
Acta Informatica 7, 305--317 (t977)
�9 by Springer-Verlag 1977

Monotone Data Flow Analysis Frameworks*

John B. K a m and Jef f rey D. Ul lman

Received March 24, 1975

Summary. We consider a generalization of Kildall 's lat t ice theoretic approach
to da ta flow analysis, which we call monotone data]low analysis [rameworhs. Many
flow analysis problems which appear in practice meet the monotonici ty condition
bu t not Kildall 's condition called distributivity. We show tha t the maximal fixed
point solution exists for every instance of every monotone framework, and tha t i t
can be obtained by Kildall 's algorithm. However, whenever the framework is mono-
tone but not distributive, there are instances in which the desired so lu t ion- - the
"mee t over all paths so lu t ion"- -d i f fers from the maximal fixed point. Finally, we
show the nonexistence of an algori thm to compute the meet over all paths solution
for monotone frameworks.

1. In t roduct ion

Per forming compile t ime op t imiza t ion requires solving a class of problems,
cal led global d a t a flow analysis p roblems (abbrev ia ted as gdfap 's) , invo lv ing
de t e rmina t i on of in format ion which is d i s t r ibu ted th roughou t the program.

Thus far, work has been done only for a res t r i c ted subclass of gd fap ' s for
which the meet over all pa ths solut ion 1 to ind iv idua l p rograms can be ob ta ined
eff ic ient ly b y using in te rva l analysis Et-5, 8, t2] or b y an i t e ra t ive app roach
E6, 9, t0, 14, 16]. In these gdfap 's , called distributive gdfap 's , the MOP solut ion
can be charac te r ized as a m a x i m u m fixed po in t solut ion to a set of s imul taneous
equat ions.

In this paper , a more genera l class of gdfap ' s called monotone data]low ana-
lysis]rameworks (abbrev ia ted as]ramework), will be examined. W e first i l lus t ra te
several p roblems not be longing to the res t r ic ted class of d i s t r ibu t ive gdfap 's .
The pape r also shows t h a t for monotone frameworks, the MOP solut ion for an
ind iv idua l p rogram does not necessar i ly coincide with the m a x i m u m fixed po in t
solut ion to the corresponding set of s imul taneous equat ions. Several me thods for
approach ing this class of f rameworks will be discussed. We conclude the pape r
b y showing t ha t there exists no a lgor i thm which, when given an a r b i t r a r y mono-
tone framework, will compute the MOP for each program.

2. Background

W e assume the reader has some fami l i a r i ty wi th the la t t i ce theore t ic for-
mu la t i on of d a t a flow analysis , as discussed in [9, 10, 15], for example . We refer
to these papers for the proper mo t iva t i on for the subjec t to be discussed here.

* Work supported by N S F grant GJ-I052.
I Given a gdfap, the meet over all paths (MOP) solution for a program can be inter-
preted informally as the calculation for each s ta tement in the program of the maximum
information, re levant to the gdfap, which is ,true along every possible execution pa th
from the start ing point of the program to tha t par t icular statement.

306 j .]3. Kaln and J. D. Ul lman

Definition: A ~low graph is a t r ip le G : (A T, E, no), where"

(l) N is a f in i te set of nodes.

(2) E is a subse t of N x N cal led the edges. The edge (x, y) enters node y and
leaves node x. W e say t h a t x is a predecessor of y, and y a successor of x.

(3) no in N is t he init ial node. There is a p a t h 2 f rom n o to e v e r y node.

Definition: A semilattice is a set L wi th a b i n a r y meet ope ra t i on ^ such t h a t
for all a, b, c EL:

a A a = a (idempoten t)

a A b = b A a (c o m m u t a t i v e)

a ^ (b ^ c) = (a A b) A c (associat ive)

Definition: Given a s emi l a t t i ce L a n d e lements , a, bEL, we say t h a t

a >=b iff a A b : b

a > b iff a A b : b and a =# b

also a=<b m e a n s b =>a and a < b m e a n s b > a . W e e x t e n d the n o t a t i o n of t h e
m e e t o p e r a t i o n to a r b i t r a r y f in i te sets b y s a y i n g

A x i : x l ^ x 2 ^ . . . x .
l ~ i < n

Definition: A semi l a t t i c e L is said to h a v e a zero element O, if for all xEL ,
O A x : O . L is s a i d t o h a v e a one element l , if 1 ^ x : x for all xEL . W e as sume
f rom here on t h a t e v e r y semi l a t t i ce has a zero e l emen t , b u t no t necessar i ly a

one e l emen t .

Definition: Given a s emi l a t t i c e L, a sequence of e l emen t s x l , x~ x,~ in L
fo rms a chain if x i > xi+ 1 for I <=i<n. L is sa id to be bounded if for each x E L
t he r e is a c o n s t a n t b, such t h a t each cha in beg inn ing wi th x has l eng th a t m o s t b,.

I f L is bounded , t h e n we can t a k e m e e t s o v e r c o u n t a b l y inf in i te sets if we

def ine A x, where S = {x 1, x 2 }, to be l im A x i. T h e fac t t h a t L is b o u n d e d

assures us the re is an i n t ege r m such t h a t A x = A x i.
xES 1 N i~m

3. Monotone Data Flow Analysis Frameworks

Definition: Given a b o u n d e d semi l a t t i ce L, a set of func t ions F on L is said
to be a monotone/unct ion space associated with L if t he fo l lowing cond i t ions are
sa t i s f ied :

[Mt] E a c h / E F sat isf ies t he monotoncity condi t ion ,

(Vx, y E L) (V I E F) [/(x ^ y) < l (x) A l (y)] .

[M2] T h e r e exis ts an i d e n t i t y func t ion i in F , such t h a t

(V x EL) [i (x) = x].

2 A path f rom n x to n k is a sequence of nodes nl, n~ n~ such tha t (n i, hi+l) is in
E for t ~ i - - < k - - l . The path length is k -- l .

Monotone Data Flow Analysis Frameworks 307

EM3] F is closed under composi t ion, i . e . / , gEF ~ / g E F , where

(Vx, yr g(x)----/(g(x))].

[M4] L is equal to the closure of {0} under the meet opera t ion and app l ica t ion
of funct ions in F .

Observation t. Given a semi la t t ice L, let] be a funct ion on L, then

(Vx, yEL) E/(x ̂ y) <=/(x) ^ / (y) ~ (Vx, yEL) Ix <=y i m p l i e s / (x) <=](y)~.

The above condi t ion was also observed b y G r a h a m and W e g m a n ES].

Observation 2. F o r any bounded semi la t t ice L and any countable set S(_L,
if for all x E S we have x >--_ y, then A x --> y.

xES

Definition: A Monotone data/low analysis/ramework is a t r iple D = (L, ^, F),
where

(t) L is a bounded semila t t ice wi th meet ^.

(2) F is a monotone funct ion space associa ted wi th L.

A particular instance of a monotone d a t a flow analysis f ramework is a pa i r
I ----- (G, M), where

(t) G= (N, E, no) is a flow graph .

(2) M : N-->F is a funct ion which maps each node in N to a funct ion in F .

Previous s t u d y has been done b y Ki lda l l E9] on those monotone d a t a flow
analysis f rameworks D = (L, ^, F) which sat isfy the condi t ion:

(Vx, yEL)(VIEF) [/ (x ^ y) = l (x) ^ / (y)] (distributivity).

Tha t is, each / in F is a homomorph i sm on L. Recent ly , Graham and W e g m a n [5],
Tennenbaum [3], and Wegbre i t [t 71 have also considered models s imilar to mono-
tone f rameworks. However , there are m a n y in te res t ing gdfap ' s which are mon-
otone d a t a flow analysis f rameworks bu t which do not sa t i s fy the d i s t r i bu t i v i t y
p roper ty . The following are some examples .

Cons tan t P ropaga t ion can be formalized [9] as a monotone d a t a flow ana-
lysis f ramework CONST = (L, ^, F) . Here L (2v x R, where V = {A 1, A 2 } is an
infini te set of var iables and R is the set of all real numbers .

L is the set of funct ions from fini te subsets of V to R.
OEL is the funct ion which is undef ined for all AiE V.

The meet opera t ion on L is set in tersect ion 3.
In tu i t ive ly , zEL s tands for the informat ion abou t var iables which we m a y

assume at cer ta in po in ts of the p rogram flow graph. (A, r) Ez implies the var iab le
A has va lue r.

W e define a no ta t ion for funct ions in F based on the sequence of ass ignments
whose effect t hey are to model.

(t) There are funct ions deno ted (A : = BOC) and (A : = r) in F , for each
A, B and C in V, rER and 0 E { + , - - , * , /}
Le t zEL. Then

3 Let W be a finite subset of V. Recall tha t / : W -+ R is a set of pairs (A, e) with
A ~ W, and c 6 R. We shall henceforth t rea t members of L as finite subsets of V • R.

308 J. B. Kam and J. D. Ullman

(i) <A " = BOC>(z)=z' , where z ' (X) = z (X) for all X E V - - { A } ; z'(A) is un-
defined unless z (B) = b and z (C) = c for some b and c in R, in which case z' (A) = b 0 c.

(ii) <A : = r>(z)=z' where z ' (X) = z (X) for all X E V - - { A } and z ' (A) = r .

(2) iEF, where i (z)=z for all zEL.

(3) I f / , g E F t h e n / g E F .

Lemma 1. Let L be a semilat t ice a n d / 1 , / 2 /~ be functions on L. If i t is
t rue t ha t (gx, yEL) (V I <_i ~ n) [/i(x A y) <=/~(x) ^/ i (Y)],
t h e n / , l s ...]n(x A Y) <~/li~ .. ./~(x) A ~,Is ... l,,(y).

Pro@ i,(xA y) ~ / , (x) A /~(y) (by assumption) . Suppose [i. . . /~(xA y)
/~"" ix(x) ̂] i ' " i~(Y), then] i - l (] i . .- i , (xJ y)) <----/i-1(/, ... i , (x)J]i . . . i,(Y)) (by
Observa t ion t). i i 1 (/ i . - . / ~ (x) A / i . . . i~(Y)) <=i~-1... i,,(x)A i i -1 . . .],(Y) (by as-
sumption) . So b y simple backward induct ion on i, the l emma follows. []

Theorem 1. C O N S T = (L, ^, F) is a monotone da t a flow analysis framework.
Fu r the rmore there exists z, z' EL a n d / E F such tha t](z ^ z') <](z)Ai(z ') .

Pro@ The fact t ha t L is a b o ' m d e d semilat t ice with a 0 e lement is obvious.
Fur the rmore , for any e lement zEL, Z=il /2 . . .],(0) for some integer n, where
/i is of the form <Ai=r). So to show tha t F is a monotone funct ion space as-
socia ted with L, i t suffices ,by L e m m a t , to show tha t for all z, z 'EL and all
funct ions in F of the form <A : = BOC> or <A : = r>,

<A := BOC>(zA z') <=<A :~-- BOC>(z) A <A := BOCy(z'),
and

<A :---- r> (z ^ z') < <A : = r> (z) ^ <A : = r> (z').

Observe tha t since ^ is intersect ion on L, the =< relat ion is set inclusion.

(i) Suppose we are given z, z' E L and <A : = B 0 C> E F .
Let y = <A : = BOC> (z^ z'). Then for all X E V - - { A } , if (X, r)Ey then (X, r)ez
and (X, r)ez'. Hence (X, r)e<A : = BOCF(z) and (X, r)e<A : = BOCF(z').

If A is undef ined in y, then we are done. Suppose however, t ha t (A, r) Ey.
Then {(B, rl), (C, r~)} is a subset of z and is also a subset of z', for some rl and r~
such t ha t r-=rlOr 2. This implies tha t (A , r)E<A:=BOC>(z) and (A,r)E
<A : = BOCF(z').

(ii) Suppose we are given z, z 'EL and <A : = r > E F . I t is s t ra igh t forward to
show tha t <A :~ r> (z ^ z') ~ <A :-- r> (z) ^ <A :-- r> (z'). Hence the first pa r t
of the l emma follows.

Fo r a coun te rexample showing t ha t CONST is not d is t r ibut ive , consider the
flow char t of F igure t . There we see t ha t < C ' = A + B > (z A z ') = O , while
<C:=A+BF(z) A <C:=A+BF(z ')= { (C , 5)}. []

I t should be noted t ha t in F igure 1, C real ly does have the value 5, so the
CONST f ramework fails to de tec t a t compile t ime a cons tant re la t ionship which
holds at runt ime.

We shall also ment ion t ha t Theorem I can be general ized to any f ramework
whose la t t ice e lements associate " v a l u e s " with variables , whose meet opera t ion
is intersect ion, and whose funct ions reflect the appl ica t ion of " o p e r a t o r s " on
those values and ass ignment of values to variable. The f ramework will be mono-
tone in all cases, bu t will be d is t r ibu t ive only if the in t e rp re t a t ion of the opera-

Monotone Data Flow Analysis Frameworks

z = {(A, 2), (B, 3) } ~ / / ~ ' = { (A , 3), (8, 2)}

" x /

Ic:=A+ r

Fig. 1. Counter example to distributivity of CONST

309

tors is " f ree" , that is, the effect of applying k-ary operator 0 to two different
k-tuples of values is never the same.

Numerous additional examples of monotone but not distributive frameworks
can be found in the literature. Examples are the "s truc tured part i t ion" frame-
work from E91, Tennenbaum's type checking E13] and Schwartz's framework for
detecting the liveness of computed values in SETL II 1].

4. Approaches to Solving Monotone Data Flow Analysis Problems

I t appears generally true that what one seaches for in a data flow problem is
what we shall call the meet over all paths (MOP) solution. That is, let PATH (n)
denote the set of paths froIn the initial node to node n in some flow graph. Then
we really want . A /p(0) for each n. I t is this function, the MOP solution

PE PATH (n)

that, in any practical data flow problem we can think of, expresses the desired
information. For example, in Figure t, the MOP solution would have C = 5 at the
point following the assignment C : = A + B because both paths to that point
set C to 5.

The people solving bit vector data flow analysis problems, such as El, 2, 6, 8,
t2, 14], or problems based on distributive frameworks E9J obtain the MOP so-
lution by finding maximum fixed point of a set of equations. As ~9] shows, this
fixed point is always the MOP solution in this case. However, the MOP solution
is not the maximum fixed point of the equations in the case of a general mono-
tone framework, and this fact explains why Kildall's method " fai ls" on the
framework CONST discussed in Theorem t.

31o J. B. Kam and J. D. Ullman

We shall here consider wha t of Ki lda l l ' s theory remains t rue in the con tex t
of genera l monotone frameworks. Our first approach is to consider wha t happens
when the algori thrn of [9] is appl ied to a monotone framework.

In order to make the a lgor i thm below simple to read, for each D = (L, ^, F)
if L does not contain a one e lement 1, we introduce an art i f icial e lement 1, such
t ha t

(V / e F) (V x E L) [1 A X = X A I = x and [(1)=1]

Algor i thm 1 (Essent ia l ly Ki ldal l ' s Algor i thm [9] appl ied to a monotone frame-
work)

Input. A par t i cu la r instance I = (G, M) of D = (L, A, F), where G = (N , E, no)
is a flow graph.

Initialization.
{~ i f n = n 0

(VneN) A [nl = otherwise

Iteration Step. Visit nodes o ther than n o in order n 1, n2, . . . (with repet i t ions, and
not f ixed in advance) . We visit node n by se t t ing

A [n] = A / (A [p])
pE PRED(n) p

where P R E D (n) = { P I (P , n)eE}. The sequence n 1, n 2 has to sat isfy the follow-
ing condi t ion :

If there exists a node n ~ N - - { n 0 } such tha t A [n] 4=pAEDJp(A [p]) after we

have v is i ted node n s in the sequence, then there exists integer t > s such t ha t
n t = n. Also, if af ter vis i t ing node n s, A In] = A [p (A [Pl) for all n ~= n 0, then

pE PRED
the sequence will even tua l ly end.

Convention. Given ins tance I = (G, M) of f ramework D---- (L, ^, F), if we a p p l y
Algor i thm t to I wi th the sequence nl, n 2 we say t ha t the {-th s tep of
Algor i thm t has been appl ied af ter we have vis i ted nodes n~, n 2, . . . , nj . Le t n be
a node in G. We let A (m) In] denote the value of A [n] r ight af ter s tep m of 'Algo-
r i t hm I has been applied.

Convention. Given a par t i cu la r ins tance I = (G, M) of D = (L, A, F), we let],
denote M (n), the funct ion in F which is associated with node n. Let P = nl , n~
n~, nm+ 1 be a pa th in G. Then we m a y u s e / p (.) for L~(L~_,(... L,(.) ...)). Note
tha t / ,~+l is not in the composit ion.

Lemma 2. Given an ins tance I = (G , M) of a monotone da t a flow analysis
f ramework D = (L, ^, F) , if we app ly Algor i thm I to I , the a lgor i thm will eventu-
a l ly halt .

Pro@ I t is a s imple proof b y induct ion on m, the number of s teps appl ied in
Algor i thm 1, t ha t A ('+~1 In] =<A c~ In], for all nodes in G. According to the condi-
t ion on the sequence of nodes being visi ted, af ter we have appl ied the k-th s tep
of Algor i thm 1, ei ther there exists an integer j such t ha t A (k+j+l~ [n] < A (k+i) [n]
for some node n in G, or the sequence will hal t . The facts t ha t L is bounded and
t h a t G has only f in i te ly m a n y nodes guarantee tha t the sequence ends and the
a lgor i thm will even tua l ly halt . []

Monotone Data Flow Analysis Frameworks 31t

Theorem 2. Given an instance I = (G, M) of framework D = (L, ^ , F), after
we have applied Algorithm t to I , we have (VnEN)[A [n]--<p~pATHi,i/p(0)],
where P A T H (n) = { P I P is a path in G from n o to n).

Proo/. We want to prove by induction on I that (V n E N)(A [n] ___< P~ PAATH,(,I]p (0)),

where PATHl(n) = { P I P is a p a t h of length l from n o to n}.

Basis�9 (l = O) n o is the only node that has a path from n o of zero length. Since
A [no] is assigned 0 initially and not changed afterwards, the basis holds.

Inductions step�9 (l>0) If n = n o , we are done. Suppose n # n o. We have

A [n] =pE PREDA (*) /p (A [P]), and (vp E PRED (n) (A [Pl =<QE PATAHt-I(p) fQ (0)), by hypo-
thesis. Thus A [n] < A fp by monotonicity and Observa- (~
tion 1. By mononicity again, we have A [n] --< A t , (10 (0)) =v~ ATH/" (0).

�9 - - - - 7 - - pE PRED (n)-r
By Observation 2, we have for all n E I~ QEPATHt-I(p)

A [n] <=P~VAATH(n)/P(O). []
Theorem 3. Given an instance I----(G, M) of a monotone framework D =

(L, ^, F), after we have applied Algorithm 1, the solution A [n]'s we get is the
maximum fixed point solution of the set of simultaneous equations

X [no] = 0

(Vn~N--{no}) (X[n] = A /p(X[p])) (*)
pE PRED (n)

Proo/. I t is obvious that, after Algorithm I halts, the A [n]'s satisfy the
Equations (,). Now suppose we are given any solution B [n]'s to the Equations (,).
We want to prove by induction on m, the number of steps applied in Algorithm t,
that after the m-th step B [n] ~ A I'n} in] for all nEN.

Basis. (m=0) Obvious.

Inductions step. (m > 0) At the m-th step, we have
A (') [n ~] : = A ,/p(A('~-l)[p]). Since we have (vpEPRED(nm))(B[p]

pE PRED(nm~
~<A (m-l) [p]) by the induction hypothesis, we have B [n=] = A / p (B [p])

PE PATH (nra)
=<A(~)[n~] by monotonicity. For the rest the nodes nEN--{nm},A(~')[n]
= A ('-x) In].

The theorem then follows from the fact that Algorithm t will eventually halt. []

Corollary. Given an instance I = (G , M) of a framework D = (L , ^, F), as
input to Algorithm t, the A [n]'s we get after Algorithm t halts is unique inde-
pendent of the sequence in which nodes are visited, provided the sequence satis-
fies the condition stated in the algorithm.

Theorem 4. Given a monotone framework D = (L, ^, F), suppose (3 x, yEL) �9
(3/EF) [/(x A y) </(X) ^ / (Y)I , i .e�9 is not distributive�9 Then there exists an in-
stance I = (G, M) such that after we apply Algorithm 1, there is a node n in G
such that

A [n] < A jp(O).
YE PATH (n~

Proo/. By condition [M4] in the definition of a monotone function space, we
can find acylic graphs G~ and Gy, with input nodes n~ and n r, and output nodes

312 j . B. Kam and J. D. Ullman

Fig. 2

m, and my, such that after we apply Algorithm t to G, and @, we get A [mx] = x
and A [my] = y . A straightforward induction on the number of meet operations
and function applications necessary to construct a lattice element from 0 proves
the existence of G~ and @.

Consider the graph G of Figure 2. I t is easy to check that if we apply Algo-
r i thm I we have A In] = / (x ^ y). By Theorem 2, in G we have x _< A /p (0)

- - PE P A T H (nx)
and y ~pEpAATH(ny)/p(O). T h u s pEpAATH(n)/P(O) ~ / (X) IX /(y) by monotonicity. But

we are given /(x) A /(y) > / (x A y), so A Inl < A /p(O). []
P E P A T H (n)

In summary then, K i l d a l l ' s algorithm applied to a monotone data flow
analysis framework yields a unique solution, independent of the order in which
nodes are visited. This solution is the maximum fixed point of the set of equations
associated with a flow graph. However, we can only show tha t the solution is
equal to or tess than the MOP solution, and when the framework is not distri-
butive there will always be some instance in which the inequality is strict.

5. A Variant of Kildall's Algorithm

We shall now briefly consider an algorithm similar to Kildall's but somewhat
more time consuming. This algorithm will obtain the MOP solution in certain
situations where Algorithm I fails to do so, Figure 2 being a good example of
this phenomenon. However, like Algorithm 1, it must fail for some instance of
any monotone, nondistributive framework.

We are not proposing this algorithm as an " i m p r o v e m e n t " on Kildall 's
algorithm, since the cases in which our algorithm attains the MOP solution and
Kildall 's doesn ' t will likely be few and far between in practice. I t is interesting,
however, to note tha t the two algorithms differ in their behavior in the general

Monotone Data Flow Analysis Frameworks 3t3

monotone case, although they are easily shown to produce identical answers for
distributive frameworks.

Algorithm 2

Input. As in Algorithm 1.

Initialization

(VneN) B[n]={[; ~ if n = n ~
otherwise

Iteration step. Visit nodes other than n o in order nl, n 2 (not fixed in
advance). We visit node n by setting

B [n] : = A I. (B [p])
p E PRED (n)

The sequence nl, n 2 has to satisfy the condition: if there is a node n EN--{n0}
such that B[nl =~p~pRAEDI,,)/,,(B[p]) after we have visited node n, in the se-

quence, then there exists integer t>s such that nt=n. Also if BEn]=
A /~ (B [p]) for all n 4= no, we will eventually halt the iteration.

pE PRED (n)

Final Step. We set
H [no] = 0

(W ~ N - - {no}) H In] = A B [p].
pE PRED (n)

Theorem 5. Given an instance I-----(G, M) of a framework D = (L, A, F) as
input to Algorithm 2:

(i) Algorithm 2 will eventually halt. The result we get is unique independent
of the order in which nodes are visited and (VnEN) H [n] --<p~PAATi~C,i/p (0).

(ii) The resulting B [n]'s form the maximum fixed point of the set of equations

x [no] =/ .~ (o)

(Vn EN-- {no}) (X In] =m pRAED(n)/. (X [p])).

(iii) If A [n] is the result of applying Algorithm t to I=(G,M), then
A In] _< n [n]

Proo]. The proofs are similar to the proofs of the results in the previous
section and we omit them. []

Theorem 6. Given a monotone framework D = (L, ^, F), suppose
(3x, yEL)(3/eF)U(x A y)</(x) ^ / (y)] , i.e. D is not distributive. Then:

(i) there exists an instance I = (G, M) such that there is a node in G such tha t

H [n] •pEP#TH(.)/P (0)

after we have applied Algorithm 2 to I .

(ii) there exists an instance I ' = (G', M') such that there is a node n in G'
such that

A In] < H [n]

after we have applied Algorithm 1 and Algorithm 2 to instance I .

21 Acta Informatica, Vol. 7

314 j . B. Kam and J. D. Ullman

Fig. 3

Proo]. We may, as in Theorem 4, invoke condi t ion EM4] to observe t h a t
t

there are graphs G~ and Gy such t ha t thei r ou tpu t nodes m, and my have B [m,] = x
and B Emy] = y . Then consider the graph of Figure 3. I t follows from mono ton ic i t y
t ha t

A /p(O) >=](x) A/(y) > / (x ^ y)=n[n~.
PC P A T H (n)

To prove Theorem 6 (ii), we refer to F igure 2. Direct ca lcula t ion will show
tha t A [n l = / (x ^ y) . By pa r t (iii) of Theorem 5, H[mx] >=x and H[my] ~ y .
Thus B.~m,J ~ x and B [my] _>y. I t follows tha t H In I >--/(x) /x/(y), so A En]<
HEnl. []

6. Undecidabili ty of the MOP Problem
tor Monotone Data Flow Analysis Frameworks

We have seen t ha t some of the obvious a lgor i thms fail to compute the MOP
solut ion for an a rb i t r a ry monotone framework. We shall now show tha t this
s i tua t ion mus t hold for any algori thm. In par t icular , we show tha t there does not
exist an a lgor i thm which, for a r b i t r a r y ins tance I = (G, M) of an a rb i t r a ry mono-
tone d a t a flow analysis f ramework D=(L, ^,F), will compute A'r ---A-Hc~[P(0)
for all nodes n of G. P~ P

Definition. The Modified Post's Correspondence Problem (MPCP) is the
following: Given a r b i t r a r y lists A and B, of k str ings each in {0, 1} +, say

A = w l , w2, . . . , w k B = Z l , z2, . . . , z k

does there exist a sequence of integers i~, is, i, such tha t

W l W i x W i s �9 . . I d d i r = Z 1 2i~ Z i Z �9 . . Z i r

Monotone Data Flow Analysis Frameworks

I t is well known tha t MPCP is undecidable E7]-

Given an instance AB of MPCP with lists A = w 1 w, and B = z 1 zk,
we can const ruct a monotone da t a flow analysis f ramework DaB = (LaB , ^, FaB),
where the following elements are in LaB :

(t) 0, the lat t ice zero,

(2) the special e lement $, which will in a sense indicate nonsolution to MPCP,
and

()) all strings of integers t , 2 k beginning with t .

The mee t on these elements is given by : x A y=O whenever x ~=y. Thus,
if x ~ y , then ei ther x = y or x=O.

The set of functions FaB includes the following.

(t) the ident i ty funct ion on LaB

(2) func t ions / i , for I ~ i - - < k defined by :

(i) if a is a s tr ing of integers beginning with 1, then [i (a) = a i,

(if)]i(0) = (0) and

(i~) /,($) = $,

(3) the function g defined b y

(i) for strings a----I/1 i , . . . i~,

[0 if 1i 1 i , . . . i,. is a solut ion to instance AB of MPCP

g(~) = / S otherwise,
(ii) g(0) = 0,

(i~) g ($) = $,
(4) the function h defined by h(x)----t (that is, the string consisting of I alone)

for all xELaB.

(5) All functions cons t ruc ted f rom the above b y composit ion.

L e m m a 3. DAB = (LAB, ^, FaB) const ructed above is a monotone da ta flow
analysis f ramework.

Proo/. We show only monotonic i ty ; the other propert ies are easy to check.
B y Observat ion t and L e m m a t , it suffices to show tha t if x ~ y for x and y in
LA B then

(t) li(x) <=/i(y) for t <_i <_k,

(2) g(x) ~g(y), and

(3) h(x) <=h(y).
Since h(x)=h(y)= t, (3) is immediate . We have observed tha t for the mee t

operat ion we have defined, x ~ y implies x is ei ther y or 0. In the former case
(1) and (2) are immediate .

In the la t ter case, /i(x)=O and g(x)=O, so]i(x)<=/i(Y) and g(x)=g(y)
follows. []

We can now show tha t it is impossible to do for monotone f rameworks wha t
KildaLl did for dis t r ibut ive ones.

3t6 j .]3. Kam and J. D. Ullman

[y .-- D D

-7-]t*l

Fig. 4

Theorem 7. There does not exist an algorithm A with the following properties.

(1) the input to A is

(i) Algori thms to perform meet, equali ty testing and application of functions
to lattice elements for some monotone framework and,

(ii) An instance I of the framework.

(2) The ou tpu t of A is the MOP solution for I .

Proofi I f A exists, then we can apply A to any monotone framework DAB
constructed above with the instance I chosen as shown in Figure 4. The MOP
solution to tha t problem at the point (.) is easily seen to be $ if the instance A B
of the MPCP has no solution, and 0 if it does. Thus, if A existed, we could solve
the MPCP. []

I t should be noted tha t Theorem 7 does not rule out finding algorithms for
the MOP solution for part icular monotone framework or for large subclasses of
them. However, by a proof similar to tha t of Theorem 7, we can exhibit a par-
t icular monotone framework for which no algorithm to compute MOP solutions
of its instances exists.

Finally, we shall remark that Theorem 7 is a strengthening of a result by
Dana Angluin to the effect tha t comput ing the MOP solution for a monotone
framework is NP-hard.

References

1. Aho, A.V., Ullman, J . D . : The theory of parsing, translation, and compiling;
Vol II--Compiling. Englewood Cliffs (N. J.): Prentice-Hall 1973

2. Cocke, J. : Global common subexpression elimination. SIGPLAN Notices 5, 20-24
(1970)

3- Cocke, J., Schwartz, J. T. : Programming languages and their compilers. Courant
Institute, New York University, New York (~ 970)

Monotone Data Flow Analysis Frameworks 317

4. Fong, A. C., Kam, J. B., Ullman, J. D. : Applications of lattice algebra to loop
optimization. Proc. 2nd ACM Conference on Principles of Programming Languages,
Palo Alto (Cal.), January t975, pp. 1-9

5. Graham, S. L., Wegman, M. : A fast and usually linear algorithm for global flow
analysis. J. ACM 23, t72-202 (1976)

6. Hecht, M. S., Ullman, J. D. : A simple algorithm for global flow analysis problems.
SIAM J. Computing 4, 519-532 (1975)

7. Hopcroft, J .E . , Ullman, J. D. : Formal languages and their relation to auto-
mata. Reading (Mass.) : Addison-Wesley 1969

8. Kennedy, K. : A global flow analysis algorithm. International J. Computer Math.
3, 5-15 (197t)

9. Kildall, G. A. : Global expression optimization during compilation. Proc. ACM
Conference on Principles of Programming Languages, Boston (Mass.), October
1973, pp. I94-206

10. Kam, J. B., Ullman, J. D. : Global data flow analysis and iterative algorithms.
J. ACM 23, 158-171 (1976)

t t. Schwartz, J. T. : Copy optimization in SETL. Department of Computer Science,
Courant Institute, New York University, New York, SETL Newsletters 130,131,
1974

12. Schaefer, M. : A mathematical theory of global program optimization. Englewood
Cliffs (N.J.): Prentice-Hall t973

13. Tennenbaum, T. : Type determination for very high level languages. Department
of computer Science, Courant Institute, New York University, New York, TSO-3,
1974

t4. Ullman, J. D. : Fast algorithms for the elimination of common subexpressions.
Acta Informatica 2, 191-213 (t973)

15. Ullman, J. D. : Data Flow Analysis. Proc. 2nd USA-Japan Computer Conference.
Montvale (N.J.): AFIPS Press 1975

16. Vyssotsky, V. A. : Private Communication to M. S. Hecht, June f973
17. Wegbreit, B. : Property extraction in well-founded property sets. IEEE Trans. on

Software Engineering SE-t, 270-285 (1975)

Dr. John B. Kam
Dr. Jeffrey D. Ullman
Dept. of Electrical Engineering and Computer Science
Princeton University
Princeton, N. J. 08540, USA

