
Dynamic memory allocation in C

(Reek, Ch. 11)

1 CS 3090: Safety Critical Programming in C



Overview of memory management

CS 3090: Safety Critical Programming in C2

 Stack-allocated memory

 When a function is called, memory is allocated for all of its 

parameters and local variables.

 Each active function call has memory on the stack (with 

the current function call on top)

 When a function call terminates,

the memory is deallocated (“freed up”)

 Ex: main() calls f(),

f() calls g()

g() recursively calls g()

main()

f()

g()

g()



Overview of memory management

CS 3090: Safety Critical Programming in C3

 Heap-allocated memory

 This is used for persistent data, that must survive beyond 

the lifetime of a function call

 global variables

 dynamically allocated memory – C statements can create new 

heap data (similar to new in Java/C++)

 Heap memory is allocated in a more complex way than 

stack memory

 Like stack-allocated memory, the underlying system 

determines where to get more memory – the programmer 

doesn‟t have to search for free memory space!



Allocating new heap memory

CS 3090: Safety Critical Programming in C4

void *malloc(size_t size);

 Allocate a block of size bytes,

return a pointer to the block

(NULL if unable to allocate block)

void *calloc(size_t num_elements, size_t element_size);

 Allocate a block of num_elements * element_size bytes,

initialize every byte to zero,

return pointer to the block

(NULL if unable to allocate block)

Note: void * denotes a generic pointer type



Allocating new heap memory

CS 3090: Safety Critical Programming in C5

void *realloc(void *ptr, size_t new_size);

 Given a previously allocated block starting at ptr,

 change the block size to new_size,

 return pointer to resized block

 If block size is increased, contents of old block may be copied to 
a completely different region

 In this case, the pointer returned will be different from the ptr
argument, and ptr will no longer point to a valid memory region

 If ptr is NULL, realloc is identical to malloc

 Note: may need to cast return value of 
malloc/calloc/realloc:

char *p = (char *) malloc(BUFFER_SIZE);



Deallocating heap memory

CS 3090: Safety Critical Programming in C6

void free(void *pointer);

 Given a pointer to previously allocated memory,

 put the region back in the heap of unallocated memory

 Note: easy to forget to free memory when no longer 

needed...

 especially if you‟re used to a language with “garbage 

collection” like Java

 This is the source of the notorious “memory leak” problem

 Difficult to trace – the program will run fine for some time, 

until suddenly there is no more memory!



Checking for successful allocation

CS 3090: Safety Critical Programming in C7

 Call to malloc might fail to allocate memory, if there‟s not 

enough available

 Easy to forget this check, annoying to have to do it every 

time malloc is called...

 Reek‟s solution:

#define malloc DON’T CALL malloc DIRECTLY!

#define MALLOC(num,type) (type *)alloc((num)*sizeof(type))

extern void *alloc(size_t size);

Garbage inserted into source code 

if programmer uses malloc

Use MALLOC instead...

Scales memory region appropriately

(Note use of parameters in #define)

Also, calls “safe” alloc function



Checking for successful allocation

CS 3090: Safety Critical Programming in C8

 implementation of alloc:

#undef malloc

void *alloc(size_t size) {

void *new_mem;

new_mem = malloc(size);

if (new_mem == NULL) exit(1);

return new_mem;

}

 Nice solution – as long as “terminate the program” is 

always the right response



Memory errors

CS 3090: Safety Critical Programming in C9

 Using memory that you have not initialized

 Using memory that you do not own

 Using more memory than you have allocated

 Using faulty heap memory management



Using memory that you have not initialized

CS 3090: Safety Critical Programming in C10

 Uninitialized memory read

 Uninitialized memory copy
 not necessarily critical – unless a memory read follows

void foo(int *pi) {

int j;

*pi = j;

/* UMC: j is uninitialized, copied into *pi */

}

void bar() {

int i=10;

foo(&i);

printf("i = %d\n", i);

/* UMR: Using i, which is now junk value */

}



Using memory that you don’t own

CS 3090: Safety Critical Programming in C11

 Null pointer read/write

 Zero page read/write

typedef struct node {

struct node* next;

int val;

} Node;

int findLastNodeValue(Node* head) {

while (head->next != NULL) { /* Expect NPR */

head = head->next;

}

return head->val; /* Expect ZPR */

}

What if head is NULL?



Using memory that you don’t own

CS 3090: Safety Critical Programming in C12

 Invalid pointer read/write
 Pointer to memory that hasn‟t been allocated to program

void genIPR() {

int *ipr = (int *) malloc(4 * sizeof(int));

int i, j;

i = *(ipr - 1000); j = *(ipr + 1000); /* Expect IPR */

free(ipr);

}

void genIPW() {

int *ipw = (int *) malloc(5 * sizeof(int));

*(ipw - 1000) = 0; *(ipw + 1000) = 0; /* Expect IPW */

free(ipw);

}



Using memory that you don’t own

CS 3090: Safety Critical Programming in C13

 Common error in 64-bit applications:

 ints are 4 bytes but pointers are 8 bytes

 If prototype of malloc() not provided, return value will be cast 

to a 4-byte int

/*Forgot to #include <malloc.h>, <stdlib.h>

in a 64-bit application*/

void illegalPointer() {

int *pi = (int*) malloc(4 * sizeof(int));

pi[0] = 10; /* Expect IPW */

printf("Array value = %d\n", pi[0]); /* Expect IPR */

}

Four bytes will be lopped off this value –

resulting in an invalid pointer value



Using memory that you don’t own

CS 3090: Safety Critical Programming in C14

 Free memory read/write
 Access of memory that has been freed earlier

int* init_array(int *ptr, int new_size) {

ptr = (int*) realloc(ptr, new_size*sizeof(int));

memset(ptr, 0, new_size*sizeof(int));

return ptr;

}

int* fill_fibonacci(int *fib, int size) {

int i;

/* oops, forgot: fib = */ init_array(fib, size);

/* fib[0] = 0; */ fib[1] = 1;

for (i=2; i<size; i++)

fib[i] = fib[i-1] + fib[i-2];

return fib;

}

What if array is moved 

to new location?

Remember: realloc may move entire block



Using memory that you don’t own

CS 3090: Safety Critical Programming in C15

 Beyond stack read/write

char *append(const char* s1, const char *s2) {

const int MAXSIZE = 128;

char result[128];

int i=0, j=0;

for (j=0; i<MAXSIZE-1 && j<strlen(s1); i++,j++) {

result[i] = s1[j];

}

for (j=0; i<MAXSIZE-1 && j<strlen(s2); i++,j++) {

result[i] = s2[j];

}

result[++i] = '\0';

return result;

}

Function returns pointer to stack 

memory – won‟t be valid after 

function returns

result is a local array name –

stack memory allocated



Using memory that you haven’t allocated

CS 3090: Safety Critical Programming in C16

 Array bound read/write

void genABRandABW() {

const char *name = “Safety Critical";

char *str = (char*) malloc(10);

strncpy(str, name, 10);

str[11] = '\0'; /* Expect ABW */

printf("%s\n", str); /* Expect ABR */

}



Faulty heap management

CS 3090: Safety Critical Programming in C17

 Memory leak

int *pi;

void foo() {

pi = (int*) malloc(8*sizeof(int));

/* Allocate memory for pi */

/* Oops, leaked the old memory pointed to by pi */

…

free(pi); /* foo() is done with pi, so free it */

}

void main() {

pi = (int*) malloc(4*sizeof(int));

/* Expect MLK: foo leaks it */

foo();

}



Faulty heap management

CS 3090: Safety Critical Programming in C18

 Potential memory leak

 no pointer to the beginning of a block

 not necessarily critical – block beginning may still be reachable via 

pointer arithmetic

int *plk = NULL;

void genPLK() {

plk = (int *) malloc(2 * sizeof(int));

/* Expect PLK as pointer variable is incremented

past beginning of block */

plk++;

}



Faulty heap management

CS 3090: Safety Critical Programming in C19

 Freeing non-heap memory

 Freeing unallocated memory
void genFNH() {

int fnh = 0;

free(&fnh); /* Expect FNH: freeing stack memory */

}

void genFUM() {

int *fum = (int *) malloc(4 * sizeof(int));

free(fum+1); /* Expect FUM: fum+1 points to middle 
of a block */

free(fum);

free(fum); /* Expect FUM: freeing already freed 
memory */

}



Tools for analyzing memory management

CS 3090: Safety Critical Programming in C20

 Purify: runtime analysis for finding memory errors

 dynamic analysis tool:

collects information on memory

management while program runs

 contrast with static analysis tool

like lint, which analyzes source

code without compiling, executing it



Reference

CS 3090: Safety Critical Programming in C21

 S.C. Gupta and S. Sreenivasamurthy. “Navigating „C‟ 

in a „leaky‟ boat? Try Purify”. 

http://www.ibm.com/developerworks/rational/library/0

6/0822_satish-giridhar/

http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/
http://www.ibm.com/developerworks/rational/library/06/0822_satish-giridhar/

