; Gabor jet: four

wavelengths and four
orientations

EGM 0.031 ±0.001 14 × 14 dense grid; Gabor jet: four
wavelengths and four

orientations
GC-EGM 0.026 ±0.001 14 × 14 dense grid; Gabor jet: four

wavelengths and four
orientations

EGM 0.049 ±0.002 7 × 7 dense grid; Gabor jet: eight
wavelengths and six orientations

GC-EGM 0.042 ±0.001 7 × 7 dense grid; Gabor jet: eight
wavelengths and six orientations

EGM 0.029 ±0.001 14 × 14 dense grid; Gabor jet:
eight wavelengths and six

orientations
GC-EGM 0.025 ±0.001 14 × 14 dense grid; Gabor jet:

eight wavelengths and six
orientations

EGM 0.080 ±0.003 11 vertices sparse grid; Gabor
jet: four wavelengths and four

orientations
GC-EGM 0.062 ±0.002 11 vertices sparse grid; Gabor

jet: four wavelengths and four
orientations

Fig. 7 Comparison between the periocular regions-of-interest
defined for a pair of images of the same subject, when using the
method proposed by Park et al. [2] (dashed lines) and the
geometric mean of eye corners as reference points (continuous lines)

Fig. 8 Examples of the data sets used in the evaluation of recognition performance
In the upper set (A), all images have ‘neutral’ expression, whereas in the bottom set (B) images have varying facial expressions. Both sets contain significant
variations in lighting conditions
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remained and the effects of EGM/GC-EGM are still
perceptible. Also, the impostors distribution remained
invariant in the EGM/GC-EGM algorithms and in the ‘no
compensation’ case. From the available pairwise
comparisons, 90% of the genuine and 90% of the impostors
were randomly drew and the recognition tests repeated
20 times, in order to obtain an estimate of the stability
of the variations in performance. The right plot gives the
corresponding receiver operating characteristic curves
(ROCs) obtained, where the median performance at each
point is represented by the line series and the horizontal bars
denote the best/worst performance observed at each point.
The movement of the genuine distribution away from the

impostors’ is more evident in the results for ‘set B’
(Fig. 10). In this case, the distortions in the periocular
region are far larger than in ‘set A’, justifying the
improvements when using the EGM/GC-EGM algorithms.
Comparing these algorithms, a more consistent increase of
the genuine matching scores was observed for the
GC-EGM, at a slightly inferior standard deviation. This
suggests that results when using GC-EGM do not vary as
much as in EGM, which was also observed for the
impostors distribution (note the maximum density value of
the GC-EGM genuine/impostor distributions in the left plot
of Fig. 10). Also, the differences in performance between
the EGM and GC-EGM are particularly evident in the ROC

curves given at the right, where the confidence intervals for
both algorithms do not intercept in the majority of the
performance space.

5 Conclusions and further work

In the context of periocular recognition, this paper addressed
the effectiveness of the EGM algorithm to compensate for
distortions because of expressions. Having observed that the
EGM is liable to changes in angular directions that are not
biologically plausible, two modifications to that algorithm
were proposed, aiming at: (i) improving the ability to
handle local changes in rotation and (ii) reinforcing the
topology preservation. A new term measures the similarity
between jets and the edges cost term was reformulated,
penalising changes in the orientation and reinforcing the
preservation of the model topology.
Our experiments enabled us to observe decreases in the

average registration errors between keypoints. Then, using
the state-of-the-art periocular biometrics method, the
recognition performance when using no compensation,
using the EGM and the GC-EGM was assessed. Two main
conclusions were drew: (i) algorithms to compensate for the
effect of expressions consistently increase the recognition
effectiveness, by moving the genuine distribution away

Fig. 9 At left, comparison between the genuine/impostor distributions when using the EGM (dashed dark/light grey lines), GC-EGM
(continuous dark/light grey lines) algorithms and when no compensation was carried out
At right, the corresponding receiver operating characteristic curves. Results regarding data of neutral expression

Fig. 10 At left, comparison between the genuine/impostor distributions when using the EGM (dashed dark/light grey lines) and GC-EGM
(continuous dark/light grey lines)
At right, the corresponding receiver operating characteristic curves. Results regarding data of seven different facial expressions: neutral, angry, fear, disgust, happy,
sad and surprise
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from the impostor scores and (ii) the proposed GC-EGM
algorithm more faithfully handles the deformations inside
the periocular region than the EGM. As a result, consistent
increases in the recognition performance were observed
when using the former algorithm. Finally, it should be
stressed that such improvements were obtained without a
substantial increase in the computational burden of the
recognition process.

6 References

1 Daugman, J.G.: ‘Probing the uniqueness and randomness of IrisCodes:
results from 200 billion iris pair comparisons’, Proc. IEEE, 2006, 94,
(11), pp. 1927–1935

2 Park, U., Jillela, R., Ross, A., Jain, A.K.: ‘Periocular biometrics in the
visible spectrum’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (1),
pp. 96–106

3 Woodard, D., Pundlik, S., Miller, P., Jillela, R., Ross, A.: ‘On the fusion
of periocular and iris biometrics in non-ideal imagery’. Proc. 20th Int.
Conf. Pattern Recognition (ICPR), 2010, pp. 201–204

4 Lades, M., Vorbruggen, J.C., Buhmann, J., et al.: ‘Distortion invariant
object recognition in the dynamic link architecture’, IEEE Trans.
Comput., 1993, 42, (3), pp. 300–311

5 Cao, Y., Zheng, W., Zhao, L., Zhou, C.: ‘Expression recognition using
elastic graph matching’, Lect. Notes Comput. Sci., 2005, 3784, pp. 8–15

6 Zhao, S., Gao, W., Shan, S., Yin, B.: ‘Enhance the alignment accuracy
of active shape models using elastic graph matching’. Proc. First Int.
Conf. Biometric Authentication, 2004, pp. 52–58

7 Stamou, G., Nikolaidis, N., Pitas, I.: ‘Object tracking based on
morphological elastic graph matching’. Proc. Int. Conf. Image
Processing, 2005, vol. 1, pp. 709–712

8 Gosling, J.A., Harris, P.F., Humpherson, J.R., Whitmore, I., Willan, P.:
‘Human anatomy: color atlas and textbook’, ed. Bentley, A.L. (Mosby
Elsevier, Philadelphia, 2008, 5th edn.)

9 Tefas, A., Kotropoulos, C., Pitas, I.: ‘Using support vector machines to
enhance the performance of elastic graph matching for frontal face
authentication’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23,
(7), pp. 735–746

10 Shin, H.-C., Park, J., Kim, S.-D.: ‘Combination of warping robust elastic
graph matching and kernel-based projection discriminant analysis for
face recognition’, IEEE Trans. Multimed., 2007, 9, (6), pp. 1125–1136

11 Zafeiriou, S., Tefas, A., Pitas, I.: ‘Exploiting discriminant information in
elastic graph matching’. Proc. Int. Conf. Image Processing (ICIP2005),
2005, vol. 3, pp. 768–771

12 Zafeiriou, S., Tefas, A., Pitas, I.: ‘The discriminant elastic graph
matching algorithm applied to frontal face verification’, Pattern
Recognit., 2007, 40, pp. 2798–2810

13 Zafeiriou, S., Pitas, I.: ‘Discriminant graph structures for facial
expression recognition’, IEEE Trans. Multimed., 2008, 10, (8),
pp. 1528–1540

14 Kela, N., Rattani, A., Gupta, P.: ‘Illumination invariant elastic bunch
graph matching for efficient face recognition’. Proc. Computer Vision
and Pattern Recognition Workshop (CVPRW06), 2006, pp. 42

15 Shin, H., Kim, S.-D., Choi, H.-C.: ‘Generalized elastic graph matching
for face recognition’, Pattern Recognit. Lett., 2007, 28, pp. 1077–1082

16 Kotropoulos, C., Tefas, A., Pitas, I.: ‘Morphological elastic graph
matching applied to frontal face authentication under well-controlled
and real conditions’, Pattern Recognit., 2000, 33, pp. 1935–1947

17 Serradell, E., Kybic, J., Noguer, F.M., Fua, P.: ‘Robust elastic 2D/3D
geometric graph matching’, Proc. SPIE Med. Imaging, 2012, 8314,
pp. 831408

18 Daugman, J.G.: ‘Complete discrete 2D gabor transform by neural
networks for image analysis and compression’, IEEE Trans. Acoust.
Speech Signal Process., 1988, 36, (1), pp. 169–179

19 Wiskott, L., Fellous, J.-M., Krüger, N., vd Malsburg, C.: ‘Face
recognition by elastic bunch graph matching’, IEEE Trans. Pattern
Anal. Mach. Intell., 1997, 19, (7), pp. 775–779

20 Ojala, T., Pietikainen, M., Harwood, D.: ‘A comparative study of texture
measures with classification based on feature distributions’, Pattern
Recognit., 1996, 29, pp. 51–59

21 Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human
detection’. Proc. 2005 IEEE Computer Society Conf. Computer
Vision and Pattern Recognition (CVPR05), 2005, vol. 1, pp. 886–893

22 Lowe, D.: ‘Distinctive image features from scale-invariant keypoints’,
Int. J. Comput. Vis., 2004, 60, (2), pp. 91–110

23 Ross, A., Nandakumar, K., Jain, A.K.: ‘Handbook of multibiometrics’
(Springer-Verlag, New York, 2006)

24 Santos, G., Proença, H.: ‘A robust eye-corner detection method for
real-world data’. Proc. IEEE Int. Joint Conf. Biometrics, 2011, pp. 1–6

www.ietdl.org

IET Biom., pp. 1–9
doi: 10.1049/iet-bmt.2013.0039

9
& The Institution of Engineering and Technology 2013


	1 Introduction
	2 Elastic graph matching algorithm
	3 Globally coherent elastic graph matching
	4 Experiments and discussion
	5 Conclusions and further work
	6 References

