Acta Informatieca 7, 305—317 (1977)
© by Springer-Verlag 1977

Monotone Data Flow Analysis Frameworks™
John B. Kam and Jeffrey D. Ullman

Received March 24, 1975

Summary. We consider a generalization of Kildall's lattice theoretic approach
to data flow analysis, which we call monotone data flow analysis frameworks. Many
flow analysis problems which appear in practice meet the monotonicity condition
but not Kildall's condition called distributivity. We show that the maximal fixed
point solution exists for every instance of every monotone framework, and that it
can be obtained by Kildall’s algorithm. However, whenever the framework is mono-
tone but not distributive, there are instances in which the desired solution —the
‘““meet over all paths solution’’ —differs from the maximal fixed point. Finally, we
show the nonexistence of an algorithm to compute the meet over all paths solution
for monotone frameworks.

1. Introduction

Performing compile time optimization requires solving a class of problems,
called global data flow analysis problems (abbreviated as gdfap’s), involving
determination of information which is distributed throughout the program.

Thus far, work has been done only for a restricted subclass of gdfap’s for
which the meet over all paths solution! to individual programs can be obtained
efficiently by using interval analysis [1-5, 8, 12] or by an iterative approach
[6, 9, 10, 14, 16]. In these gdfap’s, called distributive gdfap’s, the MOP solution
can be characterized as a maximum fixed point solution to a set of simultaneous
equations. ,

In this paper, a more general class of gdfap’s called monotone data flow ana-
lysis frameworks (abbreviated as framework), will be examined. We first illustrate
several problems not belonging to the restricted class of distributive gdfap’s.
The paper also shows that for monotone frameworks, the MOP solution for an
individual program does not necessarily coincide with the maximum fixed point
solution to the corresponding set of simultaneous equations. Several methods for
approaching this class of frameworks will be discussed. We conclude the paper
by showing that there exists no algorithm which, when given an arbitrary mono-
tone framework, will compute the MOP for each program.

2. Background

We assume the reader has some familiarity with the lattice theoretic for-
mulation of data flow analysis, as discussed in [9, 10, 15], for example. We refer
to these papers for the proper motivation for the subject to be discussed here.

* Work supported by NSF grant GJ-1052.

1 Given a gdfap, the meet over all paths (MOP) solution for a program can be inter-
preted informally as the calculation for each statement in the program of the maximum
information, relevant to the gdfap, which is.true along every possible execution path
from the starting point of the program to that particular statement.

306 J. B. Kam and J. D. Ullman

Definition: A flow graph is a triple G = (N, E, #,), where:
(1) N is a finite set of nodes.

(2) E is a subset of N X N called the edges. The edge (x, y) enters node y and
leaves node x. We say that x is a predecessor of y, and y a successor of x.

(3) #oin N is the initial node. There is a path? from n, to every node.
Definition: A semilattice is a set L with a binary meet operation A such that

for all a, b, ceL:
ana=a (idempotent)

anb=bna (commutative)
anlbacy=(anbd)anc (associative)
Definition: Given a semilattice L and elements, a, b€ L, we say that
az=b iffanb=b
a>b iffanb=banda=+b

also a <b means b=a and a4 <b means b>a. We extend the notation of the
meet operation to arbitrary finite sets by saying
A x,=
1gignx‘ XA Xy A x,
Definition: A semilattice L is said to have a zero element 0, if for all x€L,
O A x=0. L is said to have a one element 1,if 1 A x =x for all xeL. We assume

from here on that every semilattice has a zero element, but not necessarily a
one element.

Definition: Given a semilattice L, a sequence of elements x,, x,, ... %, in L
forms a chain if x,> x,;,, for 1 £7<w. L is said to be bounded if for each x€L
there is a constant b, such that each chain beginning with x has length at most &,.

If L is bounded, then we can take meets over countably infinite sets if we
define zé\s x, where S ={x,, x,,...},tobe lim A ;. The fact that L is bounded

n—oo 1<i<n

assures us there is an integer m such that A x=_A «x,.
xeS 15ism

3. Monotone Data Flow Analysis Frameworks

Definition: Given a bounded semilattice L, a set of functions F on L is said
to be a monotone function space associated with L if the following conditions are
satisfied:

[M1] Each feF satisfies the monotoncity condition,
(Vx, yeL) (V/€F) [f(x A 3) SF(D)AF ()]
[M2] There exists an identity function ¢ in F, such that
(VxeL)[i(x) =x].

2 A path from n; to n, is a sequence of nodes »,, n,, ..., n, such that (n,, #,,,) is in
E for1 =i =<k —1. The path length is k —1.

Monotone Data Flow Analysis Frameworks 307

[M3] F is closed under composition, i.e. f, g€ F = f g€ F, where

(Vx, veL) [g(%)=7F{g(x))]-

[M4] L is equal to the closure of {0} under the meet operation and application
of functions in F.

Observation 1. Given a semilattice L, let 7 be a function on L, then
(Vx, yeL)[f(x Ay) = (%) A f(y) & (Vx, yeL)[x <y implies / (x) =f(y)].
The above condition was also observed by Graham and Wegman [5].

Observation 2. For any bounded semilattice L and any countable set SCL,

if for all x€S we Have x =y, then /\s =Y.
x€

Definition: A Monotone data flow analysis framework is a triple D= (L, A, F),
where

(1) L is a bounded semilattice with meet A.

(2) F is a monotone function space associated with L.

A particular instarce of a monotone data flow analysis framework is a pair
I =(G, M), where 7

(1) G=(N, E, ng) is a flow graph.

(2) M: N->F is a function which maps each node in N to a function in F.

Previous study has been done by Kildall [9] on those monotone data flow
analysis frameworks D= (L, A, F) which satisfy the condition:

(Vx, ye LYVIEF) [f(x A yY=F(x) A F(¥)] (distributivity).

That is, each f in F is a homomorphism on L. Recently, Graham and Wegman [5],
Tennenbaum [3], and Wegbreit [17] have also considered models similar to mono-
tone frameworks. However, there are many interesting gdfap’s which are mon-
otone data flow analysis frameworks but which do not satisfy the distributivity
property. The following are some examples.

Constant Propagation can be formalized [9] as a monotone data flow ana-
lysis framework CONST= (L, A, F). Here LC2V*®, where V={4,, 4,,...}isan
infinite set of variables and R is the set of all real numbers.

L is the set of functions from finite subsets of V to R.

0eL is the function which is undefined for all A,eV.

The meet operation on L is set intersection3.

Intuitively, z€L stands for the information about variables which we may
assume at certain points of the program flow graph. (4, 7)€z implies the variable
A has value 7.

We define a notation for functions in F based on the sequence of assignments
whose effect they are to model.

(1) There are functions denoted <{A:= BOC) and {4 :=7r) in F, for each
A,Band Cin V,reR and Be{+, —, *, [}
Let z€L. Then

3 Let W be a finite subset of V. Recall that f/: W —R is a set of pairs (4, ¢) with
A€W, and ce R. We shall henceforth treat members of L as finite subsets of V X R.

308 J. B. Kam and J. D. Ullman

(i) <A:=BOC)(2)=2, where 2 (X)=2(X) for all XeV~—{A4}; z'(4) is un-
defined unless z (B) ==band z(C) = ¢ for some b and cin R, in which case 2’ (4)=b0c.
(ii) (A :=7r)(z)=2" where 2’ (X)=2(X) for all XeV —{4} and 2" (4)=7.
(2) 1€ F, where i(2)=z¢ for all zeL.
(3) I/, geF then fgel.

Lemma 1. Let L be a semilattice and £, f,, ..., f, be functions on L. If it is
true that (Vx, yeL)(V1 i Zn) [/, (x A y) <[, (%} A F;(¥)],
then i fo... L(xAY)=hte LX) Afife - (D)

Proof. f,(xnv)=f,(x)Anf,(y) (by assumption). Suppose f,...[, (xAy)=
Fooo oA fi o (), then fi i (fy o fu(xn y)) =Fialfe - BN fi - F(9) (By

Observation 1). f; (s .- fu)AFs o fo(0)) Zfiy o (A fir o £ (9) (by as-
sumption). So by simple backward induction on 7, the lemma follows. []

Theorem 1. CONST=(L, A, F) is a monotone data flow analysis framework.
Furthermore there exists z, 2’ €L and fe F such that f(z A 2') <f(2) A f(2').

Proof. The fact that L is a boinded semilattice with a 0 element is obvious.
Furthermore, for any element z€L, z=f,f,... f,(0) for some integer #, where
f; is of the form {(A4,=#>. So to show that F is a monotone function space as-
sociated with L, it suffices ,by Lemma 1, to show that for all 2z, 2’€L and all
functions in F of the form {4 := BOC) or {A :=7),

{A:=BOCY(zAz)<{A:=BOC> () A{Ad:=BOCH(),
and

CA:=rEnA) A=) Ad =)
Observe that since A is intersection on L, the < relation is set inclusion.

(i) Suppose we aregivenz, 2’€L and (4 := BOCY€F.

Let y={4 := BOC) (2 A Z'). Then for all XeV —{4}, if (X, 7)€y then (X, 7)€z
and (X, 7}ez’. Hence (X,7)e{(4d :=BOC>(z) and (X, r)e{d := BOC) ().

If A is undefined in y, then we are done. Suppose however, that (4, 7)€y.
Then {(B, 7;), (C, 7,)} is a subset of z and is also a subset of 2/, for some 7, and 7,
such that »=# 07,. This implies that (4,7)e{4d:== BOC>(z) and (4,7)€
{A:=BOC> ().

(i) Suppose we are given z, z'eL and {4 :=vr)€eF. It is straightforward to
show that (Ad:=7r>(zAz)={A:=7>(2) A {Ad:=7)>(2'). Hence the first part
of the lemma follows.

For a counterexample showing that CONST is not distributive, consider the
flow chart of Figure1. There we see that (C:= A+ B)(z A 2')=0, while
(C:= A+ By A (Ci=A+B()={(C,5)}. O

It should be noted that in Figure 1, C really does have the value 5, so the
CONST framework fails to detect at compile time a constant relationship which
holds at runtime.

We shall also mention that Theorem 1 can be generalized to any framework
whose lattice elements associate ‘‘values” with variables, whose meet operation
is intersection, and whose functions reflect the application of ‘‘operators” on
those values and assignment of values to variable. The framework will be mono-
tone in all cases, but will be distributive only if the interpretation of the opera-

Monotone Data Flow Analysis Frameworks 309

]

e
[
w N

W
il
N W

z={(4, 2), (B, 3)} '={(4, 3), (B, 2)}

C:=A+B

|
[]

Fig. 1. Counter example to distributivity of CONST

tors is ‘‘free”’, that is, the effect of applying k-ary operator @ to two different
k-tuples of values is never the same.

Numerous additional examples of monotone but not distributive frameworks
can be found in the literature. Examples are the “‘structured partition” frame-
work from [9], Tennenbaum’s type checking [13] and Schwartz’s framework for
detecting the liveness of computed values'in SETL [11].

4, Approaches to Solving Monotone Data Flow Analysis Problems

It appears generally true that what one seaches for in a data flow problem is
what we shall call the meet over all paths (MOP) solution. That is, let PATH (»)
denote the set of paths from the initial node to node #» in some flow graph. Then

we really want: A f,(0) for each #n. It is this function, the MOP solution
PEPATH (n)

that, in any practical data flow problem we can think of, expresses the desired
information. For example, in Figure 1, the MOP solution would have C=35 at the
point following the assignment C:= A+ B because both paths to that point
set C to 5.

The people solving bit vector data flow analysis problems, such as [1, 2, 6, 8,
12, 14], or problems based on distributive frameworks [9] obtain the MOP so-
lution by finding maximum fixed point of a set of equations. As [9] shows, this
fixed point is always the MOP solution in this case. However, the MOP solution
is not the maximum fixed point of the equations in the case of a general mono-
tone framework, and this fact explains why Kildall’s method “fails”” on the
framework CONST discussed in Theorem 1.

310 J. B. Kam and J. D. Ullman

We shall here consider what of Kildall's theory remains true in the context
of general monotone frameworks. Our first approach is to consider what happens
when the algorithm of [9] is applied to a monotone framework.

In order to make the algorithm below simple to read, for each D={(L, A, F)
if L does not contain a one element I, we introduce an artificial element 1, such

that (VjeF)(Vxel)[Inx=xAl—x and f(I)=1]

Algorithm 1 (Essentially Kildall’s Algorithm [9] applied to a monotone frame-
work)

Input. A particular instance I=(G, M) of D=(L, A, F), where G=(N, E, n,)
is a flow graph.

Initialization.
VneN Al 0 ifn=mn,
(VneN))= 1 otherwise
Iteration Step. Visit nodes other than #, in order n,, #,, ... (with repetitions, and
not fixed in advance). We visit node » by setting
A= A 1 (A[p)

€ PRED (n)

where PRED (n) ={p| (p, n) €E}. The sequence #,, #,, ... has to satisfy the follow-
ing condition:

If there exists a node neN —{n,} such that A4 [n] :i:peP/I\{ED 1,(A[p]) after we

have visited node #, in the sequence, then there exists integer £>s such that

ny,=n. Also, if after visiting node n,, 4 [n]=_A [, (A[p]) for all n +n,, then
. pe PRED

the sequence will eventually end.

Convention. Given instance I = (G, M) of framework D=(L, A, F), if we apply
Algorithm 1 to I with the sequence #,,#,, ..., we say that the j-th step of
Algarithm 1 has been applied after we have visited nodes #,, #,, ..., #;. Let n be
a node in G. We let 4™ [x] denote the value of A [#] right after step m of Algo-
rithm 1 has been applied.

Convention. Given a particular instance I=(G, M) of D=(L, A, F), we let {,
denote M (n), the function in F which is associated with node #. Let P==x,, n,, ...,
%, Byyq DE a path in G. Then we may use fp(.) for f, (f.. (... (.)...). Note
that £, is not in the composition.

Lemma 2. Given an instance I=(G, M) of a monotone data flow analysis
framework D= (L, A, F), if we apply Algorithm 1 to I, the algorithm will eventu-
ally halt.

Proof. It is a simple proof by induction on m, the number of steps applied in
Algorithm 1, that 4™V (4] < 4™ 5], for all nodes in G. According to the condi-
tion on the sequence of nodes being visited, after we have applied the %-th step
of Algorithm 1, either there exists an integer j such that 4*++1 5] < A&+ 5]
for some node # in G, or the sequence will halt. The facts that L is bounded and
that G has only finitely many nodes guarantee that the sequence ends and the
algorithm will eventually halt. []

Monotone Data Flow Analysis Frameworks 311

Theorem 2. Given an instance 7= (G, M) of framework D =(L, A , F), after
we have applied Algorithm 1 to I, we have (‘v’nEN)[A n]l= Ie()}
where PATH (n) ={P| P is a path in G from #n, to n}.

Proof. We want to prove by induction on / that (Yn€N) (A (n] =
where PATH,(n)={P| P is a path of length ! from 7, to n}.

Basis. {(I=) 7, is the only node that has a path from #, of zero length. Since
A [ny] is assigned 0 initially and not changed afterwards, the basis holds.

PePA TH (n)

15(0)),

~ Pe PATHI (n)

Imluctions step. (I1>0) If n=mn,, we are done. Suppose n=n,. We have
Aln)= fo(4 [ﬂ) and (VpePRED (n) (A [p] <, A fo(0)), by hypo-

' pePRED(n)
thesis. Thus 4 [#] < "pePRED(u) fs (QGPATHl o) fo (0)) by monoton1c1ty and Observa-
fo (Fo(0)) = 1p(0).

tion 1. By mononicity again, we have 4 [#] < crian
By Observation 2, we have for all ne N Q€ pATH;.(ﬁ)p)

A= tp(0). O

Pe PATH {n)

Pe PATH

Theoremn 3. Given an instance I=(G, M) of a monotone framework D=
(L, A, F), after we have applied Algorithm 1, the solution A4 [#]'s we get is the
maximum fixed point solution of the set of simultaneous equations

X [ng]=0

(VneN —{ng}) (X [n] = *)

pePRED(n) (X [i’]))
Pyoof. It is obvious that, after Algorithm 1 halts, the A4 [#]'s satisfy the
Equations (*). Now suppose we are given any solution B [#]’s to the Equations ().
We want to prove by induction on m, the number of steps applied in Algorithm 1,
that after the m-th step B[n]< A™ [x] for all neN.
Basis. (m=20) Obvious.

Inductions step. (m> 0) At the m-th step, we have

A™n,)= pePRED(fp(A"” U[p]). Since we have (Vp€PRED (n,))(B[p]
<A4"™=Y[)) by the 1nduct10n hypothesis, we have B [nm]—-PGPATH(fo(B[p])
<A™ [n,] by monotonicity. For the rest the nodes neN —{nm} A 5]
— Am—1) [n].

The theorem then follows from the fact that Algorithm 1 will eventually halt. [

Corollary. Given an instance I=(G, M) of a framework D= (L, A, F), as
input to Algorithm 4, the A4 {#]’s we get after Algorithm 1 halts is unique inde-
pendent of the sequence in which nodes are visited, provided the sequence satis-
fies the condition stated in the algorithm.

Theorem 4. Given a monotone framework D= (L, A, F), suppose (3 x, yeL) -
(FfeF)[f(x A y)<f(x) A ()], i.e. D is not distributive. Then there exists an in-
stance /= (G, M) such that after we apply Algorithm 1, there is a node # in G
such that

A< 1#(0).

Pe PATH o)

Proof. By condition [M4] in the definition of a monotone function space, we
can find acylic graphs G, and G,, with input nodes %, and #,, and output nodes

312 J. B. Kam and J. D. Ullman

Fig. 2

m, and m,, such that after we apply Algorithm 1 to G, and G, we get 4 [m,]=x
and 4 [m,]=y. A straightforward induction on the number of meet operations
and function applications necessary to construct a lattice element from 0 proves
the existence of G, and G,,.

Consider the graph G of Iligure 2. It is easy to check that if we apply Algo-
rithm 1 we have 4 {#]=f(x A ¥). By Theorem 2, in G we have x < A fp(0)

= PePATH (n2)
< > ici
and y ZPGPA/I\H(ny)fP(O). Thus e PAAI‘H(n)fP(o) =F(x) A f(y) by monotonicity. But
we are given f(x) Af(V)>f(xAay),sodn]<< A (0. O

PePATH ()
In summary then, Kildall ’s algorithm applied to a monotone data flow

analysis framework yields a unique solution, independent of the order in which
nodes are visited. This solution is the maximum fixed point of the set of equations
associated with a flow graph. However, we can only show that the solution is
equal to or less than the MOP solution, and when the framework is not distri-
butive there will always be some instance in which the inequality is strict.

5. A Variant of Kildall’s Algorithm

We shall now briefly consider an algorithm similar to Kildall’s but somewhat
more time consuming. This algorithm will obtain the MOP solution in certain
situations where Algorithm 1 fails to do so, Figure 2 being a good example of
this phenomenon. However, like Algorithm 1, it must fail for some instance of
any monotone, nondistributive framework.

We are not proposing this algorithm as an “‘improvement” on Kildall's
algorithm, since the cases in which our algorithm attains the MOP solution and
Kildall’s doesn’t will likely be few and far between in practice. It is interesting,
however, to note that the two algorithms differ in their behavior in the general

Monotone Data Flow Analysis Frameworks 313

monotone case, although they are easily shown to produce identical answers for
distributive frameworks.

Algorithm 2

Input. As in Algorithm 1.
Initialization
£, (0) ifn=mn,
(vnel) Bln]= {1 otherwise

Iteration step. Visit nodes other than n, in order n,, n,, ..., (not fixed in
advance). We visit node # by setting

Bn]:= 1.(B[p])

pe PRED ()

The sequence #,, n,, .. has to satisfy the condition: if there is a node ne N —{n,}
such that B[n] = pe PRED()f (B[p]) after we have visited node #, in the se-

quence, then there exists integer ¢£>s such that #,=#. Also if B[x]=

pep R/}\E D f.(B[#]) for all # =n,, we will eventually halt the iteration.

Final Step. We set
? Hny)=0

(VneN —{ng}) H [n]= B[p).

Theorem 5. Given an instance I=(G, M) of a framework D=(L, A, F) as
input to Algorithm 2:
(i) Algorithm 2 will eventually halt. The result we get is unique independent

pe PRED (n)

of the order in which nodes are visited and (VrneN) H[n] < < PATH() fp(0).
(ii) The resulting B [#]’s form the maximum fixed point of the set of equations
X [no]=1,, (0)

(VreN —{no}) (X [n]= (X [P]).

(iii) If A[n] is the result of applymg Algorithm 1 to I=(G, M), then
A[n] = H[n].

Proof. The proofs are similar to the proofs of the results in the previous
section and we omit them., [

pe PRED(%)

Theorem 6. Given a monotone framework D= (L, A, F), suppose
(3, yeL)(AfeF) [f(x A y) <f(x) A F(¥)], ie. D is not distributive. Then:
(i) there exists an instance I=(G, M) such that there is a node in G such that

Hn]< fp(0)

Pe PATH o)

after we have applied Algorithm 2 to I.
(ii) there exists an instance I'=(G’, M’) such that there is a node # in G’

such that A[n] < Hn)
after we have applied Algorithm 1 and Algorithm 2 to instance I.

21 Acta Informatica, Vol. 7

314 J. B. Kam and J. D. Ullman

Proof. We may, as in Theorem 4, invoke condition [M4] to observe that
there are graphs G and G, such that their output nodes , and m, have B [m,]=x
and B [m,]=7y. Then consider the graph of Figure 3. It follows from monotonicity

that Fo(0) ZF(0) A F(3) > (% A y)=HIn].

To prove Theorem 6 (ii), we refer to Figure 2. Direct calculation will show
that A [n]=/(x A y). By part (iii) of Theorem 5, H[m,]=x and H[m,]=y.
Thus Bm,] =~ and B[m,]=y. It follows that H[n] =f(x) A f(¥), so A [n]<
Hin]l. O

PePATH (1)

6. Undecidability of the MOP Problem
tor Monotone Data Flow Analysis Frameworks

We have seen that some of the obvious algorithms fail to compute the MOP
solution for an arbitrary monotone framework. We shall now show that this
situation must hold for any algorithm. In particular, we show that there does not
exist an algorithm which, for arbitrary instance /= (G, M) of an arbitrary mono-
tone data flow analysis framework D={(L, A, F), will compute A fo(O)

PePATH (n)
for all nodes #n of G.

Definition. The Modified Post’s Correspondence Pyroblem (MPCP) is the
following: Given arbitrary lists 4 and B, of % strings each in {0, 1}*, say

A=w,,wy, ..., w, B=2z,24,...,2
does there exist a sequence of integers 7;, 7, ..., ¢, such that

Wy W Wy L W T8 2y B B,

Monotone Data Flow Analysis Frameworks 315

It is well known that MPCP is undecidable [7].

Given an instance AB of MPCP with lists A=uw,, ..., w, and B=z, ..., z,,
we can construct a monotone data flow analysis framework D z=(L 4z, A, F,5),
where the following elements are in L 5

(1) 0, the lattice zero,

{2) the special element $, which will in a sense indicate nonsolution to MPCP,
and .

(3) all strings of integers 1, 2, ..., k& beginning with 1.

The meet on these elements is given by: x A y=0 whenever x +y. Thus,
if x <y, then either x=4 or x=0.

The set of functions F, 5 includes the following.

(1) the identity function on L g4

(2) functions /;, for 1 =7 < % defined by:

(i) if o is a string of integers beginning with 1, then f,(«) =a z,
(i) f;(0)=(0) and
(i) 7;(3)=S$,

(3) the function g defined by

(i) for strings a=14,4,...13,,

0if 114, 2, ... ¢, is a solution to instance A B of MPCP
glo= ‘$ otherwise,

(i) g(0)=0,

(i) g(8)=38,
{4) the function 4 defined by 2{x)=1 (that is, the string consisting of 1 alone)

forall xeL ,p.

(5) All functions constructed from the above by composition.

Lemma 3. D pz=(L, 5, A, F,5) constructed above is a monotone data flow
analysis framework.

Proof. We show only monotonicity; the other properties are easy to check.
By Observation 1 and Lemma 4, it suffices to show that if x <y for x and y in
L, g then

(1) L) =fy) for 1=i=k,

(2) g(x)=g(y), an

(3) A(x)=h(y).

Since {x)=n(y)=1, (3) is immediate. We have observed that for the meet

operation we have defmed, x =y implies x is either y or 0. In the former case
(1) and (2) are immediate.

In the latter case, f,(x)=0 and g(x)=0, so f;(x) =f,(y) and g(x)=g(y)
follows. [

We can now show that it is impossible to do for monotone frameworks what
Kildall did for distributive ones.

2*

316 J. B. Kam and J. D. Ullman

He

Fig. 4

Theorem 7. There does not exist an algorithm A with the following properties.

(1) the input to 4 is

(1) Algorithms to perform meet, equality testing and application of functions
to lattice elements for some monotone framework and,

(ii) An instance I of the framework.

(2) The output of A4 is the MOP solution for I.

Proof. If A exists, then we can apply 4 to any monotone framework D ,p
constructed above with the instance I chosen as shown in Figure 4. The MOP
solution to that problem at the point () is easily seen to be $ if the instance AB
of the MPCP has no solution, and 0 if it does. Thus, if A existed, we could solve
the MPCP. [

It should be noted that Theorem 7 does not rule out finding algorithms for
the MOP solution for particular monotone framework or for large subclasses of
them. However, by a proof similar to that of Theorem 7, we can exhibit a par-
ticular monotone framework for which no algorithm to compute MOP solutions
of its instances exists.

Finally, we shall remark that Theorem 7 is a strengthening of a result by
Dana Angluin to the effect that computing the MOP solution for a monotone
framework is NP-hard.

References

1. Aho, A. V., Ullman, J.D.: The theory of parsing, translation, and compiling;
Vol IT —Compiling. Englewood Cliffs (N. J.): Prentice-Hall 1973

2. Cocke, J.: Global common subexpression elimination. SIGPLAN Notices 5, 20-24
(1970)

3. Cocke, J., Schwartz, J. T.: Programming languages and their compilers. Courant
Institute, New York University, New York (1970)

10.

11.

12.

13.

14.

15.

16.
17.

Monotone Data Flow Analysis Frameworks 317

Fong, A.C., Kam, J. B,, Ullman, J. D.: Applications of lattice algebra to loop
optimization. Proc. 2nd ACM Conference on Principles of Programming Languages,
Palo Alto (Cal.), January 1975, pp. 1-9

Graham, S. L., Wegman, M.: A fast and usually linear algorithm for global flow
analysis. J. ACM 23, 172-202 (1976)

Hecht, M. S., Ullman, J. D.: A simple algorithm for global flow analysis problems.
SIAM]J. Computing 4, 519-532 (1975)

Hopcroft, J. E., Ullman, J.D.: Formal languages and their relation to auto-
mata. Reading (Mass.): Addison-Wesley 1969

. Kennedy, K.: A global flow analysis algorithm. International J. Computer Math.

3, 5-15 (1971)

. Kildall, G. A.: Global expression optimization during compilation. Proc. ACM

Conference on Principles of Programming Languages, Boston (Mass.), October
1973, pp. 194206

Kam, J. B., Ullman, J. D.: Global data flow analysis and iterative algorithms.
J. ACM 23, 158-171 (1976)

Schwartz, J. T.: Copy optimization in SETL. Department of Computer Science,
Courant Institute, New York University, New York, SETL Newsletters 130,131,
1974

Schaefer, M.: A mathematical theory of global program optimization. Englewood
Cliffs (N.].): Prentice-Hall 1973

Tennenbaum, T.: Type determination for very high level languages. Department
of computer Science, Courant Institute, New York University, New York, TSO-3,
1974

Ullman, J.D.: Fast algorithms for the elimination of common subexpressions.
Acta Informatica 2, 191-213 (1973)

Ullman, J. D.: Data Flow Analysis. Proc. 2nd USA-Japan Computer Conference.
Montvale (N.]J.): AFIPS Press 1675

Vyssotsky, V. A.: Private Communication to M. S. Hecht, June 1973

Wegbreit, B.: Property extraction in well-founded property sets. IEEE Trans. on
Software Engineering SE-1, 270-285 (1975)

Dr. John B. Kam

Dr. Jeffrey D. Ullman

Dept. of Electrical Engineering and Computer Science
Princeton University

Princeton, N. J. 08540, USA

