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Abstract

Driven by the pioneer iris biometrics approach, the most
relevant recognition methods published over the years are
”phase-based”, and segment/normalize the iris to obtain di-
mensionless representations of the data that attenuate the
differences in scale, translation, rotation and pupillary di-
lation. In this paper we present a recognition method that
dispenses the iris segmentation, noise detection and nor-
malization phases, and is agnostic to the levels of pupillary
dilation, while maintaining state-of-the-art performance.
Based on deep-learning classification models, we ana-
lyze the displacements between biologically corresponding
patches in pairs of iris images, to discriminate between
genuine and impostor comparisons. Such corresponding
patches are firstly learned in the normalized representa-
tions of the irises - the domain where they are optimally
distinguishable - but are remapped into a segmentation-less
polar coordinate system that uniquely requires iris detec-
tion. In recognition time, samples are only converted into
this segmentation-less coordinate system, where matching
is performed. In the experiments, we considered the chal-
lenging open-world setting, and used three well known data
sets (CASIA-4-Lamp, CASIA-4-Thousand and WVU), con-
cluding positively about the effectiveness of the proposed
algorithm, particularly in cases where accurately segment-
ing the iris is a challenge.

1. Introduction

After almost three decades of research [4], iris recogni-
tion under controlled conditions tends to be considered a
solved problem, with most efforts being now concentrated
in augmenting the recognition robustness [2].

Deep-learning frameworks were unquestionably a break-
through in many computer vision tasks, from image seg-
mentation [16], to object detection [32] and classifica-
tion [14]. Being data-driven models, these frameworks do
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Figure 1. We propose a non-holistic iris recognition method that
doesn’t require iris segmentation and is agnostic to the levels of
pupillary dilation. During learning time, we infer the appearance
of biologically corresponding patches in segmentation-less repre-
sentations of the iris data, which are the uniques used in recogni-
tion (test) time.

not depend on human efforts to specify image features,
upon the availability of large amounts of data. In the
biometrics context, many deep-learning based recognition
methods have been proposed, based in the face [6] [10],
iris/ocular [39] [26] or finger vein [27] traits. Despite the re-
markable ability of this kind of frameworks to model com-
plex data patterns, demanding them to autonomously infer
the concept of identity might be too ambitious, particularly
when working with poor-quality data.
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This paper describes one iris recognition algorithm that
- singularly - uses deep learning frameworks exclusively
to perceive what are biologically corresponding patches in
pairs of images, which is an evidently easier task than in-
ferring the identity at once. In this sense, our work can be
regarded as an evolution of the concept behind IRINA [25],
with one major novelty: in test (recognition) time, we don’t
even segment the pupillary and scleric iris boundaries nor
discriminate the occluded parts of the iris. Instead, we rely
uniquely in one iris detection step to obtain a segmentation-
less representation of the iris data, where all subsequent
analysis is carried out.

Note that previous works have also proposed
segmentation-less algorithms, but they were specifi-
cally designed for different traits, such as the ocular region
(e.g., [28] and [29]), where changes in signals’ phase
are not as problematic as in the case of the iris. Also,
the existing methods concerned about the misalignments
between iris patches (e.g., [34]) approached the problem
from parametric perspectives, and working in the polar
representations of the iris data.

1.1. Contributions

This paper we describe one iris recognition algorithm
that offers three contributions:

• we describe a novel segmentation-less polar represen-
tation of the iris data. Even though this representation
only partially attenuates the differences in pupillary di-
lation and scale, it provides novel types of informa-
tion that are useful for biometric recognition (e.g., the
shape of the pupil);

• we propose a processing chain that depends uniquely
of a bounding box ([x, r] ∈ N3) provided by an iris
detector (as a preprocessing step), which is in oppo-
sition to previously published non-holistic recognition
algorithms;

• the proposed algorithm is agnostic to the levels of
pupillary dilation, which is also a novelty;

Finally, the use of deep-learning frameworks to infer bio-
logically corresponding patches should also be considered a
contribution. Note that the concept of corresponding patch
lies in a hyperspace of much lower dimensionality than the
space of identities, where deep learning frameworks typ-
ically operate. As such, the amount of labelled data re-
quired for appropriate learning of our model is kept rela-
tively short.

1.2. Iris Recognition: Strides and Challenges

Strides in iris recognition have been concentrated in: 1)
extending the data acquisition volume; 2) improving robust-
ness to unconstrained conditions; 3) obtaining interpretable

iris representations; 4) developing cancellable signatures;
and 5) providing cross-sensor operability. In terms of the
data acquisition volume, the iris-on-the-move system [19]
can be highlighted, along with Hsieh et al.’s [11] work,
based in wavefront coding and super-resolution techniques.
Regarding the unconstrained recognition problem, Dong et
al. [7] used adaptive matching to identify the best features
per individual. Pillai et al. [23] sparsely represented ran-
domly projected iris patches, while Yang et al. [36] relied
in high-order information to match irises pairs, and Alonzo-
Fernandez et al. [8] proposed a super-resolution method
based on eigen-transformations of the iris patches. Bit con-
sistency is a concern, with approaches selecting only parts
of the biometric signatures for matching (e.g. [12], [33]
and [17]). Recognition in mobile devices is a particular
case of the unconstrained recognition problem, with two
international evaluation contests being recently conducted:
using visible wavelength (Marsico et al. [18]) and NIR data
(Zhang et al. [40]). In terms of interpretability, Chen et
al. [3] exclusively relied in features that are intuitively un-
derstood by humans. For cross-sensor recognition, Pillai et
al. [24] learned kernel-based transformations between the
data acquired by different devices. Finally, Zhao et al. [37]
suggested the concept of negative recognition as a way to
cancellable biometrics, using complementary information
of the biometric data for matching.

Deep learning-based methods have been advancing
the state-of-the-art, with even fine-tuning providing good
results [21]. Solutions have been proposed either for
particular phases of the recognition chain (e.g., segmen-
tation [13] or spoofing detection [20]), or for the whole
process: Gangwar and Joshi [9] claimed that very deep
architectures are particularly efficient to model the micro-
structures of iris texture. Zhang et al. [41] developed
a feature fusion strategy that considers the complemen-
tarity of the iris and periocular information. Zhao and
Kumar [38] used fully convolutional networks to generate
phase-based discriminative features, based on an extended
triple loss that accounts for bit shifting and non-iris regions
masking. Finally, Proença and Neves [25] analyzed the
phase/magnitude of the free-form deformation fields (2D
registration vectors) between images, using second-order
statistics to discriminate between genuine and impostor
pairs.

The remainder of this paper is organized as follows:
Section 2 provides a detailed description of the proposed
method. In Section 3 we discuss the obtained results and
the conclusions are given in Section 4.
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Figure 2. Cohesive perspective of the recognition method proposed in this paper: we accurately segment and normalize the noise-free iris
regions of a learning set, and manually annotate the regions in genuine pairs that appear to regard the same biological region corresponding
iris patches. Such correspondences are remapped to Cartesian coordinates and - next - to a pseudo-polar coordinate system that doesn’t
require image segmentation, where a CNN learns the notion of corresponding region.

2. Proposed Method
2.1. Learning Phase

We employ the term biologically corresponding iris
patches to refer regions in pairs of genuine images that, un-
der visual inspection, seem to regard the same biological
region.

2.1.1 Biologically Corresponding Iris Patches

Let I = {I1, . . . , In} be a learning set of n iris images. For
every I. we obtain its shape-flexible and size-invariant nor-
malized representation, as proposed by Daugman [5]. The
mapping is given by I

(
x(r, θ), y(r, θ)

)
→ I(r, θ):

[
x(r, θ)
y(r, θ)

]
=

[
xp(θ) xs(θ)
yp(θ) xs(θ)

] [
1− r
r

]
, (1)

with the dimensionless parameter r spanning in the unit in-
terval.

Next, for pairs of genuine normalized images {I, I ′}, we
manually annotate the control points that seem to regard the

same iris feature. Groups of control points define two con-
vex polygons Γ and Γ′, represented by the coloured dots
(xi and x′i) in Fig. 3. Let xi = (xi, yi) and x′i = (x′i, y

′
i),

i = {1, . . . t} be the locations of such pointwise correspon-
dences. As in [25], we learn two functions f1, f2 that es-
tablish a dense set of correspondences between positions
(rows/columns) in Γ and Γ′, f1, f2 : N2 → N, such that
∀ x′i ∈ Γ′, x′i =

(
fc(x), fr(x)

)
:

f2(x) = λTc [φ, p(x)], (2)

f1(x) = λTr [φ, p(x)], (3)

with φ =
[
φ
(
|x−x1|2

)
, . . . , φ

(
|x−xt|2

)]
, |.|2 represent-

ing the `2 norm, φ(r) = e(−r/κ)
2

being a radial basis func-
tion and p(x) = [1, x, y] being a polynomial basis of first
degree for a 2-dimensional vector space (κ = 0.1 was used
in all our experiments). To obtain the λ coefficients, we de-
fine a t×tmatrixA,Ai,j = φ

(
|xi−xj |2

)
andP as the t×3

polynomial basis matrix, such thatP = [p(x1); . . . ; p(xt)].
Then, λc and λr are given by:



λc =

[
A P
P T 0

]−1 [
x′c
0

]
(4)

λr =

[
A P
P T 0

]−1 [
x′r
0

]
(5)

with x′c=[x′1, . . . , x
′
t]
T and x′r=[y′1, . . . , y

′
t]
T concatenating

the horizontal (column) and vertical (row) positions of the
control points in Γ′.

According to this procedure, we deem that any position
x ∈ Γ corresponds biologically to x′ =

(
fc(x), fr(x)

)
∈

Γ′. As Γ and Γ′ have different size and shape, this set
of correspondences implicitly encodes the non-linear defor-
mations that affect the iris texture, which is the core for the
performance of the proposed method.
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Figure 3. Biologically corresponding iris patches. Based on a set
of manually annotated corresponding control points (x. and x′

.) in
a pair of iris samples, two polygons (Γ and Γ′) are defined. For
every position inside Γ, the corresponding position in Γ′ is found,
with both points deemed to refer to the same biological region.

2.1.2 Segmentation-less Polar Representation

Next, we convert all positions in the normalized iris data
into a segmentation-less polar space. Let x = (x, y) be
a point in the h × w normalized representation of the iris.
As an intermediate step, we map x into the original Carte-
sian space and from there into the segmentation-less space.
Function fn→c(.) : N2 → N2, performs the first mapping:

fn→c(x) = ρ xp(θ) + (1− ρ) xs(θ), (6)

with xp and xs denoting the coordinates of the pupillary
and scleric borders at angle θ, and (θ, ρ) given by:

θ =
2π(x− 1)

w
, ρ =

h− y
h− 1

. (7)

Next, using fc→p(x) : N2 → N2, we map the position
in the Cartesian space into the polar representation:

fc→p(x) =
[

atan2
( s

2 − y
x− s

2

)
w(2π)−1 + 1,

(|x− [
s

2
,
s

2
]|2 − τp)h(xc − τp)−1

]
, (8)

with rp denoting an average radius for the pupils and s× s
is the size of the bounding box returned by an iris detection
step. In this sense, fc→p(fn→c(x)) converts points in the
normalized iris data into the segmentation-less polar repre-
sentation.

Finally, we consider patches P (from Γ) and P ′ (from
Γ′) of 15×15 pixels, centered at each point correspondence.
This set of patches is concatenated into a set of negative in-
stances (non-corresponding patches), feeding the learning
process of a Convolutional Neural Network (”Registration
CNN” ), responsible to discriminate between patches that
correspond or not (part ”B” in Fig. 2). The architecture of
this CNN is based in the VGG-19 model, adapting the size
of the input layer to depth 2, and removing all the pooling
layers, due to the relatively small dimensions of the input
data. The output layer is a soft max loss corresponding to
the probability of two iris patches correspond. Learning
was done according to the stochastic gradient descend algo-
rithm, with an initial learning rate of 1e−2, momentum set
to 0.9 and weight decay equals to 1e−3 .

The steps of the learning phase are shown in Fig. 2 as
the ”C” group. We use the popular SSD [13] detector in the
learning data, to detect the irises in both images. The detec-
tor was adapted so to use default boxes with a single ratio,
corresponding to squares. This way, the detector returns a
parameterization [xc, s] ∈ N3, with xc being the center of
the s× s detected region.

Using fc→p(x),∀x we get the segmentation-less polar
representation of the iris, where a τr × τc grid of equally
spaced points is overlapped. Let I, I′ be a pair of irises in
the segmentation-less polar space. Let x be the position of
one grid point in the first image. We define a 15× 15 patch
around this point and densely sample the x ± [δr, δc] po-
sitions (δr ∈ {1, . . . ,∆r}, δc ∈ {1, . . . ,∆c}) in the other
image, and take 15 × 15 patches centered at each position.
Pairs of patches are provided to the previously learned Reg-
istration CNN, with output scores directly corresponding to
the probability that pairs of patches in the first and second
image correspond biologically. By rearranging the CNN
scores, we create the so-called registration maps that pro-
vide information about the registration scores for a specific
direction and magnitude of deviation. The registration maps
from the learning set are used as input of the ”Classification
CNN”, also based in VGG-19 architecture, that is respon-
sible to discriminate between genuine and impostor maps.
Once again, the output layer is a soft max loss corresponding
to the probability of a set of registration maps regarding a
genuine comparison. As previously, learning was done ac-
cording to the stochastic gradient descend algorithm, with
an initial learning rate of 1e−2, momentum set to 0.9 and
weight decay equals to 1e−3 .



2.2. Classification Phase

The classification (recognition) processing chain is en-
closed by the red dashed rectangle in Fig. 2. For a
query+gallery pair of iris images, the detection and map-
ping process is carried out in an exactly equal way to the
used in the ”C” group of the learning phase. We use the
SSD [13] detector to get information about the iris center
and size [xc, s] and obtain the segmentation-less polar rep-
resentation of the iris. Finally, according to the overlapped
grid control points, we obtain the registration maps that feed
the learned classification CNN model, which returns the
probability (output of a softmax layer) that the query and
the gallery regard the same identity.

3. Results and Discussion
3.1. Experimental Setting and Preprocessing

Experiments were conducted in three datasets: CASIA-
IrisV4-Lamp, CASIA-IrisV4-Thousand 1 and WVU 2, with
examples of the predominant degradation factors given in
Fig. 4: off-angle and partially occluded irises, glasses, ex-
tremely dilated/constricted pupils (in all sets) and local illu-
mination variations (in WVU). 822 classes (411 eyes) from
the CASIA-IrisV4-Lamp set, 2,000 classes (1,000 eyes)
from the CASIA-IrisV4-Thousand and 638 classes from the
WVU set were considered. For the CASIA sets, 10 images
per class were used, while for the WVU set the number of
images per class varied between 2 and 10. Identities were
separated into two halves for learning/test (the first half of
the identities, according to the alphanumeric order of the
filenames, was chosen for learning), with the resulting data
enabling to perform 18,495 (genuine) + 8,425,500 (impos-
tor) pairwise comparisons for the CASIA-IrisV4-Lamp set,
45,000 (gen.) + 49,950,000 (imp.) for the CASIA-IrisV4-
Thousand and 11,301 (gen.) + 7,470,767 (imp.) for the
WVU set. In every experiment, the number of impostor
pairwise comparisons considered was limited to 1,000,000
(randomly chosen).

Using a coarse-to-fine segmentation strategy [30], com-
posed of a form fitting step and a geodesic active contours
algorithm, images were segmented, with the iris boundaries
being described by shapes of 20 degrees-of-freedom (dof)
and the scleric boundary described by 3 dof. The accuracy
of the segmentation step was manually verified, and differ-
ent parameterizations considered, to assure that all the sam-
ples were appropriately segmented. The ambitious open-
world setting was the unique considered, i.e., all images
from half of the identities in each set were used for learn-
ing purposes, with the recognition experiments being con-

1CASIA iris image database, http://biometrics.
idealtest.org

2West Virginia University iris dataset, http://www.clarkson.
edu/citer/research/collections/

ducted in previously unseen identities.

Figure 4. Datasets used in our experiments: from top to bot-
tom rows, images of the CASIA-IrisV4-Lamp, CASIA-IrisV4-
Thousand and WVU sets are shown.

As baselines, five methods were considered to represent
the state-of-the-art : 1) IRINA [25], which analyses in a
non-holistic way the correspondences between iris patches
in the segmented and normalized irises; 2) the work due
to Yang et al. [36] (using the O2PT iris-only variant, with
block size w = 2, h = 14, translation vector [6, 3]T and
neighbourhood 8× 8); 3) Sun and Tan’s [31] method (with
di-lobe and tri-lobe filters, Gaussians 5× 5, σ = 1.7, inter-
lobe distances {5,9} and sequential feature selection); 4) the
keypoints-based method due to Belcher and Du [1] (with 64
bins = 4 (horizontal) × 4 (vertical) × 4 (orientation), SIFT
descriptors extracted using VLFeat package 3 ); and 5) the
OSIRISv4 [22] framework, to represent the classical pro-
cessing chain proposed by Daugman [5] (using the Viterbi
algorithm for segmentation, Gabor filters for feature extrac-
tion and the Hamming distance for matching).

Three performance measures are reported: the decid-
ability index (d′), the area under curve (AUC) and the
equal error rate (EER), also providing the corresponding re-
ceiver operating characteristic (ROC) curves. The pairwise
comparisons per dataset were divided into random samples
(drew with repetition), each one with 90% of the available
pairs. Then, tests were conducted iteratively in each sam-
ple, with the results considered to approximate the confi-
dence intervals at each point, in a bootstrapping-like strat-
egy. To facilitate the reproducibility of the experiments re-
ported here, we release the MatConvNet [35] trained ”Reg-
istration” and ”Classification” VGG-19 models 4.

3.2. Parameter Tuning

The performance of our method depends of three param-
eters: 1) the minimum probability τ1 required for relative
positions in the eye patches being ”iris” to be considered in
the analysis (p(”Iris” | x) > τ1, x = [x, y]); 2) the size of
the grid (τr × τc) overlapped in the polar representations of
the data; and 3) the neighbourhood ±(∆r,∆c) considered
when searching for biologically corresponding patches.

3http://www.vlfeat.org/
4http://tinyurl.com/y3e6l73r

http://biometrics.idealtest.org
http://biometrics.idealtest.org
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Figure 5. a) Probability that a pixel inside the detected ”Eye” re-
gion is noise-free and iris; b) Relative radii between the pupil
and the sclera; c)-d) rows/columns offset between corresponding
points in the normalized images (in pixels); e)-f) corresponding
offsets in the segmentation-less polar images.

In Fig. 5 we provide the p(”Iris” | x) values for the
learning data. For each bounding box parameterized by
[x, r] ∈ N3 (i.e., x → x + [r, r]) we used the segmen-
tation information to classify each position into ”iris” or
”non-iris”. It can be seen that there is a residual probability
of observing iris pixels inside a central circle (correspond-
ing to the pupil) and at the image corners (corresponding
to sclera). Also, the upper part of the iris is often occluded
by eyelids/eyelashes, which reduces the ”iris” probability
in these regions. Setting τ1 = 0, a binary mask B can be
obtained:

B(x) =

{
1, if p(”Iris”| x) > τ1
0, otherwise

Using the circular Hough transform, two concentric cir-
cumferences (x̂p, r̂p) and (x̂s, r̂s) were fitted to B, and
deemed to be the generic pupillary and scleric bound-
aries. These parameterizations are the key to obtain the
segmentation-less polar representations of the iris, both in
the learning and test sets. For any image in these sets, we
assume that (x̂p, r̂p) and (x̂s, r̂s) correspond to the pupil-
lary and scleric boundaries and normalize the data, accord-
ing to (1).

In terms of the (τr × τc) values, they determine the
amount of information extracted from the iris, and in-
crease quadratically the time complexity of the encoding
step. Keeping τr

τc
= h

w = 1
2 , we assessed the per-

formance of our method in a CASIA-4-Lamp validation
set with τr = {2, 4, 8, 16, 32}, obtaining AUC values
{0.980, 0.986, 0.995, 0.995, 0.995} that support the choice
τr = 8. Finally, the (∆r,∆c) values were tuned according

to the information taken from the learning data provided in
Fig. 5 b)-f). It can be seen that, comparing the relative mis-
alignments between the biologically corresponding points
in the normalized (c) and d)) and in the polar (e) and f))
representations of the iris data, the major differences regard
the ∆r values, i.e., polar representations tend to provide
larger row misalignments than the normalized representa-
tions, justifying the (∆r = 10,∆c = 5) choice.

3.3. Patch-Based vs. Holistic CNNs

At a first level, we compared the performance of the
method proposed in this paper to the classical (holistic)
ways deep learning classification strategies have been used
in biometrics research (CNNs receiving pairs of samples
and discriminating between the genuine and impostor com-
parisons). Four CNNs were considered: 1) receiving the
whole ocular samples represented in the Cartesian space
(denoted as CNN-Holistic; 2) receiving the cropped iris re-
gions, in the same Cartesian space (CNN-Iris); 3) using
the segmented and normalized representation of iris data
(CNN-Normalized); and; 4) using the segmentation-less po-
lar representations proposed in this paper (CNN-Polar). As
data augmentation techniques, two label-preserving trans-
formations were used: 1) to simulate the scale and trans-
lation samples inconsistency, patches of scale [0.85, 0.95]
(values drew uniformly) were randomly cropped from the
learning set; and 2) as an intensity transform, we obtained
the principal components of the pixels intensities in the
learning data and synthesized images by adding to each
pixel multiples of the largest eigenvectors, with magnitude
equal to the corresponding eigenvalues [14]:

x(new) = x(old) + [v1,v2,v3]
(
α� [λ1, λ2, λ3]T

)
, (9)

with � denoting the element-wise multiplication, v and λ
denoting the eigenvectors and eigenvalues of the learning
data covariance matrix and α ∈ R3 being randomly drew
from the Gaussian N (0, 0.1).

The results are provided in Fig. 6 and turn clear the
advantages of the non-holistic analysis when compared
to its competitors. The improvements in performance
with respect to the runner up strategy (invariably CNN-
Normalized) were observed for all datasets, increasing the
AUC values between 5% to 15%. Among the holistic CNN
frameworks, using the segmented and normalized represen-
tations of the iris provided the best performance. It is in-
teresting to note that the segmentation-less polar represen-
tation got the runner-up performance in the CASIA-IrisV4-
Lamp and CASIA-IrisV4-Thousand datasets and even at-
tained the best results among all holistic representations in
the WVU set. In all cases, these normalized representations
provide better performance than when using the cropped
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Figure 6. ROC curves of the proposed method and of four holis-
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eye data in the Cartesian domain and - even more evidently
- than using the whole ocular region as input of the CNN.

Method AUC d’ EER

CASIA-IrisV4-Lamp
Proposed Method 0.999± 5e−4 6.773± 0.482 0.006± 0.002

IRINA [25] 0.983± 8e−4 3.805± 0.457 0.038± 0.005

Sun and Tan [31] 0.992± 4e−4 4.448± 0.404 0.029± 0.005

Yang et al. [36] 0.993± 5e−4 4.629± 0.385 0.028± 0.004

OSIRIS [22] 0.992± 4e−4 4.017± 0.490 0.031± 0.006

Belcher and Du [1] 0.938± 0.007 2.933± 0.696 0.097± 0.011

CASIA-IrisV4-Thousand
Proposed Method 0.981± 7e−4 6.611± 0.484 0.030± 0.011

IRINA [25] 0.961± 8e−4 3.600± 0.488 0.051± 0.012

Sun and Tan [31] 0.964± 1e−3 4.095± 0.583 0.042± 0.006

Yang et al. [36] 0.978± 7e−4 4.995± 0.366 0.035± 0.004

OSIRIS [22] 0.967± 0.001 3.471± 0.560 0.058± 0.007

Belcher and Du [1] 0.901± 0.006 2.104± 0.597 0.084± 0.011

WVU
Proposed Method 0.969± 0.001 4.850± 0.500 0.063± 0.007

IRINA [25] 0.931± 0.002 4.066± 0.489 0.081± 0.007

Sun and Tan [31] 0.917± 0.002 2.552± 0.193 0.098± 0.007

Yang et al. [36] 0.970± 0.002 5.210± 0.185 0.055± 0.008

OSIRIS [22] 0.903± 0.005 2.801± 0.382 0.073± 0.009

Belcher and Du [1] 0.882± 0.011 2.008± 0.780 0.166± 0.015

Table 1. Performance summary of the proposed method with re-
spect to three state-of-the-art methods.

3.4. State-of-the-Art Comparison

Performance comparison with respect to the baselines
is shown in Fig. 7. Overall, the proposed method got ei-
ther the best or the runner-up performance. Results were
particularly good for the CASIA-IrisV4-Lamp, due to hav-
ing learned the ”Classification CNN” in (learning) pairwise
samples of that set. In all cases, the approach due to Belcher
and Du got the worst results, reinforcing the conclusion that
keypoint-based approaches fail in iris recognition, due to
the non-linear deformations that occur in the iris texture as a
result of pupillary dilation. In most cases, Yang et al.’s per-
formance was slightly better than ours’ in the high-FAR re-
gion of the performance space. When compared to IRINA,
it is evident that the method proposed in this paper repre-
sents an improvement in performance, essentially due to the
use of deep-learning classification techniques to discrimi-
nate between the genuine and impostors registration maps.
The open-world setting is a challenge for IRINA’s match-
ing phase, considering that the observed performance of this
method was far below the reported in the original publica-
tion. Finally, Sun and Tan and OSIRIS’ performance values
were close to the optimal value in the highest-FAR regions
of the performance space, but invariably diverged of ours
and Yang et al.’s results in the lowest-FAR regions.

Finally, as an insight for potential ways to improve per-
formance, in Fig. 8 we provide examples of the worst gen-



CASIA-IrisV4-Lamp

FP

T
P

CASIA-IrisV4-Thousand

FP

T
P

WVU

FP

T
P

Proposed IRINA [25] Sun and Tan [31]
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Figure 7. Comparison between the ROC curves observed for the
proposed method, when compared to five techniques considered
to represent the state-of-the-art.

uine (framed in green) and impostor (framed in red) com-
parisons, listing the factors that - under visual perception-
were deemed to justify such poorest scores. Overall, the
proposed method yields poor genuine scores when the bot-

tom part of the iris is severely occluded by eyelids, whereas
the worst impostor scores yielded from extremely dilated
pupils that produced segmentation-less polar representa-
tions largely occupied by the pupillary regions.

l l l l l l

7
Non-circular pupils

Heavy occlusions
Lack iris minutia 7

Extremely dilated pupils

Heavy occlusions
Off-angle gaze

Figure 8. Example of mage pairs that produced the worst genuine
(framed in green) and impostor (framed in red) matching scores in
our method.

4. Conclusions and Further Work
Considering the performance of deep learning-based so-

lutions in biometrics and the requirements of this kind
of frameworks in terms of labelled data for appropriately
learning identities, in this paper we proposed an iris recog-
nition algorithm that uses the power of deep learning ar-
chitectures exclusively to infer the misalignments between
biologically corresponding regions in pairs of iris images
represented in a segmentation-less polar domain. Based on
the homogeneity and magnitude of the deviations, it is rela-
tively easy to distinguish between the genuine and impostor
comparisons, yielding a recognition strategy that achieves
state-of-the-art performance, at a much less demanding vol-
ume of learning data than its competitors, without even re-
quiring data to be segmented and agnostic to the levels of
pupillary dilation. Our experiments turn evident that this
algorithm is particularly valuable in case of low quality
data, where accurate segmentation becomes a too challeng-
ing task. As main weakness, the computational complexity
of the matching process should be pointed out, as the devi-
ation maps have to be explicitly obtained for each pairwise
comparison. We are now concentrated in finding alternate
strategies to obtain the 2D deformation maps and reduce the
computational cost of matching.
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