
Iris Recognition: Feature Extraction and Comparison
from Noisy Images

Hugo Proença and Luı́s A. Alexandre

Dep. Informatics, Universidade da Beira Interior
IT - Networks and Multimedia Group, Covilhã
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Abstract. Iris recognition is being increasingly used for several purposes. How-
ever, current iris recognition systems are unable to deal with noisy data and sub-
stantially increase their error rates, specially the false rejections in these condi-
tions. Several proposals have been made to access image quality and to iden-
tify noisy regions in iris images. Based in these facts, in this paper we propose
a method applicable in the feature extraction and comparison stages that mea-
sures the quality of each feature of the biometric signature and take account of
this information to obtain the dissimilarity between iris signatures. Experiments
led us to conclude that this method significantly decreases the error rates in the
recognition of noisy iris images, resultant from the capturing in less constrained
environments.

Keywords: feature quality, feature extraction, feature comparison, non-cooperative
iris recognition, biometrics.

1 Introduction

Since 1987, when L. Flom and A. Safir [6] concluded about the stability of iris mor-
phology and estimated the probability for the existence of two similar irises at 1 in 1072,
the use of iris based biometric systems has been increasingly encouraged by both gov-
ernment and private entities. Iris is commonly recognized as one of the most reliables
biometric measures: it has a random morphogenesis and no genetic penetrance.

Iris recognition is presently used for several purposes with very satisfactory results.
Under rigid image capture conditions it is possible to obtain good quality images and
achieve impressing accuracy, with very low error rates. However, these error rates sub-
stantially increase, specially the false rejections, when the images do not have enough
quality, either due to focus, contrast or brightness problems, iris obstructions or re-
flections. This is a problem commonly identified by several authors (e.g. [23], [15]
and [22]).

From our viewpoint, the challenge for iris recognition consists in the ability to
achieve accurate identification in less constrained image capture environments, either
under natural luminosity or heterogeneous lighting conditions.
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These conditions lead to the appearance of very heterogeneous images and with
several noise factors, namely poor focused and with iris reflections or obstructions, as
exemplified by figure 1. Thus, the robustness of iris recognition algorithms and their
ability for noise identification and handling becomes indispensable to achieve accurate
recognition in less constrained environments.

Fig. 1. Noisy iris image with eyelid and eyelash obstructions and a large reflection area

In this paper we propose a method for measuring the quality of each feature ex-
tracted from the iris, since there is a significant increment of the error rates of typical
iris recognition systems when images are highly heterogeneous or contain significant
portions of noise [10]. This measure is based in the proportion of noisy pixels used in
the extraction of the feature and will be further used in the feature comparison stage, in
order to achieve robustness to noisy images.

As we describe in the next sections, we used images from the UBIRIS [18] database,
highly heterogeneous and with noisy characteristics, to compare the results obtained by
the classical Daugman recognition method as described by the author [4] and together
with our quality measure and comparison proposals.

The remainder of this paper is organized as follows: section 2 briefly summarizes the
most cited iris recognition methods emphasizing the features extraction and comparison
stages. A detailed description of the proposed method is given in section 3. Section 4
reports the experiments and results and finally section 5 concludes this paper.

2 Iris Recognition Systems

In spite of the distinct approaches proposed by different authors for each stage, typical
iris recognition systems share a common structure that is illustrated on figure 2.

The initial stage deals with iris segmentation. This process consists in, approximat-
ing the iris as a circumference or an ellipse, localize the iris inner (pupillary) and outer
(scleric) borders. There are two major strategies for iris segmentation: using a rigid or
deformable template of the iris or its boundary. In most cases, the boundary approach
is very similar to the proposed by Wildes [23]: it begins by the construction of an edges
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Fig. 2. Typical stages of the iris recognition systems

map followed by the application of some geometric form fitting algorithm. Authors
of [19] used this strategy together with a clustering process to increase accuracy in
noisy environments. The template-based strategies usually involve the maximization of
some equation, as proposed by Daugman [4] and Roche et. all [16].

In order to compensate the varying size of the pupil it is common to translate the
segmented iris part represented in the cartesian coordinate system to a fixed length and
dimensionless polar coordinate system. This is usually accomplished through a method
similar to the Daugman’s Rubber Sheet [4].

The next stage is the feature extraction. From this viewpoint, iris recognition ap-
proaches can be divided in three major categories: phase-based methods (e.g. [4]), zero
crossing methods (e.g. [2] and [16]) and texture analysis based methods (e.g [23], [11]
and [14]).

Having a feature set, commonly named biometric iris signature, the final stage con-
sists in the comparison between signatures, producing a numeric dissimilarity value. If
this value is higher than a threshold, the system outputs a ”non-match”, meaning that
each signature belongs to different subjects. Otherwise, the system outputs a ”match”,
meaning that both signatures were extracted from the same person.

2.1 Feature Extraction and Comparison Methods

In the feature extraction stage, Daugman [4] uses multiscale quadrature wavelets to
extract texture phase information and obtain an iris signature with 2048 binary compo-
nents. To characterize the texture from the iris, Boles and Boashash [2] computed the
zero-crossing representation of a 1D wavelet at different resolutions of concentric cir-
cles. Wildes [23] proposes the characterization of the iris texture through a Laplacian
pyramid with 4 different levels (scales). This pyramid is further used to compute the
normalized correlation between images and conclude about their similarity.

One of the most typical approaches constitutes the proposal of [12], characterizing
the iris texture through its decomposition by the dyadic wavelet transform, either us-
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ing Haar, Daubechies or other mother wavelets. This approach was found with minor
variants in several other works (e.g. [20], [1]).

Regarding the feature comparison stage, it is constrained by the feature extraction
method. When the produced iris signature is binary, it is common to apply the Hamming
distance metric. Otherwise, different metrics like the Euclidean (e.g. [8]), Weighted
Euclidean (e.g. [24], [14]) or methods based on signal correlation (e.g [23]) can be
applied. More specific approaches were proposed by Lim et. al [12] through the use of
a competitive learning neural network to achieve classification and Ma et. al [13] that
use a modified nearest neighbor to compare the acquired and the enrolled samples and
assign the proper entity.

2.2 Noise Identification

The problem of noise identification in iris images has been recently addressed by several
authors, constituting one of the most challenging domains in the present iris recognition
research.

Daugman [4] builds a binary noise mask for iris image to identify eyelids and eye-
lashes that obstruct iris and can deteriorate results.

The authors of [3] were based in the analysis of the energy resultant from the con-
volution between the image and a group of Mexican-Hat Wavelets at 3 different scales
to propose local and global iris image quality measures.

The purpose of [7] was the identification of four distinct types of noise: eyelashes,
eyelids, reflections and pupil. The idea is that there’s always some type of edges be-
tween the noisy and the noise-free areas. Those edges were identified through an illu-
mination invariant measure (phase congruency).

The later methods operate locally and produce a binary map where each pixel is
classified as ”noisy” or ”noise-free”. Our feature quality measure and further compari-
son strategy is based in this binary map. Starting from it, we obtain a confidence (qual-
ity) value for each feature based in the noise classification from the pixels that were
used in its creation. Furthermore, we use this quality value in the feature comparison
stage to select the comparable features and improve the ability of the iris recognition
system to handle noisy images.

3 Proposed Feature Quality Measure and Comparison Methods

As referred above, the local noise identification methods described in section 2.2 pro-
duce a binary map correspondent to the segmented and normalized iris image. In this
map the noisy regions correspond to the dark areas whereas the noise-free regions are
represented through white areas (figure 3).

For each of the extracted features from the image we create a quality value contained
in the [0,1] interval that reflects the proportion of noisy pixels used in the respective cal-
culus. This value will be helpful in the feature comparison stage, avoiding the utilization
of the noisiest features or assigning them a small weight for the comparison.

As described in the next section, the proposed feature quality measure is indepen-
dent from the feature extraction method. At a coarse level, every extracted feature can
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(a) Segmented and normalized iris image with large noisy regions correspondent to eyelids (1) and eyelashes (2) obstructions

and reflections (3).

(b) Identification of the noisy regions from the image 3a.

Fig. 3. Identification of the noisy regions in a normalized iris image.

be regarded as function of K pixels from the image (the original data). Thus, the calcu-
lus of the proportion of noisy and noise-free pixels used in its extraction can be applied
to any methodology.

3.1 Feature Quality Measure

Let I be the segmented and normalized iris image and (x, y) ∈ N2 be the coordinates
of a pixel from the image. Let n((x, y)) : N2 → {0, 1} be the function that classifies as
”noisy” or ”noise-free” every pixel (x, y) from the image I:

n((x, y)) =
{

1 , I(x,y) is noisy
0 , otherwise (1)

Let F = {f1, . . . , fk} be the set of features extracted from the image I . At the
coarsest level, every fi arises from the calculus between Ni pixels from I . Let Pi =
{(xij

, yij
)} j = 0, . . . , Ni − 1 be the set of coordinates from the pixels used in the

extraction of the feature fi. We define the function c(Pi) : (N2
0× . . .×N2

N−1) → [0, 1]
that gives the quality of the feature fi:

c(Pi) =
1
Ni

Ni∑
i=0

n(I(xi, yi)) (2)

where Ni is the cardinality of Pi.
Through this method, for every extracted feature we obtain a quality value con-

tained in the [0,1] interval. This value has inverse correspondence with the proportion
of noisy pixels that were considered in the creation of fi. Thus, for completely ”noisy”
(poorest quality) and ”noise-free” (optimal quality) features the quality value will be,
respectively, equal to 0 and 1.
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3.2 Feature Comparison

In the following discussion we will use a superscript to distinguish between two dif-
ferent feature sets, such as, f1 and f2, and a subscript to distinguish between different
features from a feature set, such as, f1

1 and f1
2 .

In the feature comparison stage it is obtained a similarity value that reflects the
respective similarity between two feature sets Fi and Fj and enables the assumption
about the identity of the subjects from which the features were extracted. In this section,
we describe the two tested variants for the feature comparison: ”hard” and ”fuzzy”.

In the ”hard” feature comparison, features are considered for comparison only if
their quality value is higher than a threshold. Oppositely, in the ”fuzzy” feature com-
parison variant the comparison is allowed for any feature, independently of its quality
value. The result is weighted with the average quality value from the feature operands.

Formally, let Q0 and Q1 be two features sets with the respective quality value for
each feature, Qj = {(f j

1 , c(f j
1 )), . . . , (f j

n, c(f j
n))}. The feature comparison function is

given by:

fc(Q0, Q1) =
n∑

i=1

dist(f0
i , f1

i )
cnt(f0

i , f1
i )

(3)

In the ”hard” comparison variant, dist and cnt are functions given by:

disthard(f0
i , f1

i ) =
{

d(f0
i , f1

i ) , c(f0
i ) ≥ T, c(f1

i ) ≥ T
0 , otherwise (4)

cnthard(f0
i , f1

i ) =
{

1 , C(f0
i ) ≥ T,C(f1

i ) ≥ T
0 , otherwise (5)

where d is the function that gives the distance between features (e.g. Hamming,
Euclidean distance, . . . ).

In the ”fuzzy” comparison variant, all the features are considered for comparison
and weighted regarding their quality value. Thus, dist and cnt are given by:

distfuzzy(f0
i , f1

i ) = d(f0
i , f1

i ) ∗ c(f0
i ) + c(f1

i )
2

(6)

cntfuzzy(f0
i , f1

i ) =
c(f0

i ) + c(f1
i )

2
(7)

where, as above, d is the function that gives the distance between features.

4 Experiments and Discussion

We implemented the method described by Daugman [4]. We compared the obtained
results when following the method as described by the author (using all the features in
the feature comparison stage) and our proposal feature confidence measure and feature
comparison methods.

As described in [4], the Daugman’s recognition method is composed by the follow-
ing stages:
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– Iris segmentation. We implemented the integrodifferential operator proposed by the
author to find both the inner and outer iris borders, given by:

maxr,x0,y0

∣∣∣Gσ(r) ∗ δ

δr

∮
r,x0,y0

I(x, y)
2πr

ds
∣∣∣

This operator searches over the image domain (x, y) for the maximum in the blurred
partial derivative with respect to increasing radius r, of the normalized contour in-
tegral of I(x, y) along a circular arc ds of radius r and center coordinates (x0, y0).

– Normalization. To compensate the variations in the size of the pupil, we translated
the images to dimensionless polar coordinate system through a process known as
the ”Daugman Rubber Sheet” [4]. The remapping of the iris image I(x, y) to the
polar coordinate system I(r, θ) can be represented as:

I(x(r, θ), y(r, θ)) → I(r, θ)

with x(r, θ) = (1−r)xp(θ)+rxi(θ) and y = (1−r)yp(θ)+ryi(θ), where (xp, yp)
and (xi, yi) are the coordinates of the identified inner and outer iris boundaries
along the angular (θ) direction.

– Feature Extraction. The iris data encoding was accomplished through the use of
two dimensional Gabor filters. These spatial filters have the form:

G(x, y) = e−π[(x−x0)
2/α2+(y−y0)

2β2].e−2πi[u0(x−x0)+v0(y−y0)]

where (x0, y0) defines the position in the image, (α, β) is the filter width and length
and (u0, v0) specify the modulation, having spatial frequency w0 =

√
u2

0 + v2
0 and

direction θ0=arctan(v0/u0).
The real parts of the 2-D Gabor filters are truncated to be zero volume and achieve
illumination invariance. For each resulting bit we analyzed the sign of the real and
imaginary parts from quadrature image projections and through quantization as-
signed binary values: 1 and 0 respectively for positive and negative projection val-
ues.

– Feature Comparison. The feature extraction binarization process allows the utiliza-
tion of the Hamming distance as the similarity measure for two iris signatures.
Given two binary sets with N bits: A = {a1, ..., aN} and B = {b1, ..., bN}, the
Hamming distance is:

HD(A,B) =
1
N
∗

N∑
i=1

ai ⊗ bi

being a ⊗ b the logical ”XOR” operation. Thus, for two completely equal and dif-
ferent signatures, the value of the Hamming distance will be respectively 0 and
1.

The identification of the noisy pixels in the normalized iris image was accomplished
following the method described in [3]. This method produces a binary map with the
noisy pixels correspondent to the dark regions, as exemplified by figure 3b.
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Through the process described in section 3 we obtain a quality measure for each
feature of the biometric signature. Hereinafter, the task consists in determining the fea-
tures that must be compared in order to maximize the separability between the intra and
inter-class comparisons (respectively resultant from images from the same and different
irises).

In the limit, if all the features are compared, the probability that some of these
features are corrupted by noise and deteriorate the results is maximized . Oppositely,
if the feature comparison is exclusively made between features with optimal quality
value (completely noise-free), the number of comparisons is minimized, propitiating
that random similarities or dissimilarities between iris signatures also deteriorate the
final similarity value between signatures.

Thus, the number of comparable features must deny the comparison between ex-
tremely low-confidence features while maintaining a sufficient large number of compar-
isons, in order to avoid that random (dis) similarities between features can significantly
change the final result.

In the experiments, we varied both the feature comparison variant and the minimum
quality value demanded for comparable features and analyzed the recognition accuracy
in two distinct data sets with different noise quantities. In the next section we present
the available data sets and justify our choice.

4.1 Data Sets

There are presently 5 public and free available iris image databases for biometric pur-
poses: CASIA [9], MMU [17], BATH [21], UPOL [5] and UBIRIS [18].

CASIA database is by far the most widely used for biometric purposes. However,
its images incorporate few types of noise, almost exclusively related with eyelid and
eyelash obstruction. MMU and BATH databases contain very homogeneous images,
and with few noise factors. UPOL images were captured with an optometric framework,
resulting in optimal images with extremely similar characteristics. Oppositely, UBIRIS
database was builded with the objective of simulating non-cooperative capturing. This
facts explains the higher heterogeneity of its images and the existence of several types
of noise: eyelid and eyelashes obstruction, poor focused and with different types of
reflections (light sources next to the users and information from the environment that
surrounds them). These facts make it the most appropriate for the objectives of our work
and led us to choose UBIRIS as the main database for our experiments.

We initially selected 260 images from the UBIRIS database, belonging to 26 differ-
ent subjects (10 images from each subject). Figure 4 contains examples from the im-
ages used in our experiments. However, we considered relevant to obtain information
about the recognition accuracy as the amount of noise in the image varies. To enable
this analysis, we further divided the selected images in two sub sets, according to their
noise characteristics. The 130 less noisy images were included in the UBIRISF data
set and the 130 noisier ones in the UBIRISN data set.
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(a) Good quality iris image. (b) Poor focused iris image.

(c) Iris with eyelids obstruction. (d) Eye with ”strong” reflection areas on the pupil

part and ”weak” reflection areas on the iris part.

Fig. 4. Examples of images from the UBIRIS database.

4.2 Results

According to the process described in section 4, we compared the accuracy of the clas-
sical Daugman methodology as described by the author and together with our proposals
in the above described data sets (UBIRISF and UBIRISN ).

Figure 5 contains 4 measures that reflect the advantages of applying our proposal
together with the classical Daugman feature extraction and comparison methodologies.
The horizontal axis represents the minimum feature quality value using the ”hard” com-
parison variant. The traditional approach of comparing all the features is equivalent to
our proposal with minimum quality value equal to 0. The continuous line is relative to
the UBIRISN data set and the dashed line to the less noisier UBIRISF data set.

Figure 5a contains the obtained values for a t-test given by:

τ =
µE − µI√
σI2

NI + σE2

NE

(8)

where symbols µI and µE respectively indicate the obtained means in the intra-class
(images from the same iris) and inter-class (images from different irises) comparisons.
σI and σE indicated the respective standard deviations and N I and NE are, respec-
tively, the total number of intra-class and inter-class comparisons between iris signa-
ture.

Figure 5b contains the equal error rates, obtained when the false accepts and rejects
are approximately equal. Figure 5c contains the percent values for the area under the
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(a) t-Test values. (b) Equal Error Rate (EER).

(c) Error Area Under the ROC Curve. (d) FRR with FAR=0.

Fig. 5. Obtained results from our proposal in the UBIRISN (continuous line) and UBIRISF

(dashed line).

receiver operating curve (ROC) and figure 5d contains the obtained value for the false
rejections, when the false acceptances are minimized.

The best results were obtained when the feature comparison was enabled between
features with minimum quality value around 0.5 (50%). In this situation, while main-
taining a large number of comparable features, it is avoided that very poor quality fea-
tures, extracted from large proportion of noisy pixels, corrupt the final results.

Our experiments clearly show an improvement of the system’s accuracy, signifi-
cantly reducing the error rates, the area under the ROC and increasing the separability
between the intra-class inter-class comparisons.

Table 1 contains the obtained results, when varying the feature comparison strategy.
The first column identifies the classification method. The second (τ ) contains the value
for the t-test described above, the third column the equal error rate and the last column
the obtained false rejection rate when the false acceptances were minimized. All the
error values are expressed for a confidence interval of 95%.

The analysis of these results clearly shows an increment of system’s overall accu-
racy using our proposal - with the ”hard” variant, specially in the noisier UBIRISN

data set. In the less-noisier UBIRISF data set the results were more similar, mean-
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Method τ EER (%) Error ROC (%) FRR, FAR=0 (%)
UBIRISN data set
Original 2.258 2.090± 0.0040 0.449 15.556± 0.0101

Proposed (Hard), T=0.5 2.892 0.904± 0.0026 0.036 6.667± 0.0070

Proposed (Fuzzy) 2.699 1.130± 0.0029 0.057 11.639± 0.0090

UBIRISF data set
Original 3.130 2.690± 0.0045 0.112 12.778± 0.0093

Proposed (Hard), T=0.5 4.012 0.366± 0.0016 0.032 2.667± 0.0045

Proposed (Fuzzy) 3.813 0.900± 0.0026 0.058 6.166± 0.0067
Table 1. Obtained Results.

ing that even in images with insignificant portions of noise our proposal can slightly
improve the recognition’s accuracy.

With the ”fuzzy” feature comparison variant, we obtained worst results than with
the ”hard” one. The comparison of all the features, even if they are weighted with their
quality value, is not a valid alternative.

5 Conclusions

In this paper we proposed a method for the measurement of the quality of each extracted
feature for iris recognition systems. The motivation for this work was the significant
increment of the error rates when these systems deal with noisy images.

The quality is used to constraint the number of components that are taken into ac-
count in the feature comparison stage. Experiments led us to conclude that this method
significantly decreases the error rates in the recognition of noisy iris images, thus be-
ing appropriate for the application in a non-cooperative recognition compass, where the
ability to deal with noisy images is required.

Even in images with better quality, with minor portions of noise, the results showed
that our quality measure contributes for the selection of the best features with the cor-
respondent achievement in the recognition system’s accuracy.

Moreover, the fact that our proposal is independent of the choused feature extrac-
tion and comparison methodology can be regarded as a strong point. The analysis of
the benefits of its application in other iris recognition strategies (feature extraction and
feature comparison) is one direction for the future work.
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