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Summary. We consider a generalization of Kildall 's  lat t ice theoretic approach 
to da ta  flow analysis, which we call monotone data ]low analysis [rameworhs. Many 
flow analysis problems which appear  in practice meet the monotonici ty condition 
bu t  not Kildall 's  condition called distributivity. We show tha t  the maximal  fixed 
point  solution exists for every instance of every monotone framework, and tha t  i t  
can be obtained by  Kildall 's  algorithm. However, whenever the framework is mono- 
tone but  not  distributive,  there are instances in which the desired so lu t ion- - the  
"mee t  over all paths  so lu t ion"- -d i f fers  from the maximal  fixed point. Finally,  we 
show the nonexistence of an algori thm to compute the meet over all paths  solution 
for monotone frameworks. 

1. In t roduct ion 

Per forming  compile  t ime  op t imiza t ion  requires  solving a class of problems,  
cal led global  d a t a  flow analysis  p roblems  (abbrev ia ted  as gdfap 's) ,  invo lv ing  
de t e rmina t i on  of in format ion  which is d i s t r ibu ted  th roughou t  the  program.  

Thus  far, work  has  been done only for a res t r i c ted  subclass of gd fap ' s  for 
which the  meet  over  all pa ths  solut ion 1 to ind iv idua l  p rograms  can be ob ta ined  
eff ic ient ly  b y  using in te rva l  analysis  Et-5, 8, t2]  or b y  an i t e ra t ive  app roach  
E6, 9, t0,  14, 16]. In  these gdfap 's ,  called distributive gdfap 's ,  the  MOP solut ion 
can be charac te r ized  as a m a x i m u m  fixed po in t  solut ion to a set of s imul taneous  
equat ions.  

In  this  paper ,  a more  genera l  class of gdfap ' s  called monotone data ]low ana- 
lysis ]rameworks (abbrev ia ted  as ]ramework), will be examined.  W e  first  i l lus t ra te  
several  p roblems  not  be longing to the  res t r ic ted  class of d i s t r ibu t ive  gdfap 's .  
The  pape r  also shows t h a t  for monotone  frameworks,  the  MOP solut ion for an 
ind iv idua l  p rogram does not  necessar i ly  coincide with  the  m a x i m u m  fixed po in t  
solut ion to  the  corresponding set of s imul taneous  equat ions.  Several  me thods  for 
approach ing  this  class of f rameworks  will be discussed. We conclude the pape r  
b y  showing t ha t  there  exists  no a lgor i thm which, when given an a r b i t r a r y  mono-  
tone framework,  will compute  the  MOP for each program.  

2. Background 

W e  assume the  reader  has some fami l i a r i ty  wi th  the  la t t i ce  theore t ic  for- 
mu la t i on  of d a t a  flow analysis ,  as discussed in [9, 10, 15], for example .  We refer 
to these papers  for the  proper  mo t iva t i on  for the  subjec t  to  be discussed here. 

* Work supported by  N S F  grant  GJ-I052.  
I Given a gdfap, the meet over all paths (MOP) solution for a program can be inter- 
preted informally as the calculation for each s ta tement  in the program of the maximum 
information, re levant  to the gdfap, which is ,true along every possible execution pa th  
from the start ing point  of the program to tha t  par t icular  statement.  
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Definition: A ~low graph is a t r ip le  G : (A T, E, no), where"  

(l)  N is a f in i te  set  of nodes. 

(2) E is a subse t  of N x N  cal led  the  edges. The  edge (x, y) enters node  y and  
leaves node  x. W e  say  t h a t  x is a predecessor of y,  and  y a successor of x. 

(3) no in N is t he  init ial node. There  is a p a t h  2 f rom n o to  e v e r y  node.  

Definition: A semilattice is a set  L wi th  a b i n a r y  meet ope ra t i on  ^ such t h a t  
for all  a, b, c EL:  

a A a = a ( idempoten t )  

a A b = b A a ( c o m m u t a t i v e )  

a ^ (b ^ c) = (a A b) A c (associat ive)  

Definition: Given  a s emi l a t t i ce  L a n d  e lements ,  a, bEL, we say  t h a t  

a >=b iff a A b : b  

a > b iff  a A b : b and a =# b 

also a=<b  m e a n s  b =>a and  a < b  m e a n s  b > a .  W e  e x t e n d  the  n o t a t i o n  of t h e  
m e e t  o p e r a t i o n  to  a r b i t r a r y  f in i te  sets b y  s a y i n g  

A x i : x  l ^  x 2 ^  . . . x .  
l ~ i < n  

Definition: A semi l a t t i c e  L is said to  h a v e  a zero element O, if for  all  xEL ,  
O A x : O .  L is s a i d t o  h a v e  a one element l ,  if 1 ^  x : x  for all  xEL .  W e  as sume  
f rom here  on t h a t  e v e r y  semi l a t t i ce  has  a zero e l emen t ,  b u t  no t  necessar i ly  a 

one  e l emen t .  

Definition: Given  a s emi l a t t i c e  L,  a sequence  of e l emen t s  x l ,  x~ . . . .  x,~ in L 
fo rms  a chain if x i >  xi+ 1 for I <=i<n.  L is sa id  to be bounded if for  each  x E L  
t he r e  is a c o n s t a n t  b, such  t h a t  each  cha in  beg inn ing  wi th  x has  l eng th  a t  m o s t  b,. 

I f  L is bounded ,  t h e n  we can  t a k e  m e e t s  o v e r  c o u n t a b l y  inf in i te  sets  if we 

def ine  A x, where  S = {x 1, x 2 . . . .  }, to be  l im A x i. T h e  fac t  t h a t  L is b o u n d e d  

assures  us the re  is an  i n t ege r  m such t h a t  A x =  A x i. 
xES 1 N i~m 

3. Monotone Data Flow Analysis  Frameworks 

Definition: Given  a b o u n d e d  semi l a t t i ce  L, a set  of func t ions  F on L is said 
to  be  a monotone/unct ion space associated with L if t he  fo l lowing cond i t ions  are  
sa t i s f ied :  

[Mt ] E a c h  / E F  sat isf ies  t he  monotoncity condi t ion ,  

(Vx, y E L ) ( V I E  F)  [/(x  ^ y) < l ( x ) A l ( y ) ] .  

[M2] T h e r e  exis ts  an  i d e n t i t y  func t ion  i in F ,  such t h a t  

(V x EL) [i (x) = x]. 

2 A path f rom n x to n k is a sequence of nodes nl, n~ . . . . .  n~ such tha t  (n i, hi+l) is in 
E for t ~ i - - < k - - l .  The  path length is k -- l .  
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EM3] F is closed under  composi t ion,  i . e . / ,  gEF ~ / g E F ,  where 

(Vx, yr g(x)----/(g(x))]. 

[M4] L is equal  to  the  closure of {0} under  the  meet  opera t ion  and  app l ica t ion  
of funct ions in F .  

Observation t. Given a semi la t t ice  L, let  ] be a funct ion on L, then  

(Vx, yEL) E/(x ̂  y) <=/(x) ^ / (y )  ~ (Vx, yEL) Ix <=y i m p l i e s / ( x )  <=](y)~. 

The above  condi t ion was also observed  b y  G r a h a m  and  W e g m a n  ES]. 

Observation 2. F o r  any  bounded  semi la t t ice  L and  any  countable  set S(_L, 
if for all x E S we have  x >--_ y, then  A x --> y.  

xES 

Definition: A Monotone data/low analysis/ramework is a t r iple  D = (L, ^, F), 
where 

(t) L is a bounded  semila t t ice  wi th  meet  ^.  

(2) F is a monotone  funct ion space associa ted wi th  L. 

A particular instance of a monotone  d a t a  flow analysis  f ramework  is a pa i r  
I ----- (G, M),  where 

(t) G= (N, E, no) is a flow graph .  

(2) M :  N-->F is a funct ion which maps  each node in N to a funct ion in F .  

Previous  s t u d y  has been done b y  Ki lda l l  E9] on those monotone  d a t a  flow 
analysis  f rameworks  D = (L, ^, F) which sat isfy  the  condi t ion:  

(Vx, yEL)(VIEF) [ / (x ^ y ) = l ( x )  ^ / (y ) ]  (distributivity). 

Tha t  is, each / in F is a homomorph i sm on L. Recent ly ,  Graham and W e g m a n  [5], 
Tennenbaum [3], and  Wegbre i t  [t 71 have  also considered models  s imilar  to mono-  
tone f rameworks.  However ,  there  are m a n y  in te res t ing  gdfap ' s  which are mon-  
otone d a t a  flow analysis  f rameworks  bu t  which do not  sa t i s fy  the  d i s t r i bu t i v i t y  
p roper ty .  The following are some examples .  

Cons tan t  P ropaga t ion  can be formalized [9] as a monotone  d a t a  flow ana-  
lysis f ramework  CONST = (L, ^,  F) .  Here  L ( 2v x R, where V = {A 1, A 2 . . . .  } is an 
infini te  set of var iables  and  R is the  set of all real  numbers .  

L is the  set of funct ions from fini te  subsets  of V to R. 
OEL is the  funct ion which is undef ined  for all  AiE V. 

The meet  opera t ion  on L is set in tersect ion 3. 
In tu i t ive ly ,  zEL s tands  for the  informat ion  abou t  var iables  which we m a y  

assume at  cer ta in  po in ts  of the  p rogram flow graph.  (A, r) Ez implies  the  var iab le  
A has  va lue  r. 

W e  define a no ta t ion  for funct ions in F based  on the sequence of ass ignments  
whose effect t hey  are  to model.  

(t) There  are  funct ions deno ted  ( A  : =  BOC) and (A : = r )  in F ,  for each 
A,  B and  C in V, rER and 0 E { + ,  - - ,  * , /}  
Le t  zEL. Then  

3 Let  W be a finite subset of V. Recall tha t  / : W -+ R is a set of pairs (A, e) with 
A ~ W, and c 6 R. We shall henceforth t rea t  members of L as finite subsets of V • R. 
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(i) <A " =  BOC>(z)=z' ,  where z ' ( X ) = z ( X )  for all X E V - - { A } ;  z'(A) is un-  
defined unless z (B) = b and z (C) = c for some b and  c in R, in which case z' (A) = b 0 c. 

(ii) <A : =  r>(z)=z'  where z ' ( X ) = z ( X )  for all X E V - - { A }  and z ' ( A ) = r .  

(2) iEF, where i ( z )=z  for all zEL. 

(3) I f / , g E F  t h e n / g E F .  

Lemma 1. Let  L be a semilat t ice  a n d / 1 , / 2  . . . . .  /~ be functions on L. If  i t  is 
t rue  t ha t  (gx, yEL) (V I <_i ~ n )  [/i(x A y) <=/~(x) ^/ i (Y)],  
t h e n / , l s  ... ]n(x A Y) <~/li~ .. ./~(x) A ~,Is ... l,,(y). 

Pro@ i,(xA y) ~ / , ( x ) A  /~(y) (by assumption) .  Suppose [i. . .  /~(xA y) 
/~"" ix(x) ̂  ] i ' "  i~(Y), then ] i - l ( ] i  . .- i , ( xJ  y)) <----/i-1(/, ... i , (x)J  ]i . . .  i,(Y)) (by 
Observa t ion  t).  i i  1 ( / i . - . / ~ ( x ) A / i . . .  i~(Y)) <=i~-1... i,,(x)A i i -1 . . .  ],(Y) (by as- 
sumption) .  So b y  simple backward  induct ion on i, the  l emma follows. [ ]  

Theorem 1. C O N S T =  (L, ^, F) is a monotone  da t a  flow analysis  framework.  
Fu r the rmore  there  exists z, z' EL a n d / E F  such tha t  ](z ^ z') <](z)Ai(z ' ) .  

Pro@ The fact  t ha t  L is a b o ' m d e d  semilat t ice  with a 0 e lement  is obvious. 
Fur the rmore ,  for any  e lement  zEL, Z=il /2 . . .  ],(0) for some integer  n, where 
/i is of the  form <Ai=r  ). So to show tha t  F is a monotone  funct ion space as- 
socia ted with  L, i t  suffices ,by L e m m a  t ,  to show tha t  for all z, z 'EL and  all 
funct ions in F of the  form <A : =  BOC> or <A : =  r>, 

<A := BOC>(zA z') <=<A :~-- BOC>(z )  A <A := BOCy(z'), 
and 

<A :---- r> (z ^ z') < <A : =  r> (z) ^ <A : =  r> (z'). 

Observe tha t  since ^ is intersect ion on L, the  =< relat ion is set inclusion. 

(i) Suppose we are given z, z' E L and <A : = B 0 C> E F .  
Let y =  <A : =  BOC> ( z^  z'). Then for all X E V - - { A } ,  if (X, r)Ey then (X, r)ez 
and  (X, r)ez'. Hence (X, r)e<A : =  BOCF(z) and (X, r)e<A : =  BOCF(z'). 

If  A is undef ined in y,  then we are done. Suppose however,  t ha t  (A, r) Ey. 
Then {(B, rl), (C, r~)} is a subset  of z and  is also a subset  of z', for some rl and  r~ 
such t ha t  r-=rlOr 2. This implies tha t  (A , r )E<A:=BOC>(z )  and  (A,r)E 
<A : =  BOCF(z'). 

(ii) Suppose we are given z, z 'EL and <A : = r > E F .  I t  is s t ra igh t forward  to 
show tha t  <A :~  r> (z ^ z') ~ <A :-- r> (z) ^ <A :-- r> (z'). Hence the  first pa r t  
of the  l emma follows. 

Fo r  a coun te rexample  showing t ha t  CONST is not  d is t r ibut ive ,  consider the  
flow char t  of F igure  t .  There we see t ha t  < C ' = A + B > ( z A z ' ) = O ,  while 
<C:=A+BF(z )  A <C:=A+BF(z ' )= { (C ,  5)}. [ ]  

I t  should be noted  t ha t  in F igure  1, C real ly  does have the value 5, so the  
CONST f ramework  fails to de tec t  a t  compile t ime a cons tant  re la t ionship which 
holds at  runt ime.  

We shall  also ment ion  t ha t  Theorem I can be general ized to any  f ramework 
whose la t t ice  e lements  associate  " v a l u e s "  with variables ,  whose meet  opera t ion  
is intersect ion,  and  whose funct ions reflect the appl ica t ion  of " o p e r a t o r s "  on 
those values  and ass ignment  of values to variable.  The f ramework  will be mono- 
tone in all cases, bu t  will be d is t r ibu t ive  only if the  in t e rp re t a t ion  of the  opera-  
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z = {(A, 2), (B, 3 ) } ~  / / ~ ' = { ( A ,  3), (8, 2)} 

" x  / 

Ic:=A+  r 

Fig. 1. Counter example to distributivity of CONST 
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tors is " f ree" ,  that  is, the effect of applying k-ary operator 0 to two different 
k-tuples of values is never the same. 

Numerous additional examples of monotone but not distributive frameworks 
can be found in the literature. Examples are the "s truc tured  part i t ion" frame- 
work from E91, Tennenbaum's  type checking E13] and Schwartz's framework for 
detecting the liveness of computed values in SETL II 1 ]. 

4. Approaches to Solving Monotone Data Flow Analysis Problems 

I t  appears generally true that  what one seaches for in a data flow problem is 
what we shall call the meet over all paths (MOP) solution. That  is, let PATH (n) 
denote the set of paths froIn the initial node to node n in some flow graph. Then 
we really want .  A /p(0) for each n. I t  is this function, the MOP solution 

PE PATH (n) 

that,  in any practical data  flow problem we can think of, expresses the desired 
information. For example, in Figure t, the MOP solution would have C = 5 at the 
point following the assignment C : =  A + B  because both paths to that  point 
set C to 5. 

The people solving bit vector data  flow analysis problems, such as El, 2, 6, 8, 
t2, 14], or problems based on distributive frameworks E9J obtain the MOP so- 
lution by  finding maximum fixed point of a set of equations. As ~9] shows, this 
fixed point is always the MOP solution in this case. However, the MOP solution 
is not the maximum fixed point of the equations in the case of a general mono- 
tone framework, and this fact explains why Kildall's method " fai ls"  on the 
framework CONST discussed in Theorem t. 
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We shall  here consider wha t  of Ki lda l l ' s  theory  remains  t rue in the  con tex t  
of genera l  monotone  frameworks.  Our first  approach  is to consider wha t  happens  
when the  algori thrn of [9] is appl ied  to a monotone  framework.  

In  order  to make  the a lgor i thm below simple to read, for each D = (L, ^, F) 
if L does not  contain  a one e lement  1, we introduce an art i f icial  e lement  1, such 
t ha t  

( V / e F ) ( V x E L ) [ 1 A X = X A I = x  and [(1)=1] 

Algor i thm 1 (Essent ia l ly  Ki ldal l ' s  Algor i thm [9] appl ied  to a monotone  frame- 
work) 

Input. A par t i cu la r  instance I = (G, M) of D = (L, A, F), where G = ( N ,  E, no) 
is a flow graph.  

Initialization. 
{~ i f n = n 0  

(VneN)  A [nl = otherwise 

Iteration Step. Visit  nodes o ther  than  n o in order  n 1, n2, . . .  (with repet i t ions,  and  
not  f ixed in advance) .  We visit node n by  se t t ing 

A [n] = A / (A [p]) 
pE PRED(n) p 

where P R E D  ( n ) = { P I ( P ,  n)eE}. The sequence n 1, n 2 . . . .  has to sat isfy  the follow- 
ing condi t ion  : 

If  there  exists  a node n ~ N - - { n 0 }  such tha t  A [n] 4=pAEDJp(A [p]) after  we 

have v is i ted  node n s in the  sequence, then there  exists integer  t > s such t ha t  
n t =  n. Also, if af ter  vis i t ing node n s, A In] = A [p (A [Pl) for all n ~= n 0, then  

pE PRED 
the  sequence will even tua l ly  end. 

Convention. Given ins tance I = (G, M) of f ramework D---- (L, ^, F), if we a p p l y  
Algor i thm t to I wi th  the  sequence nl, n 2 . . . . .  we say  t ha t  the  {-th s tep of 
Algor i thm t has been appl ied  af ter  we have vis i ted nodes n~, n 2, . . . ,  nj .  Le t  n be 
a node in G. We let  A (m) In] denote  the value of A [n] r ight  af ter  s tep m of 'Algo- 
r i t hm I has been applied.  

Convention. Given a par t i cu la r  ins tance I = (G, M) of D = (L, A, F), we let ],  
denote  M (n), the  funct ion in F which is associated with  node n. Let  P = nl ,  n~ . . . . .  
n~, nm+ 1 be a pa th  in G. Then we m a y  u s e / p ( . )  for L~(L~_,(... L,(.) ...)). Note 
tha t / ,~+l  is not  in the  composit ion.  

Lemma 2. Given an ins tance I = ( G ,  M) of a monotone  da t a  flow analysis  
f ramework  D = (L, ^,  F) ,  if we app ly  Algor i thm I to I ,  the  a lgor i thm will eventu-  
a l ly  halt .  

Pro@ I t  is a s imple proof b y  induct ion on m, the  number  of s teps appl ied  in 
Algor i thm 1, t ha t  A ('+~1 In] =<A c~ In], for all nodes in G. According to the  condi- 
t ion on the sequence of nodes being visi ted,  af ter  we have appl ied  the k-th s tep 
of Algor i thm 1, ei ther  there  exists  an integer  j such t ha t  A (k+j+l~ [n] < A (k+i) [n] 
for some node n in G, or the  sequence will hal t .  The facts t ha t  L is bounded  and  
t h a t  G has only f in i te ly  m a n y  nodes guarantee  tha t  the  sequence ends and  the  
a lgor i thm will even tua l ly  halt .  [ ]  
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Theorem 2. Given an instance I = (G, M) of framework D = (L, ^ ,  F), after 
we have applied Algorithm t to I ,  we have (VnEN)[A [n]--<p~pATHi,i/p(0)], 
where P A T H ( n ) = { P I  P is a path in G from n o to n). 

Proo/. We want to prove by induction on I that  (V n E N)(A [n] ___< P~ PAATH,(,I ]p (0)), 

where PATHl(n ) = { P I P  is a p a t h  of length l from n o to n}. 

Basis�9 (l = O) n o is the only node that  has a path  from n o of zero length. Since 
A [no] is assigned 0 initially and not changed afterwards, the basis holds. 

Inductions step�9 ( l>0 )  If  n = n o ,  we are done. Suppose n # n  o. We have 

A [n] =pE PREDA (*) /p (A [P]), and (vp E PRED (n) (A [Pl =<QE PATAHt-I(p) fQ (0)), by hypo- 
thesis. Thus A [n] < A fp by monotonicity and Observa- (~ 
tion 1. By mononicity again, we have A [n] --< A t ,  (10 (0)) =v~ ATH/"  (0). 

�9 - -  - -  7 - -  pE PRED (n)-r  
By Observation 2, we have for all n E I~ QEPATHt-I(p) 

A [n] <=P~VAATH(n)/P(O). [] 
Theorem 3. Given an instance I----(G, M) of a monotone framework D =  

(L, ^, F), after we have applied Algorithm 1, the solution A [n]'s we get is the 
maximum fixed point solution of the set of simultaneous equations 

X [no] = 0 

(Vn~N--{no}) (X[n] = A /p(X[p])) (*) 
pE PRED (n) 

Proo/. I t  is obvious that, after Algorithm I halts, the A [n]'s satisfy the 
Equations (,). Now suppose we are given any solution B [n]'s to the Equations (,). 
We want to prove by induction on m, the number of steps applied in Algorithm t,  
that  after the m-th step B [ n ] ~ A  I'n} in] for all nEN.  

Basis. (m=0)  Obvious. 

Inductions step. (m > 0) At the m-th step, we have 
A ( ' ) [ n ~ ] : =  A ,/p(A('~-l)[p]). Since we have (vpEPRED(nm))(B[p]  

pE PRED(nm~ 
~<A (m-l) [p]) by  the induction hypothesis, we have B [n=] = A / p (B  [p]) 

PE PATH (nra) 
=<A(~)[n~] by monotonicity. For the rest the nodes nEN--{nm},A(~')[n] 
= A  ( '-x) In]. 

The theorem then follows from the fact that  Algorithm t will eventually halt. []  

Corollary. Given an instance I = ( G ,  M) of a framework D = ( L ,  ^,  F), as 
input to Algorithm t, the A [n]'s we get after Algorithm t halts is unique inde- 
pendent of the sequence in which nodes are visited, provided the sequence satis- 
fies the condition stated in the algorithm. 

Theorem 4. Given a monotone framework D = (L, ^, F), suppose (3 x, yEL)  �9 
(3/EF) [/(x A y) </(X)  ^ / (Y)I ,  i .e�9 is not distributive�9 Then there exists an in- 
stance I =  (G, M) such that  after we apply Algorithm 1, there is a node n in G 
such that  

A [n] < A jp(O). 
YE PATH (n~ 

Proo/. By condition [M4] in the definition of a monotone function space, we 
can find acylic graphs G~ and Gy, with input nodes n~ and n r, and output  nodes 
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Fig. 2 

m, and my, such that  after we apply Algorithm t to G, and @,  we get A [mx] = x 
and A [my] = y .  A straightforward induction on the number  of meet operations 
and function applications necessary to construct a lattice element from 0 proves 
the existence of G~ and @. 

Consider the graph G of Figure 2. I t  is easy to check that  if we apply Algo- 
r i thm I we have A In] = / (x ^ y). By  Theorem 2, in G we have x _< A /p (0) 

- -  PE  P A T H  (nx) 
and y ~pEpAATH(ny)/p(O). T h u s  pEpAATH(n)/P(O) ~ / (X)  IX /(y) by  monotonicity.  But  

we are given /(x) A /(y) > / (x  A y), so A Inl < A /p(O). [] 
P E P A T H  (n) 

In  summary  then, K i l d a l l ' s  algorithm applied to a monotone data  flow 
analysis framework yields a unique solution, independent of the order in which 
nodes are visited. This solution is the maximum fixed point of the set of equations 
associated with a flow graph. However,  we can only show tha t  the solution is 
equal to or tess than the MOP solution, and when the framework is not distri- 
butive there will always be some instance in which the inequality is strict. 

5. A Variant of Kildall's Algorithm 

We shall now briefly consider an algorithm similar to Kildall's but  somewhat  
more time consuming. This algorithm will obtain the MOP solution in certain 
situations where Algorithm I fails to do so, Figure 2 being a good example of 
this phenomenon.  However,  like Algorithm 1, it must  fail for some instance of 
any  monotone,  nondistributive framework. 

We are not  proposing this algorithm as an " i m p r o v e m e n t "  on Kildall 's 
algorithm, since the cases in which our algorithm attains the MOP solution and 
Kildall 's doesn ' t  will likely be few and far between in practice. I t  is interesting, 
however, to note tha t  the two algorithms differ in their behavior in the general 
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monotone case, although they are easily shown to produce identical answers for 
distributive frameworks. 

Algorithm 2 

Input. As in Algorithm 1. 

Initialization 

(VneN) B[n]={[; ~ if n = n ~  
otherwise 

Iteration step. Visit nodes other than n o in order nl, n 2 . . . . .  (not fixed in 
advance). We visit node n by  setting 

B [n] : = A I. (B [p]) 
p E PRED (n) 

The sequence nl, n 2 . . . .  has to satisfy the condition: if there is a node n EN--{n0} 
such that  B[nl =~p~pRAEDI,,)/,,(B[p]) after we have visited node n, in the se-  

quence,  then there exists integer t>s  such that  nt=n. Also if BEn]= 
A /~ (B [p]) for all n 4= no, we will eventually halt the iteration. 

pE PRED (n) 

Final Step. We set 
H [no] = 0 

( W  ~ N - -  {no}) H In] = A B [p]. 
pE PRED (n) 

Theorem 5. Given an instance I-----(G, M) of a framework D =  (L, A, F) as 
input to Algorithm 2: 

(i) Algorithm 2 will eventually halt. The result we get is unique independent 
of the order in which nodes are visited and (VnEN) H [n] --<p~PAATi~C,i/p (0). 

(ii) The resulting B [n]'s form the maximum fixed point of the set of equations 

x [no] =/ .~  (o) 

(Vn EN-- {no} ) (X In] =m pRAED(n)/. (X [p])). 

(iii) If  A [n] is the result of applying Algorithm t to I=(G,M), then 
A In] _< n [n] . . . . . .  

Proo]. The proofs are similar to the proofs of the results in the previous 
section and we omit them. []  

Theorem 6. Given a monotone framework D = (L, ^, F), suppose 
(3x, yEL)(3/eF)U(x A y)</(x) ^ / ( y ) ] ,  i.e. D is not distributive. Then: 

(i) there exists an instance I =  (G, M) such that  there is a node in G such tha t  

H [ n ]  •pEP#TH(.)/P (0) 

after we have applied Algorithm 2 to I .  

(ii) there exists an instance I ' =  (G', M') such that  there is a node n in G' 
such that  

A In] < H [n] 

after we have applied Algorithm 1 and Algorithm 2 to instance I .  

21 Acta Informatica, Vol. 7 
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Proo]. We may,  as in Theorem 4, invoke condi t ion EM4] to observe t h a t  
t 

there  are graphs  G~ and Gy such t ha t  thei r  ou tpu t  nodes m,  and my have  B [m,] = x 
and B Emy] = y .  Then consider the  graph  of Figure  3. I t  follows from mono ton ic i t y  
t ha t  

A /p(O) >=](x) A/(y) > / (x  ^ y)=n[n~. 
PC P A T H  (n) 

To prove Theorem 6 (ii), we refer to F igure  2. Direct  ca lcula t ion will show 
tha t  A [ n l = / ( x ^ y ) .  By pa r t  (iii) of Theorem 5, H[mx] >=x and H[my] ~ y .  
Thus  B.~m,J ~ x and B [my] _>y. I t  follows tha t  H In I >--/(x) /x/(y), so A En]< 
HEnl. [] 

6. Undecidabili ty of the MOP Problem 
tor Monotone Data Flow Analysis  Frameworks 

We have seen t ha t  some of the  obvious a lgor i thms fail to compute  the  MOP 
solut ion for an a rb i t r a ry  monotone  framework.  We shall  now show tha t  this  
s i tua t ion  mus t  hold for any  algori thm. In  par t icular ,  we show tha t  there  does not  
exist  an a lgor i thm which, for a r b i t r a r y  ins tance I =  (G, M) of an a rb i t r a ry  mono- 
tone d a t a  flow analysis  f ramework D=(L,  ^,F), will compute  A'r ---A-Hc~[P(0) 
for all nodes n of G. P~ P 

Definition. The Modified Post's Correspondence Problem (MPCP) is the  
following: Given a r b i t r a r y  lists A and  B, of k str ings each in {0, 1} +, say  

A = w l ,  w2, . . . ,  w k B = Z l ,  z2, . . . ,  z k 

does there  exist  a sequence of integers i~, is, . .... i, such tha t  

W l  W i  x W i  s �9 . . I d d i r = Z  1 2i~ Z i  Z �9 . . Z i r  



Monotone Data  Flow Analysis Frameworks 

I t  is well known tha t  MPCP is undecidable E7]- 

Given an instance AB of MPCP with lists A = w  1 . . . . .  w, and B = z  1 . . . . .  zk, 
we can const ruct  a monotone  da t a  flow analysis f ramework  DaB = (LaB , ^,  FaB), 
where the following elements  are in LaB : 

(t) 0, the  lat t ice zero, 

(2) the special e lement  $, which will in a sense indicate nonsolution to MPCP, 
and  

()) all strings of integers t ,  2 . . . . .  k beginning with  t .  

The  mee t  on these elements is given by :  x A y=O whenever  x ~=y. Thus,  
if x ~ y ,  then  ei ther  x = y  or x=O. 

The set of functions FaB includes the following. 

(t) the  ident i ty  funct ion on LaB 

(2) func t ions / i ,  for I ~ i - - < k  defined by :  

(i) if a is a s tr ing of integers beginning with 1, then [i (a) = a  i, 

(if) ]i(0) = (0) and 

(i~) /,($) = $ ,  

(3) the function g defined b y  

(i) for strings a----I/1 i , . . .  i~, 

[0 if 1i  1 i ,  . . .  i,. is a solut ion to instance AB of MPCP 

g(~) = / S  otherwise, 
(ii) g(0) = 0, 

(i~) g ($) = $, 
(4) the function h defined by  h(x)----t ( that  is, the string consisting of I alone) 

for all xELaB. 

(5) All functions cons t ruc ted  f rom the above b y  composit ion.  

L e m m a  3. DAB = (LAB, ^,  FaB ) const ructed above is a monotone  da ta  flow 
analysis f ramework.  

Proo/. We show only monotonic i ty ;  the other  propert ies  are easy to check. 
B y  Observat ion  t and L e m m a  t ,  it suffices to show tha t  if x ~ y  for x and  y in 
LA B then 

(t) li(x) <=/i(y) for t <_i <_k, 

(2) g(x) ~g(y),  and 

(3) h(x) <=h(y). 
Since h(x)=h(y)= t, (3) is immediate .  We have  observed tha t  for the mee t  

operat ion we have  defined, x ~ y  implies x is ei ther y or 0. In  the former  case 
(1) and (2) are immediate .  

In  the la t ter  case, /i(x)=O and g(x)=O, so ]i(x)<=/i(Y) and g(x)=g(y) 
follows. [ ]  

We can now show tha t  it is impossible to do for monotone  f rameworks  wha t  
KildaLl did for dis t r ibut ive ones. 
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Theorem 7. There does not exist an algorithm A with the following properties. 

(1) the input  to A is 

(i) Algori thms to perform meet, equali ty testing and application of functions 
to lattice elements for some monotone framework and, 

(ii) An instance I of the framework. 

(2) The ou tpu t  of A is the MOP solution for I .  

Proofi I f  A exists, then we can apply A to any monotone framework DAB 
constructed above with the instance I chosen as shown in Figure 4. The MOP 
solution to tha t  problem at the point (.) is easily seen to be $ if the instance A B 
of the MPCP has no solution, and 0 if it does. Thus, if A existed, we could solve 
the MPCP. [ ]  

I t  should be noted tha t  Theorem 7 does not rule out finding algorithms for 
the MOP solution for part icular monotone framework or for large subclasses of 
them. However,  by  a proof similar to tha t  of Theorem 7, we can exhibit a par- 
t icular monotone framework for which no algorithm to compute  MOP solutions 
of its instances exists. 

Finally, we shall remark that  Theorem 7 is a strengthening of a result by  
Dana  Angluin to the effect tha t  comput ing the MOP solution for a monotone 
framework is NP-hard.  
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