
Chapter �

Pointers

In the preceding chapters� our programs have been written to access objects directly� i�e� using
the variable names� We have postponed until now a discussion of the concept of indirect access�
i�e� access of objects using their address� As we have seen� variables local to a function may
be accessed using their name only within that function� When arguments are passed to another
function� only the values are passed� and the called function may use these values� but cannot
a�ect the variable cells in the calling function� Sometimes� however� a function needs to have
direct access to the cells in another function� This can be done in C through indirect access� using
the address of the cell� called a pointer�

In this chapter� we will introduce the concepts of indirect access� pointer types� and dereferenced
pointer variables� We will use these concepts to write functions that indirectly access objects in a
calling function�

��� What is a Pointer�

Frequently� a called function needs to make changes to objects declared in the calling function� For
example� the function� scanf��� needs to access objects in the calling function to store the data
read and converted into an object de�ned there� Therefore� we supply scanf�� with the address

of objects rather than their values� Here� we will see how any function can indirectly access an
object by its address�

Another common use of pointers is to write functions that �return� more than one value� As
we have seen� every function in C returns a value as the value of the function� however� if a
function	s meaning includes the return of several pieces of information� this single return value
is not su
cient� In these cases� we can have the function return multiple data values indirectly�
using pointers�

���

�� CHAPTER �� POINTERS

����� Data vs Address

Before we discuss passing pointers and indirectly accessing data between functions� let us look at
how we can declare pointer variables and access data using them� Consider the following simple
program�

main��

� int x�

int iptr�

printf�����Testing Pointer Variables����n���

x 	
��

iptr 	 �x�

printf��d�n��iptr��

�

We have declared two integers� x� intended to hold an integer value� and iptr which is intended
to hold a pointer to an integer� i�e� and address of an integer� We then assign a value to x� and
the address of x to the variable iptr using the � �address of� operator� The address of a variable
is simply the byte address of the cell which was allocated by the declaration� An address is an
integer �actually and unsigned integer� so may be stored in an int type variable� The situation is
shown in Figure ��a�� When we compile and execute this program the result is�

���Testing Pointer Variables���

���

What if we had wanted to print the value of the cell pointed to by iptr and not the value of
iptr itself� The indirection operator� �� accesses the object pointed to by its operand� In our
example� the value of iptr is ���� which is an address of some object� i�e� iptr points to some

object located at address ����� So we should be able to access that object with an expression like�

�iptr

However� there is no way to know how many bytes to access at address ����� nor how to interpret
the data� unless the type of object at address ���� is known� is it an int� a float� a char�
etc� In order for the compiler to know how to access an object indirectly� it must know the type
of that object� We specify the type of object to access by indicating to the compiler the type of
objects a pointer refers to when we declare the pointer� So� in our example� we should declare the
variable� iptr as a �pointer to an integer� as follows�

int �iptr�

���� WHAT IS A POINTER� ���

or�

int � iptr�

�white space may separate the operator� �� and the variable name� iptr�� The declaration speci�es
a variable� iptr� of type int �� i�e� integer pointer �the type is read directly from the declaration��
So� int � is the type of iptr� and int is the type of �iptr� the thing it points to� This statement
declares an integer pointer variable� iptr� and allocates memory for a pointer variable� Similarly�
we can declare float pointers or character pointers�

float � pa� � pb�

char � pc�

These statements declare variables� pa and pb� which can point to float type objects� and pc

which can point to a char type object� All pointer variables store addresses� which are unsigned
integers� and so need the same amount of memory space regardless of the pointer types�

Since the compiler now knows that iptr points to an integer object� it can access the object
correctly� Our simple program becomes�

main��

� int x�

int �iptr�

printf�����Testing Pointer Variables����n���

x 	
��

iptr 	 �x�

printf��Address d holds value d�n��iptr��iptr��

�

which produces the output�

���Testing Pointer Variables���

Address
��� holds value
�

We are generally not interested in the value of the pointer variable itself� it may even be di�erent
each time a program is run� Instead� we are interested in the cell the pointer is pointing to� so
we indicate the value of a pointer variable in diagrams and program traces using an arrow ��� as
shown in Figure ��b�

In summary� the address of an object is called a pointer to that object since the address tells
one where to go in order to access the object� The address by itself does not provide su
cient

��� CHAPTER �� POINTERS

�

main��

main��

a�

b�

int x int iptr

int �iptrint x

�� ����

�� �

Figure ��� Declaring Pointer Variables

���� WHAT IS A POINTER� ���

information to access an object� we must know what type of object the address is pointing to�
If the pointer �address� value and the data type of the object that it points to are both known�
then it is possible to access the object correctly� In other words� pointers must be speci�ed to be
int pointers� pointing to an integer type object� float pointers� pointing to a �oating point type
object� char pointers� etc�

����� Indirect Access of Values

The indirection operator� �� accesses an object of a speci�ed type at an address� Accessing an
object by its address is called indirect access� Thus� �iptr indirectly accesses the object that
iptr points to� i�e� �iptr accesses x� The indirection operator is also called the contents of
operator or the dereference operator� Applying the indirection operator to a pointer variable
is referred to as dereferencing the pointer variable� i�e� �iptr dereferences iptr� The address of
operator� �� is used to get the address of an object� We have already used it in calls to scanf���
We can also use it to assign a value to a pointer variable�

Let us consider some examples using the following declarations�

int x� z�

float y�

char ch� � pch�

int � pi� �pi��

float � pf�

When these declarations are encountered� memory cells are allocated for these variables at some
addresses as shown in Figure ��� Variables x and z are int types� y is float� and ch is char�
Pointer variables pi and pi� are variables that can point to integers� pf is a float pointer� and
pch is a character pointer� Note that the initial values of all variables� including pointer variables�
are unknown� Just as we must initialize int and float variables� we must also initialize pointer
variables� Here are some examples�

x 	
���

y 	 ����

z 	 ���

pi 	 �x� �� pi points to x ��

pi� 	 �z� �� pi� points to z ��

pch 	 �ch� �� pch points to ch ��

The result of executing these statements is shown in Figure ��� pi points to the cell for the
variable x� pi� points to z� pch points to ch� and pf still contains garbage� Remember� the value

of a pointer variable is stored as an address in the cell� however� we do not need to be concerned
with the value itself� Instead� our �gure simply shows what the initialized pointer variables point

�� CHAPTER �� POINTERS

� � ��

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� � � � � � � �

� � � �

Figure ��� Declaration of Pointer Variables

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �� ����

Figure ��� Assignments of pointers

���� WHAT IS A POINTER� ��

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �� ����

Figure ��� E�ect of Pointer to Pointer Assignment � Statement ��

to� These initialized pointers may now be used to indirectly access the objects they point to� or
they be may be changed by new assignments� Here are some examples of statements and how
they change things for the above memory organization� �The statements are numbered in order
to reference them� the numbers are not part of the code��

� pi� 	 pi� �� pi� points to where pi points ��

�� i�e� pi� 		� x ��

�� pi 	 �z� �� pi now points to z� pi� still points to x ��

�� i�e� pi 		� z� pi� 		� x ��

�� �pi 	 �pi�� �� z 	 x� i�e� z 	
�� ��

�� �pi 	 ���� �� z 	 ���� x is unchanged ��

�� �pi� 	 �pi� � ���� �� x 	 ���� z is unchanged ��

Statement �� Assigns value of pi to pi�� so pi� now also points to x �see Figure ���� Since
both of the variables are type int � this assignment is allowed�

Statement �� Makes pi point to z �see Figure ���� The expression �z evaluates to the
address of z� i�e� an int pointer�

Statement �� Since pi� points to x� the value of the right hand side� �pi�� dereferences
the pointer and evaluates to the value in the cell� i�e� ���� This value is assigned to
the object accessed by the left hand side� �pi� i�e� the place pointed to by pi or the

�� CHAPTER �� POINTERS

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �� ����

Figure ��� E�ect of Pointer Reassignment � Statement ��

object z �see Figure ��� This has the same e�ect as the assignment z 	 x� Note�
we have used a dereferenced pointer variable as the Lvalue on the left hand side of an
assignment operator� The semantics is to access the object indirectly and store the
value of the expression on the right hand side�

Statement �� The value� ���� is assigned to �pi� i�e� z �see Figure ���� Again� we have
used an indirect access for the Lvalue of the assignment�

Statement �� The right hand side evaluates to ���� since ��� is added to �pi�� so ��� is
assigned to �pi�� i�e� x �see Figure ���� Again� we have used an indirect access on
both the left and right hand sides�

We see that the left hand side of an assignment operator� the Lvalue� can be a reference to
an object either by direct access �i�e� a variable name� or by indirect access �i�e� a dereferenced
pointer variable�� Also notice that we were very careful about the type of the objects on the left
and right hand side of the assignment operators� We have assigned an integer value to a cell
pointed to by an integer pointer� and when assigning pointers� we have assigned an integer pointer
to a cell declared as an int �� An assignment statement such as�

pi 	 x�

���� WHAT IS A POINTER� ��

� � ��
�
�
�
�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
���

C
C
C
C
C
C
C
C
C
C
C
CCO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �������

Figure �� E�ect of Indirect Pointer Access and Assignment � Statement �

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

��� �������

Figure ��� E�ect of Indirect Assignment � Statement �

�� CHAPTER �� POINTERS

� � ��
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
C
C
CO

main��

int x int z �oat y char ch

int �pi int �pi� �oat �pf char �pch

� �

�

����������

Figure ��� E�ect of Indirect Pointer Access and Assignment � Statement �

is a legal statement in C� assigning an integer value to a pointer cell� However� the e�ect may
not be as we would expect� The value of x will be placed in the pointer cell� pi� and subsequent
dereferencing of pi� ��pi�� will use that value as a pointer �an address� to �nd the cell to indirectly
access� This is almost never what we intend to do in this statement� Most C compilers will generate
a warning at compile time stating that an illegal integer�pointer combination in an assignment was
encountered to indicate that something is possibly wrong here� A warning is not an error� it does
not prevent the compiler from generating a functional object �le� However� it is an indication that
the statement may not be what the programmer intended� Such a statement is probably correctly
written as�

�pi 	 x� or pi 	 �x�

which assign a value to the cell pointed to by pi or to assign an address to pi itself� respectively�
�In the RARE instance where such an assignment of an integer to a pointer cell is intended� the
syntax�

pi 	 �int ��x�

i�e� casting the integer to an integer pointer� should be used��

Likewise� an attempt to use the uninitialized variable� pf will be a disaster� Suppose we write�

���� WHAT IS A POINTER� ��

printf��f�n�� �pf��

The value of pf is garbage so �pf will attempt to access the garbage address for a float object�
The garbage value of pf may be an invalid memory address� in which case� the program will be
aborted due to a memory fault� a run time error� This is bad news� however� we may be even more
unfortunate if the value in pf is a valid memory address� In this case� we would access a value
from some unknown place in memory� The situation is even worse when an uninitialized pointer
is used indirectly as an Lvalue�

�pf 	 ����

Since we do not know where pf is pointing� if it happens to be a legal address� we have just
placed the value� ���� in some unknown location in memory� possible a cell belonging to a variable
in another part of the program� Finding this type of bug is very di
cult� The lesson here is
that care should be taken when using pointers� particularly ensuring that pointers are properly
initialized�

On the other hand� the character variable� ch� is not initialized� but the pointer variable� pch
is initialized to point to ch so the expression� �pch� will access the object� ch� correctly� If the
value of �pch is accessed� it will be garbage� but a value can be stored in �pch correctly�

With proper care� the value of an initialized pointer variable �the address of some object� allows
us to indirectly access the object by dereferencing the pointer variable� An example program�
shown in Figure ��� illustrates the value of a pointer variable and the value of the object indirectly

accessed by it�

Figure ��� shows program trace graphically� The program �rst declares an int and an int �

variables �Figure ���a��� The �rst printf�� statement prints the program title followed by the
initialization of i
 and iptr �Figure ���b��� The next printf�� gives the hexadecimal value of
iptr� which is the address of i
� The next statement prints the value of the same object indirectly
accessed by �iptr and directly accessed by i
� Then� the value of �iptr is changed �Figure ���c���
and the last statement prints the changed value of the object� accessed �rst indirectly and then
directly�

The output for a sample run is�

Pointers� Direct and Indirect Access

iptr 	 �����

�iptr 	
�� i
 	
�

�iptr 	
��� i
 	
��

� CHAPTER �� POINTERS

�� File� access�c

This program prints out the values of pointers and values of

dereferenced pointer variables�

��

�include �stdio�h�

main��

� int �iptr� �� integer pointer ��

i
�

printf��Pointers� Direct and Indirect Access�n�n���

�� initializations ��

i
 	
��

iptr 	 �i
� �� iptr points to the object whose name is i
 ��

�� print value of iptr� i�e�� address of i
 ��

printf��iptr 	 u�n�� iptr��

�� print value of the object accessed indirectly and directly ��

printf���iptr 	 d� i
 	 d�n�� �iptr� i
��

�iptr 	 �iptr �
�� �� value of �iptr changed ��

�� print values of the object again ��

printf���iptr 	 d� i
 	 d�n�� �iptr� i
��

�

Figure ��� Example Code with Direct and Indirect Access

���� WHAT IS A POINTER� ��

�

main��

int i�

int �iptr

�

main��

int i�

int �iptr

�

main��

int i�

int �iptr

� �

a� b� c�

�

� � �� ���

Figure ���� Trace for Direct and Indirect Access

�� CHAPTER �� POINTERS

��� Passing Pointers to Functions

As we have seen� in C� arguments are passed to functions by value� i�e� only the values of argument
expressions are passed to the called function� Some programming languages allow arguments
passed by reference� which allows the called function to make changes in argument objects� C
allows only call by value� not call by reference� however� if a called function is to change the value
of an object de�ned in the calling function� it can be passed a value which is a pointer to the
object� The called function can then dereference the pointer to access the object indirectly� We
have also seen that a C function can return a single value as the value of the function� However� by
indirect access� a called function can e�ectively �return� several values� Only one value is actually
returned as the value of the function� all other values may be indirectly stored in objects in the
calling function� This use of pointer variables is one of the most common in C� Let us look at
some simple examples that use indirect access�

����� Indirectly Incrementing a Variable

We will �rst write a program which uses a function to increment the value of an object de�ned
in main��� As explained above� the called function must indirectly access the object de�ned in
main��� i�e� it must use a pointer to access the desired object� Therefore� the calling function
must pass an argument which is a pointer to the object which the called function can indirectly
access�

Figure ��� shows the code for the program and the program trace is shown graphically in
Figure ���� The function� main�� declares a single integer variable and initializes it to � �see
Figure ���a��� When main�� calls indirect incr��� it passes the pointer� �x �the address of
x�� The formal parameter� p� is de�ned in indirect incr�� as a pointer variable of type int ��
When indirect incr�� is called� the variable� p gets the value of a pointer the the cell named
x in main�� �see Figure ���b��� The function� indirect incr��� indirectly accesses the object
pointed to by p� i�e� the int object� x� de�ned in main��� The assignment statement indirectly
accesses the value� �� in this cell� and increments it to �� storing it indirectly in the cell� x� in
main�� �see Figure ���c���

Sample Session�

���Indirect Access���

Original value of x is �

The value of x is �

����� Computing the Square and Cube

Sometimes� whether a value should be returned as the value of a called function or indirectly stored
in an object is a matter of choice� For example� consider a function which is required to �return�

���� PASSING POINTERS TO FUNCTIONS ��

�� File� indincr�c

Program illustrates indirect access

to x by a function indirect�incr���

Function increments x by
�

��

�include �stdio�h�

void indirect�incr�int � p��

main��

� int x�

printf�����Indirect Access����n���

x 	 ��

printf��Original value of x is d�n�� x��

indirect�incr��x��

printf��The value of x is d�n�� x��

�

�� Function indirectly accesses object in calling function� ��

void indirect�incr�int � p�

�

�p 	 �p �
�

�

Figure ���� Code for Indirect Access by a Function

��� CHAPTER �� POINTERS

int x

�

main��

int x

�

main��

�int � �

p

�int � �

p

S
S

S
S

S
S

SSo

S
S

S
S

S
S

SSo

a� b� c�

int x

main��

�

indirect incr� indirect incr�

Figure ���� Trace for Indirect Access by a Function

���� PASSING POINTERS TO FUNCTIONS ���

�� File� sqcube�c

Program uses a function that returns a square of its argument and

indirectly stores the cube�

��

�include �stdio�h�

double sqcube�double x� double � pcube��

main��

� double x� square� cube�

printf�����Directly and Indirectly Returned Values����n���

x 	 ��

square 	 sqcube�x� �cube��

printf��x 	 f� square 	 f� cube 	 f�n��

x� square� cube��

�

�� Function return square of x� and indirectly stores cube of x ��

double sqcube�double x� double � pcube�

�

�pcube 	 x � x � x�

return �x � x��

�

Figure ���� Code for Indirectly Returned Values

two values to the calling function� We know that only one value can be returned as the value of
the function� so we can decide to write the function with one of the two values formally returned
by a return statement� and the other value stored� by indirect access� in an object de�ned in the
calling function� The two values are �returned� to the calling function� one formally and one by
indirection�

Let us write a function to return the square and the cube of a value� We decide that the
function returns the square as its value� and �returns� the cube by indirection� We need two
parameters� one to pass the value to be squared and cubed to the function� and one pointer type
parameter which will be used to indirectly access an appropriate object in the calling function to
store the cube of the value� We assume all objects are of type double�

The code is shown in Figure ���� The prototype for sqcube�� is de�ned to have two param�
eters� a double and a pointer to double� and it returns a double value� The printf�� prints the
value of x� the value of square which is the value returned by sqcube�� �the square of x�� and�
the value of cube �the cube of x� which is indirectly stored by sqcube���

��� CHAPTER �� POINTERS

�

	

main��

double x double square double cube

� �� ����

sqcube�double double � �

double

pcubex

Figure ���� Trace for sqcube � Step �

���� PASSING POINTERS TO FUNCTIONS ���

�

	

B
B
B
B
B
B
B
B
B
B
BM

main��

double x double square double cube

� �� ����

sqcube�double double � �

double

pcubex

���

Figure ���� Trace for sqcube � Step �

��� CHAPTER �� POINTERS

�

	

B
B
B
B
B
B
B
B
B
B
BM

main��

double x double square double cube

� ����

sqcube�double double � �

double

pcubex

���

����

Figure ��� Trace for sqcube � Step �

���� PASSING POINTERS TO FUNCTIONS ���

�
B
B
B
B
B
B
B
B
B
B
BM�

main��

double x double square double cube

���

sqcube�double double � �

double

pcubex

���

�������

Figure ���� Trace for sqcube � Step �

�� CHAPTER �� POINTERS

Figures ��� � ��� show a step�by�step trace of the changes in objects� both in the calling
function and in the called function� In the �rst step �Figure ����� the declarations for the function�
main�� and the template for the function� sqcube�� are shown with the initialization of the
variable� x� in main��� In the second step �Figure ����� the function� sqcube�� is called from
main�� passing the value of x ����� to the �rst parameter� �called x in sqcube���� and the value of
�cube� namely a pointer to cube� as the second argument to the parameter� pcube� In the third
step �Figure ���� the �rst statement in sqcube�� has been executed� computing the cube of the
local variable� x� and storing the value indirectly in the cell pointed to by pcube� Finally� Figure
��� shows the situation just as sqcube�� is returning� computing the square of x and returning
the value which is assigned to the variable� square� by the assignment in main���

While only one value can be returned as the value of a function� we loosely say that this
function �returns� two values� the square and the cube of x� The distinction between a formally
returned value and an indirectly or loosely �returned� value will be clear from the context�

Sample Session�

���Directly and Indirectly Returned Values���

x 	 ��������� square 	 ��������� cube 	 ���������

����� A function to Swap Values

We have already seen how values of two objects can be swapped directly in the code in main���
We now write a function� swap��� that swaps values of two objects de�ned in main�� �or any
other function� by accessing them indirectly� i�e� through pointers� The function main�� calls the
function� swap��� passing pointers to the two variables� The code is shown in Figure ���� �We
assume integer type objects in main����

The function� swap��� has two formal parameters� integer pointers� ptr
 and ptr�� A tempo�
rary variable is needed in the function body to save the value of one of the objects� The objects
are accessed indirectly and swapped� Figures ��� � ��� show the process of function call� passed
values� and steps in the swap�

Sample Session�

Original values� dat
 	
��� dat� 	 ���

Swapped values� dat
 	 ���� dat� 	
��

��� Returning to the Payroll Task with Pointers

We will now modify our pay calculation program so that the driver calls upon other functions to
perform all subtasks� The driver� main��� represents only the overall logic of the program� the

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

�� File� swapfnc�c

Program uses a function to swap values of two objects�

��

�include �stdio�h�

�� arguments of swap�� are integer pointers ��

void swap�int � p
� int � p���

main��

� int dat
 	
��� dat� 	 ����

printf��Original values� dat
 	 d� dat� 	 d�n�� dat
� dat���

swap��dat
� �dat���

printf��Swapped values� dat
 	 d� dat� 	 d�n�� dat
� dat���

�

�� Function swaps values of objects pointed to by ptr
 and ptr� ��

void swap�int � ptr
� int � ptr��

� int temp�

temp 	 �ptr
�

�ptr
 	 �ptr��

�ptr� 	 temp�

�

Figure ���� Code for a Function� swap��

��� CHAPTER �� POINTERS

� �

int dat�

���

int dat�

���
� �

main��

swap� int � int � �

ptr� ptr�

int temp

� �

Figure ���� Trace for swap�� � Step �

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

� �

int dat�

���

int dat�

���
� �

main��

swap� int � int � �

ptr� ptr�

int temp

���

Figure ���� Trace for swap�� � Step �

��� CHAPTER �� POINTERS

� �

� �

main��

swap� int � int � �

ptr� ptr�

int temp

���

int dat� int dat�

������

Figure ���� Trace for swap�� � Step �

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

� �

� �

main��

swap� int � int � �

ptr� ptr�

int temp

���

int dat� int dat�

��� ���

Figure ���� Trace for swap�� � Step �

��� CHAPTER �� POINTERS

details are hidden in the functions that perform the various subtasks� The algorithm for the driver
is�

get data

repeat the following while there is more data

calculate pay

print data and results

get data

For each step of the algorithm� we will use functions to do the tasks of getting data� printing
data and results� and calculating pay� We have already written functions in Chapters � and � to
calculate pay and to print data and results� and will repeat them here for easy reference� making
some modi�cations and improvements� We have postponed until now writing a function to read
data as such a function would require returning more than one value� By using pointers� we now
have the tool at our disposal to implement such a function�

Before we write these functions� we should design them by describing what the functions do
and specifying the interface to these functions� i�e� by indicating the arguments and their types
to be passed to the functions �the information given to the functions� and the meaning and type
of the return values �the information returned from the function�� Here are our choices�

get data��� This function reads the id number� hours worked� and rate of pay for one employee
and stores their values indirectly using pointers� Since these values are returned indirectly�
the arguments must be pointers to appropriate objects in the calling function �main�� in
our case�� The function returns True� if it found new data in the input� it returns False
otherwise� Here is the prototype�

int get�data�int � pid� float � phrs� float � prate��

We use names pid� phrs� and prate� to indicate that they are pointers to cells for the id�
hours and rate� respectively� It is a good habit to distinguish between object names and
pointer names whenever there is a possibility of confusion�

print data��� This function writes the id number� hours worked� and rate of pay passed to it� It
has no useful information to return so returns a void type� Here is the prototype�

void print�data�int id� float hrs� float rate� float pay��

print pay��� This function is given values for the regular pay� overtime pay� and total pay and
writes them to the output� It also returns a void type�

void print�pay�float regular� float overtime� float total��

calc pay��� Given the necessary information �hours and rate�� this function calculates and returns
the total pay� and indirectly returns the regular and overtime pay� In addition to the values
of hours worked and rate of pay� pointers to regular pay and overtime pay are passed to the
function� The prototype is�

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

�� File� payutil�h ��

�define REG�LIMIT ��

�define OT�FACTOR
��

int get�data�int �pid� float �phrs� float �prate��

void print�data�int id� float hrs� float rate��

void print�pay�float regular� float overtime� float total��

float calc�pay�float hours� float rate� float � pregular�

float � povertime��

Figure ���� Header �le payutil�h

float calc�pay�float hours� float rate� float � pregular�

float � povertime��

Here� pregular and povertime are pointers to cells for regular and overtime pay objects in
the calling function�

All of these functions will be de�ned in a �le� payutil�c and their prototypes are included in
payutil�h� Figure ��� shows the header �le� We have also included the de�nitions for symbolic
constants REG LIMIT and OT FACTOR in the header �le� This header �le will be included in all
relevant source �les�

With the information in this �le �and the preceding discussion of the function� we have su
cient
information to write the driver for the program using the functions prior to writing the actual
code for them� Figure ��� shows the driver� It also includes the �le� tfdef�h which de�nes the
macros� TRUE and FALSE�

The logic of the driver is as follows� After the program title is printed� the �rst statement calls
get data�� to get the id number� hours worked� and rate of pay� As indicated in the prototype�
pointers to these objects are passed as arguments so that get data�� can indirectly access them
and store values� The function� get data��� returns True or False depending on whether there
is new data� The True�False value is assigned to the variable� moredata� The while loop is
executed as long as there is more data� i�e� moredata is True� The loop body calls on calc pay��

to calculate the pay� print data�� to print the input data� print pay�� to print the results� and
get data�� again to get more data� Since calc pay�� returns the values of overtime and total
pay indirectly� main�� passes pointers to objects which will hold these values�

The overall logic in the driver is easy to read and understand� at this top level of logic�
the details of the computations are not important and would only complicate understanding the
program� The driver will remain the same no matter how the various functions are de�ned� The
actual details in one or more functions may be changed at a later time without disturbing the
driver or the other functions� This program is implemented in functional modules� Such a modular
programming style makes program development� debugging and maintenance much easier�

��� CHAPTER �� POINTERS

�� File� pay��c

Other Files� payutil�c

Header Files� tfdef�h� payutil�h

The program gets payroll data� calculates pay� and prints out

the results for a number of people� Modular functions are used

to get data� calculate total pay� print data� and print results�

��

�include �stdio�h�

�include �tfdef�h�

�include �payutil�h�

main��

�

�� declarations ��

int id�number� moredata�

float hours�worked� rate�of�pay� regular�pay� overtime�pay� total�pay�

�� print title ��

printf�����Pay Calculation����n�n���

�� get data and initialize loop variable ��

moredata 	 get�data��id�number� �hours�worked�

�rate�of�pay��

�� process while moredata ��

while �moredata� �

total�pay 	 calc�pay�hours�worked� rate�of�pay� �regular�pay�

�overtime�pay��

print�data�id�number� hours�worked� rate�of�pay��

print�pay�regular�pay� overtime�pay� total�pay��

moredata 	 get�data��id�number� �hours�worked�

�rate�of�pay��

�

�

Figure ���� Code for the Driver for pay��c

���� RETURNING TO THE PAYROLL TASK WITH POINTERS ���

�� File� payutil�c ��

�include �stdio�h�

�include �tfdef�h�

�include �payutil�h�

�� Function prints out the input data ��

void print�data�int id� float hours� float rate�

�

printf���nID Number 	 d�n�� id��

printf��Hours Worked 	 f� Rate of Pay 	 f�n��

hours� rate��

�

�� Function prints pay data ��

void print�pay�float regular� float overtime� float pay�

�

printf��Regular Pay 	 f� Overtime Pay 	 f�n��

regular� overtime��

printf��Total Pay 	 f�n�� pay��

�

Figure ���� Code for print data�� and print pay��

Of course� we still have to write the various functions used in the above driver� We write each
of these functions in turn� Figure ��� shows the code for print data�� and print pay�� in the
�le payutil�c which are simple enough�

The next two functions require indirect access� The function� calc pay��� must indirectly
store the regular and overtime pay so the formal parameters include two pointers� preg �pointing
to the cell for regular pay� and pover �pointing to the cell for overtime pay�� The function returns
the value of the total pay� It is shown in Figure ��� Finally� get data��must indirectly store the
values of the id number� hours worked� and rate of pay� and return True if id number is positive�
and False otherwise� Figure ��� shows the code� The formal parameters pid� phrs� and prate

are pointers to objects in the calling function �main�� in our case�� Recall� when scanf�� is called
to read data� it requires arguments that are pointers to the objects where the data is to be placed
so that it can indirectly store the values� Therefore� when get data�� calls scanf��� it must
pass pointers to relevant objects as arguments� i�e� it passes the pointers� pid� phrs� and prate�
These pointer variables point to the objects where values are to be stored� We do NOT want to
pass �pid� �phrs� �prate as these are the addresses of the pointers� pid� phrs� and prate� they
are NOT the addresses cells to hold the data� If the id number stored in �pid is not positive�
i�e� ��pid �� ��� get data�� returns FALSE to indicate that there is no more data� If �pid is
positive� the rest of the function is executed� in which case the rest of the input data is read� The
value� TRUE is returned to indicate that more data is present�

The above functions are in the source �le� payutil�c which must be compiled and linked with
the source program �le� pay��c� A sample session would be similar to the ones for similar previous

�� CHAPTER �� POINTERS

�� File� payutil�c continued ��

�� Function calculates and returns total pay ��

float calc�pay�float hours� float rate� float � preg� float � pover�

� float total�

if �hours � REG�LIMIT� �

�preg 	 REG�LIMIT � rate�

�pover 	 OT�FACTOR � rate � �hours REG�LIMIT��

�

else �

�preg 	 hours � rate�

�pover 	 ��

�

total 	 �preg � �pover�

return total�

�

Figure ��� Code for calc pay��

�� File� payutil�c continued ��

�� Function reads in the payroll data ��

int get�data�int � pid� float � phrs� float � prate�

�

printf��Type ID Number� zero to quit� ���

scanf��d�� pid��

if ��pid �	 �� �� if ID number is �	 �� ��

return FALSE� �� return � to calling function ��

printf��Hours Worked� ��� �� ID number is valid� get data ��

scanf��f�� phrs��

printf��Hourly Rate� ���

scanf��f�� prate��

return TRUE� �� valid data entered� return
 ��

�

Figure ���� Code for get data��

���� COMMON ERRORS ���

programs and is not shown here�

��� Common Errors

�� Using an uninitialized pointer� Remember� declaring a pointer variable simply allocates a
cell that can hold a pointer � it does not place a value in the cell� So� for example� a code
fragment like�

� int � iptr�

�iptr 	 ��

� � �

�

will attempt to place the value� �� in the cell pointed to by iptr� however� iptr has not been
initialized� so some garbage value will be used as the address of there to place the value�
On some systems this may result in an attempt to access an illegal address� and a memory
violation� Avoid this error by remembering to initialize all pointer variables before they are
used�

�� Instead of using a pointer to an object� a pointer to a pointer is used� Consider a function�
read int��� It reads an integer and stores it where its argument points� The correct version
is�

void read�int�int � pn�

�

scanf��d�� pn��

�

pn is a pointer to the object where the integer is to be stored� When passing the argument
to scanf��� we pass the pointer� pn� NOT �pn�

�� Confusion between the address of operator and the dereference operator�

��� calling�func�����

� int x�

called�func��x�� �� should be �x ��

���

�

��� called�func�int �px� �� should be � px ��

�

���

�

A useful mnemonic aid is that the �address of� operator is the �and� symbol� � � both
start with letter� a�

��� CHAPTER �� POINTERS

��� Summary

In this Chapter we have introduced a new data type� a pointer� We have seen how we can declare
variables of this type using the � and indicating the type of object this variable can point to� for
example�

int � iptr�

float � fptr�

char � cptr�

declare three pointer variables� iptr which can point to an integer cell� fptr which can point to
a cell holding a �oating point variable� and cptr which can point to a character cell�

We have seen how we can assign values to pointer variables using the �address of� operator� �
as well as from other pointer variables� For example�

� int x�

int � ip�

int � iptr�

iptr 	 �x�

ip 	 iptr�

� � �

�

declares an integer variable� x� and two integer pointers� ip and iptr� which can point to integers
�we can read this last declaration from right to left� as saying that � iptr points to an int��� We
then assign the address of x to the pointer variable� iptr� and the pointer in iptr to the variable�
ip�

We have also shown how pointer variables may be used to indirectly access the value in a cell
using the dereference operator� ��

y 	 �iptr�

which assigns the value of the cell pointed to by iptr to the variable� y� Values may also be stored
indirectly using pointer variables�

�iptr 	 y�

which assigns the value in the variable� y� to the cell pointed to by iptr�

We have also seen that we can pass pointers to functions and use them to modify the values
of cells in the calling function� For example�

��	� SUMMARY ���

main��

� int x� y� z�

z 	 set�em� �x� �y��

� � �

�

int set�em� int �a� int �b�

�

�a 	
�

�b 	 ��

return ��

�

Here the function� set em will set the values �� �� and � into the variables x� y� and z respectively�
The �rst two values are assigned indirectly using the pointers passed to the function� and the third
is returned as the value of the function and assigned to z by the assignment statement in main���
This� the function� set em��� has �e�ectively� returned three values�

Finally� we have used this new indirect access mechanism to write several programs� including
an update to our payroll program� As we will see in succeeding chapters� pointers are very useful
in developing complex programs� The concept of pointers may be confusing at �rst� however� a
useful tool for understanding the behavior of a program using pointers is to draw the memory
picture showing which to cells each pointer is pointing�

��� CHAPTER �� POINTERS

��� Exercises

�� What is the output of the following code�

int x� y� z� w�

int � pa� � pb� � pc� � pd�

x 	
�� y 	 ��� z 	 ���

pa 	 �x�

pb 	 �y�

printf��d� d� d�n�� �pa� �pb� �pc��

pc 	 pb�

printf��d� d� d�n�� �pa� �pb� �pc��

pb 	 pa�

printf��d� d� d�n�� �pa� �pb� �pc��

pa 	 �z�

printf��d� d� d�n�� �pa� �pb� �pc��

�pa 	 �pb�

printf��d� d� d�n�� �pa� �pb� �pc��

What is the output for each of the following programs�

�� �define SWAP�x� y� �int temp� temp 	 x� x 	 y� y 	 temp� �

main��

� int data
 	
�� data�	 ���

SWAP�data
� data���

printf��Data
 	 d� data� 	 d�n�� data
� data���

�

�� �define SWAP�x� y� �int �temp� temp 	 x� x 	 y� y 	 temp� �

main��

� int data
 	
�� data�	 ���

int �p
� �p��

p
 	 �data
� p� 	 �data��

SWAP�p
� p���

printf���p
 	 d� �p� 	 d�n�� �p
� �p���

�

Correct the code in the following problems�

�� main��

� int x� �p�

x 	
��

ind�square��p��

�

���� EXERCISES ���

ind�square�int �p�

�

�p 	 �p � �p�

�

�� main��

� int x� �p�

x 	
�� p 	 �x�

ind�square��p��

�

ind�square�int �p�

�

�p 	 �p � �p�

�

� main��

� int x� �p�

x 	
��

ind�square�x��

�

ind�square�int �p�

�

�p 	 �p � �p�

�

�� main��

� int x� �p�

x 	
��

ind�square�p��

�

ind�square�int �p�

�

�p 	 �p � �p�

�

��� CHAPTER �� POINTERS

��	 Problems

�� Write a program that initializes integer type variables� data
 and data� to the values ���
and ���� Declare pointers� ptr
 and ptr�� initialize ptr
 to point to data
 and ptr� to
point to data�� Swap the values of data
 and data� values using direct access and using
indirect access� Next� swap the values of the pointers� ptr
 and ptr� and print the values
indirectly accessed by the swapped pointers�

�� Write a function �that returns void� which reads and indirectly stores three values in the
calling function� The types of the three data items are an integer� a character� and a �oat�

�� Write a function maxmin�float x� float � pmax� float � pmin� where x is a new value
which is to be compared with the largest and the smallest values pointed to by pmax and
pmin� respectively� The function should indirectly update the largest and the smallest values
appropriately� Write a program that reads a sequence of numbers and uses the above function
to update the maximum and the minimum until end of �le� when the maximum and the
minimum should be printed�

�� Repeat Problem ���� using functions get course data��� calc gpr��� and print gpr���

�� Rewrite Problem ��� as a function that �nds the roots of a quadratic and returns them
indirectly�

� Rewrite the program to solve simultaneous equations �Problem ������ The program should
use a function� solve eqns�� to solve for the unknowns� The function must indirectly access
objects in main�� to store the solution values�

�� Write a menu�driven program that uses the function� solve eqns��� of Problem � The
commands are� get data� display data� solve equations� print solution� verify solution� help�
and quit� Use functions to implemnent the code for each command�

�� A rational number is maintained as a ratio of two integers� e�g�� ������ ����� etc� Rational
number arithmetic adds� subtracts� multiplies and divides two rational numbers� Write a
function to add two rational numbers�

�� Write a function to subtract two rational numbers�

��� Write a function to multiply two rational numbers�

��� Write a function to divide two rational numbers�

��� Write a function to reduce a rational number� A reduced rational number is one in which
all common factors in the numerator and the denominator have been cancelled out� For
example� ����� is reduce to ���� ����� is reduced to ���� and so forth�

��� Use the function� reduce��� of Problem �� to implement the functions in Problems � through
���

��� Rewrite the program of Problem ���� to calculate the current and the power in a resistor
using a function instead to perform the calculations� One value may be returned as a function
value� the other must be indirectly stored in the calling function�

