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A first glance of this talk

• the need for formal verification

• a study of some examples of software errors
what are the causes ? what kind of properties do we want to verify ?

• a panel of the main verification methods

with a fundamental limitation: indecidability
• many techniques allow to compute semantic properties
• each comes with advantages and drawbacks
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The need for Formal Verification
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What are safety-critical systems?

Systems that cannot fail

because of resulting

• loss of life
• threat on our well being
• loss of its purpose (mission
critical)

• financial loss. etc.

example: medical devices, aircraft
flight control, weapons, nuclear
systems etc...

but also: digital money, digital
transactions, online computer
systems with sensible data, IoT, etc.

Our focus: critical systems that involve software

This is a very nice playground for the Formal Verification
community
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An appetizer

Software and cathedrals are much the same.
First we build them, then we pray.

Sam Redwine, at the 4th International Software Process Workshop - 1988
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An appetizer

The Formal Methods Approach:

Aide toi, et le ciel t’aidera!

Jean de La Fontaine - Le chartier embourbé. Livre VI - Fable 18.

... That is what this short introduction is about.
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An appetizer

... That is what this short introduction is about.

Actually, a rather practical approach for
this audience,
but in contrast, keep in mind that
software engineering is almost pure
handicraft.
Any formal intake is indeed welcome.

(As a computer scientist, I’m allowed to imprecate upon Computer Science.)
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Modern Information and Computer Systems = new challenges



reliability
correctness
security
safety
robustness
etc. . .

as a central challenge to the design of modern ICS.

• was and still is a central issue in the design of safety critical systems.

• The reliability quest lies at the foundations of Computer Science.
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facts from classical software engineering

Dysfunctions are expensive
• ICS maintenance = 2

3 of total costs;
• Dealing with dysfunctions or bugs = 20 times more expensive after
than before production.

• Apart from these software life cycle considerations, it is well known
that bugs can have deep impact in the customers’ trust (e.g Pentium
bug) or financial losses (IBM vs FAA), letting aside human life losses
(e.g. Therac 25) or ICS where bugs are simply unacceptable.
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more facts...

About 16 years ago, W. Gibbs said:

Despite 50 years of progress, the software industry remains years
– perhaps decades – short of the mature engineering discipline required

to meet the needs of an information-age society.

in: Trends in Computing: Software’s Chronic Crisis - Scientific American - 1994.

Past? Provocation?
Unfortunately no. See for instance the usual software equation:

Software in the market = bug report channel

Interlude: Software Horror Stories(link)
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Solutions?

Unfortunately,

There is no definite solution!

Nevertheless, there are satisfactory solutions:

Reshape and Adapt the software life cycle in order to include reliability
as a central requirement.

⇓
Common Criteria (EAL 5-7), Cenelec / IEC 61508 (Safety Integrity

Level 3 and 4), DO-178B (Design Assurance Level A and B).
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Solutions?

Unfortunately,

There is no definite solution!

Nevertheless, there are satisfactory solutions:

integration and use of:
• Tests and Simulation
• Formal Verification
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Software Errors, and their consequences
a few examples
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starting with a famous example

binary search: first publication in 1946

first publication without bug in 1962
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starting with a famous example
Jon Bentley - Programming Pearls. 1986 (2nd

ed. 2000)

(column 4) - writing correct programs
The challenge of binary search

(as seen in p.37)

Warning
Boring material ahead
skip to section 4,4

when drowsiness strikes

concise and clear explanation of the issue...

and yet...
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starting with a famous example

in 2006, a bug was found in the Java standard library’s binary search

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

it had been there for 9 years
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starting with a famous example

the bug:

...
int mid = (low + high) / 2;
int midVal = a[mid];

...

may exceed the capacity of type int

then provokes an access out of array bounds

int mid = low + (high - low) / 2
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Ariane 5 - Flight 501

• Ariane 5:

• a satellite launcher
• replacement of Ariane 4, a lot more powerful
• first flight, June, 4th, 1996: failure!

• Flight story:

• nominal take-off, normal flight for 36 seconds
• T + 36.7 s : angle of attack change, trajectory lost
• T + 39 s : disintegration of the launcher

• Consequences:

• loss of satellites : more than $ 370 000 000...
• unusable for more than a year (delay !)
• impact on reputation (Ariane 4 was very reliable)

Full report available online:
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
by Jacques-Louis Lions, Gilles Kahn
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Trajectory control system design overview

Sensors: gyroscopes, inertial reference systems...

Calculators (hardware + software) :

• “Inertial Reference System” (SRI) :
integrates data about the trajectory (read on sensors)

• “On Board Computer” (OBC) :
computes the engine actuations that are required to follow the
pre-determined theoretical trajectory

Actuators: engines of the launcher follow orders from the OBC

Redundant systems (failure tolerant system):

• keep running even in the presence of one or several system failures

• traditional solution in embedded systems: duplication of systems aircraft
flight system: 2 or 3 hydraulic circuits launcher like Ariane 5 : 2 SRI units
(SRI 1 and SRI 2)

• there is also a control monitor
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The root cause: an unhandled arithmetic error

Processor registers

Each register has a size of 16, 32, 64 bits:

• 64-bits floating point: values in range [−3.6.10308, 3.6.10308]

• 16-bits signed integers: values in range [−32768, 32767]

• upon copy of data: conversions are performed such as rounding

• when the values are too large:

• interruption: run error handling code if any, otherwise crash
• or unexpected behavior: modulo arithmetic or other

Ariane 5
• the SRI hardware runs in interruption mode

• it has no error handling code for arithmetic interruptions

• the root cause is an unhandled arithmetic conversion overflow
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From the root cause to the failure

A not so trivial sequence of events:

1. a conversion from 64-bits float to 16-bits signed int overflows

2. an interruption is raised

3. due to the lack of error handling code, the SRI crashes

4. the crash causes an error return (negative integer value) value be sent to
the OBC (On-Board Computer)

5. the OBC interprets this illegal value as regular flight data

6. this causes the computation of an absurd trajectory

7. hence the loss of control of the launcher
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Addressing the software error

Several solutions would have prevented this misshappening:

1. Deactivate interruptions on overflows:
• then, an overflow may happen, and cause wrong values be manipulated

in the SRI
• but, these wrong values will not cause the computation to stop! and

most likely, the flight will not be impacted too much

2. Fix the SRI code, so that no overflow can happen:
• all conversions must be guarded against overflows:

double x = ...;
short i = ...;
if(-32768. <= x && x <= 32767.) i = (short)x;
else i=...;

• this may be costly (many tests), but redundant tests can be removed

3. Handle conversion errors (not trivial):
• the handling code should identify the problem and fix it at run-time
• the OBC should identify illegal input values
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A crash due to a useless task

Piece of code that generated the error:
• part of a gyroscope re-calibration process

• very useful to quickly restart the launch process after a short delay

• can only be done before lift-off...

• ... but not after!

Re-calibration task shut down:
• normally planned 50 seconds after lift-off...

• no chance of a need for such a re-calibration after T0 + 3 seconds

• the crash occurred at 36 seconds

SMDS Formal Verification 2015–2016 22



A crash due to legacy software

Software history:
• already used in Ariane 4 (previous launcher, before Ariane 5)

• the software was tested and ran in real conditions many times yet never
failed...

• but Ariane 4 was a much less powerful launcher

Software optimization:
• many conversions were initially protected by a safety guard

• but these tests were considered expensive (a test and a branching take
processor cycles, interact with the pipeline...)

• thus, conversions were ultimately removed for the sake of performance

Yet, Ariane 5 violates the assumptions that were valid with Ariane 4

• higher values of horizontal bias were generated

• those were never seen in Ariane 4, hence the failure
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A crash not prevented by redundant systems

Principle of redundant systems: survive the failure of a component by the use
of redundant systems

System redundancy in Ariane 5:

• one OBC unit

• two SRI units... yet running the same software

Obviously, physical redundancy does not address software issues
System redundancy in Airbus FBW software:

• two independent set of controls

• three computing units per set of controls

• each computing unit comprises two computers

• distinct softwares
• design and implementation is also performed in distinct teams
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Ariane 501, a summary of the issues

A long series of design errors, all related to a lack of understanding of what the
software does:

1. Non-guarded conversion raising an interruption due to overflow

2. Removal of pre-existing guards, too high confidence in the software

3. Non revised assumptions on the inputs when moving from Ariane 4 to
Ariane 5

4. Redundant systems running the same software

5. Useless task not shutdown at the right time

Current status: such issues can be found by static analysis tools
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Lufthansa Flight 2904, Warsaw (1993)

High-speed runway overshoot at landing

Landing at Warsaw airport, Lufthansa A320:

• bad weather conditions: rain, high side wind

• wet runway

• landing (300 km/h) followed by aqua-planing, and delayed braking

• runway overrun at 132 km/h

• impact against a hillside at about 100 km/h

Consequences:
• 2 fatalities, 56 injured (among 70 passengers + crew)

• aircraft completely destroyed (impact + fire)

Full report available online:
http://www.rvs.uni-bielefeld.de/publications/Incidents/DOCS/
ComAndRep/Warsaw/warsaw-report.html
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Causes of the accident

Root cause:

• bad weather conditions not well assessed by the crew

• side wind exceeding aircraft certification specification

• wrong action from the crew: a “Go Around” (missed landing, acceleration
+ climb) should have been done

Contributing factor: delayed action of the brake system

Time Distance from runway threshold events
T0 770 m main landing gear landed

T0 + 3s 1030 m nose landing gear landed
brake command activated

T0 + 12s 1680 m spoilers activated
T0 + 14s 1800 m thrust reversers activated
T0 + 31s 2700 m end of runway
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Protection of aircraft brake systems

Braking systems inhibition: Prevent in-flight activation !

• spoilers: increase in aerodynamic load (drag)

• thrust reversers: could destroy the plane if activated in-flight ! (ex : crash of
a B 767-300 ER Lauda Air, 1991, 223 fatalities; thrust reversers in-flight
activation, electronic circuit issue)

Braking software specification:
DO NOT activate spoilers and thrust reverse unless the following condition is
met:

• thrust lever should be set to minimum by the flight crew

• AND either of the following conditions:

• weight on the main gear should be at least 12 T i.e., 6 T for each side
• OR wheels should be spinning, with a speed of at least 130 km/h

[Minimum Thrust] AND ([Weight] OR [Wheels spinning])
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Understanding the braking delay

Landing configuration:

Braking systems: inhibited
• thrust command properly set to minimum

• no weight on the left landing gear due to the wind

• no speed on wheels due to aquaplanning

[Minimum Thrust] AND ([Weight] OR [Wheels spinning])
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Flight 2904, a summary of the issues

Main factor is human (landing in weather conditions the airplane is not certified
for), but the specification of the software is a contributing factor:

• Old condition that failed to be satisfied:

(Pleft > 6T )AND(Pright > 6T )

• Fixed condition (used in the new version of the software):

(Pleft + Pright) > 12T

• The fix can be understood only with knowledge of the environment

• conditions which the airplane will be used in
• behavior of the sensors
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The anti-missile “Patriot” system - Dahran (1991)

Purpose: destroy foe missiles before they reach their target
Use in wars:

• first Gulf war (1991)
protection of towns and military facilities in Israel and Saudi Arabia
(against “Scud” missiles launched by Irak)

• success rate:

• around 50% of the “Scud” missiles are successfully destroyed
• almost all launched Patriot missiles destroy their target
• failures are due to failure to launch a Patriot missile

Constraints on the system:

• hit very quickly moving targets:
“Scud” missiles fly at around 1700m/s ; travel about 1000kms in 10 minutes

• not to destroy a friendly target (it happened at least twice!)

• very high cost: about $1000000 per launch
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System components

Detection / trajectory identification:

• detection using radar systems

• trajectory confirmation (to make sure a foe missile is tracked):

1. trajectory identification using a sequence of points at various instants
2. trajectory confirmation

computation of a predictive window (from position and speed vector)
+ confirmation of the predicted trajectory

3. identification of the target (friend / foe)

Guidance system:

• interception trajectory computation

• launch of a Missile, and control until it hits its target high precision required
(both missiles travel at more than 1500m/s)

Very short process: about ten minutes

SMDS Formal Verification 2015–2016 32



Dahran failure (1991)

1. Launch of a “Scud” missile

2. Detection by the radars of the Patriot system but failure to confirm the
trajectory:

• I imprecision in the computation of the clock of the detection system
• computation of a wrong confirmation window
• the “Scud” cannot be found in the predicted window failure to
confirm the trajectory

• the detection computer concludes it is a false alert

3. The “Scud” missile hits its target:
28 fatalities and around 100 people injured
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Fixed precision arithmetic

• Fixed precision numbers are of the form εN2−p where:
• p is fixed
• ε ∈ {−1, 1} is the sign
• N ∈ [−2n, 2n − 1]Z is an integer (n > p)

• In 32 bits fixed precision, with one sign bit, n = 31;
thus we may let p = 20

• A few examples:
decimal value sign truncated value fractional portion
2 0 00000000010 00000000000000000000
-5 1 00000000101 00000000000000000000
0.5 0 00000000000 10000000000000000000
-9.125 1 00000001001 00100000000000000000

• Range of values that can be represented:

±212(1− 2−32)
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Rounding errors in fixed precision computations

Not all real numbers in the right range can be represented
rounding is unavoidable
may happen both for basic operations and for program constants...

Example: fraction 1
10

• 1
10 cannot be represented exactly in fixed precision arithmetic

• let us decompose 1
10 as a sum of terms of the form 1

2i

1
10 = 1

2 ×
1
5

1
5 = 1

8 + 1
16 + 1

16 ×
1
5 = 1

8 + 1
16 + 1

16 × ( 1
8 + 1

16 + 1
16 ×

1
5 ) = · · ·

• infinite binary representation: 0.00011001100110011001100 . . .

• if p = 24: representation: “0.000110011001100110011001”

• rounding error is 9.5× 10−8

• Floating precision numbers (more commonly used today) have the same
limitation
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The root cause: a clock drift

Trajectory confirmation algorithm (summary):

• hardware clock Td ticks every tenth of a second

• time Tc is computed in seconds: Tc = 1
10 × Td

• in binary: Tc = 0.000110011001100110011001b ×b Td !

• relative error is 10−6

• after the computer has been running for 100 h :
• the absolute error is 0.34 s
• as a “Scud” travels as 1700m/s: the predicted window is about 580 m

from where it should be
this explains the trajectory confirmation failure!

Remarks:

• the issue was discovered by israeli users, who noticed the clock drift their
solution: frequently restart the control computer... (daily)

• this was not done in Dahran... the system had been running for 4 days
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Patriot missile failure, a summary of the issues

Precision issues in the fixed precision arithmetic:

• A scalar constant used in the code was invalid i.e., bound to be rounded
to an approximate value, incurring a significant approximation the designers
were unaware of

• There was no adequate study of the precision achieved by the system,
although precision is clearly critical here !

Current status: such issues can be found by static analysis tools
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Common issues causing software problems

The examples given so far are not isolated cases. See for instance:
www.cs.tau.ac.il/ nachumd/horror.html - Software Horror Stories

Typical reasons:

• Improper specification or understanding of the environment, conditions of
execution...

• Incorrect implementation of a specification e.g., the code should be free
of runtime errors e.g., the software should produce a result that meets some
property

• Incorrect understanding of the execution model e.g., generation of too
imprecise results
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New challenges to ensure embedded/critical systems do not fail

Complex software architecture: e.g. parallel softwares

• single processor multi-threaded, distributed (several computers)

• more and more common: multi-core architectures

• very hard to reason about

• other kinds of issues: dead-locks, races...
• very complex execution model: interleavings, memory models

Complex properties to ensure: e.g., security

• the system should resist even in the presence of an attacker (agent with
malicious intentions)

• attackers may try to access sensitive data, to corrupt critical data...

• security properties are often even hard to express
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Techniques to ensure software safety

Software development techniques:

• software engineering, with a focus on specification, and software quality
(may be more or less formal...)

• programming rules for specific areas (e.g., DO 178 B/C in avionics)

• usually do not guarantee any strong property, but make softwares “cleaner”

Formal methods:

• should have sound mathematical foundations

• should allow to guarantee softwares meet some complex properties

• should be trustable (is a paper proof ok ???)

• increasingly used in real life applications, but still a lot of open problems
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What is to be verified ?

/*P0*/

int x = 0;

int f0(int y){
return y * x ;

}

int f1 (int y){
x = y;
return 0;
}

void main (){
z = f0(10) + f1(100);
}

/*P1*/

void main (){
int i;
int t[100] = {0,1,2,3, ... ,99};
while(i<100){

t[i]++:
i++;

}
}

/*P2*/

void main (){
float f = 0.;
for (int i = 0; i < 1 000 000; i++){

f = f + 0.1;
}

}
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Semantic subtleties...

/*P0*/

int x = 0;

int f0(int y){
return y * x ;

}

int f1 (int y){
x = y;
return 0;
}

void main (){
z = f0(10) + f1(100);
}

Execution order:

not specified in C
specified in Java
if left to right, z = 0
if right to left, z = 1000
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Semantic subtleties...

/*P1*/

void main (){
int i;
int t[100] = {0,1,2,3, ... ,99};
while(i<100){

t[i]++:
i++;

}
}

/*P2*/

void main (){
float f = 0.;
for (int i = 0; i < 1 000 000; i++){

f = f + 0.1;
}

}

Initialization:

• runtime error in Java

• read of a random value in C
(the value that was stored
before)

Floating point semantics:

• 0.1 is not representable
exactly
what is it rounded to by the
compiler ?

• rounding errors
what is the rounding mode at
runtime ?
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Core of FM: Semantics vs. Verification

Semantics

• allow to describe precisely the behavior of programs
should account for execution order, initialization, scope...

• allow to express the properties to verify
several important families of properties: safety, liveness, security...

• also important to transform and compile programs

Verification

• aim at proving semantic properties of programs

• a very strong limitation: undecidability

• several approaches, that make various compromises around indecidability
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a snapshot on Verification Methods
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The termination problem

Termination

Program P terminates on input X if and only if any execution of P, with input
X eventually reaches a final state

• Final state: final point in the program (i.e., not error)

• We may want to ensure termination:

• processing of a task, such as, e.g., printing a document
• computation of a mathematical function

• We may want to ensure non-termination:

• operating system
• device drivers

The termination problem

Can we find a program Pt that takes as argument a program P and data X and
that returns “TRUE” if P terminates on X and “FALSE” otherwise ?
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The termination problem is not computable

Proof by reductio ad absurdum, using a diagonal argument

We assume there exists a program Pa such that:

• Pa always terminates

• Pa(P,X ) = 1 if P terminates on input X

• Pa(P,X ) = 0 if P does not terminate on input X

We consider the following program:

void P0(P){
if (Pa(P,P) = 1){
while(TRUE){} // loop forever
}else{
return; //do nothing
}}

What is the return value of Pa(P0,P0) ? i.e., P0 does it terminate on input
P0 ?

SMDS Formal Verification 2015–2016 47



The termination problem is not computable

What is the return value of Pa(P0,P0) ?
We know Pa always terminates and returns either 0 or 1 (assumption).
Therefore, we need to consider only two cases:

• if Pa(P0,P0) returns 1, then P0(P0) loops forever, thus Pa(P0,P0) should
return 0, so we have reached a contradiction!

• if Pa(P0,P0) returns 0, then P0(P0) terminates, thus Pa(P0,P0) should be
1, so we have, again, reached a contradiction!

In both cases, we reach a contradiction Therefore no such a Pa exists

The termination problem is not decidable

There exists no program Pt that always terminates and always
recognizes whether a program P terminates on input X
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Absence of runtime errors
Can we find a program Pc that takes a program P and input X as arguments, always
terminates and returns

• 1 if and only P runs safely on input X , i.e., without a runtime error
• 0 if P crashes on input X?

Answer: No, the same diagonal argument applies. if Pc(P,X ) decides whether P will
run safely on X , consider

void P1(P){
if (Pc (P,P) = 1){
crash(); // fail (unsafe)

} else {
return; //do nothing (safe)

}}

Non-computability result:

The absence of runtime errors is not computable
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Rice theorem

• Semantic specification: set of correct program executions
• “Trivial” semantic specifications:

• empty set
• set of all possible executions

=⇒ intuitively, the non interesting verification problems...

Rice theorem (1953)

Considering a Turing complete language, any non trivial semantic specification is
not computable

• Intuition: there is no algorithm to decide non trivial specifications, starting with
only the program code

• Therefore all interesting properties are not computable :
• termination,
• absence of runtime errors,
• absence of arithmetic errors, etc...
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Towards partial solutions

The initial verification problem is not computable

Solution: solve a weaker problem

Several compromises can be made:

• simulation / testing: observe only finitely many finite executions infinite
system, but only finite exploration (no proof beyond that)

• assisted theorem proving: we give up on automation (no proof inference
algorithm in general)

• model checking: we consider only finite systems (with finitely many states)

• bug-finding: search for “patterns” indicating “likely errors” (may miss real
program errors, and report non existing issues)

• static analysis with abstraction: attempt at automatic correctness proofs
(yet, may fail to verify some correct programs)
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Safety verification method characteristics

Safety verification problem

• Semantics JPK of program P: set of behaviors of P (e.g., states)

• Property to verify S: set of admissible behaviors (e.g., safe states)

Automation: existence of an algorithm

Scalability: should allow to handle large softwares

Soundness: identify any wrong program

Completeness: accept all correct programs

Apply to program source code: i.e., not require a modelling phase
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Testing by simulation

Principle

Run the program on finitely many finite inputs

• maximize coverage

• inspect erroneous traces to fix bugs

Very widely used:

• unit testing: each function is tested separately

• integration testing: with all surrounding systems, hardware

Automated, Complete: will never raise a false alarm
Unsound unless exhaustive: may miss program defects
Costly: needs to be re-done when software gets updated
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Machine assisted proof

Principle

Have a machine checked proof, that is partly human written

• tactics / solvers may help in the inference

• the hardest invariants have to be user-supplied

Applications: software industry (rare): Line 14 in Paris Subway. hardware: ACL
2. academia: CompCert compiler, SEL4 verified micro-kernel

Not fully automated often turns out costly as complex proof arguments have to
be found

Sound and complete
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Model-Checking

Principle

Consider finite systems only, using algorithms for

• exhaustive exploration,

• symmetry reduction...

Applications: hardware verification, driver protocols verification (Microsoft)

Applies on a model: a model extraction phase is needed

• for infinite systems, this is necessarily approximate

• not always automated

Automated, sound, complete with respect to the model
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“Bug finding”

Principle

Identify “likely” issues, i.e., patterns known to often indicate an error

• use bounded symbolic execution, model exploration...

• rank "defect"reports using heuristics

Example: Coverity

Automated

Not complete: may report false alarms

Not sound: may accept false programs thus inadequate for safety-critical systems
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Static analysis with abstraction

Principle

Use some approximation, but always in a conservative manner

Under-approximation of the property to verify: Sunder ⊆ S

Over-approximation of the semantics: JPK ⊆ JPKupper

We let an automatic static analyzer attempt to prove that: JPKupper ⊆ Sunder
If it succeeds, JPK ⊆ S

In practice, the static analyzer computes JPKupper ,Sunder

SMDS Formal Verification 2015–2016 57



Static analysis with abstraction

Soundness

The abstraction will catch any incorrect program

if JPK 6⊆ S, then JPKupper 6⊆ Sunder , since
{
Sunder ⊆ S
JPK ⊆ JPKupper
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Static analysis with abstraction

Incompleteness
The abstraction may fail to certify some correct programs

Case of a false alarm:

• program P is correct

• but the static analysis fails
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Static analysis with abstraction

Incompleteness
The abstraction may fail to certify some correct programs

In the following case, the analysis cannot conclude anything

One goal of the static analyzer designer is to avoid such cases
Static analysis using abstraction
• Automatic: JPKupper , Sunder computed automatically
• Sound: reports any incorrect program
• Incomplete: may reject correct programs
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A summary of common verification techniques

Automatic Sound Complete Source Level Scalable
Simulation YES NO YES YES sometimes

Assisted Proving NO YES Almost Partially sometimes
Model-Checking YES YES Partially NO sometimes
Bug-Finding YES NO NO YES sometimes

Static Analysis YES YES NO YES sometimes

• Obviously, no approach checks all characteristics

• Scalability is a challenge for all

• Note that the expressivity of Assisted Proof Approach come with a price:
the loss of automation

Classical trade-off =⇒ Expressivity versus Automation
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On the use of Formal Verification Techniques in
Critical Software Development
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Some successful case studies

Numerous examples, for instance:

• Garbage Collection, Operating System Modules, Communication and
Cryptographic Protocols, Circuits and Hardware, Execution Platforms,
Programming Language (semantics and methodologies), Compilers,
Information Systems, etc... (see famous FM surveys for details)

• Application area (mostly safety critical systems):
• Avionic and Aerospace (NASA, FAA, ARIANE, etc...),
• Railways (subway, etc...)
• Nuclear Systems
• Medical Systems
• (Real-Time) Embedded Systems
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Some successful case studies

A quite old: The formal verification of the CISC project from IBM (Huxley
Park- UK & Oxford): Update of an Information System.
• 800 000 lines of code. 268 000 were rewritten, 37 00 via the Z Formal
Method (only Formal Spec. without proofs)

• results:
• Development costs: −9%
• 2.5 times fewer bugs, and the detected bugs were qualified as minor.

(imply lower maintenance cost)
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A formal development example done in B

First real success was Meteor line 14 driverless metro in Paris:
Over 110 000 lines of B models were written, generating 86 000
lines of Ada. No bugs were detected after the proofs, neither at
the functional validation, at the integration validation, at on-site
test, nor since the metro lines operate (October 1998). The
safety-critical software is still in version 1.0 in year 2007, without
any bug detected so far.

In Formal Methods in Safety-Critical Railway Systems, Thierry
Lecomte, Thierry Servat, Guilhem Pouzancre.
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ASTRÉE Success story (excerpt from its web-site)

The development of ASTRÉE started from scratch in Nov. 2001. Two years later, the main
applications have been the static analysis of synchronous, time-triggered, real-time, safety
critical, embedded software written or automatically generated in the C programming language.
ASTRÉE has achieved the following unprecedented results:
• In Nov. 2003, ASTRÉE was able to prove completely automatically the absence of any

RTE in the primary flight control software of the Airbus A340 fly-by-wire system, a
program of 132,000 lines of C analyzed in 1h20 on a 2.8 GHz 32-bit PC using 300 Mb of
memory (and 50mn on a 64-bit AMD Athlon 64 using 580 Mb of memory).

• From Jan. 2004 on, ASTRÉE was extended to analyze the electric flight control codes
then in development and test for the A380 series. The operational application by Airbus
France at the end of 2004 was just in time before the A380 maiden flight on Wednesday,
27 April, 2005.

• In April 2008, ASTRÉE was able to prove completely automatically the absence of any
RTE in a C version of the automatic docking software of the Jules Vernes Automated
Transfer Vehicle (ATV) enabling ESA to transport payloads to the International Space
Station.
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COQ and Common Criteria (excerpt from the official announcements)

• September 2007: a big step in program certification in the real world: The
Technology and Innovation group at Gemalto has successfully completed a
Common Criteria (CC) evaluation on a Java Card based commercial product. This
evaluation is the world’s first CC certificate of a Java product involving EAL7
components

• Trusted Logic announces (press release of November 18th, 2003) that the DCSSI
has successfully evaluated its security methodology applied to the Java Card
System at the Common Criteria EAL7 level, in a report published earlier this year.
Coq is the proof engine used by Trusted Logics, and was chosen for its
expressiveness. As a part of the certification process, it is being acknowledged as
trustworthy by the DCSSI.
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Certified Compilation (excerpt from the compcert website)

Compcert is a compiler that generates PowerPC assembly code from Clight, a large
subset of the C programming language. The particularity of this compiler is that it is
written mostly within the specification language of the Coq proof assistant, and its
correctness — the fact that the generated assembly code is semantically equivalent to
its source program — was entirely proved within the Coq proof assistant.
A high-level overview of the Compcert compiler and its proof of correctness can be
found in the following papers:

• Xavier Leroy, Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. Proceedings of the POPL 2006 symposium.

• Sandrine Blazy, Zaynah Dargaye and Xavier Leroy, Formal verification of a C
compiler front-end. Proceedings of Formal Methods 2006, LNCS 4085.
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Certified Cryptography

• Correctness of RSA Algorithm, by José C. Almeida (DIUM), Laurent
Théry

• Certifying Prime Number with the Coq prover. CoqPrime is a library
built on top of the Coq proof system to certify primality using
Pocklington certificate and Elliptic Curve Certificate.

• SCALP Project: Security of Cryptographic ALgorithms with
Probabilities. Probabilistic language and semantics for cryptographic
proofs, Formalization of random generators, Proof theory for:
High-level reasoning about distributions defined by probabilistic
programs, Semantic preserving program transformations,
Cryptography-based program transformations, Asymptotic reasoning.
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Certified Operating Systems or Virtual Machines

Java Card in COQ

Formal verification of the Java-Card Platform in COQ (joint work with G. Barthe, G.
Dufay)

1. a specification and prototype of JavaCard Execution Platform and

2. the proof that (a R. Milner quote)

Well-typed (JavaCard) Programs cannot go wrong

3. A provably correct implementation of the ByteCode Verifier (BCV), a crucial
security module based on static program analysis.

SEL4

The L4.verified project, A Formally Correct Operating System Kernel (Gerwin Klein et
al.)

SMDS Formal Verification 2015–2016 70



PROSINAL - EFACEC with UBI

• Goal : CENELEC SIL4 Railway Signaling System for the Metro do
Porto - linha Aeroporto Sá Carneiro.

• Challenge: Software layer design , validation and certification (SIL4 -
the highest) using Formal Methods in a very restrictive normative
context (CENELEC). The first of its nature, to the best of our
knowledge.

• Other Mission: set-up and training of a (formal) Validation team in a
industrial context.

• Extension of the Scade toolset to deal with Function Block based HW.

• a (pencil and paper proved) translation methodology and
• a (HW level) testing framework with tests generated from SCADE

models – allow for a better confidence on the translation process

(Highlight: First Signaling System in the world! formally and completely
proved from scratch that reach the new CENELEC SIL4 certification)
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A reference of interest

A very interesting case study for this audience:

the safety proof of the Airborne Collision Avoidance
System ACAS X

using the proof calculus for differential algebraic dynamic
logic and differential invariants

For a detailed account see
André Platzer. Logical Analysis of Hybrid Systems:
Proving Theorems for Complex Dynamics. Springer,
2010. 426 p.
and http://symbolaris.com/info/RCAS.html
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another reference

The book I use in my lectures on this subject (...why?)

Rigorous Software Development, A Practical
Introduction to Program Verification

Series: Undergraduate Topics in Computer Science.
Almeida, J.B., Frade, M.J., Pinto, J.S., Melo de Sousa, S.,
Springer Verlag, 1st Edition., 2011, XIII, 307 p. 52 illus.
Softcover, ISBN 978-0-85729-017-5

A more detailled account on the underlying concepts of
Formal Methods and a comprehensive comparative survey
can be found in the book.
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Credits

a substencial part of the material exposed here was also taken from the Semantics
and Applications to Verification course of the École Normale Superieure d’Ulm
(X. Rival & A. Miné).

the binary search example was taken from Jean-Christophe Filliatre’s slides on
program verification
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Concluding Remark

Un peu de programmation éloigne de la logique mathématique;
beaucoup de programmation y ramène.

Xavier Leroy.

(a bit of programming moves the programmer away from logic, a lot of programming
gets back to it)
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