Iris Recognition in the Visible Wavelength:
Issues and Trends

Hugo Proenca

Abstract The human iris supports contactless data acquisition and can be imaged
covertly. Thus, at least theoretically, the subsequent biometric recognition proce-
dure can be performed without subjects’ knowledge. The feasibility of this type of
recognition has received increasing attention and is of particular interest for forensic
and security purposes, such as the pursuit of criminals and terrorists and the search
for missing children. Among others, one active research area sought to use visi-
ble wavelength (VW) light imagery to acquire data at significantly larger distances
than usual and on moving subjects, which is a difficult task because this real-world
data is notoriously different from the one used in the near infra-red (NIR) setup.
This chapter addresses the feasibility of performing reliable biometric recognition
using VW data acquired under dynamic lighting conditions and unconstrained ac-
quisition protocols: with subjects at large distances (between 4 and 8 meters) and
on-the-move.

1 Introduction

The iris is known as one of the most valuable traits for the automatic identification of
human beings and growing attention has been paid to the development of this tech-
nology [2]. A number of reasons justify this interest: (1) it is a naturally protected
internal organ that is visible from the exterior; (2) it has a near circular and planar
shape that turns easier its segmentation and parameterization and (3) its texture has
a predominantly randotypic chaotic appearance that is stable over lifetime. The ac-
curacy of the deployed iris recognition systems is remarkable: a study of 200 billion
cross-comparisons conducted by Daugman [9] reported false acceptance rates of or-
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der 107° with false rejections of 1%. Other independent evaluations ([13] and [16])
confirmed these results.

(a) )

Fig. 1 Comparison between (a) the quality of iris biometric images acquired in highly constrained
conditions in the near-infrared wavelength (WVU database [25]) and (b) images acquired in the
visible wavelength in unconstrained imaging conditions, acquired at-a-distance and on-the-move
(UBIRIS.v2 database [24]).

However, currently deployed systems — that are based on Daugman’s pioneer-
ing approach [6] — impose significant constraints on the subjects and acquisition
environment, demanding that subjects stand relatively close and looking straight to
the camera for several seconds while their eyes are illuminated by a near infra-red
(NIR) source, enabling the capture of good quality data.

Why Use Visible Light?

Current systems require high illumination levels, sufficient to maximize the signal-
to-noise ratio in the sensor and to capture images of the discriminating iris features
with sufficient contrast. However, if similar processes were used to acquire iris im-
ages from a distance, acceptable depth-of-field values would demand significantly
higher f-numbers for the optical system, corresponding directly (squared) with the
amount of light required for the process. Similarly, the motion factor will demand
very short exposure times, which again will require too high levels of light. The
American and European standards councils ([1] and [5]) proposed safe irradiance
limits for NIR illumination of near 10 mW / cm?. In addition to other factors that
determine imaging system safety (blue light, non-reciprocity and wavelength de-
pendence), these limits should be taken into account, as excessively strong illumi-
nation can cause permanent eye damage. The NIR wavelength is particularly haz-
ardous, because the eye does not instinctively respond with its natural mechanisms
(aversion, blinking and pupil contraction). However, the use of visible light and un-
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constrained imaging setups can severely degrade the quality of the captured data
(figure 1), increasing the challenges in performing reliable recognition.
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Fig. 2 Spectral reflectance and radiance of the iris and the sclera in respect of the wavelength.
Spectral reflectance of the human sclera [22]. Spectral radiance of the human iris according to the
levels of iris pigmentation [14].

The pigmentation of the human iris consists mainly of two molecules: brown-
black Eumelanin (over 90%) and yellow-reddish Pheomelanin [18]. Eumelanin has
most of its radiative fluorescence under the VW, which—if properly imaged—
enables the capture of a much higher level of detail, but also of many more noisy
artifacts, including specular and diffuse reflections and shadows. Also, the spectral
reflectance of the sclera is significantly higher in the VW than in the NIR (figure 2a)
and the spectral radiance of the iris in respect of the levels of its pigmentation varies
much more significantly in the VW than in the NIR (figure 2b). These optical prop-
erties are the biological roots behind the higher heterogeneity of the VW iris images,
when compared with the traditional NIR data. Also, the types and number of noisy
artifacts likely to appear in VW and NIR data are notoriously different, which justify
the need to specialized recognition strategies.

The feassibility of the unconstrained VW iris recognition remains controversial,
and several skepticisms remain, specialy for high pigmented irises that constitute the
majority of the world’s population. This chapter has two major parts: (1) to describe
a data set of VW iris images captured in unconstrained conditions and (2) to discuss
the major issues for VW iris recognition, namelly describing the factors that likely
degrade performance and giving results about the specificity and sensitivity that
pattten recognition (PR) systems achieve in such challenging conditions.
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2 Less Constrained Iris Recognition

The term constraint refers to one of the factors that currently deployed systems im-
pose, in order to perform recognition with enough confidence: subjects distance,
motion and gaze direction and lighting conditions of the environment. These con-
straints motivate growing research efforts and became the focus of many recent
proposals, among which the “Iris-on-the-move” project [17] should be highlighted:
itis a major example of engineering an image acquisition system to make the recog-
nition process less intrusive for subjects. The goal is to acquire NIR close-up iris
images as a subject walks at normal speed through an access control point. Honey-
well Technologies applied for a patent [12] on a very similar system, which was also
able to recognize irises at a distance. Previously, Fancourt et al. [10] concluded that
it is possible to acquire sufficiently high-quality images at a distance of up to ten
meters. Narayanswamy and Silveira [21] used a wavefront coded optic to deliber-
ately blur images in such a way that they do not change over a large depth-of-field.
Removing the blur with digital image processing techniques makes the trade-off be-
tween signal-to-noise ratio and depth of field linear. Also, using wavefront coding
technology, Smith ef al. [26] examined the iris information that could be captured
in the NIR and VW spectra, addressing the possibility of using these multispectral
data to improve recognition performance. Park and Kim [23] acquired in-focus iris
images quickly at a distance, and Boddeti and Kumar [3] suggested extending the
depth-of-field of iris imaging frameworks by using correlation filters. He et al. [11]
analyzed the role of different NIR wavelengths in determining error rates. More re-
cently, Yoon et al. [28] presented an imaging framework that can acquire NIR iris
images at-a-distance of up to three meters, based on a face detection module and on
a light-stripe laser device used to point the camera at the proper scene region. Boyce
et al. [4] studied the image acquisition wavelength of revealed components of the
iris, and identified the important role of iris pigmentation. Although concluding that
illumination inside the 700-900 nm optimally reveals the richness of the iris struc-
ture, they observed that irises with moderate levels of pigmentation could be imaged
in the visible light with good quality.

3 The UBIRIS.v2: A Database of Visible Wavelength Iris Images
Captured On-The-Move and At-A-Distance

As described in [24], the major purpose of the UBIRIS.v2 data set is to constitute a
new tool to evaluate the feasibility of visible wavelength iris recognition under far
from ideal imaging conditions. The various types of non-ideal images, imaging dis-
tances, subject perspectives and lighting conditions existent on this database could
be of strong utility in the specification of the visible wavelength iris recognition
feasibility and constraints.
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Image Acquisition Framework and Set-Up

Camera = Canon EOS 5D Color Representation = sSRGB [Shutter Speed = 1/197 sec.
Lens Aperture = F/6.4 - F/7  |Focal Length = 400 mm F-Number = F/6.3 - F/7.1
Exposure Time = 1/200 sec.  [ISO Speed = ISO-1600 Metering Mode = Pattern
Details of the Manually Cropped Resultant Images

Width = 800 pixels Height = 600 pixels Format = tiff

Horizontal Resolution = 72 dpi | Vertical Resolution = 72 dpi | Bit Depth = 24 bit

Volunteers

Totals = Subjects 261; Irises 522; Images 11 102

Gender = Male: 54.4%; Female: 45.6%

Age =[0,20]: 6.6%; [21,25]: 32.9%; [26,30]: 23.8%; [31,35]: 21.0%; [36,00[: 15.7%
Iris Pigmentation = Light : 18.3%; Medium : 42.6%; Heavy : 39.1%

Table 1 Details of the UBIRIS.v2 images, of the image acquisition framework and set-up and of
the subjects that offered themselves as volunteers to the imaging sessions.

The setup of the used imaging framework is given in table 1. This framework
was installed on a lounge under both natural and artificial lighting sources. Sev-
eral marks were placed on the floor (between three and ten meters away from the
acquisition device) and asked for volunteers for the image acquisition processes.
Two distinct image acquisition sessions were performed separated by an interval of
one week. From the first to the second session the location and orientation of the
acquisition device and artificial light sources was changed, in order to increase het-
erogeneity. Volunteers were at large majority latin caucasian (around 90%) and also
black (8%) and asian people (2%). Around 60% of the volunteers performed both
imaging sessions, while 40% performed exclusively one, either during the first or
second acquisition period.

Subjects were required to walk toward the acquisition device and look at sev-
eral lateral marks that obliged them to rotate head and eyes, enabling the manual
capturing of 3 images per meter, between eight and four meters, giving a total of
15 images per eye and session. As it is illustrated in figure 3, the used acquisition
setup and protocol enabled to acquire sequences of iris images with different scale,
gaze and under different types of illumination for each subject. The used acquisition
hardware and setup (Table 1) enables the capturing of iris data with dimensions that
in most cases is compliant with the standard for iris images (ISO/IEC, 2004) that
recommends a minimum of 100 and preferable 200 pixels across the iris diameter.

A varying number of subjects offered as volunteers for the first, second or for
both imaging sessions. However, assuming that each iris image can be used to gen-
erate a biometric template, that the other images from the same eye can be used to
assess match variability and all the remaining images can be used to assess non-
match variability, it is possible to obtain a bound for the error that is possible to be
tested with statistical significance.

The 11 102 images of the UBIRIS.v2 database enable respectively 127 746 match
and 61 482 804 non-match comparisons. This guarantees statistical significance in
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Fig. 3 Examples of close-up iris images acquired at different distances (between eight at the far
left and four meters at the far right), on a continuously moving subject and under dynamic lighting
conditions.

experiments with an empirical error rate P down to 1,623 x 107%%. However, this
value should be regarded as a lower bound, substantially increased the independence
between images is not assumed and error correlations are taken into account.

4 Less Constraining Acquisition Frameworks

(a) )

Fig. 4 Overview of the image acquisition frameworks (a) used in collecting the UBIRIS.v2 data set
(A,B), light sources (C,D) and subjects location (E) and (b) used to automatically perform image
acquisition, with labels similar to the manual configuration.

Figure 4a gives a global perspective of the used acquisition framework and of
the environment where data of the UBIRIS.v2 database was collected. In order to
disburden the imaging sessions for volunteers and maximize the number of usable
images per subject, we decided to perform data acquisition manually. However, a
completely automated process could have been performed, using state-of-the-art
techniques of human silhouette and face detection and object tracking.

In the meanwhile, a completely automated acquisition framework was devised,
being composed by two commercial web cameras, a pan-and-tilt device and the
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same high resolution camera as before (figure 4b). The process starts by a software
module that performs the detection of human silhouettes, according to the data ac-
quired from one of the web cameras. Using this information and a set of semantic
rules, a region of the scene is cropped and given to the real time face detector mod-
ule (according to the well known method of Viola and Jones [27]). This phase given
the 2D position (x,y) of a face in the scene, which is then sent to a stereo vision
module that collects data from both web cameras and infer the subject depth in the
scene, i.e., the distance z between the acquisition camera and the subject. Using the
pan-and-tilt device, the acquisition camera is directed to the 3D scene point at coor-
dinates (x,y,z) and an image that contains approximately the region of the subject’s
head is captured. Finally, using a set of biologically-based semantic rules, a region
that contains the subject’s eyes is cropped and used in the biometric recognition
phases.

Such a completely automated framework would be continuously acquiring and
processing data without any human supervision, which increases probability for the
acquisition of extremely degraded data: images might be completely out-of-focus
due to exaggerated movements, might be captured under unusable perspectives due
to subjects gaze and even out-of-iris images are probable due to failures in the hu-
man silhouette and face detection modules. Due to these probabilities, image quality
assessment is fundamental and have as goal to quantify characteristics and fidelity
of the segmented data, particularly in terms of its utility. Such assessment module
should act as a filter for most of the acquired data and select the key frames that are
more likely to be conveniently handled by the later recognition modules.

4.1 Image Assessments

The error rates of any biometric system mainly depend on the amount of information
captured, as well n the proportion of noise that obstructs the underlying texture and
corrupts the discriminating information.

In order to establish a relationship between the image acquisition distance and the
maximum amount of iris data that is possible to capture with the described image
acquisition framework and setup, the average iris diameter of frontal images was
measured, with respect to the acquisition distance. The obtained results are given
in figure 5a and indicate that the diameter of the captured irises varies according to
an inverse logarithmic function. Through trial-and-error interpolation, the following
coarse approximation function d(x) : R™ — R was obtained:

a6 ~ s
In(1gs)
where x is the image acquisition distance (meters) and d(x) is the average di-

ameter of the captured irises. This is confirmed in figure 5b, that gives the images

resolution in the iris regions, where the shaded areas represent the 95% confidence
intervals. Results were obtained through the division of the number of pixels that

ey
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Fig. 5 Maximum amount of information possible to acquire at-a-distance and on-the-move
through the used image acquisition framework and setup.

fall into the iris region by an iris area of 0.785 cm?, averaged from human eye’s
morphology studies that are publicly available. These observations confirm that the
afore described acquisition framework and setup enables the capturing of sufficient
data to perform iris recognition, as near 50% of the database images have iris diam-
eters close to the lower bound (140 pixels) recently proposed by Daugman [7].

The proportion of iris pixels that are occluded was obtained and results are
shown in the histogram of figure 6a. The horizontal axis denotes the proportion
of noise-free pixels and the vertical axis the respective probability of occurrence in
the database. It was observed that - on average - 25-30% of the pixels that fall within
the iris ring were corrupted by one of the local noise factors. Also, just about 3%
of the images are completely noise-free, while around 0.9% contain full noisy data,
correspondent to out-of-iris images or imaged in extremely poor lighting conditions.

Images texture was assessed by means of the image entropy, a statistical ran-
domness measure widely used in the image processing domain. According to the
conclusion reported by He er al. [11], we considered the levels of iris pigmentation
as a factor that influences the amount of discriminating information captured for
biometric purposes.

Let I be a grayscale image with g gray levels, and p(k) be the probabil-
ity of occurrence of the gray level k in I. The image entropy h is given by
h(l) = —ngl p(k) loga(p(k)). Let B be the binary noise mask that gives the non-
occludded iris regions of /. Thus, B(x,y) = 0 or 1 when the respective pixel (x,y)
respectively belongs to the iris ring and is noise-free or not. The entropy of the iris
region ih(.) of I was obtained taking exclusively into account pixels (x;,y;) such
that B(x;,y;) = 0, i.e., the noise-free iris data. Finally, for normalization purposes,
the entropy value was divided by the area of the noise-free iris region
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h(I(x,y)|B(x,y) = 0)
IB(xy)=0)
where I is the characteristic function.

The obtained values are given in figure 6b. The horizontal axis corresponds to
the imaging distance and the vertical axis to the entropy value. Data points give the
observation average values for /ight (continuous series), medium (dotted series) and
heavy pigmented irises (dashed series), as a function of the imaging distance. The
shaded areas represent the 95% confidence intervals. It can be confirmed that the
average entropy of the iris data decreases inversely with the imaging distance and,
more evidently, with the levels of iris pigmentation.

ih(I) = ()
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Fig. 6 Proportion of noise that occludes the iris texture (figure 6a) and average entropy of the
noise-free iris regions as function of the levels of iris pigmentation (figure 6b). Light, medium and
heavy pigmented irises are represented by the continuous, dotted and dashed lines.

4.2 Degradation Factors

Images of the UBIRIS.v2 data set are degraded by several factors and are high het-
erogeneous, regarding the lighting conditions of the environment. Through visual
inspection, fourteen different factors were detected and classified into one of two
major categories: local or global, as they affect exclusively image regions or the
complete image. The local category comprises iris obstructions, reflections, off-
angle and partial images, while the global comprises poor focused, motion-blurred,
rotated, improper lighting and out-of-iris images. Examples of the UBIRIS.v2 noise
factors are given in figure 7.
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(a ) Good quality iris image. ( b) Off-angle iris image. (C) Poor focused iris image. (d) Rotated iris image.

(€) Motion-blurred iris image. (£) 1ris obstructions due to eyelids. () Iris obstructions due to eye- () Iris obstructions due to glasses.

lashes.

(1) Iris obstructions due to contact (j) rris obstructions due to hair. (k) s imaging in poor lighting (1) nis with specular reflections.

Ienses. conditions.

(m ) Iris with lighting reflections. (H) Partial captured iris. (O) Out-of-iris image.

Fig.7 Comparison between a good quality image (figure 7a) and several types of non-ideal images
of the UBIRIS.v2 database. These images resulted of less constrained imaging conditions, under
varying lighting conditions, at-a-distance and on-the-move subjects.

4.3 Specificity

Several works about the iris recognition technology reported a very small - almost
infinitesimal - probability of produce a false match in the comparison between sig-
natures extracted from data with good quality (e.g., [7], [15], [13] and [16]). This
is due to the chaotic appearance of the main components of the iris texture and is
regarded as one of the technology’s major advantages, when compared to other bio-
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metric traits. Also, this is of specially interest for the type of recognition discussed in
this paper: to guarantee that the comparison between templates (extracted from good
quality data) and samples extracted from degraded iris data (or even from partial or
non-iris regions due to failures on the eye detection and segmentation modules), will
not frequently produce false matches.

This hypothesis was tested through a procedure illustrated in figure 8. Using the
recognition method proposed by Daugman [7] - composed by iris segmentation,
normalization (Daugman Rubber Sheet), encoding (bidimensional Gabor wavelets)
and matching (Hamming distance) - we extracted 1 000 signatures from UBIRIS.v2
iris images with good quality. Further, we extracted a set of sample signatures from
1 000 iris images with very poor quality, 10 000 non-iris or partial iris images
and 10 000 natural and synthetic textures images. Finally, we performed a ’one
against all comparison between each template and the set of samples, giving a total
of 21 000 000 comparisons. During these tests we didn’t get a single dissimilar-
ity value close to the usual acceptance threshold (0.33), which means that not even
a single false acceptance was observed if the traditional acceptance thresholds are
used.

10 000 Non-iris
Images

Iris Template

~>

Gabor Filtering,

Quantization
10 000 Synthetic /

Segmentation,
¢ Natural Textures

Normalization

Vv v

J ootot1o1 | >

10110101 | Gabor Filtering,

A

Quantization

o Gabor Filtering,
Gabor Filtering, ¢ 1 000 Inter-class

Irises

o Quantization
Quantization

01001001 |
10101101 Hamming Segmentation,
Distance Normalization

Fig. 8 Setup of the experiments performed to evaluate the probability of produce a false match
in the comparison between iris signatures extracted from good quality data ("iris template™) and
signature samples resultant from iris data with bad quality, or even partial or non-iris data. We
used the main recognition stages proposed by Daugman and successfully deployed in recognition
systems to evaluate the probability of produce a false match in these situations.
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Figure 9 gives the histogram of the obtained dissimilarity values (vertical bars)
and the approximated Gaussian distribution (line plot with yt = 0.49992 and ¢ =
0.02419). We confirmed that, even on high degraded data, the used iris encoding
and comparison strategies produce a false match with almost null probability. Based
on the parameters of the fitted Gaussian distribution, the probability of producing a
dissimilarity value lower than 0.33 will be approximately of 1.03923 x 10~'2. Once
again, the role of this value for the type of recognition discussed in this paper should
be stressed: it can be assumed with extreme high confidence that such recognition
systems will not produce false matches and, thus, any match reported has a full
probability of being genuine. This means that, independently of how much false
rejections will be frequent (due to lighting variations, movements and gazes) any
reported match is high reliable.
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Fig. 9 Histogram of the obtained dissimilarities when comparing signatures extracted from 1 000
templates with good quality and 21 000 signatures extracted from iris images with bad quality,
partial irises and non-iris data. "R-square” gives the goodness-of-fit of the plotted Gaussian distri-
bution with 4 = 0.499 and ¢ = 0.024 to the obtained results.

4.4 Sensitivity

As expected, the uncontrolled imaging conditions and acquisition setups lead to data
with notoriously heterogeneous quality, which will have evident impact in the recog-
nition rates of VW iris biometric systems. In this scope, quality assessment is a fun-
damental task. The goal is to quantify characteristics and fidelity of the segmented
data, particularly in terms of its utility. This is essential, as performing recognition in
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Fig. 10 Comparison between the histograms of the fractional Hamming distances obtained (a) for
a sub-set of 10 427 images of the UBIRIS.v2 database and (b) when samples of poor quality are not
considered to the recognition test. Figure at far right gives the corresponding Receiver Operating
Characteristic curves.

too much degraded data decreases matching accuracy and increases computational
complexity.

According to the afore observations, this section aims at give an approximation
of the recognition rate that VW iris recognition systems can achieve, according to
data quality. For such, we used the classical Daugman’s recognition strategy [7], as
it is the most well known and is functioning in the large majority of the commer-
cially deployed systems. According to this choice, the segmented boundaries were
normalized to dimensionless polar coordinates. Then, a bank of Gabor filters was
used to analyze the iris texture and the angle of each phasor quantized to one of four
quadrants. Finally, the fractional Hamming distance gave the dissimilarity between
two irises. A subset of 10 427 UBIRIS.v2 images was selected, which under vi-
sual inspection we verified that the segmentation method has accurately segmented.
Then, for all subsequent experiments this set was divided according to different cri-
teria. For comprehensibility, we refer to a recognition test when each sample of a
data set is matched against all the remaining images of the the same data set, result-
ing in two types of comparisons: intra-class (match) and inter-class (non-match). As
suggested by Daugman [8], for two-choice decisions the decidability index d’ mea-
sures how well separated are the two types of distributions and recognition errors
correspond to their overlap area:

\ue — |

Yo +0p)

d = 3)

where y; and ug are the means of the two distributions and o; and of their
standard deviations.

Figure 10 compares the histograms of the fractional Hamming distances for the
match (light bars) and non-match (dark bars) comparisons obtained when all images
were used in the recognition test (figure at the far left) and when the poorest quality
samples (according to the visual perception of quality) were rejected (figure at the
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center). The line plots correspond to the fitted Normal distributions and the upper
left corner gives the corresponding decidability index d’. As general considerations,
we confirmed that values obtained for the non-match distributions do not signifi-
cantly vary according to the quality of the data and are almost the same reported for
the NIR constrained recognition setups. Oppositely, there is a significant movement
of the match distributions toward the non-matches, substantially decreasing the sen-
sitivity of the system, if traditional acceptance thresholds are used. Due to this, the
decidability of the VW recognition systems significantly varied. Figure 10c shows
how the true and false matches in our system would change according to different
decision thresholds, when no quality is considered (continuous line) and when only
samples with good quality are considered for recognition (dashed line). Here, we
plot the area under curve (AUC) for both setups, which significantly augments as
the poorest quality samples are rejected.

The next question to consider is about the effect of each factor in the effectiveness
of VW iris recognition systems, specially in its sensitivity. For such, we repeated the
“one-against-all” recognition setup, but selecting several sub-sets, each one contain-
ing samples that are notoriously degraded by each analyzed factor: scale, focus, gaze
and levels of iris pigmentation. It should be noted that although this experiment en-
ables to perceive how much recognition effectiveness is degraded by each factor,
it cannot be regarded as an effective evaluation. This will demand a data set with
images degraded exclusively by one factor and UBIRIS.v2 images (as well all the
remaining available data sets) are simultaneously degraded by various factors.
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Fig. 11 UBIRIS.v2 images contains images captured at notoriously different scales, between 4
and 8 meters (a). Figures at the center and far right compares the match and non-match histograms
of the fractional Hamming distances obtained for images captured at the farthest (b) and closest (c)
scales.

The initial evaluation is about the effect of scale in the recognition sensitivity
(figure 11). For such, two sub-sets with good quality images that were acquired at
the farthest (8 meters) and closest (4 meters) distances were selected. Under visual
inspection, the quality of each image was verified, having as main concern to ex-
clusively select focused images with practically un-occluded irises and gaze aligned
with the optical axis of the camera. Figure 11 shows how the histograms of the match
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and non-match distributions would change according to the scale criterium. The ob-
served values for the non-match distributions remained approximately equal, in op-
position with the match distributions that appears to move toward the non-matches,
as the acquisition distance augments. This is probably due to the ?? Justificacao
Matey??.

Then, we assessed the impact that levels of image focus could have in the sensi-
tivity of VW recognition systems. A subset composed by good quality images was
selected, composed by focused images with occluded irises and gaze aligned with
the optical axis of the camera. As defocus is equivalent to multiplying the 2D Fourier
transform of a perfectly focused image by a 2D Fourier transform of a Gaussian ker-
nel, an artificial set of defocused images was obtained by the convolution with the
previous images with a Gaussian kernel of width 5 and ¢ 2.0. As expected, we ob-
served a relatively minor impact of focus in recognition effectiveness (figure 12), as
it is known that most of the iris discriminating information spans between 2 and 3
octaves of the original scale and only severe defocus would notoriously affect the
recognition process. In our opinion this is one of the biggest advantages of the iris,
when compared to other biometric traits: using the lowest and middle-low frequency
components for recognition improves the robustness to noise (focus and artifacts) in
less constrained acquisition setups.
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Fig. 12 The acquisition of a small moving target (iris) at relatively large distances propitiates very
different levels of image focus (a). Figures at the center and far right compares the match and
non-match histograms of the fractional Hamming distances obtained for blurred (b) and focused
(c) images.

Due to the intrinsic properties of the used iris encoding and matching strategies, it
is expected that variations in subjects gaze may have big influence in recognition ef-
fectiveness, when compared to other factors. We suspect that gaze propitiates signif-
icant perspective deformations in the iris texture and these cause significant changes
in phase, deteriorating the recognition effectiveness. This is reiterated in figure 13
that compares the results obtained when the recognition tests were performed on
images that under visual inspection were considered as aligned and another set that
contains images with moderate to severe deviations between the subjects gaze and
the optical axis of the camera.
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Fig. 13 Acquiring data from moving subjects and without requiring them any type of cooperation
increases the probability of capturing off-angle irises, when the subject’s gaze is not aligned with
the optical axis of the camera (a). These variations cause perspective deformations in the iris texture
and significant changes in phase. Taking into account that current state-of-the-art techniques are
phase-based, this may lead to significant deteriorations in the recognition effectiveness, as it is
illustrated by the results given in (b) off-angle images and (c) aligned images.

As stated before, most of the skepticism in the development of iris recognition
systems that operate in the VW is for high pigmented irises, corresponding to dark
brown and almost black perceived colors, with a very low albeldo. While they con-
stitute the large majority of the world population, it is considered that these irises
would demand very strong light sources, in order to be acquired with sufficient dis-
criminating information. Here, we infer how much the levels of iris pigmentation in-
crease the recognition challenges, by analyzing the separability between intra-class
and inter-class comparisons obtained for two subsets of good quality images (fo-
cused, without significant occlusions or gaze deviations) with very different levels
of iris pigmentation. The “’light” subset contains light pigmented irises, correspond-
ing to blue and light green eyes. The “dark™ subset is composed by dark brown and
black irises and includes almost all the images of the African and Asian volunteers
of the UBIRIS.v2 data set. Figure 14 confirms that the levels of iris pigmentation
constitute an obstacle to VW iris recognition, as the decidability values obtained
for light pigmented irises (right histograms) were notoriously higher than those ob-
tained when heavily pigmented images were used. The justification for these result
lies in the spectral absorbance of the predominant pigment of the human iris (brown-
black Eumelanin), that has a peak in the VW. Thus, the levels of iris pigmentation
are in direct proportion of the tissue absorbance and inverse to the perceived al-
beldo, which turns more difficult to capture the discriminating patterns of heavily
pigmented irises (ridges, valleys, furrows and crypts).
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Fig. 14 The spectral absorbance of the human iris predominant pigment (Eumelanin) has a peak in
the VW, which turns more difficult to capture the discriminating patterns of high pigmented irises.
This is confirmed by the reduced separability between the intra-class and inter-class comparisons
obtained for high pigmented irises (c) when compared with the results obtained for light pigmented
ones (b).

5 Conclusions and Trends

The possibility of performing automatic recognition of human beings in uncon-
trolled environments and without requiring them any type of cooperation is of evi-
dent interest or forensic and security purposes and represents a grand-challenge for
the pattern recognition community. To the best of our knowledge, no method was
developed to achieve such purpose, which will have effective consequences in the
everyday style of modern societies.

This chapter addressed the use of VW light to perform iris biometric recognition
in scenarios that are far less constrained than those where currently deployed sys-
tems are operating with success: at larger image acquisition ranges (between 4 and
10 meters) and on moving subjects. As expected, the acquired real world data brings
many challenges to the pattern recognition task, as it might be degraded by several
factors and contains various types of noise artifacts that obstruct the discriminating
iris texture and difficult the recognition process.

We start by presenting the main characteristics of a data set that is free available
for the research community (UBIRIS.v2), that can provide a common comparison
term for the fair comparisons between different proposals.

The optical properties of the iris, namely its spectral absorbance and reflectance,
was overviewed in order to give an idea of the major discriminating points between
the appearance of data acquired in the well known NIR scenario and in the VW. Spe-
cial attention was paid to the factors that are likely to degrade the effectiveness of
VW iris recognition systems and motivated serious skepticism about the possibility
of performing reliable recognition in such challenging conditions. Even so, prelim-
inary experiments appear to confirm that this task is possible, which is justified by
two reasons: (1) an extremely low probability for the existence of false acceptances
was observed, even when using the same recognition strategies used for NIR data
and (2) the observed sensitivity of recognition systems in such data, which points
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that an evident amount of information that discriminates between different subjects
is able to be acquired in the described conditions and used for recognition purposes.

Due to the extremely appealing potential applications of these systems, a growing
number of researchers are working on this field and proposing specialized strategies
to perform the automatic acquisition, segmentation, normalization and encoding and
matching of real world VW data. Among them, there is an extremely promising new
type of biometric recognition called periocular biometrics that refers to the regions
in the immediate vicinity of the eye (figure 15) and attempts to perform recognition
based not only in the iris but also to its neighborhood.

Fig. 15 Periocular biometrics refers to the automatic recognition of human beings using not only
the information of the iris texture but also of the surrounding information (eyelids, eyelashes, skin,
eyebrow). This type of recognition can provide a significant improvement toward the development
of recognition methods that perform surreptitiously and in unconstrained environments.

As argued by [20] and [19], periocular recognition is a trade-off between using
the entire face region or only the iris: it avoids the resolution problems of iris im-
ages captured at large distances and can be used for a wide range of distances. Also,
face images acquired from unconstrained environments often suffer from poor illu-
mination, motion blur, low resolution and pose variations. that significantly degrade
the effectiveness of face recognition techniques. To the best of our knowledge, few
studies have been conducted on the use of the periocular region as a biometric trait.
Park et al. [20] used both local and global image features to match periocular images
acquired with visible light and established its utility as a soft biometric trait. Also,
Miller et al. [19] used Local Binary Pattern (LBP) to encode and match periocular
images.
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