F A I VAWMLV BV iy WWINIAY Wi Tl N N b @ Nl wlm

An Introduction to the UNI X Shdll

S. R. Bourne

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

(Updated for 4.3BSD by Mark Seiden)

ABSTRACT

Theshellfis a command programming language that provides an interface Woitké operat-

ing system. lts features include control-flow primitives, parameter passing, variables and string
substitution. Constructs suchahile, if then else, casandfor are available. Two-way commu-
nication is possible between tsgell and commands. String-valued parameters, typically file
names or flags, may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may be used as shell
input.

The shell can modify the environment in which commands run. Input and output can be redi-
rected to files, and processes that communicate through ‘pipes’ can be invoked. Commands are
found by searching directories in the file system in a sequence that can be defined by the user.
Commands can be read either from the terminal or from a file, which allows command proce-
dures to be stored for later use.

1.0 Introduction

The shell is both a command language and a programming language that provides an interface to the UNIX operat-
ing system. This memorandum describes, with examples, the UNIX shell. The first section covers most of the
everyday requirements of terminal users. Some familiarity with UNIX is an advantage when reading this section;
see, for example, "UNIX for beginners". unix beginn kernigh 1978 Section 2 describes those features of the shell
primarily intended for use within shell procedures. These include the control-flow primitives and string-valued vari-
ables provided by the shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the fuipa (2geare to a

section of the UNIX manual. seventh 1978 ritchie thompson

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the name of the command to
be executed; any remaining words are passed as arguments to the command. For example,

who
is a command that prints the names of users logged in. The command
Is -l

prints a list of files in the current directory. The argumeénells|s to print status information, size and the creation
date for each file.

T This paper describes sh(1). If it's the ¢ shell (csh) you're interested in, a good place to begin is William Joy’s paper "An
Introduction to the C shell" (USD:4).
T UNIX is a trademark of AT&T Bell Laboratories.

N Y B @ N F Al I VUMW WLEWIT W T WWINEIAY WA T

1.2 Background commands

To execute a command the shell normally creates goravessand waits for it to finish. A command may be run
without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the filgm.c . The trailing& is an operator that instructs the shell not to wait for
the command to finish. To help keep track of such a process the shell reports its process number following its cre-
ation. A list of currently active processes may be obtained usirgst@mmand.

1.3 Input output redirection

Most commands produce output on the standard output that is initially connected to the terminal. This output may
be sent to a file by writing, for example,

Is - >file

The notatior>file is interpreted by the shell and is not passed as an argumsntlitdile does not exist then the
shell creates it; otherwise the original contentBlefare replaced with the output frdsm Output may be appended
to a file using the notation

Is -l file

In this casdile is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing, for example,
wec <file

The commandvc reads its standard input (in this case redirected filmnand prints the number of characters,
words and lines found. If only the number of lines is required then

wc - <file

could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by writing the ‘pipe’ opera-
tor, indicated by , as in,

Is—l wc
Two commands connected in this way constitutgpalineand the overall effect is the same as
Is -l >file; wc <file

except that ndile is used. Instead the two processes are connected by a pigepEsEd)) and are run in parallel.
Pipes are unidirectional and synchronization is achieved by haWirwghen there is nothing to read and haltisg
when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as output. One
such filter,grep,selects from its input those lines that contain some specified string. For example,

Is grep old
prints those lines, if any, of the output frdgrthat contain the stringld. Another useful filter isort For example,
who sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,

Is grepold we-l

prints the number of file names in the current directory containing the shting

F A I VAWMLV BV iy WWINIAY Wi Tl At

1.5 File name generation
Many commands accept arguments which are file names. For example,

Is =l main.c

prints information relating to the fil@ain.c.
The shell provides a mechanism for generating a list of file names that match a pattern. For example,

Is—l x.c

generates, as argumentdgpall file names in the current directory that endcin The character is a pattern that
will match any string including the null string. In gengpatternsare specified as follows.

* Matches any string of characters including the null string.
? Matches any single character.
[Matches any one of the characters enclosed. A pair of characters separated by a minus will match

any character lexically between the pair.
For example,

[a-z]*
matches all names in the current directory beginning with one of the ketteighz.
{usr/fred/test/?

matches all names in the directdosr/fred/test that consist of a single character. If no file name is found that
matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may also be used to
find files. For example,

echo /usr/fredd/core

finds and prints the names of edirefiles in sub-directories dfisr/fred. (echois a standard UNIX command that
prints its arguments, separated by blanks.) This last feature can be expensive, requiring a scan of all sub-directories
of /usr/fred.

There is one exception to the general rules given for patterns. The chataatehé start of a file name must be
explicitly matched.

echox
will therefore echo all file names in the current directory not beginning with *
echo.x

will echo all those file names that begin with ‘This avoids inadvertent matching of the naméand *.." which
mean ‘the current directory’ and ‘the parent directory’ respectively. (Noticdsisappresses information for the
files . and *.".)

1.6 Quoting

Characters that have a special meaning to the shell, such as? & , are called metacharacters. A complete list
of metacharacters is given in appendix B. Any character preceded isygaotedand loses its special meaning, if
any. The is elided so that

echo \\?
will echo a single?, and
echo \\\

will echo a singld. To allow long strings to be continued over more than one line the sequentme is ignored.

Rl L F Al I VUMW WLEWIT W T WWINEIAY WA T

\ is convenient for quoting single characters. When more than one character needs quotiogetimectanism is
clumsy and error prone. A string of characters may be quoted by enclosing the string between single quotes. For
example,

echo xx¥xx* “XX
will echo
XX** %% XX

The quoted string may not contain a single quote but may contain newlines, which are preserved. This quoting
mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes is also available that prevents interpretation of some but not all
metacharacters. Discussion of the details is deferred to section 3.4 .

1.7 Prompting

When the shell is used from a terminal it will issue a prompt before reading a command. By default this prompt is
‘$’. It may be changed by saying, for example,

PStyesdear

that sets the prompt to be the strijggdear .If a newline is typed and further input is needed then the shell will
issue the prompt’. Sometimes this can be caused by mistyping a quote mark. If it is unexpected then an inter-
rupt (DEL) will return the shell to read another command. This prompt may be changed by saying, for example,

PSZ=more

1.8 Theshell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If the user’s login direc-
tory contains the fileprofile then it is assumed to contain commands and is read by the shell before reading any
commands from the terminal.

1.9 Summary
. Is
Print the names of files in the current directory.
. Is>file
Put the output fronts into file.
. Is wc -l
Print the number of files in the current directory.
. Is grep old

Print those file names containing the strirhdy

. Is grep old we -l
Print the number of files whose name contains the sbtohg

. cc pgm.c &
Runccin the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,

sh file [args]

calls the shell to read commands fréita. Such a file is called aommand procedurer shell procedure.Argu-
ments may be supplied with the call and are referredfiteinsing the positional parametéit $2, . For example,
if the file wg contains

F A I VAWMLV BV iy WWINIAY Wi Tl At

who grep $1
then

sh wg fred
is equivalent to

who grep fred

UNIX files have three independent attributesd, writeandexecute.The UNIX commanchmod(1) may be used
to make a file executable. For example,

chmod +x wg

will ensure that the filevg has execute status. Following this, the command
wyg fred

is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new process is created to run
the command.

As well as providing names for the positional parameters, the number of positional parameters in the call is available
as$#. The name of the file being executed is availabl#0as

A special shell paramet& is used to substitute for all positional parameters ex¥&ptA typical use of this is to
provide some default arguments, as in,

nroff -T450-ms %

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the argun®nt$2() executing commands once for each
argument. An example of such a procedutelithat searches the filasr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text oftel is

fori
do grep $i /ust/lib/telnos; done

The command
tel fred

prints those lines ifusr/lib/telnos that contain the strinfyed .
tel fred bert

prints those lines containirfged followed by those fobert.
Thefor loop notation is recognized by the shell and has the general form

for namein wl w2
do command-list
done

A command-lists a sequence of one or more simple commands separated or terminated by a newline or semicolon.

N Y B 2 N S F Al I VUMW WLEWIT W T WWINEIAY WA T

Furthermore, reserved words lik® and done are only recognized following a newline or semicolarameis a
shell variable that is set to the word% w2 in turn each time theommand-lisfollowing do is executed. Ifn wl
w2 is omitted then the loop is executed once for each positional parameter;ith&kiss assumed.

Another example of the use of tfee loop is thecreatecommand whose text is
for i do >$i; done

The command
create alpha beta

ensures that two empty filedphaandbetaexist and are empty. The notatinfile may be used on its own to create
or clear the contents of a file. Notice also that a semicolon (or newline) is requireddoefre

2.2 Control flow - case
A multiple way branch is provided for by tlease notation. For example,
case $#in
1) cat$l;;
2) cat$2<3$1;;
x) echo\'usage: append [from] to\’ ;;
esac

is anappendcommand. When called with one argument as
append file
$# is the strindl and the standard input is copied onto the erfidenfising thecat command.
append filel file2
appends the contents file1 ontofile2. If the number of arguments suppliedappendis other than 1 or 2 then a
message is printed indicating proper usage.
The general form of thease command is

casewordin
pattern) command-list;

esac

The shell attempts to matetord with eachpattern,in the order in which the patterns appear. If a match is found
the associatedommand-lisis executed and execution of tb@se is complete. Since is the pattern that matches
any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argument. The first match
found defines the set of commands to be executed. In the example below the commands following thevgécond
never be executed.

case $# in
*)
*)
esac

Another example of the use of thase construction is to distinguish between different forms of an argument. The
following example is a fragment ofca command.

F A I VAWMLV BV iy WWINIAY Wi Tl N Y b a N R

fori

do case $iin

—[ocs]) "

—+) echo V'unknown flag $i\' ;;

%.c) /lib/cOSi ;;

%) echo \'unexpected argument $i\’ ;;
esac

done

To allow the same commands to be associated with more than one pattase teenmand provides for alternative
patterns separated by a . For example,

case $iin
—X-Y)
esac

is equivalent to

case $iin

—[xyl)
esac

The usual quoting conventions apply so that

case $iin
\\?)

will match the charactet.

2.3 Heredocuments

The shell procedurtel in section 2.1 uses the filasr/lib/telnos to supply the data fagrep. An alternative is to
include this data within the shell procedure &&rgedocument, as in,

fori
do grep $i!

fred mh0123
bert mh0789

!

done
In this example the shell takes the lines betwesamd! as the standard input fgrep. The string! is arbitrary, the
document being terminated by a line that consists of the string following .

Parameters are substituted in the document before it is made availgldp &g illustrated by the following proce-
dure callecedg .

ed $3 %
o/$1/sl/$2/g
w

%

The call
edg string1l string2 file

is then equivalent to the command

At F Al I VUMW WLEWIT W T WWINEIAY WA T

ed file %
g/stringl/s//string2/g
w

%

and changes all occurrencesstringlin file to string2 . Substitution can be prevented using \ to quote the special
charactefs as in

ed $3 +
1\$s/$1/$2/g
w

+

(This version okdgis equivalent to the first except tledwill print a ? if there are no occurrences of the sti§ig)
Substitution within deredocument may be prevented entirely by quoting the terminating string, for example,

grep $i \\#

#
The document is presented without modificatiomytep. If parameter substitution is not required itmere docu-
ment this latter form is more efficient.

2.4 Shdll variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits and
underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variabilesr, box andacct. A variable may be set to the null string by saying, for
example,

null=
The value of a variable is substituted by preceding its namebwitir example,
echo $user

will echofred.
Variables may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

will move the filepgmfrom the current directory to the directoysr/fred/bin. A more general notation is avail-
able for parameter (or variable) substitution, as in,

echo ${user}
which is equivalent to
echo $user
and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

will direct the output opsto the file/tmp/psa, whereas,
ps a >$tmpa

would cause the value of the variabigpa to be substituted.

F A I VAWMLV BV iy WWINIAY Wi Tl Al

Except for$? the following are set initially by the shel$? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most commands
return a zero exit status if they complete successfully, otherwise a non-zero exit status is returned.
Testing the value of return codes is dealt with later uridgerdwhile commands.

$H The number of positional parameters (in decimal). Used, for example, api@adcommand to
check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among all existing
processes, this string is frequently used to generate unique temporary file names. For example,
ps a >/tmp/ps$$
rm /tmp/ps$$
$! The process number of the last process run in the background (in decimal).
$- The current shell flags, such-asand-v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively the shell looks at the file specified by this variable before it issues a prompt.
If the specified file has been modified since it was last looked at the shell prints the rgessage
have mailbefore prompting for the next command. This variable is typically set in therfdgéle,
in the user’s login directory. For example,

MAIL =/usr/spool/mail/fred

$HOME The default argument for theel command. The current directory is used to resolve file name refer-
ences that do not begin with gand is changed using ted command. For example,

cd /usr/fred/bin
makes the current directofysr /fred/bin.
cat wn

will print on the terminal the filevnin this directory. The commanztl with no argument is equiv-
alent to

cd HOME

This variable is also typically set in the the user’s login profile.

$PATH Alist of directories that contain commands (#earch patf). Each time a command is executed by
the shell a list of directories is searched for an executable fikPAKH is not set then the current
directory,/bin, and/usr/bin are searched by default. Otherw®®&TH consists of directory names
separated by. For example,

PATH=:/usr/fred/bin/bin:/usr/bin

specifies that the current directory (the null string before the Jir&tsr /fred/bin, /bin and/usr/bin

are to be searched in that order. In this way individual users can have their own ‘private’ commands
that are accessible independently of the current directory. If the command name cohthieis a

this directory search is not used; a single attempt is made to execute the command.

$PS1 The primary shell prompt string, by defaut,’:
$PS2 The shell prompt when further input is needed, by default,
$IFS The set of characters usedhignk interpretation(see section 3.4).

2.5 Thetest command
Thetestcommand, although not part of the shell, is intended for use by shell programs. For example,

N Y B @ Nl wlm NS AL 1T VMWLV W T WFINIAY WA TR

test—f file

returns zero exit status fille exists and non-zero exit status otherwise. In gertesdkvaluates a predicate and
returns the result as its exit status. Some of the more frequentlyegsadjuments are given here, dest(1) for a
complete specification.

tests true if the argumestis not the null string
test—f file true if file exists

test-r file true iffile is readable

test-w file true iffile is writable

test—d file true iffile is a directory

2.6 Control flow - while

The actions of théor loop and thecase branch are determined by data available to the shelhide or until loop
and anif then else branch are also provided whose actions are determined by the exit status returned by commands.
A whileloop has the general form

while command-list
do command-list
done

The value tested by thehile command is the exit status of the last simple command followhite. Each time
round the loopcommand-lisis executed; if a zero exit status is returned t@nmand-lisis executed; otherwise,
the loop terminates. For example,

while test $1
do

shift

done

is equivalent to

fori

do

done
shiftis a shell command that renames the positional paran#e$3, as$1, $2, and lose$1.
Another kind of use for thevhile/until loop is to wait until some external event occurs and then run some com-
mands. In amntil loop the termination condition is reversed. For example,

until test—f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. (Presumably another
process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,
if command-list
then command-list
else command-list
fi
that tests the value returned by the last simple command folléfving
Theif command may be used in conjunction with tdstcommand to test for the existence of a file as in

F A I VAWMLV BV iy WWINIAY Wi Tl A

if test—f file

then process file

else do something else
fi

An example of the use @ff, case andfor constructions is given in section 2.10.

A multiple testif command of the form
if
then
else if
then
else if

fi
fi
fi
may be written using an extension of thaotation as,

if

then

elif

then

elif

fi

The following example is theouchcommand which changes the ‘last modified’ time for a list of files. The com-
mand may be used in conjunction wittake(1) to force recompilation of a list of files.

flag=

fori

do case $iin

-c) flag=N;;

x) if test—f i
then In $i junk$$; rm junk$$s
elif test $flag
then echo file \W$i\\" does not exist
else >$i
fi

esac

done

The—cflag is used in this command to force subsequent files to be created if they do not already exist. Otherwise, if
the file does not exist, an error message is printed. The shell vdl#pie set to some non-null string if the
argument is encountered. The commands

In;rm
make a link to the file and then reme itthus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written

N Y B @ Nl i AL 1T VMWLV W T WFINIAY WA TR

commandl && command?2
Conversely,

commandl command2
executeccommandnly if commandifails. In each case the value returned is that of the last simple command
executed.

2.8 Command grouping
Commands may be grouped in two ways,

{ command-list }
and

(command-lis)

In the firstcommand-lisis simply executed. The second form execum®mand-listas a separate process. For
example,

(cd x; rm junk)
executesm junkin the directoryx without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the dirextory

2.9 Debugging shell procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked within the
procedure as

set—-v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to help isolate syntax
errors. It may be invoked without modifying the procedure by saying

sh-v proc

whereprocis the name of the shell procedure. This flag may be used in conjunction withfthg which prevents
execution of subsequent commands. (Note that saghegn at a terminal will render the terminal useless until an
end-of-file is typed.)

The command
set-x

will produce an execution trace. Following parameter substitution each command is printed as it is executed. (Try
these at the terminal to see what effect they have.) Both flags may be turned off by saying

set-

and the current setting of the shell flags is availabf-as

2.10 The man command

The following is theman command which is used to diplay sections of the UNIX manual on your terminal. It is
called, for example, as

F A I VAWMLV BV iy WWINIAY Wi Tl N Y B @ Nl Nl

man sh
man-t ed
man 2 fork

In the first the manual section fehis displayed.. Since no section is specified, section 1 is used. The second
example will typeset-t option) the manual section fed. The last prints théork manual page from section 2,
which covers system calls.

cd /usr/man

: “colon is the comment command”
: “default is nroff ($N), section 1 ($s)”
N=n s=1

fori
do case $iin

[1-9]*) s=%i;;

) N=t;;

-n) N=n;

—+) echo unknown flag W$i\\" ;;

x) if test—f man$s/$i.$s
then ${N}roff man0/${N}aa man$s/$i.$s
else :’look through all manual sections’
found=no
forjin123456789
do if test=f man$j/$i.$]
then man $j $i
found=yes
fi
done
case $found in
no) echo \'$i: manual page not found\'
esac
fi
esac
done

Figure 1. A version of the man command

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to a shell
procedure of the formame=valuethat precedes the command name cauaggto be assigned tnamebefore
execution of the procedure begins. The valueashein the invoking shell is not affected. For example,

user=fred command

will executecommandvith user set tofred. The-k flag causes arguments of the faname=valueto be interpreted
in this way anywhere in the argument list. Sneimesare sometimes called keyword parameters. If any arguments
remain they are available as positional paramé&er$2, .

Thesetcommand may also be used to set positional parameters from within a procedure. For example,

N Y B @ Nl T AL 1T VMWLV W T WFINIAY WA TR

set—*

will set $1 to the first file name in the current directdbg, to the next, and so on. Note that the first argument,
ensures correct treatment when the first file name begins with a

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied with the call. Keyword
parameters are also made available implicitly to a shell procedure by specifying in advance that such parameters are
to be exported. For example,

export user box

marks the variablesser andbox for export. When a shell procedure is invoked copies are made of all exportable
variables for use within the invoked procedure. Modification of such variables within the procedure does not affect
the values in the invoking shell. It is generally true of a shell procedure that it may not modify the state of its caller
without explicit request on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be dedadesly . The form of this command is the
same as that of trexportcommand,

readonly name

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution
If a shell parameter is not set then the null string is substituted for it. For example, if the \chisaid set

echo $d

or
echo ${d}

will echo nothing. A default string may be given as in
echo ${d-}

which will echo the value of the variabtkif it is set and " otherwise. The default string is evaluated using the
usual quoting conventions so that

echo ${d-"+"}
will echo* if the variabled is not set. Similarly
echo ${d-$1}

will echo the value ofl if it is set and the value (if any) 81 otherwise. A variable may be assigned a default value
using the notation

echo ${d=}
which substitutes the same string as
echo ${d-}

and ifd were not previously set then it will be set to the strihg (The notation ${=} is not available for positional
parameters.)

If there is no sensible default then the notation
echo ${d?message}

will echo the value of the variabtkif it has one, otherwismessagés printed by the shell and execution of the shell
procedure is abandoned. rifessagés absent then a standard message is printed. A shell procedure that requires
some parameters to be set might start as follows.

F A I VAWMLV BV iy WWINIAY Wi Tl N Y B @ Nl Nl

: ${user?} ${acct?} ${bin?}

Colon () is a command that is built in to the shell and does nothing once its arguments have been evaluated. If any
of the variablesiser, acct or bin are not set then the shell will abandon execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The qwdrpents
on its standard output the name of the current directory. For example, if the current directar§risd/bin then
the command

d="pwd"
is equivalent to
d=/usr/fred/bin

The entire string between grave accents () is taken as the command to be executed and is replaced with the output
from the command. The command is written using the usual quoting conventions exceptrhait de escaped
using a\. For example,

Is "echo "$1"
is equivalent to
Is $1

Command substitution occurs in all contexts where parameter substitution occurs (inbkrdidgcuments) and

the treatment of the resulting text is the same in both cases. This mechanism allows string processing commands to
be used within shell procedures. An example of such a commarasénamevhich removes a specified suffix

from a string. For example,

basename maiai.c
will print the stringmain . Its use is illustrated by the following fragment froraca&command.

case $Ain
%x.c) B="basename $A&"

esac

that set® to the part oA with the suffix.c stripped.
Here are some composite examples.
. foriin’ls—t"; do
The variabld is set to the names of files in time order, most recent first.

. set “date’; echo $6 $2 $3, $4
will print, e.g.,1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and file name generation
for the arguments to commands. This section discusses the order in which these evaluations occur and the effects of
the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a command is executed the
following substitutions occur.

. parameter substitution, e $user
. command substitution, e.gowd’

N Y B @ Nl WS AL 1T VMWLV W T WFINIAY WA TR

Only one evaluation occurs so that if, for example, the value of the vaxiabléne stringby then
echo $X

will echo$y .
. blank interpretation

Following the abve substitutions the resulting characters are broken into non-blank vinted& (nter-
pretatior). For this purpose ‘blanks’ are the characters of the stiirg§ By default, this string con-

sists of blank, tab and newline. The null string is not regarded as a word unless it is quoted. For exam-
ple,

echo”
will pass on the null string as the first argumergdbqg whereas
echo $null

will call echowith no arguments if the variabteill is not set or set to the null string.
. file name generation

Each word is then scanned for the file pattern charaetérand[] and an alphabetical list of file names
is generated to replace the word. Each such file name is a separate argument.

The evaluations just described also occur in the list of words associatedfaritto@p. Only substitution occurs in
theword used for acase branch.

As well as the quoting mechanisms described earlier Using”” a third quoting mechanism is provided using dou-

ble quotes. Within double quotes parameter and command substitution occurs but file name generation and the
interpretation of blanks does not. The following characters have a special meaning within double quotes and may be
quoted using.

$ parameter substitution
: command substitution
ends the quoted string
\ guotes the special charact&rs" \

For example,
echo "$x"

will pass the value of the variableas a single argument ézho. Similarly,
echo "$"

will pass the positional parameters as a single argument and is equivalent to
echo "$1 $2 "

The notatior$@ is the same ab+ except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluatedchoand is equivalent to
echo "$1" "$2"

The following table gives, for each quoting mechanism, the shell metacharacters that are evaluated.

F A I VAWMLV BV iy WWINIAY Wi Tl N Y B @ Nl R

metacharacter

\ $ * "

n n n n n t

y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

Figure 2. Quoting mechanisms

In cases where more than one evaluation of a string is required the built-in coevabmdy be used. For exam-
ple, if the variableX has the valu8y, and ify has the valugqr then

eval echo $X

will echo the stringqr .
In general theevalcommand evaluates its arguments (as do all commands) and treats the result as input to the shell.
The input is read and the resulting command(s) executed. For example,

wg=\"eval whogrep\’
$wyg fred

is equivalent to
whogrep fred

In this examplegvalis required since there is no interpretation of metacharacters, syétila&ing substitution.

3.5Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being used
interactively. An interactive shell is one whose input and output are connected to a terminal (as detergtiyed by
(2)). A shell invoked with the-i flag is also interactive.

Execution of a command (see also 3.7) may fail for any of the following reasons.
. Input output redirection may fail. For example, if a file does not exist or cannot be created.
. The command itself does not exist or cannot be executed.

. The command terminates abnormally, for example, with a "bus error" or "memory fault”. See Figure 2 below
for a complete list of UNIX signals.

. The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case an error message will
be printed by the shell. All remaining errors cause the shell to exit from a command procedure. An interactive shell
will return to read another command from the terminal. Such errors include the following.

. Syntax errors. e.g., if then done

. A signal such as interrupt. The shell waits for the current command, if any, to finish execution and then either
exits or returns to the terminal.

. Failure of any of the built-in commands suctcds
The shell flag-e causes the shell to terminate if any error is detected.

N Y B @ Nl T AL 1T VMWLV W T WFINIAY WA TR

1 hangup
2 interrupt
3* quit

4* illegal instruction

5* trace trap

6* 10T instruction

7* EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (froikill (1))

Figure 3. UNIX signalst
Those signals marked with an asterisk produce a core dump if not caught. However, the shell itself ignores quit
which is the only external signal that can cause a dump. The signals in this list of potential interest to shell programs
are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the termingtadbemmand is used if
some cleaning up is required, such as removing temporary files. For example,

trap “rm /tmp/ps$$; exit” 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the commands

rm /tmp/ps$$; exit
exitis another built-in command that terminates execution of a shell procedurexifiseequired; otherwise, after
the trap has been taken, the shell will resume executing the procedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the signal is never sent to
the process. They can be caught, in which case the process must decide what action to take when the signal is
received. Lastly, they can be left to cause termination of the process without it having to take any further action. If a
signal is being ignored on entry to the shell procedure, for example, by invoking it in the background (see 3.7) then
trap commands (and the signal) are ignored.

The use ofrap is illustrated by this modified version of theuchcommand (Figure 4). The cleanup action is to
removethe filejunk$$.

T Additional signals have been added in Berkeley Unix. See sigvec(2) or signal(3C) for an up-to-date list.

F A I VAWMLV BV iy WWINIAY Wi Tl N Y B @ Nl S

flag=
trap ‘rm—f junk$$; exit” 1 2 3 15

fori

do case $iin

-c) flag=N;;

x) if test—f i
then In $i junk$$; rm junk$$s
elif test $flag
then echo file \W$i\\" does not exist
else >$i
fi

esac

done

Figure 4. The touch command

Thetrap command appears before the creation of the temporary file; otherwise it would be possible for the process
to die without removing the file.

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be executed on exit from the
shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The following
fragment is taken from theohupcommand.

trap”” 12315

which causesangup, interrupt, quiandkill to be ignored both by the procedure and by invoked commands.
Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be obtained
by writing

trap

The procedurecan(Figure 5) is an example of the uset@p where there is no exit in the trap commaisdan

takes each directory in the current directory, prompts with its name, and then executes commands typed at the termi-
nal until an end of file or an interrupt is received. Interrupts are ignored while executing the requested commands
but cause termination wheeanis waiting for input.

d="pwd"

foriin*

do if test—d $d/$i

then cd $d/$i

while echo "$i:"

trap exit 2

read x

do trap : 2; eval $x; done
fi

done

Figure5. The scan command

read xis a built-in command that reads one line from the standard input and places the result in thexvatiable
returns a non-zero exit status if either an end-of-file is read or an interrupt is received.

N Y B @ Nl M NS AL 1T VMWLV W T WFINIAY WA TR

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the sykigm Thk execu-

tion environment for the command includes input, output and the states of signals, and is established in the child
process before the command is executed. The built-in comeesals used in the rare cases when no fork is
required and simply replaces the shell with a new command. For example, a simple versiorobéipitemmand

looks like

trap\'\'12315
exec $

Thetrap turns off the signals specified so that they are ignored by subsequently created commearesrepldces
the shell by the command specified.

Most forms of input output redirection have already been described. In the follmeidgs only subject to param-
eter and command substitution. No file name generation or blank interpretation takes place so that, for example,

echo >.c

will write its output into a file whose name #sc. Input output specifications are evaluated left to right as they
appear in the command.

> word The standard output (file descriptor 1) is sent to theaied which is created if it does not already
exist.

word The standard output is sent to filerd. If the file exists then output is appended (by seeking to the
end); otherwise the file is created.

<word The standard input (file descriptor 0) is taken from thenfded.

word The standard input is taken from the lines of shell input that follow up to but not including a line con-

sisting only ofword. If word is quoted then no interpretation of the document occursond is not
quoted then parameter and command substitution occuriqnded to quote the charactefs™ and
the first character afiord. In the latter casewlineis ignored (c.f. quoted strings).

>& digit The file descriptodigit is duplicated using the system cdillp (2) and the result is used as the stan-
dard output.

<& digit The standard input is duplicated from file descripligit.
<&- The standard input is closed.
>& - The standard output is closed.

Any of the almve may be preceded by a digit in which case the file descriptor created is that specified by the digit
instead of the default 0 or 1. For example,

2>file
runs a command with message output (file descriptor 2) directibel to
2>&1

runs a command with its standard output and message output merged. (Strictly speaking file descriptor 2 is created
by duplicating file descriptor 1 but the effect is usually to merge the two streams.)

The environment for a command run in the background such as
listx.c Ipr&

is modified in two ways. Firstly, the default standard input for such a command is the emfatgvfitell . This
prevents two processes (the shell and the command), which are running in parallel, from trying to read the same
input. Chaos would ensue if this were not the case. For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and INTERRUPT sig-
nals so that they are ignored by the command. This allows these signals to be used at the terminal without causing

F A I VAWMLV BV iy WWINIAY Wi Tl A

background commands to terminate. For this reason the UNIX convention for a signal is that if it is set to 1
(ignored) then it is never changed even for a short time. Note that the shell corttagahds no effect for an
ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero is a minus,
then commands are read from the fieofile.

—c string
If the —c flag is present then commands are read Bting .

-s If the —sflag is present or if no arguments remain then commands are read from the standard input. Shell out-
put is written to file descriptor 2.

=i If the —i flag is present or if the shell input and output are attached to a terminal (as gty tyen this shell
is interactive. In this case TERMINATE is ignored (so thkill 0 does not kill an interactive shell) and
INTERRUPT is caught and ignored (so thait is interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell unix command language thompson and the
PWB/UNIX shell, pwb shell mashey unix some features having been taken from both. Similarities also exist with
the command interpreters of the Cambridge Multiple Access System cambridge multiple access system hartley and
of CTSS. ctss

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design of the shell. 1 am also
grateful to the members of the Computing Science Research Center and to Joe Maranzano for their comments on
drafts of this document.

$LISTS

N N B @ Nl e

Appendix A - Grammar

item:

word
input-output
name = value

simple-command: item

command:

pipeline:

andor:

simple-command item

simple-command
(command-lis)
{ command-lis}

for namedo command-listione

for namein word do command-listione
while command-listo command-listione
until command-listio command-listione
casewordin case-partesac

if command-listhen command-list else-paft

command
pipeline command

pipeline
andor& & pipeline
andor pipeline

command-list: andor

command-list
command-lis&
command-list andor
command-lis& andor

input-output: > file

file:

case-part:

pattern:

else-part:

empty:
word:
name:

digit:

< file
word
word

word

& digit

& —_

patterr) command-list;

word
pattern word

elif command-listhen command-list else-part

else command-list
empty

a sequence of non-blank characters

AL I VMWLV W T Wi

a sequence of letters, digits or underscores starting with a letter

0123456789

£y Wl el

F A I VAWMLV BV iy WWINIAY Wi Tl

Appendix B - Meta-characters and Reserved Words
a) syntactic
pipe symbol
&& ‘andf’ symbol
‘orf’ symbol
; command separator
;; case delimiter

& background commands
@] command grouping
< input redirection
input from a here document
> output creation
output append

b) patterns
* match any character(s) including none
? match any single character
[..] match any of the enclosed characters

C) substitution
$..} substitute shell variable
... substitute command output

d) quoting
\ guote the next character

quote the enclosed characters except for

guote the enclosed characters excep$for"

e) reserved words

if then else dif fi
casein esac
for while until do done

{}

N N B @ N

Lankeed

