
Dynamic memory allocation in C

(Reek, Ch. 11)

1 CS 3090: Safety Critical Programming in C



Overview of memory management

CS 3090: Safety Critical Programming in C2

 Stack-allocated memory

 When a function is called, memory is allocated for all of its 

parameters and local variables.

 Each active function call has memory on the stack (with 

the current function call on top)

 When a function call terminates,

the memory is deallocated (“freed up”)

 Ex: main() calls f(),

f() calls g()

g() recursively calls g()

main()

f()

g()

g()



Overview of memory management

CS 3090: Safety Critical Programming in C3

 Heap-allocated memory

 This is used for persistent data, that must survive beyond 

the lifetime of a function call

 global variables

 dynamically allocated memory – C statements can create new 

heap data (similar to new in Java/C++)

 Heap memory is allocated in a more complex way than 

stack memory

 Like stack-allocated memory, the underlying system 

determines where to get more memory – the programmer 

doesn‟t have to search for free memory space!



Allocating new heap memory

CS 3090: Safety Critical Programming in C4

void *malloc(size_t size);

 Allocate a block of size bytes,

return a pointer to the block

(NULL if unable to allocate block)

void *calloc(size_t num_elements, size_t element_size);

 Allocate a block of num_elements * element_size bytes,

initialize every byte to zero,

return pointer to the block

(NULL if unable to allocate block)

Note: void * denotes a generic pointer type



Allocating new heap memory

CS 3090: Safety Critical Programming in C5

void *realloc(void *ptr, size_t new_size);

 Given a previously allocated block starting at ptr,

 change the block size to new_size,

 return pointer to resized block

 If block size is increased, contents of old block may be copied to 
a completely different region

 In this case, the pointer returned will be different from the ptr
argument, and ptr will no longer point to a valid memory region

 If ptr is NULL, realloc is identical to malloc

 Note: may need to cast return value of 
malloc/calloc/realloc:

char *p = (char *) malloc(BUFFER_SIZE);



Deallocating heap memory

CS 3090: Safety Critical Programming in C6

void free(void *pointer);

 Given a pointer to previously allocated memory,

 put the region back in the heap of unallocated memory

 Note: easy to forget to free memory when no longer 

needed...

 especially if you‟re used to a language with “garbage 

collection” like Java

 This is the source of the notorious “memory leak” problem

 Difficult to trace – the program will run fine for some time, 

until suddenly there is no more memory!



Checking for successful allocation

CS 3090: Safety Critical Programming in C7

 Call to malloc might fail to allocate memory, if there‟s not 

enough available

 Easy to forget this check, annoying to have to do it every 

time malloc is called...

 Reek‟s solution:

#define malloc DON’T CALL malloc DIRECTLY!

#define MALLOC(num,type) (type *)alloc((num)*sizeof(type))

extern void *alloc(size_t size);

Garbage inserted into source code 

if programmer uses malloc

Use MALLOC instead...

Scales memory region appropriately

(Note use of parameters in #define)

Also, calls “safe” alloc function



Checking for successful allocation

CS 3090: Safety Critical Programming in C8

 implementation of alloc:

#undef malloc

void *alloc(size_t size) {

void *new_mem;

new_mem = malloc(size);

if (new_mem == NULL) exit(1);

return new_mem;

}

 Nice solution – as long as “terminate the program” is 

always the right response



Memory errors

CS 3090: Safety Critical Programming in C9

 Using memory that you have not initialized

 Using memory that you do not own

 Using more memory than you have allocated

 Using faulty heap memory management



Using memory that you have not initialized

CS 3090: Safety Critical Programming in C10

 Uninitialized memory read

 Uninitialized memory copy
 not necessarily critical – unless a memory read follows

void foo(int *pi) {

int j;

*pi = j;

/* UMC: j is uninitialized, copied into *pi */

}

void bar() {

int i=10;

foo(&i);

printf("i = %d\n", i);

/* UMR: Using i, which is now junk value */

}



Using memory that you don’t own

CS 3090: Safety Critical Programming in C11

 Null pointer read/write

 Zero page read/write

typedef struct node {

struct node* next;

int val;

} Node;

int findLastNodeValue(Node* head) {

while (head->next != NULL) { /* Expect NPR */

head = head->next;

}

return head->val; /* Expect ZPR */

}

What if head is NULL?



Using memory that you don’t own

CS 3090: Safety Critical Programming in C12

 Invalid pointer read/write
 Pointer to memory that hasn‟t been allocated to program

void genIPR() {

int *ipr = (int *) malloc(4 * sizeof(int));

int i, j;

i = *(ipr - 1000); j = *(ipr + 1000); /* Expect IPR */

free(ipr);

}

void genIPW() {

int *ipw = (int *) malloc(5 * sizeof(int));

*(ipw - 1000) = 0; *(ipw + 1000) = 0; /* Expect IPW */

free(ipw);

}



Using memory that you don’t own

CS 3090: Safety Critical Programming in C13

 Common error in 64-bit applications:

 ints are 4 bytes but pointers are 8 bytes

 If prototype of malloc() not provided, return value will be cast 

to a 4-byte int

/*Forgot to #include <malloc.h>, <stdlib.h>

in a 64-bit application*/

void illegalPointer() {

int *pi = (int*) malloc(4 * sizeof(int));

pi[0] = 10; /* Expect IPW */

printf("Array value = %d\n", pi[0]); /* Expect IPR */

}

Four bytes will be lopped off this value –

resulting in an invalid pointer value



Using memory that you don’t own

CS 3090: Safety Critical Programming in C14

 Free memory read/write
 Access of memory that has been freed earlier

int* init_array(int *ptr, int new_size) {

ptr = (int*) realloc(ptr, new_size*sizeof(int));

memset(ptr, 0, new_size*sizeof(int));

return ptr;

}

int* fill_fibonacci(int *fib, int size) {

int i;

/* oops, forgot: fib = */ init_array(fib, size);

/* fib[0] = 0; */ fib[1] = 1;

for (i=2; i<size; i++)

fib[i] = fib[i-1] + fib[i-2];

return fib;

}

What if array is moved 

to new location?

Remember: realloc may move entire block



Using memory that you don’t own

CS 3090: Safety Critical Programming in C15

 Beyond stack read/write

char *append(const char* s1, const char *s2) {

const int MAXSIZE = 128;

char result[128];

int i=0, j=0;

for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {

result[i] = s1[j];

}

for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

result[i] = s2[j];

}

result[++i] = '\0';

return result;

}

Function returns pointer to stack 

memory – won‟t be valid after 

function returns

result is a local array name –

stack memory allocated



Using memory that you haven’t allocated

CS 3090: Safety Critical Programming in C16

 Array bound read/write

void genABRandABW() {

const char *name = “Safety Critical";

char *str = (char*) malloc(10);

strncpy(str, name, 10);

str[11] = '\0'; /* Expect ABW */

printf("%s\n", str); /* Expect ABR */

}



Faulty heap management

CS 3090: Safety Critical Programming in C17

 Memory leak

int *pi;

void foo() {

pi = (int*) malloc(8*sizeof(int));

/* Allocate memory for pi */

/* Oops, leaked the old memory pointed to by pi */

…

free(pi); /* foo() is done with pi, so free it */

}

void main() {

pi = (int*) malloc(4*sizeof(int));

/* Expect MLK: foo leaks it */

foo();

}



Faulty heap management

CS 3090: Safety Critical Programming in C18

 Potential memory leak

 no pointer to the beginning of a block

 not necessarily critical – block beginning may still be reachable via 

pointer arithmetic

int *plk = NULL;

void genPLK() {

plk = (int *) malloc(2 * sizeof(int));

/* Expect PLK as pointer variable is incremented

past beginning of block */

plk++;

}



Faulty heap management

CS 3090: Safety Critical Programming in C19

 Freeing non-heap memory

 Freeing unallocated memory
void genFNH() {

int fnh = 0;

free(&fnh); /* Expect FNH: freeing stack memory */

}

void genFUM() {

int *fum = (int *) malloc(4 * sizeof(int));

free(fum+1); /* Expect FUM: fum+1 points to middle 
of a block */

free(fum);

free(fum); /* Expect FUM: freeing already freed 
memory */

}



Tools for analyzing memory management

CS 3090: Safety Critical Programming in C20

 Purify: runtime analysis for finding memory errors

 dynamic analysis tool:

collects information on memory

management while program runs

 contrast with static analysis tool

like lint, which analyzes source

code without compiling, executing it



Reference

CS 3090: Safety Critical Programming in C21

 S.C. Gupta and S. Sreenivasamurthy. “Navigating „C‟ 

in a „leaky‟ boat? Try Purify”. 

http://www.ibm.com/developerworks/rational/library/0

6/0822_satish-giridhar/

http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/

