Teoria da Computação Autómatos com pilha

Simão Melo de Sousa

Computer Science Department University of Beira Interior, Portugal

Plano

- Introduction
 - Contexto
- 2 Autómatos com pilha
 - Constituição
 - Execução
 - Palavras e Linguagem Aceites
 - Considerações
 - Exemplos
- 3 Autómatos com pilha e Linguagens Algébricas
- 4 Limites dos autómatos com pilha e das linguagens algébricas
 - Lemma de Bombeamento
 - Como demonstrar que uma linguagem não é algébrica?
- 5 Considerações Finais

Plano

- Introduction
 - Contexto
- 2 Autómatos com pilha
- 3 Autómatos com pilha e Linguagens Algébrica:
- 4 Limites dos autómatos com pilha e das linguagens algébricas
- 5 Considerações Finais

Aviso Prévio

- A redacção dos apontamentos da disciplina documento baseou-se fortemente na bibliografia indicada. Parece-nos então óbvio que a leitura e a aprendizagem directa pelas obras originais é recomendada, e mesmo essencial à compreensão profunda das noções aqui apresentadas;
- O português não é a língua materna do autor e o presente documento encontra-se em fase (constante) de elaboração/melhoramento pelo que se agradece e até se incentiva qualquer sugestão ou correcção;

Referencias bibliográficas

- (Principal) C. H. Papadimitriou, H. R. Lewis. emphElements of the Theory of Computation por Prentice Hall, 1997. Tradução brasileira: Elementos de Teoria da Computação, 2a Edição. Bookman, Porto Alegre, 2000.
- (Introdutório, em francês embora deva existir algo em inglês algures)
 P. Wolper. Introduction à la calculabilité, 3ª edição, Dunod, 2006.
- (introdutório e de leitura agradável) P. Linz. An introduction to formal languages and automata. Jones and Bartlett Publisher, 2006.
- (Uma obra de referência e muito completo... um "must") John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation (3nd Edition). Addison Wesley, 2006 (existe em português do Brasil).
- (Completo e também um "must") M. Sipser. Introducton to the Theory of Computation. PWS Publishing, 2006.

- Já sabemos que os autómatos finitos quer sejam deterministas ou não deterministas, não cobrem todas as linguagens.
- logo também não conseguem cobrir convenientemente a noção de algoritmo.
- Tentemos agora diagnosticar porquê e propor soluções.
- Ou seja, como extender os autómatos de forma a que sejam ultrapassadas as limitações diagnosticadas.
- vejamos um exemplo: porquê autómatos finitos não conseguem reconhecer a linguagem $\{w\tilde{w} \mid w \in \{a,b\}^*\}$?
- Claramente a gramática cujas produções são $\{S \rightarrow \epsilon; S \rightarrow a \ S \ a; S \rightarrow b \ S \ b \ \}$ reconhece esta linguagem.

- O processo de reconhecimento via um autómato vai explorar a palavra por reconhecer da esquerda para a direita. Por isso, para reconhecer uma palavra de tal linguagem é necessário ser capaz de memorizar a primeira metade da palavra para poder compara-la coma segunda metade.
- Os autómatos finitos não tem esta capacidade de memorização.

- No entanto basta
 - dispor dum mecanismo de acumulação de caracteres que vai sendo alimentado com os caracteres lidos da entrada;
 - e de utilizar o não determinismo para adivinhar o caracter central: quando lemos um caracter, ou este faz parte da primeira metade, ou este é o primeiro caracter da segunda parte. No primeiro caso, o processo acumula o caracter lido e vai processar o seguinte, no segundo caso o caracter lido é comparado com o ultimo acumulado, em caso de igualdade o caracter acumulado é descartado e o processo continua. No caso de desigualdade, o processo falha.
- É este mecanismo de memória que faz falta aos autómatos finitos.

- Outro exemplo: como reconhecer a linguagem gerada pela gramática cujas produções são: $\{S \to aSb; S \to \epsilon\}$?
- É fácil ver que a linguagem gerada é $\{a^n b^n \mid n \ge 0\}$.
- O autómato reconhecedor tem de ser capaz, ao consumir um a, de memorizar que vai ter de reconhecer, mais tarde, um b.
- O reconhecimento com base numa máquina de estado pode ser feito de forma não determinística com a ajuda duma memória que vai acumulando os a lidos.
- O processo deve ler tantos b como os a que estão acumulados na memória. Caso contrário o reconhecimento falha.

- É de realçar que se o numero de a de de b é limitado (por exemplo $\{a^nb^n\mid 0\leq n\leq k\}$ para um determinado k) então deixamos de necessitar da tal memória adicional (um autómato finito, embora volumoso, consegue reconhecer a linguagem). O problema advém da necessidade de reconhecer a^ncb^n qualquer que seja o n.
- Mais uma vez, este exemplo só exige que a memória seja algo de semelhante a uma pilha (stack ou pushdown store em inglês).
- É essa a ideia subjacente dos autómatos com pilha.

Plano

- 1 Introduction
- 2 Autómatos com pilha
 - Constituição
 - Execução
 - Palavras e Linguagem Aceites
 - Considerações
 - Exemplos
- 3 Autómatos com pilha e Linguagens Algébricas
- 4 Limites dos autómatos com pilha e das linguagens algébricas
- 5 Considerações Finais

Descrição informal

- Informalmente um autómato com pilha é composto dos mesmos elementos constituintes dos autómatos finitos:
 - uma fita de dados de entrada,
 - um conjunto de estados (alguns deles iniciais e outros finais)
 - uma relação de transição.
- Em relação aos autómatos de estados finitos, acrescentamos uma pilha.
- A execução do autómato funciona nos seguintes moldes: Em cada passo de execução,
 - o autómato consulta a pilha, a letra por consumir e o estado em que se encontra e
 - avança para o estado seguinte consoante estes valores e a relação de transição. A transição poderá igualmente originar mudanças na pilha.

Descrição formal

Mais formalmente: a noção de autómato com pilha é formalizado por um 6-tuplo $M=(Q,\Sigma,\Gamma,\Delta,Z,s,F)$ onde

- Q é o conjunto finito dos estados do autómato
- Σ é o alfabeto de entrada
- Γ é o alfabeto da pilha (não é requerido que $\Gamma \cap \Sigma \neg = \emptyset$)
- Z ∈ Γ é o símbolo inicial da pilha (único elemento da pilha no momento inicial – iremos ver que este elemento é facultativo)
- ullet $s \in Q$ é o estado inicial do autómato
- $F \subseteq Q$ é o conjunto dos estados finais
- $\Delta \subseteq ((Q \times \Sigma^* \times \Gamma^*) \times (Q \times \Gamma^*))$ é a relação (finita) de transição.

(Quando se isenta a utilização do símbolo inicial de pilha a definição dum autómato restringe-se a um 6-tuplo – $Z=\epsilon$)

Transições

$$((p, u, \beta), (q, \gamma)) \in \Delta$$

Significa que o autómato

- pode passar do estado p para o estado q
- na condição que:
 - a entrada tenha por prefixo u
 - ullet o conteúdo da pilha tenha por prefixo a palavra eta
- neste caso a execução da transição leva a que o autómato:
 - consuma o prefixo u da entrada
 - ullet consuma o prefixo eta da pilha
 - ullet produza γ no topo da pilha
 - passe do estado p para o estado q

Transições

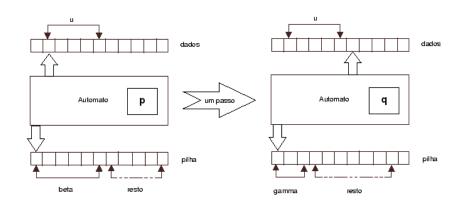


Figura: Transição $((p,u,\beta),(q,\gamma))\in \Delta$ graficamente

Configuração

De forma semelhante ao casos dos autómatos finitos, para definir formalmente a noção de execução é necessário definir a noção de estado interno dum autómato com pilha num momento particular: uma configuração.

Definition (Configuração)

Uma configuração é um triplo $(q,u,\beta) \in Q \times \Sigma^* \times \Gamma^*$ em que

- q é o estado em que o autómato se encontra
- u é a entrada que resta por analisar (uma palavra)
- β é o conteúdo da pilha actualmente considerado. É também visto como uma palavra. O topo da pilha é o primeiro caracter da palavra.

Derivação

A derivação formaliza a noção de (passos de) execução.

Definition (Derivação num passo)

A configuração (q',w',α') é derivável num passo da configuração (q,w,α) pelo autómato $M=(Q,\Sigma,\Gamma,\Delta,Z,s,F)$ (notação: $(q,w,\alpha)\vdash_M (q',w',\alpha')$), se

- ullet w=uw' (a palavra da entrada w começa pelo prefixo $u\in \Sigma^*$)
- $\alpha = \beta \delta$ (antes da transição, $\beta \in \Gamma^*$ é um prefixo da pilha, ou seja os primeiros elementos da pilha formam β)
- $\alpha'=\gamma\delta$ (após a transição, β foi consumido retirado da pilha e juntamos γ à pilha. Assim o primeiro caracter de γ está agora no topo da pila)
- $((q, u, \beta), (q', \gamma)) \in \Delta$

Derivação

Uma derivação (em vários passos), denotada por \vdash_M^* é o fecho reflexivo e transitivo de \vdash_M .

Definition (Derivação – em passos múltiplos)

Uma configuração C' é derivável (em 0 ou mais passos) da derivação C e pela máquina M se existe um $k \in \mathbb{N}, k \geq 0$ e configurações C_0, C_1, \ldots, C_k tais que $C = C_0 \vdash_M C_1 \vdash_M \ldots \vdash_M C_{k-1} \vdash_M C_k = C'$

Execução

Definition (Execução)

Uma execução dum autómato com pilha M sobre uma palavra w é uma sequência $m \acute{a} xima$ de configurações da forma

$$C_{ini} \vdash_M (q_1, w_1, \alpha_1) \vdash_M (q_2, w_2, \alpha_2) \vdash_M \cdots \vdash (q_n, w_n, \alpha_n) \vdash_M \cdots$$

onde C_{ini} é a configuração (s, w, Z), designada de configuração inicial em que s é o estado inicial.

Este sequência é máxima no sentido que:

- ou termina numa configuração (p,ϵ,γ) com $\gamma\in F$, isto é, onde a entrada foi integralmente consumida e que o estado resultante é final.
- ullet ou termina numa configuração $(p, lpha, \gamma)$ a partir da qual não é possível derivar mais nenhuma outra configuração.
- lacktriangle ou é infinita (possível devido as transições ϵ)

Relembra-se que os autómatos aqui descritos são não-determinísticos, pelo que é possível existirem várias execuções distintas possíveis a partir da mesma palavra.

Palavra e Linguagem Aceite

Definition (Palavra Aceite)

Uma palavra w é aceite pelo autómato $M=(Q,\Sigma,\Gamma,\Delta,Z,s,F)$ se $(s,w,Z)\vdash_{M}^{*}(p,\epsilon,\epsilon)$ com $p\in F$.

Informalmente diz-se que o autómato aceita a palavra w sobre estado final e pilha vazia.

Definition (Linguagem Aceite)

A linguagem aceite por um autómato com pilha $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$, designada de L(M), é o conjunto das palavras aceites pelo autómato.

Variantes

Existem definições alternativas as noções aqui apresentadas. Todas elas acabam por serem equivalentes em termos de cobertura expressiva (podem é ser mais convenientes ou simplificar).

Por exemplo:

- Em muitas situações é pratico poder marcar o fim da entrada ou marcar o estado inicial da pilha.
- Assim pode convencionar-se que todas as entradas acabam com um caracter especial (como o caracter \$ ou EOF que contemplaremos na disciplinas de compiladores).
- Ou considerar que a pilha na configuração inicial contém um símbolo, designado de símbolo de pilha inicial, habitualmente Z (Relembra-se que é o que foi convencionado nas definições até agora introduzidas). A configuração inicial por considerar é então (s, w, Z). Convenciona-se que este símbolo é introduzido uma única vez no processo de execução via a configuração inicial.
- Quando não se convenciona a existência inicial dum simbolo especial na pilha, basta considerar que $Z=\epsilon$ e todas as definições até agora introduzidas (configuração inical, etc..) se mantém assim inalteradas.

Variantes

Mais:

- Definir que uma palavra w é aceite se $(s, w, \epsilon) \vdash_M^* (p, \epsilon, \epsilon)$ qualquer que seja o estado p. Neste caso diz-se que o autómato aceita a palavra w sobre pilha vazia.
- Definir que uma palavra w é aceite se (s, w, ε) ⊢_M* (p, ε, γ) com p ∈ F. Neste caso diz-se que o autómato aceita a palavra w sobre estado final (γ pode não ser ε).

Variantes

Exercício

- Mostrar (definir algoritmos) que as três definições de palavra aceite são equivalentes.
- Mostrar que se pode simular o símbolo inicial da pilha com um autómato onde este não é requerido.

Considerações

Considerações

Doravante, iremos considerar, excepto menção explícita,

- a configuração inicial (s, w, Z)
- autómatos que aceitam sobre estado final e pilha vazia

$L(M) = \{a^n b^n \mid n \ge 0\}$

O autómato $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$ tal que

$$Q = \{s,p,q\}$$

$$\Gamma = \{A\}$$

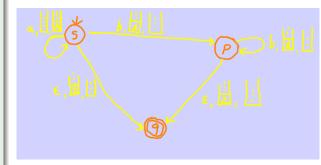
•
$$F = \{q\}$$

$$egin{array}{lll} (s,a,\epsilon) &
ightarrow & (s,A) \ (s,\epsilon,Z) &
ightarrow & (q,\epsilon) \ (s,b,A) &
ightarrow & (p,\epsilon) \ (p,b,A) &
ightarrow & (p,\epsilon) \end{array}$$

$$(p, b, A) \rightarrow (p, \epsilon)$$

 $(p, \epsilon, Z) \rightarrow (q, \epsilon)$

aceita sobre estado final e pilha vazia a linguagem $\{a^nb^n \mid n \geq 0\}.$



$L(M) = \{ w\tilde{w} \mid w \in \Sigma^* \}$

O autómato

$$M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$$
 tal que

$$Q = \{s,p,q\}$$

$$\Gamma = \{A, B\}$$

•
$$F = \{q\}$$

$$\begin{array}{ccccc} (s,a,\epsilon) & \rightarrow & (s,A) \\ (s,b,\epsilon) & \rightarrow & (s,B) \\ (s,\epsilon,\epsilon) & \rightarrow & (p,\epsilon) \\ (p,a,A) & \rightarrow & (p,\epsilon) \\ (p,b,B) & \rightarrow & (p,\epsilon) \end{array}$$

$$(s,\epsilon,\epsilon)$$
 \rightarrow (p,ϵ)

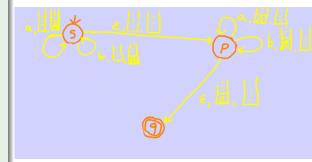
$$(p,a,A) \rightarrow (p,\epsilon)$$

$$(p, b, B) \rightarrow (p, \epsilon)$$

$$(p,\epsilon,Z) \rightarrow (q,\epsilon)$$

aceita sobre estado final e pilha vazia a linguagem

 $\{w\tilde{w} \mid w \in \Sigma^*\}.$



$\{w\tilde{w} \mid w \in \Sigma^*\}$

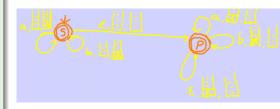
O autómato $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$ tal que

$$Q = \{s,p\}$$

$$\bullet$$
 $\Gamma = \{A, B\}$

$$\bullet$$
 $F = Q$

aceita sobre pilha vazia a linguagem $\{w\tilde{w}\mid w\in\Sigma^*\}$. Daí F ser pouco relevante (por questões de coerência fixou-se F=Q).



O autómato $M=(Q,\Sigma,\Gamma,\Delta,s,F)$ tal que

$$Q = \{s,q,f\}$$

$$\Gamma = \{a, b, Z\}$$

•
$$F = \{f\}$$

Não coloca elemento inicial na pilha e aceita sobre estado final e pilha vazia a linguagem

 $\{w \mid w \text{ contém tantos } a's \text{ como } b's\}.$

Estado	Entrada	Pilha	Trans.	Coment.
5	abbbabaa	ϵ	_	conf.inicial
$\parallel q$	abbbabaa	Z	1	Marca fin.
q	bbbabaa	aΖ	2	push a's
q	bbabaa	Z	7	рор а
q	babaa	bΖ	5	push b's
q	abaa	bbZ	6	
q	baa	bΖ	4	
q	aa	bbZ	6	
q	a	bΖ	4	
q	ϵ	С	4	
f	ϵ	ϵ	8	aceite

Exercício

Exercício: *NDFA* → *pushdown*

Defina um algoritmo que transforme um autómato finito não determinista M num autómato com pilha M_p tal que $L(M) = L(M_p)$.

Plano

- Introduction
- 2 Autómatos com pilha
- 3 Autómatos com pilha e Linguagens Algébricas
- 4 Limites dos autómatos com pilha e das linguagens algébricas
- 5 Considerações Finais

Resultado Fundamental

- Sabemos que uma linguagem algébrica é uma linguagem que pode ser gerada por gramáticas algébricas (de tipo 2).
- Vamos agora ver que os autómatos com pilha são mecanismos reconhecedores.

Theorem

A classe das linguagens aceites por autómatos com pilha é exactamente a classe das linguagens geradas por gramáticas algébricas: as linguagens algébricas. Formalmente:

 $\forall L \ linguagem, \ \exists G \ gramática \ algébrica, L = L(G)$

 $\exists M$ autómato com pilha, L = L(M)

Uma Demonstração Construtiva - Parte 1

Considerações Finais

Theorem

Existe para cada linguagem algébricas um autómato com pilha que a aceite. Formalmente.

 $\forall G$ gramática algébrica, $\exists M$ autómato com pilha, L(G) = L(M)

Demonstração.

- Seja $G = (N, \Sigma, P, S)$ uma gramática livre de contexto. A ideia é construir um autómato com pilha M tal que L(M) = L(G).
- Seja $M = (\{p, q\}, \Sigma, \Sigma \cup N, \Delta, p, \{q\})$ onde Δ é:
 - $1 (p, \epsilon, \epsilon) \rightarrow (q, S)$
 - 2 $(q, \epsilon, A) \rightarrow (q, \alpha) \forall regra (A \rightarrow \alpha) de P$
 - $3 (q, a, a) \rightarrow (q, \epsilon) \forall a \in \Sigma$

Uma Demonstração Construtiva - Parte 1

Considerações Finais

Resta-nos demonstrar que o autómato M assim construído gera exactamente o que pretendemos. Ou seja que o algoritmo proposto é correcto. Para isso basta demonstrar que

$\mathsf{Theorem}$

Seja $w \in \Sigma^a$ st e $\alpha \in (N)(N \cup \Sigma)^* \cup \{\epsilon\}$ então

$$S \stackrel{*}{\Longrightarrow} w\alpha \iff (q, w, S) \vdash_{M}^{*} (q, \epsilon, \alpha)$$

Para o nosso propósito interessa-nos o caso $\alpha=\epsilon.$

Demonstração.

 \implies : Admitimos $S \stackrel{*}{\Longrightarrow} w\alpha$. Demonstra-se $(q, w, S) \vdash_{M}^{*} (q, \epsilon, \alpha)$ por indução sobre o comprimento da derivação esquerda de w a partir de S.

 \Leftarrow : Admitimos $(q, w, S) \vdash_M^* (q, \epsilon, \alpha)$. Demonstra-se $S \stackrel{*}{\Longrightarrow} w\alpha$ por indução sobre o número de aplicação das transições de tipo 2 na execução. (detalhes, ver livro de Papadimitriou p. 138-139).

Considere a gramática cujas produções são:

$$egin{array}{lll} S &
ightarrow & aSa \ S &
ightarrow & bSb \ S &
ightarrow & c \end{array}$$

O algoritmo descrito devolve o seguinte autómato $M=(Q,\Sigma,\Gamma,\Delta,p,F)$ tal que

$$Q = \{p,q\}$$

•
$$\Gamma = \{S, a, b, c\}$$

•
$$F = \{q\}$$

Uma Demonstração Construtiva - Parte 2

Considerações Finais

Theorem

Se uma linguagem é aceite por um autómato com pilha M então existe uma gramática livre de contexto G que a gere. Formalmente,

 $\forall M$ autómato com pilha, $\exists G$ gramática algébrica, L(G) = L(M)

Demonstração.

Complexa.... Passa por definir (e demonstrar correcto) um algoritmo que constrói uma gramática livre de contexto a partir do autómato. Detalhes, ver livro de Papadimitriou p. 139-142.

Plano

- 1 Introduction
- 2 Autómatos com pilha
- 3 Autómatos com pilha e Linguagens Algébricas
- 4 Limites dos autómatos com pilha e das linguagens algébricas
 - Lemma de Bombeamento
 - Como demonstrar que uma linguagem não é algébrica?
- Considerações Finais

Contexto

- Existe mais linguagens do que as linguagens algébricas.
- Como existe linguagens que os autómatos com pilha não conseguem reconhecer.
- Estes dois resultados equivalentes vão ser demonstrados por um teorema do bombeamento adaptado ao caso dos autómatos com pilha.

Definições Preliminares

- O resultado duma árvore de derivação a (notação $\rho(a)$) é a palavra gerada pela árvore (concatenação das folhas terminais, da esquerda para a direita).
- O leque duma gramática G (notação $\phi(G)$) é o número de símbolos do maior rhs presente nas regras da gramática G
- Um caminho numa árvore de derivação é a sequência de nodos distintos em conexão directa, sendo que esta sequência começa a partir da raíz e acaba numa folha.
- O comprimento dum caminho é o número de nodos que o constituí.
- A altura duma árvore de derivação a (notação φ(a)) é o comprimento do maior caminho desta árvore.

Resultado Preliminar

Lemma

Seja G uma gramática livre de contexto. Qualquer que seja o resultado w duma arvore de derivação a de G de altura n, $|w| \le \phi(G)^n$, onde $w = \rho(a)$ e $n = \varphi(a)$.

Demonstração:

Por indução sobre n.

- Será a propriedade válida para n=1?

 Caso trivial. Neste caso a árvore representa a aplicação duma única regra em que S é o lhs. De forma óbvia, o resultado tem no máximo $\phi(G)$ símbolos
- Admitimos que a propriedade é válida para n. Será ela válida para n+1?. Uma arvore de derivação de altura n+1 é constituída por uma raíz conectada a, no máximo, $\phi(G)$ árvores de altura máxima n. Por hipótese de indução todas estas árvores tem um resultado de comprimento máximo $\phi(G)^n$. Logo o comprimento total é no máximo $\phi(G) \times \phi(G)^n = \phi(G)^{n+1}$.

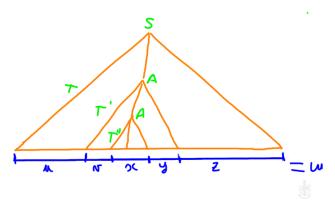
Lemma do Bombeamento para Autómatos com Pilha

Theorem

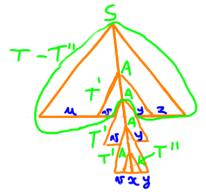
Seja $G = (N, \Sigma, P, S)$ uma gramática livre de contexto. Qualquer que seja a palavra $w \in L(G)$ de comprimento máximo do que $\phi(G)^N$ pode ser reescrita em w = uvxyz de tal forma que $(v \neq \epsilon \lor y \neq \epsilon)$ e $\forall n \in \mathbb{N}$, $uv^n xy^n z \in L(G)$.

- Seja w uma tal palavra. e T a árvore de derivação que produz w com o menor número de folhas possível.
- Visto que $|w| \le \phi(G)^{|N|}$, então T tem um caminho de comprimento de pelo menos |N|+1 com pelo menos |N|+2 nodos. Só um desses, a folha, contém um terminal.
- Logo há mais nodos com não-terminais do que não-terminais em N. Logo há pelo menos uma repetição neste caminho. Seja A um não-terminal repetido no caminho considerado.

• A situação pode ser graficamente representada pela figura seguinte:



 Destaca-se a subárvore T' da qual se extraí T". Esta subárvore pode ser repetida em número arbitrário (incluindo 0) no lugar de T". como o mostra a figura



- Neste caso temos de facto como resultado da árvore palavras da forma uv^nxy^nz com $n \ge 0$.
- a condição $vy \neq \epsilon$ é garantia pelo facto de T ser a minimal (ver papadimitriou p.146)
- Q.E.D.

O princípio

- O Lemma de bombeamento garante que qualquer que seja a gramática livre de contexto, existem palavras geradas suficientemente grandes para necessitar que seja utilizada um não-terminal mais do que uma vez.
- Essa repetição gera padrões particulares.
- Demonstrar que uma gramática não é algébrica pode ser feito com base na ausência desses padrões.
- Basicamente: apresentar uma palavra gerada w = uvxyz suficientemente grande para necessitar a utilização repetida de um mesmo não terminal e demonstrar que uvⁿxyⁿz não pode pertencer a linguagem gerada.
- De forma prática, procede-se a esta demonstração por contradição: admite-se que a gramática é algébrica e, logo, que uvⁿxyⁿz pode ser gerado.

Exemplos

$$L = \{a^n b^n c^n | n \in \mathbb{N}\}$$

- Demonstração por contradição de que L não é livre de contexto.
- Supomos que L é algébrica. Seja $G = (N, \Sigma, P, S)$ a gramática que gere L.
- Seja $n > \frac{\phi(G)^N}{3}$. Então $w = a^n b^n c^n \in L$ e existem u, v, x, y, z tal que w = uvxyz (com $vy \neq \epsilon$).
- Neste caso $\forall m \in \mathbb{N}, \ uv^m xy^m z \in L$. Olhemos para $v \in y$. Dois casos se apresentam.
 - vy contém ocorrências de a de b e de c. Neste caso, pelo menos dois deles ocorrem ou em v ou em y. Então uv²xy²z não contém as ocorrências de a de b e de c na ordem certa.
 - vy não contém ocorrências dos três símbolos juntos. Então uv²xy²z não contém o mesmo números de ocorrências de a, b e de c.
 - Contradição. QED.

Exemplos

$$L = \{a^n | n \in \mathbb{N} \land n \text{ primo}\}$$

- Demonstração, muito identica, por contradição de que L não é livre de contexto.
- Considera-se um primo p maior do que $\phi^{|N|}$
- $w = a^p$ e pode se descompor em w = uvxyz
- Supomos que $vy=a^q$ e $uxz=a^r$ para $q,r\in\mathbb{N}$
- Assim, dizer $\forall n \in \mathbb{N}$, $uv^n xy^n z \in L$ equivale a dizer que $\forall n \in \mathbb{N}$, r + nq é primo. O que é falso. QED.

Exemplos

Theorem

As linguagens livres de contexto não são fechadas por intersecção e complementação. Ou seja:

Sejam L_1 e L_2 duas linguagens.

- L_1 e L_2 algébricas $\implies L_1 \cap L_2$ algébrica
- L_1 algébrica $\Longrightarrow \bar{L_1}$ algébrica

Plano

- Introduction
- 2 Autómatos com pilha
- 3 Autómatos com pilha e Linguagens Algébricas
- 4 Limites dos autómatos com pilha e das linguagens algébricas
- Considerações Finais

PDA vs FSM

- Em oposição aos autómatos finitos, não existe correspondência entre autómatos com pilha não determinista e autómato com pilha deterministas. Assim, os autómatos deterministas são estritamente menos expressivos do que os autómatos não deterministas.
- Os autómatos com pilha determinista, as linguagens que eles geram e a algoritmia associada são fundamentais aos processos de analise sintáctica que iremos abordar na disciplina de LFC.
- As limitações dos autómatos com pilha têm origem nas propriedades das pilhas. A consulta do topo da pilha faz-se pela sua remoção. As pilhas só permitam uma utilização única do seu conteúdo.
- Por exemplo, para reconhecer $\{a^nb^nc^n\mid n\geq 0\}$ é preciso utilizar n duas vezes logo é preciso memorisar n. O que não o occore com a linguagem $\{a^nb^n\mid n\geq 0\}$
- Modelos computacionais mais expressivos removem este inconveniente (Máquinas de Turing, λ-calculo, autómatos com 2 pilhas).

