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1. Introduction. In this paper we consider classes whose elements are re-
cursively enumerable sets of non-negative integers. No discussion of recur-
sively enumerable sets can avoid the use of such classes, so that it seems de-
sirable to know some of their properties. We give our attention here to the
properties of complete recursive enumerability and complete recursiveness
(which may be intuitively interpreted as decidability). Perhaps our most
interesting result (and the one which gives this paper its name) is the fact
that no nontrivial class is completely recursive.

We assume familiarity with a paper of Kleene [5](2), and with ideas
which are well summarized in the first sections of a paper of Post Í7].

I. Fundamental definitions
2. Partial recursive functions. We shall characterize recursively enumer-

able (r.e.) sets of non-negative integers by the partial recursive functions of
Kleene. The set characterized (or, as we shall say more frequently, enumer-
ated) by a partial recursive function of one variable will be taken as the
range of values of the function. A function undefined for all arguments (and
thus producing no values) will be considered to produce an enumeration of
the empty set o.

Kleene has shown [5, pp. 50-58] that a Gödel enumeration of the partial
recursive functions is possible, so that we may designate any partial recursive
function of one variable as <j>n(x), where n is a Gödel number of the function.
Actually, it requires only a minor adjustment of Kleene's constructions to
insure that, not only does every function have at least one number, but that
every non-negative integer n is the number of some function. We shall assume
this to be the situation, and shall make one other minor adjustment: <t>o(x)
is the identity function.

Kleene further showed the existence of a recursive predicate 7"(x, y, z) and
a primitive recursive function U(x) such that

Presented to the Society, December 28, 1951; received by the editors of the Journal for
Symbolic Logic, November 16, 1951, subsequently transferred to the Transactions, and re-
ceived in revised form May 26, 1952.
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4>n(x) = $(«, x) = U(pyT(n, x, y))

so that every partial recursive function of one variable can be written as
<!>(«, x) for some n.

This numbering enables us to characterize a class A of sets by the set of
all w's such that i>(w, x) enumerates a set of A, which leads to the definitions
in the following section.

3. Definitions^).
Definition. A class A is recursively enumerable if there exists a partial

recursive function <ï>(r, x) with the following property: a set aCZA if and
only if there is a number a such that <E>($(r, a), x) enumerates a. The set ß
enumerated by <3?(r, x) is called a recursive enumeration of A.

Definition. A class A is completely recursively enumerable (c.r.e.) if there
exists a partial recursive function $>(r, x) with the following property: a
partial recursive function <E>(a, x) enumerates a set a of A if and only if
there exists a number b such that $(r, 6) = a. The set of all w's such that $(n, x)
enumerates a set of A we shall denote by 9a- A is c.r.e. if and only if 8a is r.e.
From the fact that there are infinitely many partial recursive functions
enumerating each r.e. set, it follows that 6a is always either infinite or empty
(in case A is the empty class).

Lemma A is immediately evident from the definition, and Lemma B from
Lemma A.

Lemma A. 8a is a complete (not necessarily recursive) enumeration of some
class A if and only if it has the following properly: if &(m, x) and $(n, x)
enumerate the same set, then either both m and n are in 6a, or neither is.

Lemma B. If two sets 6a and 8b are complete enumerations of the classes A
and B, then their union and intersection (Ba +8b and 8a8b) are complete enumera-
tions of the classes A +B and AB. This holds also for infinite unions and inter-
sections.

Definition. A class A is completely recursive (c.r.) if 8a is a recursive set.
If we denote the class of all r.e. sets by F, then the complement of 8a is

8f-a- So when A is c.r., both A and F—A are c.r.e.
This definition, after Post, is equivalent to the following: A is c.r. when

there exists a general recursive function 4>(s, x) such that if $>(w, x) is a partial
recursive function enumerating a set of A, then <f>(s, n) = l, and if $(n, x)
is a partial recursive function enumerating a set of F — A, <E>(s, n) =0.

We shall refer to this as the strong definition of complete recursiveness.
The weak definition is as follows: there exists a partial recursive function
$>(r, x) such that if $(n, x) is a general recursive function enumerating a set

(3) These concepts, in somewhat different form, were first mentioned by J. C. E. Dekker in
his thesis (Syracuse University, 1950). See also his abstract, Bull. Amer. Math. Soc. Abstract
57-2-83.
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of A, then i>(r, n) = 1, and if $>(«, x) is a general recursive function enumerat-
ing a set of F—A, 3>(/, n) =0. Clearly, if a class is c.r. by the strong definition,
it is c.r. by the weak.

Two trivial classes are immediately c.r. by the strong definition. F is
completely recursively enumerated by the identity function, and the empty
class F— F by any function enumerating the empty set. Hereafter we con-
sider only proper subclasses of F.

II. Complete recursive enumerability
4. Existence of cr.e. classes.

Theorem 1. The class of all sets containing a given number k (we denote
this class by L(k)) is c.r.e.

Proof. 8nk) is the range of the partial recursive function

K(x) ii -*- | HKix), 7(x)) - k | )

where 7£(x) and 7,(x) are the Cantor diagonal functions:

x 0        12       3       4       5 6
Kix) 0        0        10        12 0        etc.

7(x) 0        10        2        10 3

(The reader will recall from I, 2 the assumption that i>(0, x) is the identity
function.)

We now give a method for constructing c.r.e. classes which seems to be
very general. We suppose given a recursively enumerable sequence (the key
array) of finite sets (the key sets), each set given by a finite sequence of
numbers.

0 0 0 0
aB    a\    a2 • ■ • an(0)

iii i
»o    ax    o« • • ■ a„(i)

i        i        i i
«o    <ii    a« ■ • • ann)

Theorem 2. To every key array corresponds constructively a c.r.e. class; i.e.,
given the key array, we can construct a complete enumeration of the corresponding
class.

Intuitively, we set all the partial recursive functions generating their
values, and as soon as we see that the set enumerated by a function <P(«, x)
includes one of the key sets, we put n into 6a- This must happen, if it is going
to happen at all, in a finite length of time. A is then the class of all sets which
include at least one of the key sets, and we have a constructive procedure
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for generating 8a.. (A simple formal proof of the recursive enumerability of 6A
will follow Theorem 3.)

Moreover, whether or not n is placed in 6a depends only on a property
(inclusion) of the set enumerated by <£(w, x), and not on the order in which
i>(«, x) may produce its values. To the author's intuition, this procedure for
constructing an enumeration of 8a is as general as any procedure can be and
still satisfy the two essential requirements: first, it is effectively constructive,
and second, it gives a complete enumeration of a class of sets. On this basis
(to be further supported by Theorem 7, Corollary A) we venture the con-
jecture that every c.r.e. class has a key array, or, in the language of Theorem
3, the c.r.e. classes are just the 2 JjT, classes.

Theorem 3. A is a c.r.e. class determined by a key array if and only if A
can be written as a r.e. union of finite intersections of Lik)'s.

Proof. Suppose a set a of A includes the jth key set {a^, ■ ■ • , a£(J)}. This
is a necessary and sufficient condition that

i—n(;)

« G   u Lia'i).
t=0

A can then be written as

Z   n  Lia]).
j ¿=0

The union, if infinite, is recursively enumerable.
Conversely, any class composed of Lik)'s in finite intersections and r.e.

unions determines a key array. For since the associative and distributive
laws hold for these operations, any such class can be reduced to the form

E UHk)
r.e.    finite

and a key array constructed from the ¿'s appearing in the operations.
This theorem suggests the name " EIX^ class" for any class determined

by a key array.
Proof of Theorem 2. If A is a ELT^ class, then, by Lemma B, 8A

= E I1.0£(*)- We need only note that finite intersections and r.e. unions of
r.e. sets are again r.e.

We have excluded intersections of infinitely many Z(fe)'s. This case is dis-
posed of in a corollary to Theorem 4.

5. Existence of classes which are not cr.e.

Theorem 4. No class containing only infinite sets is c.r.e.

Proof. Let A be a class containing only infinite sets, and let $(r, x) be a
general recursive function enumerating an infinite set lxCZ6a. Then each of
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the functions <$(<£(?", n), x) enumerates an infinite set of A. Using Kleene's
representation of $(w, x) as

UipyTin, x, y)),

we define

«(0) = KipyTiHr, 0), Kiy), 7(y))),
uin + 1) = Kipy[TiHr, n + 1), Kiy), 7(y)) & Kiy) > «(«) + l]),

and
vin) = UiLipy[Ti$ir, 0), Kiy), 7(y)) &

*(*(r, 0), 7£(y)) ^ $($(r, »), «(»))])).

Now the task of w(ra) is to find an argument for which «$(<£(?•, n), x) is de-
fined and which is greater by at least 2 than the corresponding argument
found for any m<n. Since each of the <ï>(<ï>(r, n), x) produces infinitely many
values, uin) is always defined and produces its values in strictly increasing
order, vin), on the other hand, finds a value produced by $i&ir, 0), x) which
is different from the value of 4>(<i>(r, n), uin)).

Finally, let us define w(x) as the recursive characteristic function of the
infinite complement of the recursive set enumerated by w(x). We are now
ready to construct a function <$(s, x) such that sCZ6a~ct.

If w(*) = l, then/(x)=$(3>(r, 0),   ££5 w(z)- 1).
If w(x) =0, then there exists a unique y such that w(y) =x. Then/(x) =z>(y).
With a little more trouble, such a definition of fix) may be given as will

formally establish it as a partial recursive function, say «^(s, x). Now sCZ8A,
for <Ü>(s, x) enumerates the same set as does $($(?-, 0), x). On the other hand,
sC£(x, for <ï>(s, x) differs from every function í>(í>(r, n), x) for at least the
argument x = m(m).

Thus we see that no infinite r.e. set a can exhaust 6a", nor can any finite
set, so that 8A is not r.e.

Corollary A. No infinite intersection of Lik)'s is c.r.e.

Corollary B. The set of all partial recursive functions enumerating a given
infinite set a is not r.e.

For take the A of Theorem 4 as the unit class 7(a).

Theorem 5. The unit class lio) of the empty set is not c.r.e.

Proof. We assume the contrary, and note that since F — lio)
= Zaii * LQ1) is c.r.e. by Theorem 3, 8n0) is a recursive set, so there exists
a recursive function <ï>(/, x) such that $(<, n) = 1 whenever <£(«, x) enumerates
the empty set (i.e., produces no values), and í>(¿, n) =0 otherwise.

Now consider an arbitrary partial recursive function 3>(w, x).
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4>(w, x) = UipyT(m, x, y))

and there is a recursive function rim, x, y) which equals 1 when Tim, x, y)
holds, and 0 otherwise. We define

I(y) = pz[z + l = r(m, m, y)].

f(y) is a partial recursive function, so there is an r such that/(y) = <$(r, y).
The Gödel enumeration of the partial recursive functions yields a recursive
function g(x) such that r = g(m).

Now whenever &(m, m) is undefined, <&(r, y) enumerates o, so that
$(t, r) = 1, and if <i>(w, m) is defined, <ï>(i, r) =0.

Finally, there exists an integer .? such that

$(s, m) = py[y + 1 = $(/, g(m))].

4>(5, m) is undefined whenever <£(m, ra) is defined, and is defined and
equal to 0 whenever i>(w, m) is undefined. A contradiction arises from the
case of <p(s, s).

III. Complete recursiveness
6. The main theorem and the strong definition. We now give a theorem

which shows that too many classes are not c.r.e. for any class to be c.r.

Theorem 6. Let A be a class which contains a finite set [ao, • ■ ■ , a&},
but omits a set a which includes {a0, • • • , a*}. Then A is not c.r.e.

Proof. For any partial recursive function <!>(«, x), we define

/(«) = pzT(n, K(z), Liz)).

fin) is undefined if <$(«, x) enumerates o, but assumes some value otherwise.
Let gix) be defined by the equations

«(0) = bo,

*(D = *i.

*(*) = h,
g(x + k + 1) = 0

and h(x) by
h(x) - 1 ■*• (1 •-■"(» •*- *))

where a — & = 0 if a<b, and a — b otherwise. h(x) =0 for x^k, and 1 for x>&.
Finally, let 3>(i, x) be any partial recursive function. Now consider

g(x) + 0-f(n-h(x)) + ^it-h(x), x ■>- (k + 1)).

When bo, ■ ■ ■ , bk and / are chosen, this is a partial recursive function i>(s, x),
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and the Gödel enumeration gives s(n) as a recursive function of n.
If A is the class of the theorem, we now take o, = a¿ and t = ta, where

<p(/0, x) enumerates a. We define dA as the set of all n's such that s(«)£iA.
If 8a is r.e., so is 8a- For suppose $(r, x) enumerates 8a- Then 6A is the range
of the partial recursive function

K(x) +py[y+l = l^-\ $(r, L(x)) - s(K(x)) | ].

The crux of the proof lies in the fact that 0a=0/(o). Suppose $(», x)
enumerates o. Then for x^k, h(x) =0 and

Hs(n), x) = gix) + 0-/(0) + $(0, 0).

In this range $(s(n), x) is defined (recall again that $(0, x) was taken as the
identity function in I, 2) and equal to gix). So the set enumerated by
$(s(n), x) includes {ao, • • • , a*}. However, for x>k,

$(*(«), x) = 0 + Of in) + *(/„, * -<- (*+ 1))

and <ï>(s(re), x) is not defined, since/(w) is not. So <p(í(m), x) enumerates just
the set {a0, • • • , ak\, which is in A. s(n)CZ&A and nCZ&A-

On the other hand, suppose $(«, x) does not enumerate o. Then, for
x>k,fin) is defined, so that

<ï>(s(n), x) = 0 + 0 + *(<„, » ■*■ ik + 1)).

For x = k+y, &(s(n), x)=<£(i0, y). So «^(w), x) enumerates a, which is not
in A. s(n)d9A and nQßA-

We have, then, that if 8A is r.e., Oa=Ö/(0) is r.e., which by Theorem 5 is
not the case. So 8a is not r.e., and A is not c.r.e.

Corollary A. Every c.r.e. class includes a E IT-^ class.

For by Theorem,4, a c.r.e. class A contains a finite set {ao, • • • , a*}.
By Theorem 6, A contains all sets a which include {ao, • • • , a*}. That is, A
includes XI*-o L(a,)- (In fact, it can be shown(4) that the finite sets of A can
be recursively enumerated, so that A includes the EIX^ class generated
by its finite sets.)

Corollary B. There are no nontrivial c.r. classes by the strong definition.

For every nontrivial c.r.e. class A must contain the set e of all non-
negative integers, and it is impossible for both A and F — A to contain the
same set e.

Corollary C. No nontrivial c.r.e. class A contains o.

For o is included in every set, so A would have to be F.

(') This was pointed out to the author by J. C. E. Dekker.
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Corollary D. No unit class is c.r.e.

We have already that if a is infinite, 7(a) is not c.r.e. (Theorem 4, Corol-
lary A), and if a is empty, 7(a) is not c.r.e. (Theorem 5). The result if a is
finite follows from Theorem 6.

If we identify properties with classes, and "effective" with "recursive,"
we can give an intuitive interpretation of Corollary B. If P is any property
possessed by some, but not all, r.e. sets, then there exists no effective general
method for deciding, given a set a by means of a partial recursive function
enumerating it, whether or not a has the property P. In stronger terms,
there exists no effective general method for obtaining, from a partial recur-
sive function, any information about the set of which the function is a char-
acterization! Of course there will exist special methods for particular functions.

This situation is not a result of admitting functions not always defined,
for we now establish the same result for the weak definition.

7. The weak definition.

Theorem 7. 7/a class A is c.r. by the weak definition, then A —I(o) is c.r.e.

Proof. Under the hypothesis, there is a partial recursive function <ï>(r, n)
which is equal to 1 if $(w, x) is a general recursive function enumerating a set
of A, and equal to 0 if i>(«, x) is a general recursive function enumerating a
set of F-A.

We must show that from an arbitrary partial recursive function $(«, x)
enumerating a set a^o, we can construct a general recursive function
4>(w, x), also enumerating a, in such a way that m is a recursive function of n.

We first define
x0 = K(pzT(n, K(z), L(z))).

Since a^o, such a z exists. Then
3>(w, 0) = <£(«, x0);
i>(»z, x) =<p(w, Xo) if T(n, K(x), L(x)) does not hold;
$K x)=<E>(w, K(x)) if T(n, K(x), L(x)) holds.
$(w, x) is defined for all arguments, and a more formal definition in

terms of the representing function r(n, x, y) of T(n, x, y) would establish
that $(m, x) is recursive, and that the Gödel enumeration of the partial
recursive functions would yield m as a recursive function of n. Say f(n) =m.

To show that A —I(o) is c.r.e., we note that Ba-iw is the range of the
partial recursive function

g(n) + py[y + 1 = $(r, f(g(n)))]
where g(n) is a partial recursive function enumerating 8f~h<,)-

Corollary. If A is c.r. by the weak definition, then F — I(o)—A is c.r.e.

Theorem 8. No nontrivial class is c.r. by the weak definition.
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Proof. Suppose A— I(o) is c.r.e. Then A contains e, and so F—I(o) —A
does not contain e. Thus F — I(o)—A is not c.r.e., and by the corollary to
Theorem 7, A is not c.r. by the weak definition.

We find, then, that the same unfortunate situation exists whether we
agree to characterize sets by partial recursive functions, or whether we re-
strict characterization to the better-behaved general recursive functions. Nor
does further restriction to the primitive recursive functions bring any im-
provement, for Rosser [8] has shown that from a given general recursive
function we can effectively construct a primitive recursive function enumerat-
ing the same set. Arguments paralleling the proofs of Theorem 7 and 8 will
then give the analogue of Theorem 8 for the primitive recursive functions.
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