Teoria da Computação

Linguagens regulares e linguagens que não são regulares

Simão Melo de Sousa

Exercício 1 (Palindromas pares) Considere a linguagem L_1 definida como

$$L_1 \triangleq \{w\tilde{w} \mid w \in \Sigma^*\}$$

definida sobre um alfabeto qualquer Σ e onde \tilde{w} é a palavra espelho associada à w, ou seja $\tilde{w} = a_k a_{k-1} \cdots a_2 a_1$ se $w = a_1 a_2 \cdots a_{k-1} a_k$ ($a_i \in \Sigma, \forall i \in \{1 \cdots k\}$)

Demonstre que L_1 não é regular.

Resposta:

Exercício 2 (Tantos a's como b's) Considere a linguagem L_2 definida sobre o alfabeto $\Sigma \triangleq \{a, b\}$ da forma seguinte:

$$L_2 \triangleq \{ w \mid w \in \Sigma^* \land |w|_a = |w|_b \}$$

Demonstre que L_1 não é regular.

Resposta:

Exercício 3 Considere o alfabeto $\Sigma \triangleq \{a,b\}$. Demonstre que a linguagem L_3 definida como

$$L_3 \triangleq \{(ab)^n a^k \mid (n,k) \in \mathbb{N}^2 \land n > k \ge 0\}$$

Demonstre que L_3 não é regular.

Resposta:

Exercício 4 (quadrados perfeitos) Considere o alfabeto $\Sigma \triangleq \{a\}$. Demonstre que a linguagem L_4 definida como

$$L_4 \triangleq \{a^{n^2} \mid n \in \mathbb{N}\}$$

Demonstre que L_4 não é regular.

Resposta:

Exercício 5 Considere o alfabeto $\Sigma \triangleq \{a,b\}$. Demonstre que a linguagem L_5 definida como

$$L_5 \triangleq \{a^n b^k \mid (n,k) \in \mathbb{N}^2 \land n \neq k\}$$

Demonstre que L_5 não é regular.

Resposta:

Exercício 6 O que acha desta afirmação?

Sejam L_1 e L_2 duas linguagens não regulares, então $L_1 \cup L_2$ também não é regular.

É verdadeira ou falsa? Demonstre a sua resposta.

Resposta:

Exercício 7 Determine se a linguagem $\{a^nb^nc^m \mid (n,m) \in \mathbb{N}^2\}$ é regular ou não. Demonstre a sua afirmação.

Resposta:

Exercício 8 Determine se as asserções seguintes são verdadeiras ou falsas. demonstre a sua resposta.

- 1. Qualquer linguagem regular tem um subconjunto próprio regular.
- 2. Se L_1 e L_2 são duas linguagens regulares então $\{w \mid x \in L_1 \land x \not\in L_2\}$ é regular.
- 3. Qualquer união finita de linguagens regulares é regular.

4. Qualquer união infinita de linguagens regulares é regular.

Resposta:

Exercício 9 (Somas e multiplicações binárias) Sejam os conjuntos $D = \{0,1\}$ e $T = D \times D \times D$.

1. Uma soma correcta de dois números binários pode ser representada como uma palavra de T*. Se pensarmos nos simbolos de T como colunas verticais podemos representar a soma de:

como a palavra de 4 letras seguinte

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Mostre que o conjunto de todas palavras de T^* que representam adições correctas é uma linguagem regular.

2. Uma multiplicação correcta de dois números binários pode ser representada como uma palavra de T^* . Por exemplo a multiplicação

pode ser descrita pela palavra de 6 letras seguinte:

$$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Demosntre que o conjunto de todas as palavras de T^* que representam multiplicações correctas não é regular (Dica: considerar a multiplicação de $(2^n + 1)$ por $(2^n + 1)$)

Resposta: