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Abstract 
 

Growing efforts have been concentrated on the devel-

opment of alternative biometric recognition strategies, the 

intended goal to increase the accuracy and counter-

feit-resistance of existing systems without increased cost. In 

this paper, we propose and evaluate a novel biometric 

approach using three fundamentally different traits cap-

tured by the same camera sensor. Considered traits in-

clude: 1) the internal, non-visible, anatomical properties of 

the human eye, represented by Oculomotor Plant Charac-

teristics (OPC); 2) the visual attention strategies employed 

by the brain, represented by Complex Eye Movement pat-

terns (CEM); and, 3) the unique physical structure of the 

iris. Our experiments, performed using a low-cost web 

camera, indicate that the combined ocular traits improve 

the accuracy of the resulting system. As a result, the com-

bined ocular traits have the potential to enhance the ac-

curacy and counterfeit-resistance of existing and future 

biometric systems. 

 

1. Introduction 

Biometric systems are becoming increasingly more im-

portant to advance security in a wide variety of applica-

tions, including everyday computer access, health care, 

information systems, e-commerce, and border control. 

Multimodal biometric systems often rely on traits such as 

iris pattern, fingerprints, face, hand geometry, and voice 

[1]. While the security potential of biometric techniques is 

high, unsolved security challenges continue to escalate with 

recent technological advances that allow the production of 

high quality artifacts [2] and sophisticated spoofing 

mechanisms [3]. 

Multimodal biometric systems often provide increased 

accuracy of identification and resistance to spoofing in 

comparison to single-trait systems [1]; however, these 

benefits come at the expense of decreased usability and 

increased cost, due largely to the employment of multiple 

sensors and additional steps in the data acquisition process. 

In this work, we investigate the feasibility of a multi-

modal ocular biometrics approach which uses the infor-

mation from three fundamentally different physiological 

and behavioral traits, and requires the use of only a single 

image sensor and an array of infrared (IR) lights. Consid-

ered traits include: 1) the internal, non-visible, anatomical 

properties of the human eye, represented by Oculomotor 

Plant Characteristics (OPC); 2) the visual attention strate-

gies employed by the brain, represented by Complex Eye 

movement patterns (CEM); and, 3) the unique physical 

structure of the iris. OPC and CEM traits are inferred from 

the dynamics of eye movements derived from the sequence 

of eye images captured by the sensor, while the iris pattern 

is extracted directly from the same images. The combina-

tion of accurate static traits, such as iris patterns, and highly 

dynamic traits, such as eye movements, has the potential to 

provide a high degree of identification accuracy and 

counterfeit-resistance to the underlying system. 

This work contributes to the state-of-the-art by: 1) in-

vestigating the performance of both individual and com-

bined CEM-, OPC-, and iris-based biometrics on a single, 

low-cost image sensor; 2) generate the largest existing eye 

movement database for biometric research. 

This paper is organized as follows: Section 2 discusses 

the state-of-the-art in related research directions and out-

lines the contribution of our work to the existing body of 

knowledge, Section 3 presents architectures of the multi-

modal ocular biometrics, Section 4 describes experimental 

setup, Section 5 presents experimental results, and Sections 

6 and 7 include the discussion and conclusion, respectively. 

2. Related Work 

2.1. Eye Movement-driven Biometrics 

The human eye exhibits several basic types of eye 

movement in response to various stimuli (both internal and 

external). In the field of human-computer interaction, fixa-

tions and saccades are of primary interest. Fixations occur 

when the eye globe is held in a relatively stable position 

such that the fovea remains centered on an object of inter-

est, providing heightened visual acuity. Saccades occur 

when the eye globe rotates quickly between points of fixa-

tion, with very little visual acuity maintained during rota-

tion. The term scanpath refers to the spatial path formed by 

a sequence of fixations and saccades. 
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Kasprowski and Ober [4] employed the uncalibrated 

positional signal captured by a custom-made eye tracking 

in a verification scenario. The signal was processed by 

Naïve Bayes, C45 Decision Tree, SVM polynomial, and 

KNN (k=3, 7) algorithms. The visual stimulus was pre-

sented as a sequence of jumping dots, and data was cap-

tured for 8 sec at a frequency of 250 Hz. The best reported 

result provided HTER = 12% (FAR = 1.48%, FRR = 

22.59%), obtained from 9 subjects. Subsequently in [5], the 

authors extended their research by working with features 

such as average velocity direction, eye distance to stimulus, 

distance between eyes, and features extracted from discrete 

Fourier and wavelet transforms. The resulting feature 

vectors were merged by voting method for an average 

HTER of 3.88-11.25%; however, the authors did not report 

the number of subjects considered. 

Bednarik et al. [6] employed such metrics as pupil di-

ameter/dilation, eye velocity, and distance between eyes 

captured by a commercial Tobii ET-1750 eye tracking 

system in an identification scenario. Metrics were pro-

cessed via Fourier spectrum, principal component analysis, 

and a combination of the two. The visual stimulus was a 

centrally positioned cross, displayed for a period of 1 sec, 

and data was captured for 12 subjects with a sampling 

frequency of 50 Hz. For each subject, data was captured 

during a single recording session, and the best reported 

result yielded an identification rate of 92%, obtained by 

weighted fusion of the three metrics. 

Kinnunen et al. [6] employed information about the an-

gles the eye travels within a temporal window, captured by 

a commercial Tobii X120 eye tracking system in a verifi-

cation scenario. Captured information was processed into 

features by a Gaussian mixture model, enhanced by a uni-

versal background model. The visual stimulus was a 25 min 

comedy video, and data was captured for 17 subjects with a 

sampling frequency of 120 Hz. Each subject viewed two 

videos, one of which was employed for enrollment and the 

other for verification. The best reported result yielded an 

HTER of 29.4%, obtained by weighted fusion. 

Rigas et al. [7] investigated a method in which a se-

quence of fixations and saccades was represented by a 

minimum spanning tree (MST). MST templates were 

compared by a statistical test designed to extract mean and 

variance. The visual stimulus was a set of facial images, 

with a total of 10 images presented during each recording 

session for 4 sec each. Each subject participated in 8 re-

cording sessions over two days, and data was collected by a 

Dual Purkinje eye tracking system with a sampling rate of 

50 Hz. EER was reported at 30%. 

Komogortsev et al. [8] proposed a method of authenti-

cation via oculomotor plant characteristics (OPC) esti-

mated from eye movements, with obtained OPC templates 

compared by Hotelling’s T-square test. The visual stimulus 

was presented as a jumping dot with fixed amplitude, and 

eye movements were recorded for 59 subjects over two 

recording sessions using an EyeLink 1000 eye tracking 

system with a sampling rate of 1000 Hz. The best reported 

result yielded an HTER of 19%. 

Holland and Komogortsev [9] investigated individual 

and aggregated scanpath characteristics, representative of 

the brain’s visual attention strategies during reading. 

Weighted mean fusion was employed to combine scores 

obtained by various characteristics. Eye movements were 

recorded for 32 subjects over four recording sessions using 

an EyeLink 1000 eye tracking system with a sampling rate 

of 1000 Hz. The best reported result yielded EER of 27%. 

Komogortsev et al. [10] proposed to combine OPC and 

CEM modalities for the same reading stimulus and re-

cording environment. When considered separately, OPC 

and CEM achieved HTER of approximately 27%; however, 

weighted fusion of the two provided an HTER of 19%, 

indicating a 30% improvement in accuracy. 

Several areas that must be improved in eye movement 

related biometrics include: 1) size of available biometric 

databases; 2) cost of equipment; and, 3) biometric accura-

cy. The current work improves the state-of-the-art in these 

areas by: recording eye movements across 87 subjects, 

generating the largest available database for eye move-

ment-based biometrics; the use of a single, low-cost image 

sensor, costing approximately $20 in comparison to the 

commercial systems employed in previous research, which 

may cost $5000-35000; and a resulting HTER of 33.6% 

provided by the combined eye movement-driven traits, an 

accuracy on par with previous findings. 

2.2. Iris 

2.2.1 Iris Biometrics on Low Cost Equipment 

Lu et al. [11] modified a Sony Erickson P800 phone by 

adding an eye cap with custom-made lens and an IR light. 

The system was designed to capture grayscale iris images at 

the resolution of 640×480. The authors implemented 

Daugman’s algorithm [12] on their mobile platform, and 

evaluation of the mobile algorithm with the CASIA-IrisV1 

database was performed. FAR of 0.13-4.3% and FAR 0-8% 

was obtained, though the authors did not provide perfor-

mance results using iris images captured by with the con-

structed device. 

Thomas et al. [13] employed an Airlink SkyIPCam500W 

to capture 640×480 images in near infrared spectrum. The 

camera captured several images at the rate of 30 Hz. An LG 

IrisAccess system was employed for actual iris matching, 

and a small database of six subjects was used. The system 

was able to identify all users correctly and one additional 

person was correctly rejected as an imposter. 

Sirohey et al. [14] located eye corners, eyelids, and irises 

in video data in order to determine changes in gaze direc-

tion and blinking, respectively. Considering the iris is al-

ways darker than the sclera, they started with segmentation 

of the scleric iris boundary. Then, anthropometric measures 
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bounded on the size of the iris relative to the size of the eye, 

and iris movements have limits imposed on them by the 

size of the eye. For eyelid edge, they used information 

about the eye corners and the iris center. The upper eyelid 

edge forms an arc that bounds the eye above the iris center. 

A flow-based method describes the movement of each 

component of the periocular region between frames, with 

respect to head motion, estimated by a flesh-tone color 

segmentation that gives a blob corresponding to the head. 

Kai and Du [15] used a video sequence from the IUPUI 

data set and proposed an iris recognition strategy from 

low-level quality data. The iris is segmented by direct least 

square fitting, and a gradient-based strategy is applied 

locally to the segmented area to detect noise within the iris 

ring. Then, they proposed a two stage classification strat-

egy, using information from different scales analyzed by 

SURF keypoint detection and Gabor filter decomposition. 

Aiming to perform biometric iris recognition on 

low-quality video data, Jilela and Ross [16] fused infor-

mation at the data-level in two stages: application of a 

so-called Principal Components Transform (PCT) to indi-

vidual frames and averaging of the resulting images. The 

performance of image-level fusion was compared against 

that of score-level fusion, having authors observe signifi-

cant improvements of the proposed technique, when com-

pared to the use of any individual frame. Similarly, Hol-

lingsworth et al. [17] took advantage of the temporal con-

tinuity in videos to improve matching performance using 

signal-level fusion. From multiple frames of a frontal iris 

video, they created a single average image, having ob-

served that signal-level fusion performs comparably to 

state-of-the-art score-level fusion techniques, with less 

computation burden. 

In summary, the iris capture setup employed in the cur-

rent work is similar to existing studies; however, to the best 

of our knowledge, there is no research that combines iris 

and eye movement-driven biometric modalities. This work 

fills that gap by using a single image sensor to infer in-

formation about the iris and eye movements for biometric 

purposes. 

2.2.2 Counterfeit Resistance 

Recent studies report that existing iris-based biometric 

systems can be spoofed by simple replicas such as printed 

pictures of the iris [18]. There are also studies that propose 

quite sophisticated mechanisms for spoofing, e.g., 

semi-transparent contact lens [3]. As a result, there is a 

substantial body of work that describes aliveness and 

spoofing detection methods, e.g., [19, 20]; however, the 

race between ideas for iris spoofing and prevention meth-

ods primarily takes the route of manufacturing better ma-

terial to represent the iris, and methods that detect 

non-human artifacts in that material [19]. 

We hypothesize that eye movement-related biometric 

methods that are driven by the sophisticated structure of the 

oculomotor plant and brain would be extremely effective in 

rejecting intruders with iris replicas of even the highest 

possible quality. In that case, the accuracy of the underlying 

eye movement-driven method would determine the accu-

racy of fake iris rejection. The OPC and CEM methods 

discussed in this work can serve as a backbone for such 

counterfeit resistance mechanisms. 

 
Figure 1: Multimodal ocular biometrics. 

3. Multimodal Ocular Biometrics Approach 

Three components comprise the multimodal ocular bi-

ometrics approach: 1) the internal, non-visible, anatomical 

structure of the human eye, represented by Oculomotor 

Plant Characteristics (OPC); 2) the visual attention strate-

gies employed by the brain, represented by Complex Eye 

movement patterns (CEM); and, 3) the unique physical 

structure of the iris. All three traits may be derived from the 

same image stream, captured by a single camera sensor and 

driven by eye tracking software. Eye tracking software 

estimates the eye positional signal from the sequence of eye 

images, supplies this data to the OPC and CEM modules, 

and forwards images of the eye to the iris-processing 

module for subsequent generation of iris templates. Each 

module is capable of producing a comparison score that is 

fused into a single score for the final acceptance/rejection 

decision. In the current implementation, scores are fused by 
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a simple weighted sum approach. Figure 1 depicts an 

overview of the proposed approach and the mechanics of 

each module. 

3.1. Oculomotor Plant Characteristics (OPC) 

The anatomy of the human eye provides a unique op-

portunity for biometric authentication, as there are a mul-

titude of anatomical components that comprise the oculo-

motor plant (OP). These components include: the eye 

globe; the surrounding tissue and ligaments; six extraocular 

muscles (EOMs), each containing thin and thick filaments; 

tendon-like components; and various tissues and liquids 

[21]. The static and dynamic properties of the OP are rep-

resented by: the eye globe’s inertia; the force-velocity 

relationship of individual muscles; the resistive properties 

of the eye globe, muscles, and ligaments; the characteristics 

of the neuronal control signal, sent from the brain to the 

EOMs; and the speed of propagation of the neuronal con-

trol signal. Individual properties of the EOMs vary de-

pending on their roles, which are two: agonist, representing 

the contracting muscle which pulls the eye globe; and an-

tagonist, representing the lengthening muscle resisting the 

pull [22]. 

In this work, we employ a biometric method proposed by 

Komogortsev et al. [8]. In this method, a mathematical 

model of the eye simulated saccades and compares them to 

the recorded saccades extracted from the raw positional 

signal. Computed differences trigger OPC estimation pro-

cedures which attempt to find OPC values which minimize 

the difference in positional signal. Optimized OPC values 

form the biometric template. 

Similar to the original method, we have selected the 

following nine OPC to form entries in the biometric tem-

plate: length tension, series elasticity, passive viscosity of 

the eye globe, agonist force-velocity relationship, antago-

nist force-velocity relationship, tension intercept, and ago-

nist and antagonist tension slopes [8]. The resulting tem-

plate can be compared by Hotelling’s T-square test to an-

other template, returning a probability score that can be 

employed to determine similarity. 

3.2. Complex Eye Movement Patterns (CEM) 

Complex Eye Movement patterns (CEM) represent the 

cognitive strategies employed by the brain throughout the 

guidance of visual attention. The human eye is connected to 

and controlled by a complex network of brain regions, 

sub-regions, and neural pathways [22, 23]. Information is 

transmitted from region to region along neural pathways in 

the form of neural signals, which may convey visual field 

information from the eye or control information from the 

brain. The firing rate of individual neural signals (which 

occur in sustained bursts) is dependent on the physical 

properties of the involved neurons and surrounding brain 

tissue. As well, this neural activity is influenced by the task 

being performed, which may cause variation in baseline 

firing rates, firing rate profiles, and modulations of neu-

ronal activity related to particular stimuli and behavioral 

responses [24]. 

We define fixation-based metrics as those metrics, which 

depend solely upon fixations and the mechanics involved in 

generating fixations. Fixation-based metrics include: fixa-

tion count (f1) and average fixation duration (f2). Fixa-

tion-based metrics involve and are dependent upon the: 

dorsal layers and rostral pole of the superior colliculus, 

nucleus raphe interpositus in the midline of the pons, pos-

terior parietal cortex, and visual cortex areas V1-V5 [22, 

23]. 

We define saccade-based metrics as those metrics, which 

depend solely upon saccades and the mechanics involved in 

generating saccades. Saccade-based metrics include: av-

erage vectorial saccade amplitude (f3), average horizontal 

saccade amplitude (f4), average vertical saccade amplitude 

(f5), average vectorial saccade velocity (f6), average vecto-

rial saccade peak velocity (f7), slope of the ampli-

tude-duration relationship (f8), slope of the main sequence 

relationship (f9), and velocity waveform indicator (f10). 

Saccade-based metrics involve and are dependent upon the: 

ventral layers of the superior colliculus, paramedian pon-

tine reticular formation, rostral interstitial nucleus of the 

medial longitudinal fasciculus, frontal eye fields, and lat-

eral intra parietal [22, 23]. 

We define scanpath-based metrics as those metrics 

which are derived from the size, shape, or pattern of the 

overall eye movement scanpath, and are often related to the 

visual search strategy employed in extracting information 

from a given stimuli. Scanpath-based metrics include: 

scanpath length (f11), scanpath convex hull area (f12), re-

gions of interest (f13), inflection count (f14), and spatial 

distribution represented by a pairwise distance comparison 

(f15). Scanpath-based metrics involve and are dependent 

upon the brain regions involved in fixation- and sac-

cade-based metrics, as well as the conscious and 

sub-conscious memory mechanisms responsible for the 

guidance of visual search [25, 26]. 

Fixation and saccade related information is processed by 

the Individual Scanpath Components module and aggre-

gated information is processed by the Aggregated Scanpath 

module. Components are combined by a weighted fusion 

method which outputs a single similarity score for a given 

pair of CEM templates. Additional details are provided 

elsewhere [9]. 

3.3. Iris 

Considering the specific characteristics of iris data, it is 

especially important to define an initial region of interest, 

from which subsequent processing occurs. The near infra-

red (NIR) structured light guarantees maximum contrast 
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between the pupil and any remaining data. Hence, the first 

step comprises the detection of a bounding box that con-

tains the pupil, made according to orthogonal projections. 

Then, a first order gradient-based edge detection [27] feeds 

a circular Hough transform phase, yielding the parameter-

ized papillary boundary. Morphological constraints are 

especially useful to constrain the potential regions of search 

for the scleric boundary, accomplished in a similar way to 

the inner boundary. The translation into the Polar domain 

gives rough invariance to changes in scale. An optimal 

Gabor filter [12] configuration (wavelength: 
1
/4, orientation 

5π
/8, phase offset: 0, sigma Gaussian: 

1
/8, spatial aspect 

ratio: 1) is selected to extract the iris biometric template
1
. 

Template matching is performed in angularly constrained 

regions of the normalized data, where eyelid and eyelash 

occlusions are less probable. As a result of template 

matching, a distance score is returned by the iris module. 

The score can be employed in the similarity decision. It 

should be stressed that more elaborate segmenta-

tion/encoding strategies were not considered, due to the 

limited resolution of obtained iris data. 

4. Experimental Setup 

4.1. Equipment & Software 

Eye movement recording and iris capture were simul-

taneously conducted using a PlayStation Eye web camera 

(approximate cost of $20). The camera recorded at the 

resolution of 640×480 pixels with a frame rate of 75 Hz. 

The existing IR filter was removed and a piece of unex-

posed film was inserted as a filter for the visible spectrum 

of light. A Clover Electronics IR010 Infrared Illuminator 

(approximate cost of $33) and two IR diodes (approximate 

cost of $2) placed on the body of the camera were em-

ployed to improve the quality of iris illumination and eye 

tracking accuracy. The web camera and main IR array were 

each installed on the flexible arm of a Mainstays Halogen 

Desk Lamp (total approximate cost $20) to provide an 

installation that can be adjusted to specific users. A chin 

rest (readily available from a commercial eye tracking 

system) was employed for head stabilization to improve the 

quality of acquired data. In a low-cost scenario, a com-

fortable chinrest can be constructed from very inexpensive 

materials. 

The stimulus was displayed on a 19-inch LCD monitor 

with a refresh rate of 60 Hz. The distance between the eye 

and the screen was approximately 540 mm. 

ITU Gaze Tracker [28], publicly available eye tracking 

software, was employed for eye tracking purposes. The 

software was modified to present the required stimuli and 

store an eye image every three seconds, in addition to the 

 
1
 Optimal parameters were selected based on analysis of the 

training dataset. 

existing eye tracking capabilities. Eye tracking was done in 

no-glint mode. Duchowski provides an overview of general 

eye tracking principles [23]. 

4.2. Stimulus 

A complex pattern stimulus was constructed that em-

ployed the Rorschach inkblots commonly used in psycho-

logical examination [29], in order to provide relatively 

clean patterns which were likely to evoke varied thoughts 

and emotions in participants. Inkblot images were selected 

from the original Rorschach psychodiagnostic plates and 

sized/cropped to fill the screen. Participants were instructed 

to examine the images carefully, and recordings were per-

formed over two sessions, with 3 rotations of 5 inkblots per 

session. Each inkblot was displayed for 12 sec, for a total of 

3 min per session. 

4.3. Participants & Data Collection 

Eye movement and iris data was collected for a total of 

87 subjects (60 male, 27 female), ages 18 – 47 with an 

average age of 22.6 (SD = 4.8). An Institutional Review 

Board approved data collection procedures, and all subjects 

provided informed consent. Each subject participated in 

two recording sessions with an interval of approximately 15 

min between sessions. 

During the data collection phase, the recording facilita-

tors were instructed to adjust the equipment to provide high 

quality eye movement data and iris images. The quality of 

the eye movement data was controlled by the magnitude of 

calibration error. The facilitators were instructed to adjust 

the equipment to keep this error under 2° of the visual angle 

for any participant. The quality of iris images was con-

trolled by visual inspection that targeted iris diameter in a 

range of 100 pixels, was in focus, with iris pattern clearly 

visible. In cases where maintaining high quality eye 

movement data and iris images at the same time was not 

possible, the preference in quality was given to the eye 

movement data. This scenario happened for several sub-

jects, for whom high quality iris images degraded the per-

formance of the eye tracking software. Figure 2 provides an 

example eye movement scanpath collected from a single 

subject/inkblot, and Figure 3 provides examples of col-

lected iris quality. 

4.4. Datasets & Data Quality 

Across all eye movement recordings, mean positional 

accuracy represented by the magnitude of calibration error 

was 1.06° (SD = 0.64°). For each recording session, one 

best iris image was selected manually to provide a 

one-to-one correspondence between related OPC, CEM, 

and iris templates. Captured iris images had mean diameter 

of 103.3 pixels (SD = 22 pixels). Mean focus score com-

puted by eq. 15 in [30] was 75 (SD = 24.7). For compari-
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son, the ICE 2005 iris dataset [31] has mean focus score of 

163 (SD = 27.5). 

 
Figure 2: Example scanpath. 

 
Figure 3: Example iris quality. Left image: poor quality. Middle 

image: acceptable quality. Right image: good quality. 

5. Results 

Results are presented in Figure 4 and Table 1. 

 

 
Figure 4: Detection error tradeoff. “+” sign indicates weighted 

fusion with weights presented in Table 1. 

 

 
Table 1. Decidability index and HTER for each method. Decida-

bility index is computed by eq. 14 in [30]. HTER computed as 

(FAR+FRR)/2 is derived from the data points that are as close as 

possible to the interpolated EER. OPC_h and OPC_v represent the 

scores obtained from the horizontal and vertical movement 

components respectively. Features related to CEM were identified 
in Section 3.1. 

 

5.1. Oculomotor Plant Characteristics (OPC) 

HTER provided by OPC alone was 37.1%, much higher 

than the comparable result of 22.5% reported in [8]. The 

65% increase in error is not unexpected considering a sig-

nificant reduction in sampling frequency (75 Hz vs. 1000 

Hz). We hypothesize that equipment precision (the mini-

mum distance the eye should move before a shift in posi-

tion is detected) is much lower on the web camera based 

eye tracker, which contributes to the increase in error. 

Consider the web camera eye tracker is approximately three 

orders of magnitude less expensive than commercial 

equipment, it is important to notice that OPC performance 

is still far from the random baseline. 

5.2. Complex Eye Movement Patterns (CEM) 

HTER provided by CEM alone was 36.3%, which is 

higher than the comparable result of 27% reported in [9]. 

We hypothesize this 34.4% increase in error is due to re-

duction in sampling rate and equipment precision. It is 

possible to notice that the increase in CEM error is much 

smaller than the increase in OPC error. There are two points 

to consider: 1) accurate estimation of the OPC may require 

a low-noise, accurate signal and high sampling rate; 2) 

initial error of 27% reported for CEM in [9] is higher than 

the error of 22.5% reported for OPC in [8]. Therefore, it is 

possible to make the preliminary conclusion that OPC 

provides better verification than CEM on higher accuracy 
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0.53*OPC_h+0.47*OPC_v 
0.5 37.1 

CEM = 
0.009*f4+0.037*f5+0.917*f7+ 

+f11*0.037 

0.58 36.3 

Iris 3.07 5.9 
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0.98*Iris+0.02*CEM 3.08 5.7 

0.37*OPC+0.63*CEM 0.68 33.6 

0.02*OPC+0.02*CEM+0.96*Iris 3.1 4.8 
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and sampling rate equipment; however, CEM is more tol-

erant to accuracy and sampling rate degradation than OPC. 

5.3. Iris 

Considering the demands given by ISO/IEC 19794-6 

(“an iris diameter of more than 200 pixels is considered to 

be good”), the average dimension of the iris rings in the 

acquired are far below that value. Unavoidably, this gap in 

the amount of information should correspond to an increase 

in the observed error rates of the iris recognition model. Not 

surprisingly, we observed that the optimal Gabor configu-

ration was obtained at shorter wavelengths than those ob-

tained for more usual datasets of iris recognition experi-

ments (e.g. the ICE dataset), yielding HTER values around 

5.9%. These allowed us to conclude that even in such 

challenging data, iris rings contain discriminating infor-

mation, with potential to be used for biometric recognition 

purposes. Additionally, we empirically observed that slight 

increases in the amount of information acquired correspond 

to substantial improvements in iris recognition perfor-

mance. 

5.4. OPC + CEM 

Combining OPC and CEM increased the accuracy of the 

verification, yielding an HTER of 33.6%. This constitutes a 

9.4% reduction in error compared to OPC and a 7.4% re-

duction in error compared to CEM. The magnitude of error 

reduction is smaller than the 30% reported by Komogortsev 

et al. [10]; however, it is still substantial. 

5.5. OPC + CEM + Iris 

Fusion of OPC and iris traits reduced error by 13.4% 

when compared to iris modality alone, and fusion of CEM 

and iris traits reduced error by 3.4% when compared to iris 

modality alone. The combination of OPC, CEM, and iris 

traits provided an error reduction of 19% when compared to 

the iris modality alone. This reduction in error is quite 

substantial, indicating high potential for the combined 

ocular biometrics approach on low-cost equipment. 

6. Discussion 

6.1. Counterfeit Resistance 

The best HTER achieved by CEM and OPC modalities is 

33.6%, quite high when compared to the 0% error rate for 

the detection of contact lens reported by He et al. [32]. Eye 

movement biometrics still has a long was to go in terms of 

accuracy; however, we hypothesize that in a race between 

the artifact and detection mechanisms, eye movement 

driven methods may provide more robust solutions in the 

long run. 

6.2. Limitations 

There are several limitations in this study. First, subjects 

did not move their heads during recording, which is unre-

alistic during normal computer use. Second, weights for the 

weighted fusion and thresholding were selected for the 

dataset as a whole, similar to [8-10]. Third, eye images for 

iris recognition were selected manually; however, it is not 

difficult to imagine automated mechanisms that would 

perform such selection automatically (e.g. [33]). Fourth, 

only a single eye image per recording was selected for iris 

recognition purposes. Possible employment of a larger 

range of images, similar to [16], may improve iris related 

accuracy. Fifth, both recording sessions were done in close 

temporal proximity, therefore negating possible impacts 

related to fatigue, illness, or drug consumption. The impact 

of these factors over a longer recording timeline should be 

investigated in future work. 

7. Conclusion and Future Work 

The current work proposed a multimodal ocular bio-

metric approach that combines three physiological and 

behavioral traits related to Oculomotor Plant Characteris-

tics (OPC), Complex Eye Movement patterns (CEM), and 

iris patterns. The results indicate that it is possible to extract 

biometric information encoded in those traits using a single 

image sensor. The image sensor employed in our study was 

an inexpensive web camera, which contrasts with previous 

eye movement-driven studies that employed high-quality, 

commercial eye tracking equipment. As a result, the largest 

existing database of eye movements and corresponding iris 

images of 87 people was recorded and will be publicly 

available. 

From the eye movement-driven biometric perspective, 

our results support findings reported in previous research 

and indicate that OPC and CEM are able to provide some 

information about biometric identity even when using in-

expensive image sensors. 

From the iris biometrics perspective, we confirm that: 1) 

it is possible to achieve reasonably low error rates (HTER = 

5.6%) when operating on data with resolution substantially 

lower than ISO/IEC 19794-6 recommendations; and 2) the 

discriminating information of the iris texture correlates 

weakly to eye movement-driven biometric sources, which 

makes it possible to strengthen biometric accuracy by 

combining information from these traits. As a result, when 

compared to iris authentication alone, the multimodal oc-

ular biometric provided an error reduction of 19%, with a 

resulting HTER = 4.8%. 

We hypothesize that eye movement-driven biometrics 

can serve as a complimentary method for aliveness and 

spoofing detection to already existing mechanisms in future 

biometric systems. We plan to address this issue in detail in 

our future work. 



BTAS 
2012 
 

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE. BTAS 
2012 
 

 

 

8 

800 
801 
802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
815 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844 
845 
846 
847 
848 
849 

850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 
878 
879 
880 
881 
882 
883 
884 
885 
886 
887 
888 
889 
890 
891 
892 
893 
894 
895 
896 
897 
898 
899 

References 

 
[1] A. A. Ross, K. Nandakumar and A. K. Jain. Handbook of 

multibiometrics. Springer, 2006. 

[2] Available: 

http://cw.com.hk/news/report-hong-kong-china-border-bio

metrics-device-spoofed. 

[3] N. B. Puhan, S. Natarajan and A. Suhas Hegde. Iris liveness 

detection for semi-transparent contact lens spoofing 

advances in digital image processing and information 

technology. Springer Berlin Heidelberg, 249-256, 2011. 

[4] P. Kasprowski and J. Ober. Eye movements in biometrics. 

Proceedings of the European Conference on Computer 

Vision (ECCV), 248-258, 2004. 

[5] P. Kasprowski and J. Ober. Enhancing eye-movement-based 

biometric identification method by using voting classifiers. 

Proceedings of 314-323, 2005. 

[6] R. Bednarik, T. Kinnunen, A. Mihaila and P. Fränti. 

Eye-movements as a biometric. Image analysis, 780-789, 

2005. 

[7] I. Rigas, G. Economou and S. Fotopoulos. Biometric 

identification based on the eye movements and graph 

matching techniques. Pattern Recognition Letters, 

33(6):786-792, 2012. 

[8] O. V. Komogortsev, A. Karpov, L. Price and C. Aragon. 

Biometric authentication via oculomotor plant characteristic. 

Proceedings of IEEE/IARP International Conference on 

Biometrics (ICB), 1-8, downloaded at 

http://www.cs.txstate.edu/~ok11/publications.html 2012. 

[9] C. Holland and O. V. Komogortsev. Biometric identification 

via eye movement scanpaths in reading. Proceedings of 1-8, 

2011. 

[10] O. V. Komogortsev, A. Karpov and C. Holland. Cue: 

Counterfeit-resistant usable eye-based authentication via 

oculomotor plant characteristics and complex eye movement 

patterns. Proceedings of SPIE Defence Security+Sensing 

Conference on Biometric Technology for Human 

Identification IX, 1-10, downloaded at 

http://www.cs.txstate.edu/~ok11/publications.html 2012. 

[11] H. Lu, R. C. D. Young and C. R. Chatwin. Iris recognition on 

low computational. Power mobile devices. Biometrics - 

unique and diverse applications in nature, science, and 

technology, 106-127, 2011. 

[12] J. G. Daugman. Complete discrete 2-d gabor transforms by 

neural networks for image analysis and compression. 

Acoustics, Speech and Signal Processing, IEEE Transactions 

on, 36(7):1169-1179, 1988. 

[13] N. L. Thomas, Y. Du, S. Muttineni, S. Mang and D. Sran. 

Low-cost mobile video-based iris recognition for small 

databases. Proceedings of 73510D-73517, 2009. 

[14] S. Sirohey, A. Rosenfeld and Z. Duric. A method of 

detecting and tracking irises and eyelids in video. Pattern 

Recognition, 35(6):1389-1401, 2002. 

[15] Y. Kai and E. Y. Du. A multi-stage approach for 

non-cooperative iris recognition. Proceedings of Systems, 

Man, and Cybernetics (SMC), 2011 IEEE International 

Conference on, 3386-3391, 2011. 

[16] R. Jillela, A. Ross and P. J. Flynn. Information fusion in 

low-resolution iris videos using principal components 

transform. Proceedings of Applications of Computer Vision 

(WACV), 2011 IEEE Workshop on, 262-269, 2011. 

[17] K. Hollingsworth, T. Peters, K. W. Bowyer and P. J. Flynn. 

Iris recognition using signal-level fusion of frames from 

video. Information Forensics and Security, IEEE 

Transactions on, 4(4):837-848, 2009. 

[18] Available: 

http://www.theregister.co.uk/2002/05/23/biometric_sensors

_beaten_senseless/. 

[19] P. Andrzej and C. Adam. Aliveness detection for iris 

biometrics. Proceedings of Carnahan Conferences Security 

Technology, Proceedings 2006 40th Annual IEEE 

International, 122-129, 2006. 

[20] X. He, Y. Lu and P. Shi. A new fake iris detection method. 

Proceedings of the Third International Conference on 

Advances in Biometrics, Springer-Verlag, 1132-1139, 2009. 

[21] D. R. Wilkie. Muscle. London: Arnold, 1970. 

[22] R. J. Leigh and D. S. Zee. The neurology of eye movements. 

Oxford University Press, 2006. 

[23] A. T. Duchowski. Eye tracking methodology: Theory and 

practice. Springer-Verlag, 1-360, 2007. 

[24] W. F. Asaad, G. Rainer and E. K. Miller. Task-specific 

neural activity in the primate prefrontal cortex. Journal of 

Neurophysiology, 84(1):451-459, 2000. 

[25] D. Noton and L. W. Stark. Scanpaths in eye movements 

during pattern perception. Science, 171(3968):308-311, 

1971. 

[26] T. Ro, J. Pratt and R. D. Rafal. Inhibition of return in 

saccadic eye movements. Experimental Brain Research, 

130(2):264-268, 2000. 

[27] J. Canny. A computational approach to edge detection. 

Pattern Analysis and Machine Intelligence, IEEE 

Transactions on, PAMI-8(6):679-698, 1986. 

[28] J. S. Agustin, H. Skovsgaard, E. Mollenbach, M. Barret, M. 

Tall, D. W. Hansen and J. P. Hansen. Evaluation of a 

low-cost open-source gaze tracker. Proceedings of 

Proceedings of the ACM Symposium on Eye-Tracking 

Research & Applications (ETRA), 77-80, 2010. 

[29] H. Rorschach. Rorschach test - psychodiagnostic plates. 

Hogrefe, 1-10, 1927. 

[30] J. Daugman. How iris recognition works. IEEE Transactions 

on Circuits and Systems for Video Technology, 14(1):21-30, 

2004. 

[31] Available: http://www.nist.gov/itl/iad/ig/ice.cfm. 

[32] X. He, S. An and P. Shi. Statistical texture analysis-based 

approach for fake iris detection using support vector 

machines advances in biometrics. Springer Berlin / 

Heidelberg, 540-546, 2007. 

[33] Y. Lee, R. J. Micheals and P. J. Phillips. Improvements in 

video-based automated system for iris recognition (vasir). 

Proceedings of Proceedings of the IEEE international 

conference on motion and video computing, 71-78, 2009. 

 

 


	1. Introduction
	2. Related Work
	2.1. Eye Movement-driven Biometrics
	2.2. Iris
	2.2.1 Iris Biometrics on Low Cost Equipment
	2.2.2 Counterfeit Resistance


	3. Multimodal Ocular Biometrics Approach
	3.1. Oculomotor Plant Characteristics (OPC)
	3.2. Complex Eye Movement Patterns (CEM)
	3.3. Iris

	4. Experimental Setup
	4.1. Equipment & Software
	4.2. Stimulus
	4.3. Participants & Data Collection
	4.4. Datasets & Data Quality

	5. Results
	5.1. Oculomotor Plant Characteristics (OPC)
	5.2. Complex Eye Movement Patterns (CEM)
	5.3. Iris
	5.4. OPC + CEM
	5.5. OPC + CEM + Iris

	6. Discussion
	6.1. Counterfeit Resistance
	6.2. Limitations

	7. Conclusion and Future Work
	References

