
Text Files in C

A file is for storing permanent data. C provides file operations in stdio.h. A file is viewed as a stream of characters.

Files must be opened before being accessed, and characters can be read one at a time, in order, from the file.

There is a current position in the file's character stream. The current position starts out at the first character in the file,

and moves one character over as a result of a character read (or write) to the file; to read the 10th character you need to

first read the first 9 characters (or you need to explicitly move the current position in the file to the 10th character).

There are special hidden chars (just like there are in the stdin input stream), '\n', '\t', etc. In a file there is another

special hidden char, EOF, marking the end of the file.

Using text files in C

DECLARE a FILE * variable

FILE *infile;

FILE *outfile;

1.

OPEN the file: associate the variable with an actual file using fopen you can open a file in read, "r", write, "w", or

append, "a" mode

infile = fopen("input.txt", "r"); // using relative path name of file

if (infile == NULL) {

 // assume that Error is some error function that handles the error, maybe

// printing out the passed error string and calling exit(1);

Error("Unable to open file.");

}

outfile = fopen("/home/newhall/output.txt", "w"); // using absolute path name of file

if (outfile == NULL) {

Error("Unable to open file.");

}

2.

USE I/O operations to read, write, or move the current position in the file

int ch; // EOF is not considered a char, but an int, and since all

 // char values can be stored in int, we define ch to be an int

ch = getc(infile); // read in the character at the current position in the inputfile

putc(ch, outfile); // write the value of ch to the current position in the outfile

3.

CLOSE the file: use fclose to close the file after you are done with it

fclose(infile);

fclose(outfile);

You can also move the current file position in a file:

 // to reset current position to beginning of file

 void rewind(FILE *f);

 rewind(infile);

 // to move to a specific location in the file:

 fseek(FILE *f, long offset, int whence);

 fseek(f, 0, SEEK_SET); // seek to the beginning of the file

 fseek(f, 3, SEEK_CUR); // seek to 3 chars from the current position

 fseek(f, -3, SEEK_END); // seek to 3 chars from the end of the file

4.

File I/O operations in stdio.h

Character Based

int getc(FILE *f): returns the next character in the file stream f

 as an integer or EOF

http://web.cs.swarthmore.edu/~newhall/unixhelp/C_files.html

1 de 3 20-10-2015 10:40

int fgetc(FILE *f): same as getc

int putc(int c, FILE *f): writes the character c to the file stream f and

 returns the character written

int fputc(int c, FILE *f): same as putc

int ungetc(int c, FILE *f): pushes the character c back onto the file stream f

 returns the chars pushed

 you can only push back one character and EOF cannot be pushed back

 used when you need to read in a char value and test it, and based on

test results need to put it back in the file.

int getchar(); read from stdin

putchar(int c); write to stdout (we usually use printf to do this instead)

Line Based: WARNING THESE CAN BE A BIT MORE TRICKY TO USE than getc & putc

char *fgets(char *s, int n, FILE *f);

 reads at most n-1 characters into the array s stopping if a newline is

 encountered, newline is included in the array which is '\0' terminated

int fputs(char *s, FILE *f);

 writes the string s which need not contain a newline onto the file stream f

Formatted: WARNING THESE CAN BE REALLY TRICKY TO USE

--------- (NEVER EVER USE scanf for reading in input from a user)

int fscanf(FILE *f, char *format, arg1, arg2, ...);

 designed to be the counterpart to printf, uses a similar control string

 returns EOF if end of file or an error occurs

 otherwise returns the number of input items converted and assigned

 int scanf(char *format, arg1, arg2, ...); for stdin

%d integer

%f float

%lf double

%c character

%s string, up to first white space

%[...] string, up to first character not in brackets

%[0123456789] would read in digits

%[^...] string, up to first character in brackets

%[^\n] would read everything up to a newline

int fprintf(FILE *f, char *format, addrofarg1, addrofarg2, ...);

 just like standard printf, which assumes a file stream of stdout

 allows you to specify other file streams

Examples:

int x;

double d;

char c, array[MAX];

scanf("%d %c", &x, &c); // read int & char from stdin, ignore ALL whitespace

fscanf(infile, "%d,%c", &x, &c); // read an int & char from file where int and

 // char are separated by a comma

fprintf(outfile, "%d:%c\n", x, c); // write int & char char values to file

 // separated by colon, followd by new line char

fscanf(infile,"%s", array); // read a string from file into array

http://web.cs.swarthmore.edu/~newhall/unixhelp/C_files.html

2 de 3 20-10-2015 10:40

 // stops at white space

fscanf(infile, "%lf %24s", &d, array); // read a double and a string upto

// 24 chars from infile

fscanf(infile, "%20[012345]",array); // read a string of at most 20 chars

 // consisting of only chars in set

fscanf(infile, "%[^.,:!;]", array); // read in a string, stop when hit

 // punctuation mark

fscanf(infile, "%ld %d%c", &x, &b, &c); // read in two integer values store

 // first in long, second in int

 // read in end of line char into c

fscanf returns the number of items read (above example would return 3) or

it returns EOF if it reaches EOF while reading

http://web.cs.swarthmore.edu/~newhall/unixhelp/C_files.html

3 de 3 20-10-2015 10:40

