
An Introduction to the UNIX Shell USD:3-1

An Introduction to the UNIX Shell

S. R. Bourne

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

Theshell‡is a command programming language that provides an interface to theUNIX† operat-
ing system. Its features include control-flow primitives, parameter passing, variables and string
substitution. Constructs such aswhile, if then else, caseandfor are available. Two-way commu-
nication is possible between theshell and commands. String-valued parameters, typically file
names or flags, may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may be used as shell
input.

The shell can modify the environment in which commands run. Input and output can be redi-
rected to files, and processes that communicate through ‘pipes’ can be invoked. Commands are
found by searching directories in the file system in a sequence that can be defined by the user.
Commands can be read either from the terminal or from a file, which allows command proce-
dures to be stored for later use.

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the UNIX operat-
ing system. This memorandum describes, with examples, the UNIX shell. The first section covers most of the
ev eryday requirements of terminal users. Some familiarity with UNIX is an advantage when reading this section;
see, for example, "UNIX for beginners". unix beginn kernigh 1978 Section 2 describes those features of the shell
primarily intended for use within shell procedures. These include the control-flow primitives and string-valued vari-
ables provided by the shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "seepipe (2)" are to a
section of the UNIX manual. seventh 1978 ritchie thompson

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of the command to
be executed; any remaining words are passed as arguments to the command. For example,

who

is a command that prints the names of users logged in. The command

ls −l

prints a list of files in the current directory. The argument−l tells ls to print status information, size and the creation
date for each file.

‡ This paper describes sh(1). If it’s the c shell (csh) you’re interested in, a good place to begin is William Joy’s paper "An
Introduction to the C shell" (USD:4).
† UNIX is a trademark of AT&T Bell Laboratories.

USD:3-2 An Introduction to the UNIX Shell

1.2 Background commands

To execute a command the shell normally creates a newprocessand waits for it to finish. A command may be run
without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the filepgm.c . The trailing& is an operator that instructs the shell not to wait for
the command to finish. To help keep track of such a process the shell reports its process number following its cre-
ation. A list of currently active processes may be obtained using thepscommand.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the terminal. This output may
be sent to a file by writing, for example,

ls −l >file

The notation>file is interpreted by the shell and is not passed as an argument tols. If file does not exist then the
shell creates it; otherwise the original contents offile are replaced with the output fromls. Output may be appended
to a file using the notation

ls −l file

In this casefile is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing, for example,

wc <file

The commandwc reads its standard input (in this case redirected fromfile) and prints the number of characters,
words and lines found. If only the number of lines is required then

wc −l <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the ‘pipe’ opera-
tor, indicated by , as in,

ls −l wc

Tw o commands connected in this way constitute apipelineand the overall effect is the same as

ls −l >file; wc <file

except that nofile is used. Instead the two processes are connected by a pipe (seepipe (2)) and are run in parallel.
Pipes are unidirectional and synchronization is achieved by haltingwc when there is nothing to read and haltingls
when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as output. One
such filter,grep,selects from its input those lines that contain some specified string. For example,

ls grep old

prints those lines, if any, of the output fromls that contain the stringold. Another useful filter issort. For example,

who sort

will print an alphabetically sorted list of logged in users.

A pipeline may consist of more than two commands, for example,

ls grep old wc−l

prints the number of file names in the current directory containing the stringold.

An Introduction to the UNIX Shell USD:3-3

1.5 File name generation

Many commands accept arguments which are file names. For example,

ls −l main.c

prints information relating to the filemain.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For example,

ls −l * .c

generates, as arguments tols, all file names in the current directory that end in.c . The character* is a pattern that
will match any string including the null string. In generalpatternsare specified as follows.

* Matches any string of characters including the null string.

? Matches any single character.

[] Matches any one of the characters enclosed. A pair of characters separated by a minus will match
any character lexically between the pair.

For example,

[a−z]*
matches all names in the current directory beginning with one of the lettersa throughz.

/usr/fred/test/?

matches all names in the directory/usr/fred/test that consist of a single character. If no file name is found that
matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may also be used to
find files. For example,

echo /usr/fred/* /core

finds and prints the names of allcorefiles in sub-directories of/usr/fred . (echois a standard UNIX command that
prints its arguments, separated by blanks.) This last feature can be expensive, requiring a scan of all sub-directories
of /usr/fred .

There is one exception to the general rules given for patterns. The character ‘.’ at the start of a file name must be
explicitly matched.

echo*
will therefore echo all file names in the current directory not beginning with ‘.’ .

echo.*
will echo all those file names that begin with ‘.’ . This avoids inadvertent matching of the names ‘.’ and ‘..’ which
mean ‘the current directory’ and ‘the parent directory’ respectively. (Notice thatls suppresses information for the
files ‘.’ and ‘..’ .)

1.6 Quoting

Characters that have a special meaning to the shell, such as< > * ? & , are called metacharacters. A complete list
of metacharacters is given in appendix B. Any character preceded by a\ is quotedand loses its special meaning, if
any. The\ is elided so that

echo \\?

will echo a single? , and

echo \\\\

will echo a single\ . To allow long strings to be continued over more than one line the sequence\newline is ignored.

USD:3-4 An Introduction to the UNIX Shell

\ is convenient for quoting single characters. When more than one character needs quoting the above mechanism is
clumsy and error prone. A string of characters may be quoted by enclosing the string between single quotes. For
example,

echo xx*́*** ´xx

will echo

xx**** xx

The quoted string may not contain a single quote but may contain newlines, which are preserved. This quoting
mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some but not all
metacharacters. Discussion of the details is deferred to section 3.4 .

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By default this prompt is
‘$ ’ . It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the stringyesdear . If a newline is typed and further input is needed then the shell will
issue the prompt ‘> ’ . Sometimes this can be caused by mistyping a quote mark. If it is unexpected then an inter-
rupt (DEL) will return the shell to read another command. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s login direc-
tory contains the file.profile then it is assumed to contain commands and is read by the shell before reading any
commands from the terminal.

1.9 Summary

• ls
Print the names of files in the current directory.

• ls >file
Put the output fromls into file.

• ls wc −l
Print the number of files in the current directory.

• ls grep old
Print those file names containing the stringold.

• ls grep old wc −l
Print the number of files whose name contains the stringold.

• cc pgm.c &
Runcc in the background.

2.0 Shell procedures

The shell may be used to read and execute commands contained in a file. For example,

sh file [args]

calls the shell to read commands fromfile. Such a file is called acommand procedureor shell procedure.Argu-
ments may be supplied with the call and are referred to infile using the positional parameters$1, $2, . For example,
if the filewgcontains

An Introduction to the UNIX Shell USD:3-5

who grep $1

then

sh wg fred

is equivalent to

who grep fred

UNIX files have three independent attributes,read, writeandexecute.The UNIX commandchmod(1) may be used
to make a file executable. For example,

chmod +x wg

will ensure that the filewghas execute status. Following this, the command

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is created to run
the command.

As well as providing names for the positional parameters, the number of positional parameters in the call is available
as$# . The name of the file being executed is available as$0 .

A special shell parameter$* is used to substitute for all positional parameters except$0 . A typical use of this is to
provide some default arguments, as in,

nroff −T450−ms $*
which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2,) executing commands once for each
argument. An example of such a procedure istel that searches the file/usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text oftel is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in/usr/lib/telnos that contain the stringfred .

tel fred bert

prints those lines containingfred followed by those forbert.

Thefor loop notation is recognized by the shell and has the general form

for namein w1 w2
do command-list
done

A command-listis a sequence of one or more simple commands separated or terminated by a newline or semicolon.

USD:3-6 An Introduction to the UNIX Shell

Furthermore, reserved words likedo and done are only recognized following a newline or semicolon.nameis a
shell variable that is set to the wordsw1 w2 in turn each time thecommand-listfollowing do is executed. Ifin w1
w2 is omitted then the loop is executed once for each positional parameter; that is,in $* is assumed.

Another example of the use of thefor loop is thecreatecommand whose text is

for i do >$i; done

The command

create alpha beta

ensures that two empty filesalphaandbetaexist and are empty. The notation>file may be used on its own to create
or clear the contents of a file. Notice also that a semicolon (or newline) is required beforedone.

2.2 Control flow - case

A multiple way branch is provided for by thecase notation. For example,

case $# in
1) cat $1 ;;
2) cat $2 <$1 ;;

*) echo \’usage: append [from] to\’ ;;
esac

is anappendcommand. When called with one argument as

append file

$# is the string1 and the standard input is copied onto the end offile using thecatcommand.

append file1 file2

appends the contents offile1 onto file2. If the number of arguments supplied toappendis other than 1 or 2 then a
message is printed indicating proper usage.

The general form of thecase command is

case word in
pattern) command-list;;

esac

The shell attempts to matchword with eachpattern,in the order in which the patterns appear. If a match is found
the associatedcommand-listis executed and execution of thecase is complete. Since* is the pattern that matches
any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The first match
found defines the set of commands to be executed. In the example below the commands following the second* will
never be executed.

case $# in

*) ;;

*) ;;
esac

Another example of the use of thecase construction is to distinguish between different forms of an argument. The
following example is a fragment of acccommand.

An Introduction to the UNIX Shell USD:3-7

for i
do case $i in
−[ocs]) ;;
−*) echo \’unknown flag $i\’ ;;

* .c) /lib/c0 $i ;;

*) echo \’unexpected argument $i\’ ;;
esac
done

To allow the same commands to be associated with more than one pattern thecase command provides for alternative
patterns separated by a . For example,

case $i in
−x−y)
esac

is equivalent to

case $i in
−[xy])
esac

The usual quoting conventions apply so that

case $i in
\\?)

will match the character? .

2.3 Here documents

The shell proceduretel in section 2.1 uses the file/usr/lib/telnos to supply the data forgrep. An alternative is to
include this data within the shell procedure as aheredocument, as in,

for i
do grep $i !

fred mh0123
bert mh0789

!
done

In this example the shell takes the lines between! and! as the standard input forgrep. The string! is arbitrary, the
document being terminated by a line that consists of the string following .

Parameters are substituted in the document before it is made available togrepas illustrated by the following proce-
dure callededg .

ed $3 %
g/$1/s//$2/g
w
%

The call

edg string1 string2 file

is then equivalent to the command

USD:3-8 An Introduction to the UNIX Shell

ed file %
g/string1/s//string2/g
w
%

and changes all occurrences ofstring1 in file to string2 . Substitution can be prevented using \ to quote the special
character$ as in

ed $3 +
1,\\$s/$1/$2/g
w
+

(This version ofedgis equivalent to the first except thatedwill print a ? if there are no occurrences of the string$1 .)
Substitution within aheredocument may be prevented entirely by quoting the terminating string, for example,

grep $i \\#

#

The document is presented without modification togrep. If parameter substitution is not required in aheredocu-
ment this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits and
underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variablesuser, box and acct. A variable may be set to the null string by saying, for
example,

null=

The value of a variable is substituted by preceding its name with$; for example,

echo $user

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

will move the filepgm from the current directory to the directory/usr/fred/bin . A more general notation is avail-
able for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output ofpsto the file/tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variabletmpa to be substituted.

An Introduction to the UNIX Shell USD:3-9

Except for$? the following are set initially by the shell.$? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most commands
return a zero exit status if they complete successfully, otherwise a non-zero exit status is returned.
Testing the value of return codes is dealt with later underif andwhile commands.

$# The number of positional parameters (in decimal). Used, for example, in theappendcommand to
check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among all existing
processes, this string is frequently used to generate unique temporary file names. For example,

ps a >/tmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the background (in decimal).

$− The current shell flags, such as−x and−v .

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it issues a prompt.
If the specified file has been modified since it was last looked at the shell prints the messageyou
have mailbefore prompting for the next command. This variable is typically set in the file.profile,
in the user’s login directory. For example,

MAIL =/usr/spool/mail/fred

$HOME The default argument for thecd command. The current directory is used to resolve file name refer-
ences that do not begin with a/ , and is changed using thecdcommand. For example,

cd /usr/fred/bin

makes the current directory/usr/fred/bin .

cat wn

will print on the terminal the filewn in this directory. The commandcd with no argument is equiv-
alent to

cd $HOME

This variable is also typically set in the the user’s login profile.

$PATH A list of directories that contain commands (thesearch path). Each time a command is executed by
the shell a list of directories is searched for an executable file. If$PATH is not set then the current
directory,/bin, and/usr/bin are searched by default. Otherwise$PATH consists of directory names
separated by: . For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first:), /usr/fred/bin, /bin and/usr/bin
are to be searched in that order. In this way individual users can have their own ‘private’ commands
that are accessible independently of the current directory. If the command name contains a/ then
this directory search is not used; a single attempt is made to execute the command.

$PS1 The primary shell prompt string, by default, ‘$ ’.

$PS2 The shell prompt when further input is needed, by default, ‘> ’.

$IFS The set of characters used byblank interpretation(see section 3.4).

2.5 The test command

Thetestcommand, although not part of the shell, is intended for use by shell programs. For example,

USD:3-10 An Introduction to the UNIX Shell

test−f file

returns zero exit status iffile exists and non-zero exit status otherwise. In generaltest evaluates a predicate and
returns the result as its exit status. Some of the more frequently usedtestarguments are given here, seetest(1) for a
complete specification.

test s true if the arguments is not the null string
test−f file true if file exists
test−r file true if file is readable
test−w file true if file is writable
test−d file true iffile is a directory

2.6 Control flow - while

The actions of thefor loop and thecase branch are determined by data available to the shell. Awhile or until loop
and anif then else branch are also provided whose actions are determined by the exit status returned by commands.
A while loop has the general form

while command-list
do command-list
done

The value tested by thewhile command is the exit status of the last simple command followingwhile. Each time
round the loopcommand-listis executed; if a zero exit status is returned thencommand-listis executed; otherwise,
the loop terminates. For example,

while test $1
do
shift
done

is equivalent to

for i
do
done

shift is a shell command that renames the positional parameters$2, $3, as$1, $2, and loses$1 .

Another kind of use for thewhile/until loop is to wait until some external event occurs and then run some com-
mands. In anuntil loop the termination condition is reversed. For example,

until test−f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presumably another
process will eventually create the file.)

2.7 Control flow - if

Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests the value returned by the last simple command followingif.

Theif command may be used in conjunction with thetestcommand to test for the existence of a file as in

An Introduction to the UNIX Shell USD:3-11

if test−f file
then process file
else do something else
fi

An example of the use ofif, case andfor constructions is given in section 2.10 .

A multiple testif command of the form

if
then
else if

then
else if

fi
fi

fi

may be written using an extension of theif notation as,

if
then
elif
then
elif

fi

The following example is thetouchcommand which changes the ‘last modified’ time for a list of files. The com-
mand may be used in conjunction withmake(1) to force recompilation of a list of files.

flag=
for i
do case $i in
−c) flag=N ;;

*) if test−f $i
then ln $i junk$$; rm junk$$
elif test $flag
then echo file \\´$i\\´ does not exist
else >$i
fi

esac
done

The−c flag is used in this command to force subsequent files to be created if they do not already exist. Otherwise, if
the file does not exist, an error message is printed. The shell variableflag is set to some non-null string if the−c
argument is encountered. The commands

ln ; rm

make a link to the file and then remove it thus causing the last modified date to be updated.

The sequence

if command1
then command2
fi

may be written

USD:3-12 An Introduction to the UNIX Shell

command1 && command2

Conversely,

command1 command2

executescommand2only if command1fails. In each case the value returned is that of the last simple command
executed.

2.8 Command grouping

Commands may be grouped in two ways,

{ command-list; }

and

(command-list)

In the firstcommand-listis simply executed. The second form executescommand-listas a separate process. For
example,

(cd x; rm junk)

executesrm junkin the directoryx without changing the current directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directoryx.

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked within the
procedure as

set−v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate syntax
errors. It may be invoked without modifying the procedure by saying

sh−v proc

whereproc is the name of the shell procedure. This flag may be used in conjunction with the−n flag which prevents
execution of subsequent commands. (Note that sayingset−n at a terminal will render the terminal useless until an
end-of-file is typed.)

The command

set−x

will produce an execution trace. Following parameter substitution each command is printed as it is executed. (Try
these at the terminal to see what effect they hav e.) Both flags may be turned off by saying

set−

and the current setting of the shell flags is available as$− .

2.10 The man command

The following is themancommand which is used to diplay sections of the UNIX manual on your terminal. It is
called, for example, as

An Introduction to the UNIX Shell USD:3-13

man sh
man−t ed
man 2 fork

In the first the manual section forsh is displayed.. Since no section is specified, section 1 is used. The second
example will typeset (−t option) the manual section fored. The last prints thefork manual page from section 2,
which covers system calls.

cd /usr/man

: ´colon is the comment command´
: ´default is nroff ($N), section 1 ($s)´
N=n s=1

for i
do case $i in

[1−9]*) s=$i ;;

−t) N=t ;;

−n) N=n ;;

−*) echo unknown flag \\´$i\\´ ;;

*) if test−f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else : ´look through all manual sections´

found=no
for j in 1 2 3 4 5 6 7 8 9
do if test−f man$j/$i.$j
then man $j $i
found=yes
fi
done
case $found in
no) echo \’$i: manual page not found\’
esac

fi
esac
done

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a shell
procedure of the formname=valuethat precedes the command name causesvalue to be assigned tonamebefore
execution of the procedure begins. The value ofnamein the invoking shell is not affected. For example,

user=fred command

will executecommandwith user set tofred. The−k flag causes arguments of the formname=valueto be interpreted
in this way anywhere in the argument list. Suchnamesare sometimes called keyword parameters. If any arguments
remain they are available as positional parameters$1, $2, .

Thesetcommand may also be used to set positional parameters from within a procedure. For example,

USD:3-14 An Introduction to the UNIX Shell

set− *
will set $1 to the first file name in the current directory,$2 to the next, and so on. Note that the first argument,−,
ensures correct treatment when the first file name begins with a− .

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the call. Ke yword
parameters are also made available implicitly to a shell procedure by specifying in advance that such parameters are
to be exported. For example,

export user box

marks the variablesuser andbox for export. When a shell procedure is invoked copies are made of all exportable
variables for use within the invoked procedure. Modification of such variables within the procedure does not affect
the values in the invoking shell. It is generally true of a shell procedure that it may not modify the state of its caller
without explicit request on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declaredreadonly . The form of this command is the
same as that of theexportcommand,

readonly name

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the variabled is not set

echo $d

or

echo ${d}

will echo nothing. A default string may be given as in

echo ${d−.}

which will echo the value of the variabled if it is set and ‘.’ otherwise. The default string is evaluated using the
usual quoting conventions so that

echo ${d−´* ´}

will echo* if the variabled is not set. Similarly

echo ${d−$1}

will echo the value ofd if it is set and the value (if any) of$1 otherwise. A variable may be assigned a default value
using the notation

echo ${d=.}

which substitutes the same string as

echo ${d−.}

and ifd were not previously set then it will be set to the string ‘.’ . (The notation ${=} is not available for positional
parameters.)

If there is no sensible default then the notation

echo ${d?message}

will echo the value of the variabled if it has one, otherwisemessageis printed by the shell and execution of the shell
procedure is abandoned. Ifmessageis absent then a standard message is printed. A shell procedure that requires
some parameters to be set might start as follows.

An Introduction to the UNIX Shell USD:3-15

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have been evaluated. If any
of the variablesuser, acct or bin are not set then the shell will abandon execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The commandpwd prints
on its standard output the name of the current directory. For example, if the current directory is/usr/fred/bin then
the command

d=`pwd`

is equivalent to

d=/usr/fred/bin

The entire string between grave accents (``) is taken as the command to be executed and is replaced with the output
from the command. The command is written using the usual quoting conventions except that a` must be escaped
using a\ . For example,

ls `echo "$1"`

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs (includingheredocuments) and
the treatment of the resulting text is the same in both cases. This mechanism allows string processing commands to
be used within shell procedures. An example of such a command isbasenamewhich removes a specified suffix
from a string. For example,

basename main.c .c

will print the stringmain . Its use is illustrated by the following fragment from acccommand.

case $A in

* .c) B=`basename $A.c`

esac

that setsB to the part of$A with the suffix.c stripped.

Here are some composite examples.

• for i in `ls −t`; do
The variablei is set to the names of files in time order, most recent first.

• set `date`; echo $6 $2 $3, $4
will print, e.g.,1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file name generation
for the arguments to commands. This section discusses the order in which these evaluations occur and the effects of
the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is executed the
following substitutions occur.

• parameter substitution, e.g.$user

• command substitution, e.g.`pwd`

USD:3-16 An Introduction to the UNIX Shell

Only one evaluation occurs so that if, for example, the value of the variableX is the string$y then

echo $X

will echo$y .

• blank interpretation

Following the above substitutions the resulting characters are broken into non-blank words (blank inter-
pretation). For this purpose ‘blanks’ are the characters of the string$IFS. By default, this string con-
sists of blank, tab and newline. The null string is not regarded as a word unless it is quoted. For exam-
ple,

echo ´´

will pass on the null string as the first argument toecho, whereas

echo $null

will call echowith no arguments if the variablenull is not set or set to the null string.

• file name generation

Each word is then scanned for the file pattern characters*, ? and[] and an alphabetical list of file names
is generated to replace the word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associated with afor loop. Only substitution occurs in
thewordused for acase branch.

As well as the quoting mechanisms described earlier using\ and´´ a third quoting mechanism is provided using dou-
ble quotes. Within double quotes parameter and command substitution occurs but file name generation and the
interpretation of blanks does not. The following characters have a special meaning within double quotes and may be
quoted using\ .

$ parameter substitution
` command substitution
" ends the quoted string
\ quotes the special characters$ ` " \

For example,

echo "$x"

will pass the value of the variablex as a single argument toecho. Similarly,

echo "$* "

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2 "

The notation$@ is the same as$* except when it is quoted.

echo "$@"

will pass the positional parameters, unevaluated, toechoand is equivalent to

echo "$1" "$2"

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

An Introduction to the UNIX Shell USD:3-17

metacharacter
\ $ * ` " ´

´ n n n n n t
` y n n t n n
" y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in commandevalmay be used. For exam-
ple, if the variableX has the value$y, and ify has the valuepqr then

eval echo $X

will echo the stringpqr .

In general theevalcommand evaluates its arguments (as do all commands) and treats the result as input to the shell.
The input is read and the resulting command(s) executed. For example,

wg=\’eval whogrep\’
$wg fred

is equivalent to

whogrep fred

In this example,eval is required since there is no interpretation of metacharacters, such as, following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being used
interactively. An interactive shell is one whose input and output are connected to a terminal (as determined bygtty
(2)). A shell invoked with the−i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.

• Input output redirection may fail. For example, if a file does not exist or cannot be created.

• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a "bus error" or "memory fault". See Figure 2 below
for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error message will
be printed by the shell. All remaining errors cause the shell to exit from a command procedure. An interactive shell
will return to read another command from the terminal. Such errors include the following.

• Syntax errors. e.g., if then done

• A signal such as interrupt. The shell waits for the current command, if any, to finish execution and then either
exits or returns to the terminal.

• Failure of any of the built-in commands such ascd.

The shell flag−e causes the shell to terminate if any error is detected.

USD:3-18 An Introduction to the UNIX Shell

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be caught or ignored)
10* bus error
11* segmentation violation
12* bad argument to system call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (fromkill (1))

Figure 3. UNIX signals†
Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignores quit
which is the only external signal that can cause a dump. The signals in this list of potential interest to shell programs
are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. Thetrap command is used if
some cleaning up is required, such as removing temporary files. For example,

trap ´rm /tmp/ps$$; exit´ 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm /tmp/ps$$; exit

exit is another built-in command that terminates execution of a shell procedure. Theexit is required; otherwise, after
the trap has been taken, the shell will resume executing the procedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is never sent to
the process. They can be caught, in which case the process must decide what action to take when the signal is
received. Lastly, they can be left to cause termination of the process without it having to take any further action. If a
signal is being ignored on entry to the shell procedure, for example, by invoking it in the background (see 3.7) then
trap commands (and the signal) are ignored.

The use oftrap is illustrated by this modified version of thetouchcommand (Figure 4). The cleanup action is to
remove the filejunk$$.

† Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.

An Introduction to the UNIX Shell USD:3-19

flag=
trap ´rm−f junk$$; exit´ 1 2 3 15
for i
do case $i in
−c) flag=N ;;

*) if test−f $i
then ln $i junk$$; rm junk$$
elif test $flag
then echo file \\´$i\\´ does not exist
else >$i
fi

esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be possible for the process
to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit from the
shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The following
fragment is taken from thenohupcommand.

trap ´´ 1 2 3 15

which causeshangup, interrupt, quitandkill to be ignored both by the procedure and by invoked commands.

Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be obtained
by writing

trap

The procedurescan(Figure 5) is an example of the use oftrap where there is no exit in the trap command.scan
takes each directory in the current directory, prompts with its name, and then executes commands typed at the termi-
nal until an end of file or an interrupt is received. Interrupts are ignored while executing the requested commands
but cause termination whenscanis waiting for input.

d=`pwd`
for i in *
do if test−d $d/$i
then cd $d/$i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in the variablex . It
returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

USD:3-20 An Introduction to the UNIX Shell

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system callfork. The execu-
tion environment for the command includes input, output and the states of signals, and is established in the child
process before the command is executed. The built-in commandexecis used in the rare cases when no fork is
required and simply replaces the shell with a new command. For example, a simple version of thenohupcommand
looks like

trap \’\’ 1 2 3 15
exec $*

The trap turns off the signals specified so that they are ignored by subsequently created commands andexecreplaces
the shell by the command specified.

Most forms of input output redirection have already been described. In the followingword is only subject to param-
eter and command substitution. No file name generation or blank interpretation takes place so that, for example,

echo >* .c

will write its output into a file whose name is*.c . Input output specifications are evaluated left to right as they
appear in the command.

> word The standard output (file descriptor 1) is sent to the fileword which is created if it does not already
exist.

word The standard output is sent to fileword. If the file exists then output is appended (by seeking to the
end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the fileword.

word The standard input is taken from the lines of shell input that follow up to but not including a line con-
sisting only ofword. If word is quoted then no interpretation of the document occurs. Ifword is not
quoted then parameter and command substitution occur and\ is used to quote the characters\ $ ` and
the first character ofword. In the latter case\newline is ignored (c.f. quoted strings).

>& digit The file descriptordigit is duplicated using the system calldup (2) and the result is used as the stan-
dard output.

<& digit The standard input is duplicated from file descriptordigit.

<&− The standard input is closed.

>&− The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified by the digit
instead of the default 0 or 1. For example,

2>file

runs a command with message output (file descriptor 2) directed tofile.

2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is created
by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as

list * .c lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty file/dev/null . This
prevents two processes (the shell and the command), which are running in parallel, from trying to read the same
input. Chaos would ensue if this were not the case. For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and INTERRUPT sig-
nals so that they are ignored by the command. This allows these signals to be used at the terminal without causing

An Introduction to the UNIX Shell USD:3-21

background commands to terminate. For this reason the UNIX convention for a signal is that if it is set to 1
(ignored) then it is never changed even for a short time. Note that the shell commandtrap has no effect for an
ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is a minus,
then commands are read from the file.profile .

−c string
If the −c flag is present then commands are read fromstring .

−s If the −s flag is present or if no arguments remain then commands are read from the standard input. Shell out-
put is written to file descriptor 2.

−i If the −i flag is present or if the shell input and output are attached to a terminal (as told bygtty) then this shell
is interactive. In this case TERMINATE is ignored (so thatkill 0 does not kill an interactive shell) and
INTERRUPT is caught and ignored (so thatwait is interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell unix command language thompson and the
PWB/UNIX shell, pwb shell mashey unix some features having been taken from both. Similarities also exist with
the command interpreters of the Cambridge Multiple Access System cambridge multiple access system hartley and
of CTSS. ctss

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell. I am also
grateful to the members of the Computing Science Research Center and to Joe Maranzano for their comments on
drafts of this document.

$LIST$

USD:3-22 An Introduction to the UNIX Shell

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list}
for namedo command-listdone
for namein word do command-listdone
while command-listdo command-listdone
until command-listdo command-listdone
case word in case-partesac
if command-listthen command-list else-partfi

pipeline: command
pipeline command

andor: pipeline
andor&& pipeline
andor pipeline

command-list: andor
command-list;
command-list&
command-list; andor
command-list& andor

input-output: > file
< file
word
word

file: word
& digit
& −

case-part: pattern) command-list;;

pattern: word
pattern word

else-part: elif command-listthen command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

digit: 0 1 2 3 4 5 6 7 8 9

An Introduction to the UNIX Shell USD:3-23

Appendix B - Meta-characters and Reserved Words

a) syntactic

pipe symbol

&& ‘andf ’ symbol

‘orf ’ symbol

; command separator

;; case delimiter

& background commands

() command grouping

< input redirection

input from a here document

> output creation

output append

b) patterns

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

c) substitution

${...} substitute shell variable

`...` substitute command output

d) quoting

\ quote the next character

´...´ quote the enclosed characters except for ´

"..." quote the enclosed characters except for$ ` \ "

e) reserved words

if then else elif fi
case in esac
for while until do done
{ }

-- --

