Dynamic memory allocation in C

(Reek, Ch. 11)

CS 3090: Safety Critical Programming in C

Overview of memory management

» Stack-allocated memory

When a function is called, memory is allocated for all of its
parameters and local variables.

Each active function call has memory on the stack (with

the current function call on top)

When a function call terminates, ...

gQ)
the memory is deallocated (“freed up”) . . .
= O calls £O 90
» EX: main() calls :
f(calls gO ..’()
g recursively calls gO ...
main()

2 CS 3090: Safety Critical Programming in C

Overview of memory management

» Heap-allocated memory
This is used for persistent data, that must survive beyond
the lifetime of a function call

global variables

dynamically allocated memory — C statements can create new
heap data (similar to new in Java/C++)

Heap memory is allocated in a more complex way than
stack memory

Like stack-allocated memory, the underlying system
determines where to get more memory — the programmer
doesn’t have to search for free memory space!

3 CS 3090: Safety Critical Programming in C

\ Allocating new heap memory
void *malloc(size_t size);
» Allocate a block of size bytes,

return a pointer to the block

(NnuLL If unable to allocate block)

void *calloc(size_t num_elements, size_t element_size);
» Allocate a block of num_elements * element_size bytes,
Initialize every byte to zero,
return pointer to the block
(NnuLL If unable to allocate block)

4 CS 3090: Safety Critical Programming in C

Allocating new heap memory

void *realloc(void *ptr, size_t new_size);
» Given a previously allocated block starting at ptr,

change the block size to new_s1ze,

return pointer to resized block

If block size is increased, contents of old block may be copied to
a completely different region

In this case, the pointer returned will be different from the ptr
argument, and ptr will no longer point to a valid memory region

» If ptris NnuLL, real loc is identical to malloc

» Note: may need to cast return value of

malloc/calloc/realloc:
char *p = (char *) malloc(BUFFER_SIZE);

5 CS 3090: Safety Critical Programming in C

Deallocating heap memory
void free(void *pointer);

» Glven a pointer to previously allocated memory,
put the region back in the heap of unallocated memory

» Note: easy to forget to free memory when no longer
needed...

especially if you're used to a language with “garbage
collection” like Java

This is the source of the notorious “memory leak” problem

Difficult to trace — the program will run fine for some time,
until suddenly there is no more memory!

6 CS 3090: Safety Critical Programming in C

Checking for successtul allocation

» Call to mal1oc might fail to allocate memory, if there’s not
enough available

» Easy to forget this check, annoying to have to do it every
time malloc Is called...

» Reek’s solution:
#define malloc DON’T CALL malloc DIRECTLY!

#define MALLOC(num,type) (type *)alloc((num)*sizeof(type))
extern void *alloc(size_t size): _

7 CS 3090: Safety Critical Programming in C

Checking for successtul allocation

» Implementation of alloc:
#undef malloc

void *alloc(size_t size) {
void *new_mem;
new_mem = malloc(size);
1f (new_mem == NULL) exit(l);
return new_mem;

» Nice solution — as long as “terminate the program” is
always the right response

8 CS 3090: Safety Critical Programming in C

Memory errors

» Using memory that you have not initialized
» Using memory that you do not own
» Using more memory than you have allocated

» Using faulty heap memory management

9 CS 3090: Safety Critical Programming in C

Using memory that you have not initialized

» Uninitialized memory read

» Uninitialized memory copy
not necessatrily critical — unless a memory read follows

void foo(int *pi) {

int j;

“p1 = J;

/¥ UMC: J 1s uninitialized, copied into *pi */
¥
void bar() {

int 1=10;

foo(&1);

printf("1 = %d\n", 1);

/* UMR: Using 1, which 1s now junk value */

}

10 CS 3090: Safety Critical Programming in C

Using memory that you don’t own

» Null pointer read/write
» Zero page read/write

typedef struct node {
struct node* next;
int val;

} Node; //////

int findLastNodevalue(Node* head) {
while C(head->next != NULL) { /* Expect NPR */
head = head->next;

}
return head->val; /* Expect ZPR */
}

11 CS 3090: Safety Critical Programming in C

Using memory that you don’t own

» Invalid pointer read/write
Pointer to memory that hasn’t been allocated to program

void genIPR() {
int *1pr = (int *) malloc(4 * sizeof(int));
int 1, J;

1 = *C(pr - 1000); J = *(ipr + 1000); /* Expect IPR *

free(ipr);
}

void genIPw() {
int *ipw = (int *) malloc(5 * sizeof(int));

*(1pw - 1000) = 0; *Cipw + 1000) = O; /* Expect IPwW *

free(ipw);
}

12 CS 3090: Safety Critical Programming in C

Using memory that you don’t own

» Common error in 64-bit applications:
intS are 4 bytes but pointers are 8 bytes

If prototype of malloc() not provided, return value will be cast
to a 4-byte int

/*Forgot to #include <malloc.h>, <stdlib.h>

in a 64-bit applicatjon*/
void 1llegalpPointer() /{

int *pi1 = (int*) malloc(4 * sizeof(int));

pi1[0] = 10; /* Expect IPwW */

printf("Array value = %d\n", pi1[0]); /* Expect IPR */
}

13 CS 3090: Safety Critical Programming in C

Using memory that you don’t own

» Free memory read/write
Access of memory that has been freed earlier
int* 1nit_array(int *ptr, int new_size) {
ptr = (int*) realloc(ptr, new_size*sizeof(int));

memset(ptr, O, ﬁ6w<sze*sizeof(int));

return ptr;

}

int* fill_fibonacci(int *fib, int size) {
int 1;
/* oops, forgot: fib = */ init_array(fib, size);

/* fib[0] = 0; */ fib[1l] = 1;
for (1=2; i<size; i++)
fib[1] = fib[1-1] + fib[1-2];

return fib;

14 CS 3090: Safety Critical Programming in C

Using memory that you don’t own
» Beyond stack read/write

char *append(const char* sl1l, const char *s2) {

const int MAXSIZE = 128;
char result[128]
int 1=0, j=0;

for (3j=0; 1<MAXSIZE-1 && j<strlen(sl); i1++,j++) {
result[i] = s1[j];

¥

for (3j=0; 1<MAXSIZE-1 && j<strlen(s2); i1++,j++) {
result[i] = s2[j];

¥

result[++i] = "\0"';

return resu1t;_

15 CS 3090: Safety Critical Programming in C

Using memory that you haven’t allocated

» Array bound read/write

void genABRandABW() {
const char *name = “Safety Critical';
char *str = (char*) malloc(10);
strncpy(str, name, 10);
str[11] = "\0'; /* Expect ABW */
printf("%s\n", str); /* Expect ABR */

16 CS 3090: Safety Critical Programming in C

Faulty heap management
» Memory leak

int *pi;
void foo() {
pi = (int*) malloc(8*sizeof(int));
/* Allocate memory for pi */
/* oops, leaked the old memory pointed to by pi */

free(pi); /* foo() i1s done with pi, so free it */
}
void main() {

pi = (int*) malloc(4*sizeof(int));

/* Expect MLK: foo leaks it */

foo();
}

17 CS 3090: Safety Critical Programming in C

Faulty heap management

» Potential memory leak
no pointer to the beginning of a block

not necessarily critical — block beginning may still be reachable via
pointer arithmetic

int *plk = NULL;
void genPLK() {
plk = (Aint *) malloc(2 * sizeof(int));
/* Expect PLK as pointer variable 1s incremented
past beginning of block */
plk++;
}

18 CS 3090: Safety Critical Programming in C

Faulty heap management

» Freeing non-heap memory

» Freeing unallocated memory
void genFNH() {
int fnh = 0;
free(&fnh); /* Expect FNH: freeing stack memory */
}
void genFuM() {
int *fum = (int *) malloc(4 * sizeof(int));

free(fum+l); /* Expect FUM: fum+l points to middle
of a block */

free(fum);

free(fum); /* Expect FUM: freeing already freed
memory */

19 CS 3090: Safety Critical Programming in C

Tools for analyzing memory management

» Purify: runtime analysis for finding memory errors
dynamic analysis tool:
collects information on memory

#® Rational Purify - [Data Browser - Error View: memerrors.pfy] e E_x:
x

management while program runs B Do B sow Seticn i by
=|a é ol _J EY [y i :ial -';J:'::-i alz|

contrast with static analysis tool t12] el |8 elEln] 2] @

2= __J __J

. . . m # @ Starting Purify'd nemerrcrs.eze at 08072006 20:12-04
like 11nt, which analyzes source Dhin | © storcing nen
1 53 ‘T UNC. Uninitialized nexorv copy in genUNC {1 occurr=nce}
=+ _{ UNR: Uninitialized mexory read in genUMR {1 occurrence)
Code Without Com ilin executin it * © FMU Free menory write in £ill_fibonacci {1 occurrence}
p g; g = 0 FNR: Free »enoxry r=ad in £ill_fibonacci {1 occurrence}
i+ o FNR: Fres xencory read in £1l11_fibonacei {l occurrence}
+ @) FNU. Free senory write in £111 fibonscci {1 occurrence}
@ BSR- Bevond =tack read in printf {1 cccurrencs}
It o B5U: Beyond stack write in genESRandBSW {1 occurrence}
= @ ABU: Array bounds vrite in gendBRandABW {1 occurrence}
€@ ABR: Array boundz read in printf {1 occurrencs}
it o FIHN Freeing invalad sencry in fres {1 occurrence}
=@ FIH Fresing invalid xencey in fres {1 occurrence)
it o FFN: Freeing freed mexory in free {1 occurrence}
+) ¥PR. NULL pointer read in EindlastlHodeValue {1 cccurrenc
= @ EXU: Unhandled exception in findLaztNode¥alue {1 occurre
It o Sunnary of all menory in use {25930 bytes, 55 blocks}
& & Sunnery of all memory lsaks... {34 bytes, 4 blocks}
@ Exiting vith code -1073741819 (0Dxc0000005)
© Progran ternminsted at 08072006 20.12.08
< > 4] i
Displayed Errers: 13 of 13 Diplayed Warnings: 50f 5 Syles leaked: 2548
JReady

20 CS 3090: Safety Critical Programming in C

Reference

» S.C. Gupta and S. Sreenivasamurthy. “Navigating ‘C’
In a ‘leaky’ boat? Try Purify”.

21 CS 3090: Safety Critical Programming in C

http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/

