Lógica Computacional

Aula Teórica 11: Resolução para Lógica Proposicional

António Ravara Simão Melo de Sousa

Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Departamento de Informática, Faculdade Engenharia, LISP & Release Group
Universidade Beira Interior

Como determinar a natureza de uma fórmula em FNC?

Verificação semântica e axiomática

- ▶ Se FNC(φ) então verificar $\models \varphi$ é simples: demora no máximo um tempo proporcional ao número de símbolos proposicionais da fórmula.
- Por via semântica usa-se o Lema da validade da disjunção.
- Como fazer automaticamente provas axiomáticas?
- Há métodos universais para determinar se dada fórmula é contraditória ou mesmo possível?

Sistema formal de prova de validade

Regras

Como a equivalência lógica é uma congruência, pode-se simplificar uma fórmula na FNC usando axiomas de equivalência, incluindo:

- ▶ leis de idempotência: $L \lor L \equiv L$ e $C \land C \equiv C$;
- ▶ leis do elemento neutro: $L \lor \bot \equiv L$ e $C \land \top \equiv C$;
- ▶ Transitividade da implicação: $(L_1 \to L_2) \land (L_2 \to L_3) \equiv (L_1 \to L_3)$
- Substitutividade.

Como funciona o sistema

- Converte-se uma fórmula para FNC.
- Simplifica-se usando axiomas de equivalência.
- Analisa-se o resultado obtido para determinar a natureza da fórmula.

Cláusulas

Disjunções como conjuntos

- Chama-se cláusula a uma disjunção de literais.
- ▶ Uma cláusula $L_1 \vee ... \vee L_n$, com $n \geq 0$, pode ser vista como o conjunto: $\bigcup_{i=1}^n \{L_i\} = \{L_1, ..., L_n\}$.
- ▶ O conjunto vazio denota \bot (elemento neutro da disjunção): em vez de $\{\bot\}$ escreve-se simplesmente \emptyset ; logo, a cláusula $\bot \lor p$ é simplesmente representada por $\{p\}$.

Propriedades

- Lema 11.1: Toda a cláusula determina univocamente um conjunto de literais.
- ▶ O recíproco não é verdadeiro: o conjunto $\{L_1, L_2\}$ pode resultar da fórmula $L_1 \lor L_2$, da fórmula $L_2 \lor L_1$, da fórmula $(L_1 \lor L_2) \lor L_1$, da fórmula $L_1 \lor (L_2 \lor L_1)$, etc.

Cláusulas como conjuntos

Lema 11.2

São equivalentes cláusulas que determinam o mesmo conjunto. Esboço de prova

Os conjuntos não têm ordem nem repetições. Há 3 situações em que cláusulas sintaticamente diferentes geram o mesmo conjunto:

- Numa um dado literal ocorre mais vezes do que na outra pela lei da idempotência são equivalentes.
- Pelo menos um literal ocorre numa cláusula numa posição diferente da que ocorre na outra — pela lei da comutatividade são equivalentes.
- Os literais estão associados nas cláusulas de forma diferente pela lei da associatividade são equivalentes.

Como \perp é a cláusula vazia, pode-se apagá-lo (vê-se a cláusula como a união de cláusulas singulares, uma para cada literal).

Conjuntos de cláusulas

Fórmulas como conjuntos de cláusulas

- Uma fórmula em FNC é um conjunto de cláusulas.
- ▶ Se $\varphi = \bigwedge_{i=1}^n C_i$ sendo cada C_i uma cláusula, φ é representada (univocamente) pelo conjunto $\bigcup_{i=1}^n \{C_i\} = \{C_1, \dots, C_n\}$.
- ▶ O conjunto vazio denota \top (elemento neutro da conjunção): em vez de $\{\top\}$ escreve-se simplesmente \emptyset ; logo, a fórmula $\top \land (p \lor \bot)$ é representada por $\emptyset \cup \{\{p\} \cup \emptyset\} = \{\{p\}\}$.
- ► Exemplo: $(p \lor q \lor \neg r) \land (r \lor s) \land \neg p \land (\neg q \lor \neg s)$ é univocamente representada por $\{\{p,q,\neg r\},\{r,s\},\{\neg p\},\{\neg q,\neg s\}\}.$

Lema 11.3

Se duas fórmulas em FNC determinam o mesmo conjunto de cláusulas então são equivalentes.

Sistema dedutivo

Definição 11.1: Resolvente

Dadas duas cláusulas C_1 e C_2 tal que para alguma fórmula atómica φ se tem $\varphi \in C_1$ e $\neg \varphi \in C_2$, chama-se *resolvente* à cláusula $R = (C_1 \setminus \{\varphi\}) \cup (C_2 \setminus \{\neg \varphi\})$.

Exemplo

Sejam
$$C_1 = \{p, \neg q, r\}$$
 e $C_2 = \{q, \neg r, s\}$;

- ▶ um resolvente destas cláusulas é a cláusula $\{p, q, \neg q, s\}$;
- ▶ outro resolvente é a cláusula $\{p, r, \neg r, s\}$.

Regras de prova

- ▶ Uma fórmula $\varphi = \bigwedge_{i=1}^{n} C_i$ em FNC é possível, se não é contraditória e algum C_i é uma fórmula possível.
- Se duas cláusulas são fórmulas possíveis, então um seu resolvente é também uma fórmula possível.

Correcção do sistema dedutivo

Lema 11.4: A regra do resolvente é correcta

Seja L um literal positivo e C e D cláusulas.

$$(L \vee C) \wedge (\neg L \vee D) \models C \vee D$$

Prova por dedução natural. Seja ${\mathcal D}$ a seguinte árvore

$$\frac{((L \lor C) \land (\neg L \lor D))^{1}}{\neg L \lor D} (\land_{E_{e}}) \quad \frac{L^{2} \quad \neg L^{4}}{C \lor D} (\bot, 6) \quad \frac{D^{5}}{C \lor D} (\lor_{I_{e}})}{C \lor D} (\lor_{E}, 4, 5)$$

$$\frac{((L \vee C) \wedge (\neg L \vee D))^1}{\frac{L \vee C}{C \vee D}} \stackrel{(\wedge_{E_d})}{\subset \vee D} \stackrel{\mathcal{D}}{\longrightarrow} \frac{C^3}{C \vee D} \stackrel{(\vee_{I_d})}{(\vee_{E}, 2, 3)}$$

Como se provou $(L \vee C) \wedge (\neg L \vee D) \vdash C \vee D$, o resultado desejado sai pela correcção do sistema de dedução natural.

António Ravara, Simão Melo de Sousa

Algoritmo de Resolução: definição

Definição 11.2: Cálculo do ponto fixo dos resolventes

Seja $\varphi = \bigwedge_{i=1}^n C_i$ uma fórmula em FNC.

Define-se a função Res de geração de resolventes da seguinte forma:

- $\blacktriangleright \operatorname{Res}^{0}(\varphi) \stackrel{\mathsf{def}}{=} \bigcup_{i=1}^{n} \{C_{i}\}.$
- ▶ Para qualquer n > 0 define-se $\operatorname{Res}^n(\varphi) \stackrel{\text{def}}{=} \operatorname{Res}^{n-1}(\varphi) \cup \{R \mid R \text{ \'e resolvente de duas cláusulas de } \operatorname{Res}^{n-1}(\varphi)\}.$
- $\blacktriangleright \operatorname{Res}^*(\varphi) \stackrel{\mathrm{def}}{=} \bigcup_{n > 0} \operatorname{Res}^n(\varphi).$

Lema 11.5

A função Res é monótona crescente.

Proposição 11.1

Para dado φ , o conjunto Res* (φ) é único.

Exemplificação do cálculo dos resolventes

Seja
$$\varphi = (p \lor p \lor q) \land \top \land (r \lor \neg q) \land (\neg p \lor \bot) \land \neg p$$

A fórmula é composta pelas seguintes cláusulas:

$$C_1 = \{p, q\}, \ C_2 = \emptyset, C_3 = \{r, \neg q\}, \ C_4 = \{\neg p\} \cup \emptyset = \{\neg p\} = C_5$$

Por definição, como se convencionou que $\{C_2\} = \emptyset$,

$$\operatorname{\mathsf{Res}}^0(\varphi) = \bigcup_{i=1}^5 \{C_i\} = \{\{p,q\}, \{r, \neg q\}, \{\neg p\}\}$$

$$\mathsf{Res}^1(\varphi) = \mathsf{Res}^0(\varphi) \cup \{\{p,r\},\{q\}\}$$

$$\mathsf{Res}^2(\varphi) = \mathsf{Res}^1(\varphi) \cup \{\{r\}\}\$$

$$\operatorname{Res}^n(\varphi) = \operatorname{Res}^2(\varphi)$$
, para qualquer $n > 2$

Algoritmo de Resolução

Lema 11.6

Para toda a fórmula φ em FNC existe um $m \in \mathbb{N}_0$ tal que $\mathrm{Res}^*(\varphi) = \mathrm{Res}^m(\varphi)$.

Esboço de prova

As fórmulas são conjuntos finitos de símbolos: se $\varphi = \bigwedge_{i=1}^n C_i$ então n é finito e cada C_i é um conjunto finito. Logo, $\operatorname{Res}^0(\varphi)$ é finito; como cada resolvente de duas cláusulas é finito (cardinal menor ou igual à soma dos cardinais das cláusulas menos 2), facilmente se prova por indução que para qualquer n é finito $\operatorname{Res}^n(\varphi)$. Logo, $\operatorname{Res}^*(\varphi)$ é finito, e existe um m tal que $\operatorname{Res}^{m+i}(\varphi) = \operatorname{Res}^m(\varphi)$, com $i \geq 1$.

Algoritmo de Resolução

Teorema 11.1

Dada $\varphi \in H_P$ com $FNC(\varphi)$, $\emptyset \in Res^*(\varphi)$ se e só se $\varphi \equiv \bot$.

Prova

Pelo lema anterior, existe um $m \in \mathbb{N}_0$ tal que $\mathrm{Res}^*(\varphi) = \mathrm{Res}^m(\varphi)$. Prova-se então o resultado analisando o m.

- ▶ Caso m = 0. Note-se que $\emptyset \in \mathsf{Res}^0(\varphi)$ se e só se para algum i se tem $C_i = \bot$, e como \bot é elemento absorvente da conjunção, φ é contraditória.
- ▶ Caso $\emptyset \notin \operatorname{Res}^m(\varphi)$ mas $\emptyset \in \operatorname{Res}^{m+1}(\varphi) = \operatorname{Res}^m(\varphi) \cup R$, sendo R um resolvente de duas cláusulas em $\operatorname{Res}^m(\varphi)$. Então, $\emptyset \in \operatorname{Res}^{m+1}(\varphi)$ se e só se $R = \emptyset$. Como R representa \bot , e \bot é elemento absorvente da conjunção, φ é contraditória.

Uma fórmula contraditória

Se a fórmula é contraditória, consegue-se, calculando resolventes das suas cláusulas, derivar o conjunto \emptyset . Não vale a pena calcular explicitamente Res*.

Pela proposição anterior conclui-se que a fórmula é contraditória.

Uma fórmula possível

Seja
$$\varphi \stackrel{\mathsf{def}}{=} (p \vee q) \wedge (r \vee s) \wedge \neg p \wedge (\neg q \vee \neg s)$$

Pelo Lema da disjunção de literais, a fórmula não é válida.

A fórmula é composta pelas seguintes cláusulas:

$$C_1 = \{p, q\}, \ C_2 = \{r, s\}, C_3 = \{\neg p\}, \ C_4 = \{\neg q, \neg s\}$$

Por definição,

$$Res^{0}(\varphi) = \bigcup_{i=1}^{4} \{C_{i}\} = \{\{p, q\}, \{r, s\}, \{\neg p\}, \{\neg q, \neg s\}\}\$$

$$\mathsf{Res}^{1}(\varphi) = \mathsf{Res}^{0}(\varphi) \cup \{\{q\}, \{p, \neg s\}, \{r, \neg q\}\}\}$$

$$\mathsf{Res}^2(\varphi) = \mathsf{Res}^1(\varphi) \cup \{\{p,r\}, \{r\}, \{\neg s\}\}\$$

$$\operatorname{Res}^n(\varphi) = \operatorname{Res}^2(\varphi)$$
, para qualquer $n > 2$

Como $\emptyset \notin \operatorname{Res}^*(\varphi)$, a fórmula não é contraditória. Logo, é possível. Uma valoração que satisfaz a fórmula atribui o valor 1 aos literais em cláusulas singulares.