
Introduction to the C Programming Language

Science & Technology Support
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road

Columbus, OH 43212-1163

2
C Programming

Table of Contents

• Introduction
• C Program Structure
• Variables, Expressions, &

Operators
• Input and Output
• Program Looping
• Decision Making Statements
• Array Variables
• Strings
• Math Library Functions

• User-defined Functions
• Formatted Input and Output
• Pointers
• Structures
• Unions
• File Input and Output
• Dynamic Memory Allocation
• Command Line Arguments
• Operator Precedence Table

3
C Programming

Introduction

• Why Learn C?

4
C Programming

Why Learn C?

• Compact, fast, and powerful
• “Mid-level” Language
• Standard for program development (wide acceptance)
• It is everywhere! (portable)
• Supports modular programming style
• Useful for all applications
• C is the native language of UNIX
• Easy to interface with system devices/assembly routines
• C is terse

5
C Programming

C Program Structure

• Canonical First Program
• Header Files
• Names in C
• Comments
• Symbolic Constants

6
C Programming

Canonical First Program

• The following program is written in the C programming language:

• C is case sensitive. All commands in C must be lowercase.
• C has a free-form line structure. End of each statement must be marked

with a semicolon. Multiple statements can be on the same line. White space is
ignored. Statements can continue over many lines.

#include <stdio.h>
main()

{
/* My first program */
printf("Hello World! \n");

}

7
C Programming

Canonical First Program Continued

• The C program starting point is identified by the word main().
• This informs the computer as to where the program actually starts. The

parentheses that follow the keyword main indicate that there are no arguments
supplied to this program (this will be examined later on).

• The two braces, { and }, signify the begin and end segments of the
program. In general, braces are used throughout C to enclose a block of
statements to be treated as a unit. COMMON ERROR: unbalanced number
of open and close curly brackets!

#include <stdio.h>
main()

{
/* My first program */
printf("Hello World! \n");

}

8
C Programming

More on the Canonical First Program

• The purpose of the statement #include <stdio.h> is to allow the use of
the printf statement to provide program output. For each function built
into the language, an associated header file must be included. Text to be
displayed by printf() must be enclosed in double quotes. The program
only has the one printf() statement.

• printf() is actually a function (procedure) in C that is used for printing
variables and text. Where text appears in double quotes "", it is printed
without modification. There are some exceptions however. This has to do with
the \ and % characters. These characters are modifiers, and for the present the
\ followed by the n character represents a newline character.

#include <stdio.h>
main()

{
/* My first program */
printf("Hello World! \n");

}

9
C Programming

Canonical First Program Output & Comments

• Thus the program prints
Hello World!

• And the cursor is set to the beginning of the next line. As we shall see later on,
what follows the \ character will determine what is printed (i.e., a tab, clear
screen, clear line, etc.)

/* My first program */

• Comments can be inserted into C programs by bracketing text with the /* and
*/ delimiters. As will be discussed later, comments are useful for a variety of
reasons. Primarily they serve as internal documentation for program structure
and functionality.

10
C Programming

Header Files

• Header files contain definitions of functions and variables which can be
incorporated into any C program by using the pre-processor #include statement.
Standard header files are provided with each compiler, and cover a range of areas:
string handling, mathematics, data conversion, printing and reading of variables, etc.

• To use any of the standard functions, the appropriate header file should be included.
This is done at the beginning of the C source file. For example, to use the function
printf() in a program, the line

#include <stdio.h>

• should be at the beginning of the source file, because the declaration for printf() is
found in the file stdio.h. All header files have the extension .h and generally reside
in the /usr/include subdirectory.

#include <string.h>
#include <math.h>
#include "mylib.h"

• The use of angle brackets <> informs the compiler to search the compiler’s include
directories for the specified file. The use of the double quotes "" around the filename
informs the compiler to start the search in the current directory for the specified file.

11
C Programming

Names in C

• Identifiers in C must begin with a character or underscore, and may be
followed by any combination of characters, underscores, or the digits 0-9.

summary exit_flag i

Jerry7 Number_of_moves _id

• You should ensure that you use meaningful (but short) names for your
identifiers. The reasons for this are to make the program easier to read and
self-documenting. Example:

distance = speed * time;

• Some users choose to adopt the convention that variable names are all lower
case while symbolic names for constants are all upper case.

• Keywords are reserved identifiers that have strict meaning to the C compiler.
C only has 29 keywords. Example keywords are:

if, else, char, int, while

12
C Programming

Comments

• The addition of comments inside programs is desirable. These may be added to
C programs by enclosing them as follows,

/*

Computational Kernel: In this section of code we implement the
Runge-Kutta algorithm for the numerical solution of the
differential Einstein Equations.

*/

• Note that the /* opens the comment field and the */ closes the comment
field. Comments may span multiple lines. Comments may not be nested one
inside the another.

/* this is a comment. /* this comment is inside */ wrong */

• In the above example, the first occurrence of */ closes the comment
statement for the entire line, meaning that the text wrong is interpreted as a C
statement or variable, and in this example, generates an error.

13
C Programming

Why use comments?

• Documentation of variables and functions and their usage
• Explaining difficult sections of code
• Describes the program, author, date, modification changes, revisions…

Best programmers comment as they write the code, not after the fact.

14
C Programming

Symbolic Constants

• Names given to values that cannot be changed. Implemented with the
#define preprocessor directive.

#define N 3000
#define FALSE 0
#define PI 3.14159
#define FIGURE "triangle"

• Note that preprocessor statements begin with a # symbol, and are NOT
terminated by a semicolon. Traditionally, preprocessor statements are listed at
the beginning of the source file.

• Preprocessor statements are handled by the compiler (or preprocessor) before
the program is actually compiled. All # statements are processed first, and the
symbols (like N) which occur in the C program are replaced by their value
(like 3000). Once this substitution has taken place by the preprocessor, the
program is then compiled.

• In general, preprocessor constants are written in UPPERCASE. This acts as a
form of internal documentation to enhance program readability and reuse.

• In the program itself, values cannot be assigned to symbolic constants.

15
C Programming

Use of Symbolic Constants

• Consider the following program which defines a constant called TAXRATE.

• The whole point of using #define in your programs is to make them easier
to read and modify. Considering the above program as an example, what
changes would you need to make if the TAXRATE was changed to 20%?

#include <stdio.h>
#define TAXRATE 0.10
main () {

float balance;
float tax;
balance = 72.10;
tax = balance * TAXRATE;
printf("The tax on %.2f is %.2f\n",balance, tax);

}

The tax on 72.10 is 7.21

16
C Programming

Use of Symbolic Constants

• Obviously, the answer is one, where the #define statement which declares
the symbolic constant and its value occurs. You would change it to read

#define TAXRATE 0.20

• Without the use of symbolic constants, you would hard code the value 0.20
in your program, and this might occur several times (or tens of times).

17
C Programming

Variables, Expressions, and Operators

• Declaring Variables
• Basic Format
• Basic Data Types: Integer
• Basic Data Types: Float
• Basic Data Types: Double
• Basic Data Types: Character
• Expressions and Statements
• Assignment Operator
• Assignment Operator Evaluation
• Initializing Variables
• Initializing Variables Example
• Arithmetic Operators
• Increment/Decrement Operators
• Prefix versus Postfix

• Advanced Assignment Operators
• Precedence & Associativity of

Operators
• Precedence & Associativity of

Operators Examples
• The int Data Type
• The float and double Data

Types
• The char Data Type
• ASCII Character Set
• Automatic Type Conversion
• Automatic Type Conversion with

Assignment Operator
• Type Casting

18
C Programming

Declaring Variables

• A variable is a named memory location in which data of a certain type can be
stored. The contents of a variable can change, thus the name. User defined
variables must be declared before they can be used in a program. It is during
the declaration phase that the actual memory for the variable is reserved. All
variables in C must be declared before use.

• Get into the habit of declaring variables using lowercase characters.
Remember that C is case sensitive, so even though the two variables listed
below have the same name, they are considered different variables in C.

sum Sum

• The declaration of variables is done after the opening brace of main().
main() {

int sum;

• It is possible to declare variables elsewhere in a program, but lets start simply
and then get into variations later on.

19
C Programming

Basic Format

• The basic format for declaring variables is

data_type var, var, …;

• where data_type is one of the four basic types, an integer, character, float,
or double type. Examples are

int i,j,k;

float length,height;

char midinit;

20
C Programming

Basic Data Types: INTEGER

• INTEGER: These are whole numbers, both positive and negative. Unsigned
integers(positive values only) are also supported. In addition, there are short
and long integers. These specialized integer types will be discussed later.

• The keyword used to define integers is

int

• An example of an integer value is 32. An example of declaring an integer
variable called age is

int age;

21
C Programming

Basic Data Types: FLOAT

• FLOATING POINT: These are numbers which contain fractional parts, both
positive and negative, and can be written in scientific notation.

• The keyword used to define float variables is

float

• Typical floating point values are 1.73 and 1.932e5 (1.932 x 105). An example
of declaring a float variable called x is

float x;

22
C Programming

Basic Data Types: DOUBLE

• DOUBLE: These are floating point numbers, both positive and negative,
which have a higher precision than float variables.

• The keyword used to define double variables is

double

• An example of declaring a double variable called voltage is

double voltage;

23
C Programming

Basic Data Types: CHAR

• CHARACTER: These are single characters.

• The keyword used to define character variables is

char

• Typical character values might be the letter A, the character 5, the symbol “,
etc. An example of declaring a character variable called letter is

char letter;

24
C Programming

Expressions and Statements

• An expression in C is some combination of constants, variables, operators
and function calls. Sample expressions are:

a + b
3.0*x - 9.66553
tan(angle)

• Most expressions have a value based on their contents.

• A statement in C is just an expression terminated with a semicolon. For
example:

sum = x + y + z;
printf("Go Buckeyes!");

25
C Programming

The Assignment Operator

• In C, the assignment operator is the equal sign = and is used to give a variable
the value of an expression. For example:

i=0;
x=34.8;
sum=a+b;
slope=tan(rise/run);
midinit='J';
j=j+3;

• When used in this manner, the equal sign should be read as “gets”. Note that
when assigning a character value the character should be enclosed in single
quotes.

26
C Programming

The Assignment Operator Evaluation

• In the assignment statement

a=7;

• two things actually occur. The integer variable a gets the value of 7, and the
expression a=7 evaluates to 7. This allows a shorthand for multiple
assignments of the same value to several variables in a single statement. Such
as

x=y=z=13.0;

27
C Programming

Initializing Variables

• C Variables may be initialized with a value when they are declared. Consider
the following declaration, which declares an integer variable count which is
initialized to 10.

int count = 10;

• In general, the user should not assume that variables are initialized to some
default value “automatically” by the compiler. Programmers must ensure that
variables have proper values before they are used in expressions.

28
C Programming

Initializing Variables Example

• The following example illustrates the two methods for variable initialization:

• which produces the following output:

#include <stdio.h>
main () {

int sum=33;
float money=44.12;
char letter;
double pressure;
letter='E'; /* assign character value */
pressure=2.01e-10; /*assign double value */
printf("value of sum is %d\n",sum);
printf("value of money is %f\n",money);
printf("value of letter is %c\n",letter);
printf("value of pressure is %e\n",pressure);

}

value of sum is 33
value of money is 44.119999
value of letter is E
value of pressure is 2.010000e-10

29
C Programming

Arithmetic Operators

• The primary arithmetic operators and their corresponding symbols in C are:

• When the / operator is used to perform integer division the resulting integer
is obtained by discarding (or truncating) the fractional part of the actual
floating point value. For example:

1/2 0
3/2 1

• The modulus operator % only works with integer operands. The expression
a%b is read as “a modulus b” and evaluates to the remainder obtained after
dividing a by b. For example

7 % 2 1
12 % 3 0

Negation -

Multiplication *

Division /

Modulus %

Addition +

Subtraction -

30
C Programming

Increment/Decrement Operators

• In C, specialized operators have been set aside for the incrementing and
decrementing of integer variables. The increment and decrement operators are
++ and -- respectively. These operators allow a form of shorthand in C:

++i; is equivalent to i=i+1;

--i; is equivalent to i=i-1;

• The above example shows the prefix form of the increment/decrement
operators. They can also be used in postfix form, as follows

i++; is equivalent to i=i+1;

i--; is equivalent to i=i-1;

31
C Programming

Prefix versus Postfix

• The difference between prefix and postfix forms shows up when the operators
are used as part of a larger expression.
– If ++k is used in an expression, k is incremented before the expression is

evaluated.
– If k++ is used in an expression, k is incremented after the expression is

evaluated.
• Assume that the integer variables m and n have been initialized to zero. Then

in the following statement
a=++m + ++n; m 1, n 1, then a 2

• whereas in this form of the statement
a=m++ + n++; a 0 then m 1, n 1

32
C Programming

Advanced Assignment Operators

• A further example of C shorthand are operators which combine an arithmetic
operation and a assignment together in one form. For example, the following
statement

k=k+5; can be written as k += 5;

• The general syntax is
variable = variable op expression;

• can alternatively be written as
variable op= expression;

• common forms are:
+= -= *= /= %=

• Examples:
j=j*(3+x); j *= 3+x;

a=a/(s-5); a /= s-5;

33
C Programming

Precedence & Associativity of Operators

• The precedence of operators determines the order in which operations are
performed in an expression. Operators with higher precedence are employed
first. If two operators in an expression have the same precedence, associativity
determines the direction in which the expression will be evaluated.

• C has a built-in operator hierarchy to determine the precedence of operators.
Operators higher up in the following diagram have higher precedence. The
associativity is also shown.

- ++ -- R L
* / % L R
+ - L R
= R L

34
C Programming

Precedence & Associativity of Operators Examples

• This is how the following expression is evaluated

1 + 2 * 3 - 4
1 + 6 - 4
7 - 4
3

• The programmer can use parentheses to override the hierarchy and force a
desired order of evaluation. Expressions enclosed in parentheses are
evaluated first. For example:

(1 + 2) * (3 - 4)
3 * -1
-3

35
C Programming

The int Data Type

• A typical int variable is in the range +-32,767. This value differs from
computer to computer and is thus machine-dependent. It is possible in C to
specify that an integer be stored in more memory locations thereby increasing
its effective range and allowing very large integers to be stored. This is
accomplished by declaring the integer variable to have type long int.

long int national_debt;

• long int variables typically have a range of +-2,147,483,648.
• There are also short int variables which may or may not have a smaller

range than normal int variables. All that C guarantees is that a short int
will not take up more bytes than int.

• There are unsigned versions of all three types of integers. Negative integers
cannot be assigned to unsigned integers, only a range of positive values. For
example

unsigned int salary;

• typically has a range of 0 to 65,535.

36
C Programming

The float and double Data Types

• As with integers the different floating point types available in C correspond to
different ranges of values that can be represented. More importantly, though,
the number of bytes used to represent a real value determines the precision to
which the real value is represented. The more bytes used the higher the
number of decimal places of accuracy in the stored value. The actual ranges
and accuracy are machine-dependent.

• The three C floating point types are:

float
double
long double

• In general, the accuracy of the stored real values increases as you move down
the list.

37
C Programming

The char Data Type

• Variables of type char take up exactly one byte in memory and are used to
store printable and non-printable characters. The ASCII code is used to
associate each character with an integer (see next page). For example the
ASCII code associates the character ‘m’ with the integer 109. Internally, C
treats character variables as integers.

38
C Programming

ASCII Character Set
Ctrl Decimal Code
^@ 0 NUL
^A 1 SOH
^B 2 STX
^C 3 ETX
^D 4 EOT
^E 5 ENQ
^F 6 ACK
^G 7 BEL
^H 8 BS
Î 9 HT
Ĵ 10 LF

^K 11 VT
L̂ 12 FF

^M 13 CR
^N 14 SOH
^O 15 ST
^P 16 SLE
^Q 17 CS1
^R 18 DC2
^S 19 DC3
^T 20 DC4
^U 21 NAK
^V 22 SYN
^W 23 ETB
^X 24 CAN
^Y 25 EM
^Z 26 SIB
[̂ 27 ESC
\̂ 28 FS
]̂ 29 GS

^̂ 30 RS
_̂ 31 US

Decimal Char
32 sp
33 !
34 "
35 #
36 $
37 %
38 &
39
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?

Decimal Char
32 sp
33 !
34 "
35 #
36 $
37 %
38 &
39
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;
60 <
61 =
62 >
63 ?

Decimal Char
64 @
65 A
66 B
67 C
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L
77 M
78 N
79 O
80 P
81 Q
82 R
83 S
84 T
85 U
86 V
87 W
88 X
89 Y
90 Z
91 [
92 \
93]
94 ^
95 _

Decimal Char
96 `
97 a
98 b
99 c

100 d
101 e
102 f
103 g
104 h
105 I
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127 DEL

39
C Programming

Automatic Type Conversion

• How does C evaluate and type expressions that contain a mixture of different
data types? For example, if x is a double and i an integer, what is the type of
the expression

x+i

• In this case, i will be converted to type double and the expression will
evaluate as a double. NOTE: the value of i stored in memory is unchanged.
A temporary copy of i is converted to a double and used in the expression
evaluation.

• This automatic conversion takes place in two steps. First, all floats are
converted to double and all characters and shorts are converted to ints. In the
second step “lower” types are promoted to “higher” types. The expression
itself will have the type of its highest operand. The type hierarchy is as
follows

long double
double
unsigned long
long
unsigned
int

40
C Programming

Automatic Type Conversion with Assignment Operator

• Automatic conversion even takes place if the operator is the assignment
operator. This creates a method of type conversion. For example, if x is double
and i an integer, then

x=i;

• i is promoted to a double and resulting value given to x

• On the other hand say we have the following expression:

i=x;

• A conversion occurs, but result is machine-dependent

41
C Programming

Type Casting

• Programmers can override automatic type conversion and explicitly cast
variables to be of a certain type when used in an expression. For example,

(double) i

• will force i to be of type double. The general syntax is

(type) expression

• Some examples,

(char) 3 + 'A'
x = (float) 77;
(double) k * 57

42
C Programming

Input and Output

• Basic Output
• printf Function
• Format Specifiers Table
• Common Special Characters for Cursor Control
• Basic Output Examples
• Basic Input
• Basic Input Example

43
C Programming

Basic Output

• Now, let us look more closely at the printf() statement. In a previous
program, we saw this example

print("value of sum is %d\n",sum);

• which produced this output:

value of sum is 33

• The first argument of the printf function is called the control string. When
the printf is executed, it starts printing the text in the control string until it
encounters a % character. The % sign is a special character in C and marks the
beginning of a format specifier. A format specifier controls how the value of
a variable will be displayed on the screen. When a format specifier is found,
printf looks up the next argument (in this case sum), displays its value and
continues on. The d character that follows the % indicates that a (d)ecimal
integer will be displayed. At the end of the control statement, printf reads
the special character \n which indicates print the new line character.

44
C Programming

printf Function

• General form of printf function

printf(control string,argument list);

• where the control string consists of 1) literal text to be displayed, 2)
format specifiers, and 3)special characters. The arguments can be variables,
constants, expressions, or function calls -- anything that produces a value
which can be displayed. Number of arguments must match the number of
format identifiers. Unpredictable results if argument type does not “match”
the identifier.

45
C Programming

Format Specifiers Table

• The following table show what format specifiers should be used with what
data types:

Specifier Type
%c character
%d decimal integer
%o octal integer (leading 0)
%x hexadecimal integer (leading 0x)
%u unsigned decimal integer
%ld long int
%f floating point
%lf double or long double
%e exponential floating point
%s character string

46
C Programming

Common Special Characters for Cursor Control

• Some common special characters for cursor control are:

\n newline
\t tab
\r carriage return
\f form feed
\v vertical tab
\b backspace
\” Double quote (\ acts as an “escape” mark)
\nnn octal character value

47
C Programming

Basic Output Examples

printf(“ABC”); ABC (cursor after the C)
printf(“%d\n”,5); 5 (cursor at start of next line)
printf(“%c %c %c”,’A’,’B’,’C’); A B C

printf(“From sea ”);
printf(“to shining “);
printf (“C”);

From sea to shining C

printf(“From sea \n”);
printf(“to shining \n“);
printf (“C”);

From sea
to shining
C

leg1=200.3; leg2=357.4;
printf(“It was %f
miles”,leg1+leg2);

It was 557.700012 miles

num1=10; num2=33;
printf(“%d\t%d\n”,num1,num2); 10 33
big=11e+23;
printf(“%e \n”,big); 1.100000e+24
printf(“%c \n”,’?’); ?

printf(“%d \n”,’?’); 63

printf(“\007 That was a beep\n”); try it yourself

48
C Programming

Basic Input

• There is a function in C which allows the programmer to accept input from a
keyboard. The following program illustrates the use of this function.

• What happens in this program? An integer called pin is defined. A prompt to
enter in a number is then printed with the first printf statement. The scanf
routine, which accepts the response, has a control string and an address list.
In the control string, the format specifier %d shows what data type is expected.
The &pin argument specifies the memory location of the variable the input
will be placed in. After the scanf routine completes, the variable pin will
be initialized with the input integer. This is confirmed with the second
printf statement. The & character has a very special meaning in C. It is the
address operator. (Much more with & when we get to pointers…)

#include <stdio.h>
main() {

int pin;
printf("Please type in your PIN\n");
scanf("%d",&pin);
printf("Your access code is %d\n",pin);}

49
C Programming

Basic Input Example

• A session using the above code would look like this

• The format identifier used for a specific C data type is the same as for the
printf statement, with one exception. If you are inputting values for a
double variable, use the %lf format identifier.

• White space is skipped over in the input stream (including carriage return)
except for character input. A blank is valid character input.

#include <stdio.h>
main() {

int pin;
printf("Please type in your PIN\n");
scanf("%d",&pin);
printf("Your access code is %d\n",pin);}

Please type your PIN
4589
Your access code is 4589

50
C Programming

Program Looping

• Introduction to Program Looping
• Relational Operators
• Relational Operators Table
• for Loop
• for Loop Example
• for Loop Diagram
• General Comments about for Loop
• General Comments about for Loop Continued
• while Loop
• while Loop Example
• do while Loop
• do while Loop Example
• do while Loop Example: Error Checking

51
C Programming

Introduction to Program Looping

• Program looping is often desirable in coding in any language to have the
ability to repeat a block of statements a number of times. In C, there are
statements that allow iteration of this type. Specifically, there are two classes
of program loops -- unconditional and conditional. An unconditional loop is
repeated a set number of times. In a conditional loop the iterations are halted
when a certain condition is true. Thus the actual number of iterations
performed can vary each time the loop is executed.

52
C Programming

Relational Operators

• Our first use of these operators will be to set up the condition required to
control a conditional loop. Relational operators allow the comparison of two
expressions. Such as

a < 4

• which reads a “less than” 4. If a is less than 4, this expression will evaluate to
TRUE. If not it will evaluate to FALSE.

• Exactly what does it mean to say an expression is TRUE or FALSE? C uses
the following definition

– FALSE means evaluates to ZERO
– TRUE means evaluates to any NON-ZERO integer(even negative integers)

53
C Programming

Relational Operators Table

• The following table shows the various C relational operators

• The relational operators have a precedence below the arithmetic operators.

Operator Meaning Example
== Equal to count == 10

!= Not equal to flag != DONE

< Less than a < b

<= Less than or equal to i <= LIMIT

> Greater than pointer > end_of_list

>= Greater than or equal to lap >= start

54
C Programming

for Loop

• The for loop is C’s form of an unconditional loop. The basic syntax of the for
statement is,
for (initialization expression; test expr; increment expr)

program statement;

• Here is an example
sum=10;
for (i=0; i<6; ++i)

sum = sum+i;

• The operation for the loop is as follows
1) The initialization expression is evaluated.
2) The test expression is evaluated. If it is TRUE, body of the loop is executed. If it is

FALSE, exit the for loop.
3) Assume test expression is TRUE. Execute the program statements making up the

body of the loop.
4) Evaluate the increment expression and return to step 2.
5) When test expression is FALSE, exit loop and move on to next line of code.

55
C Programming

for Loop Example

• Sample Loop:

• We can trace the execution of the sample loop as follows

sum = 10;
for (i=0; i<6; ++i)

sum=sum+i;

Iteration i i<6 sum
1st 0 TRUE 10
2nd 1 TRUE 11
3rd 2 TRUE 13
4th 3 TRUE 16
5th 4 TRUE 20
6th 5 TRUE 25
7th 6 FALSE 25

56
C Programming

for Loop Diagram

• The following diagram illustrates the operation of a for loop

for (; ;)
{

}

11

55

33

22 44

TRUE

FALSE

57
C Programming

General Comments about for Loop

• Some general comments regarding the use of the for statement:
– Control expressions are separated by ; not ,

– If there are multiple C statements that make up the loop body, enclose them in
brackets (USE INDENTATION FOR READABILITY)

for (x=100; x!=65; x-=5) {
z=sqrt(x);
printf("The square root of %d is %f\n",x,z);

}

– Control expressions can be any valid expression. Don’t necessarily have to
perform initialization, testing, and incrementation.

– Any of the control expressions can be omitted (but always need the two
semicolons for syntax sake).
product=1;

for (i=1;i<=6;)
product*=i++;

58
C Programming

General Comments about for Loop Continued

• Some general comments regarding the use of the for statement:

– Since test performed at beginning of loop, body may never get executed
x=10;

for (y=10;y!=x;++y)

printf ("%d",y);

– Can string together multiple expressions in the for statement by separating
them by commas
for (x=1,y=5;x+y<100;++x)

z=x%y;

59
C Programming

while Loop

• The while loop provides a mechanism for repeating C statements while a
condition is true. Its format is

while(control expression)
program statement;

• The while statement works as follows:

1) Control expression is evaluated (“entry condition”)
2) If it is FALSE, skip over the loop.
3) If it is TRUE, loop body is executed.
4) Go back to step 1

60
C Programming

while Loop Example

• Example while loop
i=1; factorial=1;
while (i<=n) {

factorial *= i;
i=i+1;

}

• Programmer is responsible for initialization and incrementation. At some
point in the body of the loop, the control expression must be altered in order to
allow the loop to finish. Otherwise: infinite loop.

• Will this loop end?
j=15;
while (j--)

…;

61
C Programming

do while Loop

• The do while statement is a variant of the while statement in which the
condition test is performed at the “bottom” of the loop. This guarantees that
the loop is executed at least once.

• The syntax of the do while statement is
do

program statement;

while (control expression);

• and it works as follows

1) The body of the loop is executed.
2) The control expression is evaluated (“exit condition”).
3) If it is TRUE, go back to step 1. If it is FALSE, exit loop.

62
C Programming

do while Loop Example

• Here is a sample program that reverses an integer with a do while loop:

main() {
int value, r_digit;
printf("Enter the number to be reversed.\n");
scanf("%d", &value);
do {

r_digit = value % 10;
printf("%d", r_digit);
value = value / 10;

} while (value != 0);
printf("\n");

}

63
C Programming

do while Loop Example: Error Checking

• A common use of the do while statement is input error checking. A simple
form is shown here

do {
printf("\n Input a positive integer: ");
scanf("%d",&n);

} while (n<=0);

• The user will remain in this loop continually being prompted for and entering
integers until a positive one is entered. A sample session using this loop looks
like this

Input a positive integer: -4
Input a positive integer: -34
Input a positive integer: 6

64
C Programming

Decision Making Statements

• Introduction to Decision Making Statements
• if Statement
• if Statement Examples
• if-else Statement
• if-else Ladder
• switch Statement
• switch Statement Example
• switch Statement Operation
• switch Statement Example: Characters
• switch Statement Example: Menus
• Conditional Operator
• Conditional Operator Examples
• Logical Operators
• Logical Operators Precedence

65
C Programming

Introduction to Decision Making Statements

• Used to have a program execute different statements depending on certain
conditions. In a sense, makes a program “smarter” by allowing different
choices to be made. In C, there are three decision making statements.

if execute a statement or not
if-else choose to execute one of two statements
switch choose to execute one of a number of statements

66
C Programming

if Statement

• The if statement allows branching (decision making) depending upon a
condition. Program code is executed or skipped. The basic syntax is

if (control expression)
program statement;

• If the control expression is TRUE, the body of the if is executed. If it is
FALSE, the body of the if is skipped.

• There is no “then” keyword in C!

• Because of the way in which floating point types are stored, it makes it very
difficult to compare such types for equality. Avoid trying to compare real
variables for equality, or you may encounter unpredictable results.

67
C Programming

if Statement Examples

• Theses code fragments illustrate some uses of the if statement

– Avoid division by zero
if (x!=0)

y/=x;

– Customize output
if (grade>=90)

printf("\nCongratulations!");
printf("\nYour grade is "%d",grade);

– Nested ifs
if (letter>='A')

if (letter>='Z')
printf("The letter is a capital \n");

68
C Programming

if-else Statement

• Used to decide between two courses of action. The syntax of the if-else
statement is

if (expression)
statement1;

else
statement2;

• If the expression is TRUE, statement1 is executed; statement2 is
skipped.

• If the expression is FALSE, statement2 is executed; statement1 is
skipped.

• Some examples
if (x<y) if (letter == 'e') {

min=x; ++e_count;
else ++vowel_count; }

min=y; else
++other_count;

69
C Programming

if-else Ladder

• What if we wanted to extend the task shown in the previous example and not
just counts how many e’s there are in a piece of text, but also make counts of
the other vowels? This is possible by nesting if-else statements together to
make what is called an if-else ladder. For example, consider the following
code if (letter == 'a')

++a_count;
else if (letter == 'e')

++e_count;
else if (letter == 'i')

++i_count;
else if (letter == 'o')

++o_count;
else if (letter == 'u')

++u_count;
else

++const_count;

• As soon as a TRUE control expression is found, the statement associated with
it is executed and the rest of the ladder is bypassed. If no control expressions
are found to be TRUE, the final else statement acts as a default.

70
C Programming

switch Statement

• The switch statement is a better way of writing a program which employs an
if-else ladder. It is C’s built-in multiple branch decision statement. The
syntax for the switch statement is as follows:

switch (integer expression) {
case constant1:

statement1;
break;

case constant2:
statement2;
break;

...
default:

statement;
}

• The keyword break should be included at the end of each case statement. In
general, whenever a break statement is encountered in C, it interrupts the
normal flow of control. In the switch statement, it causes an exit from the
switch shunt. The default clause is optional. The right brace at the end
marks the end of switch statement.

71
C Programming

switch Statement Example

• Here is a simple example of a switch statement:

switch(n) {
case 12:

printf("value is 12\n");
break;

case 25:
printf("value is 25\n");
break;

case 99:
printf("value is 99\n");
break;

default:
printf("number is not part of the Xmas date\n");

}

72
C Programming

switch Statement Operation

• The switch statement works as follows

1) Integer control expression is evaluated.
2) A match is looked for between this expression value and the case

constants. If a match is found, execute the statements for that case. If a
match is not found, execute the default statement.

3) Terminate switch when a break statement is encountered or by “falling out
the end”.

• Some things to be aware of when using a switch statement:

– case values must be unique (How to decide otherwise?)
– switch statement only tests for equality
– The control expression can be of type character since they are

internally treated as integers

73
C Programming

switch Statement Example: Characters

switch(ch) {
case 'a':

++a_count;
break;

case 'b':
++b_count;
break;

case 'c':
case 'C': /* multiple values, same statements */

++c_count; }

74
C Programming

switch Statement Example: Menus

• A common application of the switch statement is to control menu-driven
software:

switch(choice) {
case 'S':

check_spelling();
break;

case 'C':
correct_errors();
break;

case 'D':
display_errors();
break;

default:
printf("Not a valid option\n"); }

75
C Programming

Conditional Operator

• Short-hand notation for an if-else statement that performs assignments.
This conditional expression operator takes THREE operands. The two symbols
used to denote this operator are the ? and the :. The first operand is placed
before the ?, the second operand between the ? and the :, and the third after
the :. The general syntax is thus

condition ? expression1 : expression2;

• If the result of condition is TRUE (non-zero), expression1 is evaluated
and the result of the evaluation becomes the result of the operation. If the
condition is FALSE (zero), then expression2 is evaluated and its result
becomes the result of the operation. Consider the example on the next page:

76
C Programming

Conditional Operator Examples

s = (x<0) ? -1 : x*x;

• If x is less than zero, then s=-1. If x is greater than or equal to zero, then
s=x*x.

• The following code sets the logical status of the variable even

if (number%2==0)
even=1;

else
even=0;

• Identical, short-hand code to perform the same task is

even=(number%2==0) ? 1 : 0;

77
C Programming

Logical Operators

• These operators are used to create more sophisticated conditional expressions
which can then be used in any of the C looping or decision making statements
we have just discussed. When expressions are combined with a logical
operator, either TRUE (i.e., 1) or FALSE (i.e., 0) is returned.

Operator Symbol Usage Operation
LOGICAL
AND

&& exp1 && exp2 Requires both exp1 and exp2 to be
TRUE to return TRUE. Otherwise, the
logical expression is FALSE.

LOGICAL
OR

|| exp1 || exp2 Will be TRUE if either (or both) exp1 or
exp2 is TRUE. Otherwise, it is FALSE.

LOGICAL
NOT

! !exp Negates (changes from TRUE to FALSE
and visa versa) the expression.

78
C Programming

Logical Operators Precedence

• The negation operator, !, has the highest precedence and is always performed
first in a mixed expression. The remaining logical operators have a precedence
below relational operators.

• Some typical examples using logical operators:

if (year<1900 && year>1799)
printf("Year in question is in the 19th century\n");

if (ch=='a' || ch=='e' || ch='i' || ch='o' || ch='u')
++vowel_count;

done=0;
while(!done) {

…
}

79
C Programming

Array Variables

• Introduction to Array Variables
• Array Variables Example
• Array Elements
• Declaring Arrays
• Initializing Arrays during Declaration
• Using Arrays
• Multi-dimensional Arrays
• Multi-dimensional Array Illustration
• Initializing Multi-dimensional Arrays
• Using Multi-dimensional Arrays

80
C Programming

Introduction to Array Variables

• Arrays are a data structure which hold multiple values of the same data type.
Arrays are an example of a structured variable in which 1) there are a
number of pieces of data contained in the variable name, and 2) there is an
ordered method for extracting individual data items from the whole.

• Consider the case where a programmer needs to keep track of the ID numbers
of people within an organization. Her first approach might be to create a
specific variable for each user. This might look like

int id1 = 101; int id2 = 232; int id3 = 231;

• It becomes increasingly more difficult to keep track of the IDs as the number
of variables increase. Arrays offer a solution to this problem.

81
C Programming

Array Variables Example

• An array is a multi-element box, a bit like a filing cabinet, and uses an
indexing system to find each variable stored within it. In C, indexing starts at
zero. Arrays, like other variables in C, must be declared before they can be
used.

• The replacement of the previous example using an array looks like this:
int id[3]; /* declaration of array id */

id[0] = 101;

id[1] = 232;

id[2] = 231;

• In the first line, we declared an array called id, which has space for three
integer variables. Each piece of data in an array is called an element. Thus,
array id has three elements. After the first line, each element of id is
initialized with an ID number.

82
C Programming

Array Elements

• The syntax for an element of an array called a is
a[i]

• where i is called the index of the array element. The array element id[1] is
just like any normal integer variable and can be treated as such.

• In memory, one can picture the array id as in the following diagram:

101 232 231id

id[0] id[1] id[2]

83
C Programming

Declaring Arrays

• Arrays may consist of any of the valid data types. Arrays are declared along
with all other variables in the declaration section of the program and the
following syntax is used

type array_name[n];

• where n is the number of elements in the array. Some examples are

int final[160];

float distance[66];

• During declaration consecutive memory locations are reserved for the array
and all its elements. After the declaration, you cannot assume that the elements
have been initialized to zero. Random junk is at each element’s memory
location.

84
C Programming

Initializing Arrays during Declaration

• If the declaration of an array is preceded by the word static, then the array can
be initialized at declaration. The initial values are enclosed in braces. e.g.,

static int value[9] = {1,2,3,4,5,6,7,8,9};

static float height[5]={6.0,7.3,2.2,3.6,19.8};

• Some rules to remember when initializing during declaration

1 If the list of initial elements is shorter than the number of array elements, the
remaining elements are initialized to zero.

2 If a static array is not initialized at declaration manually, its elements are
automatically initialized to zero.

3 If a static array is declared without a size specification, its size equals the
length of the initialization list. In the following declaration, a has size 5.

static int a[]={-6,12,18,2,323};

85
C Programming

Using Arrays

• Recall that indexing is the method of accessing individual array elements.
Thus grade[89] refers to the 90th element of the grades array. A
common programming error is out-of-bounds array indexing. Consider the
following code:

int grade[3];
grade[5] = 78;

• The result of this mistake is unpredictable and machine and compiler
dependent. You could write over important memory locations, for example.
Often run-time errors result.

• Array variables and for loops often work hand-in-hand since the for loop
offers a convenient way to successively access array elements and perform
some operation with them. Basically, the for loop counter can do double duty
and act as an index for the array, as in the following summation example:

int total=0,i;
int grade[4]={93,94,67,78};
for (i=0; i<4; ++i)

total += grade[i];

86
C Programming

Multi-Dimensional Arrays

• Multi-dimensional arrays have two or more index values which are used to
specify a particular element in the array. For this 2D array element,

image[i][j]

• the first index value i specifies a row index, while j specifies a column index.
Declaring multi-dimensional arrays is similar to the 1D case:

int a[10]; /* declare 1D array */

float b[3][5]; /* declare 2D array */

double c[6][4][2]; /* declare 3D array */

• Note that it is quite easy to allocate a large chunk of consecutive memory
with multi-dimensional arrays. Array c contains 6x4x2=48 doubles.

87
C Programming

Multi-Dimensional Array Illustration

• A useful way to picture a 2D array is as a grid or matrix. Picture array b as

• In C, 2D arrays are stored by row. Which means that in memory the 0th row
is put into its memory locations, the 1st row then takes up the next memory
locations, the 2nd row takes up the next memory locations, and so on.

0th

column
1st

column
2nd

column
3rd

column
4th

column

0th row b[0][0] b[0][1] b[0][2] b[0][3] b[0][4]

1st row b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

2nd row b[2][0] b[2][1] b[2][2] b[2][3] b[2][4]

88
C Programming

Initializing Multi-Dimensional Arrays

• This procedure is entirely analogous to that used to initialize 1D arrays at their
declaration. For example, this declaration

static int age[2][3]={4,8,12,19,6,-1};

• will fill up the array age as it is stored in memory. That is, the array is
initialized row by row. Thus, the above statement is equivalent to:

age[0][0]=4; age[0][1]=8; age[0][2]=12;
age[1][0]=19; age[1][1]=6; age[1][2]=-1;

• As before, if there are fewer initialization values than array elements, the
remainder are initialized to zero.

• To make your program more readable, you can explicitly put the values to be
assigned to the same row in inner curly brackets:

static int age[2][3]={{4,8,12},{19,6,-1}};

• In addition if the number of rows is omitted from the actual declaration, it is
set equal to the number of inner brace pairs:

static int age[][3]=]={{4,8,12},{19,6,-1}};

89
C Programming

Using Multi-Dimensional Arrays

• Again, as with 1D arrays, for loops and multi-dimensional arrays often work
hand-in-hand. In this case, though, loop nests are what is most often used.
Some examples

Summation of array elements

Trace of Matrix

double temp[256][3000],sum=0;
int i,j;
for (i=0; i<256; ++i)

for (j=0; j<3000; ++j)
sum += temp[i][j];

int voxel[512][512][512];
int i,j,k,trace=0;
for (i=0; i<512; ++i)

for (j=0; j<512; ++j)
for (k=0; k<512; ++k)

if (i==j && j==k)
trace += voxel[i][j][k];

90
C Programming

Strings

• Arrays of Characters
• Initializing Strings
• Copying Strings
• String I/O Functions
• More String Functions
• More String Functions Continued
• Examples of String Functions
• Character I/O Functions
• More Character Functions
• Character Functions Example

91
C Programming

Arrays of Characters

• Strings are 1D arrays of characters. Strings must be terminated by the null
character '\0' which is (naturally) called the end-of-string character. Don’t
forget to remember to count the end-of-string character when you calculate the
size of a string.

• As will all C variables, strings must be declared before they are used. Unlike
other 1D arrays the number of elements set for a string set during declaration
is only an upper limit. The actual strings used in the program can have fewer
elements. Consider the following code:

static char name[18] = "Ivanova";

• The string called name actually has only 8 elements. They are
'I' 'v' 'a' 'n' 'o' 'v' 'a' '\0'

• Notice another interesting feature of this code. String constants marked with
double quotes automatically include the end-of-string character. The curly
braces are not required for string initialization at declaration, but can be used
if desired (but don’t forget the end-of-string character).

92
C Programming

Initializing Strings

• Initializing a string can be done in three ways: 1) at declaration, 2) by reading
in a value for the string, and 3) by using the strcpy function. Direct
initialization using the = operator is invalid. The following code would
produce an error:

char name[34];

name = "Erickson"; /* ILLEGAL */

• To read in a value for a string use the %s format identifier:

scanf("%s",name);

• Note that the address operator & is not needed for inputting a string variable
(explained later). The end-of-string character will automatically be appended
during the input process.

93
C Programming

Copying Strings

• The strcpy function is one of a set of built-in string handling functions
available for the C programmer to use. To use these functions be sure to
include the string.h header file at the beginning of your program. The
syntax of strcpy is

strcpy(string1,string2);

• When this function executes, string2 is copied into string1 at the
beginning of string1. The previous contents of string1 are overwritten.

• In the following code, strcpy is used for string initialization:
#include <string.h>
main () {

char job[50];
strcpy(job,"Professor");
printf("You are a %s \n",job);

}

You are a Professor

94
C Programming

String I/O Functions

• There are special functions designed specifically for string I/O. They are
gets(string_name);

puts(string_name);

• The gets function reads in a string from the keyboard. When the user hits a
carriage return the string is inputted. The carriage return is not part of the
string and the end-of-string character is automatically appended.

• The function puts displays a string on the monitor. It does not print the end-
of-string character, but does output a carriage return at the end of the string.
Here is a sample program demonstrating the use of these functions:

• A sample session would look like this

char phrase[100];
printf("Please enter a sentence\n");
gets(phrase);
puts(phrase);

Please enter a sentence
The best lack all conviction, while the worst are passionate.
The best lack all conviction, while the worst are passionate.

95
C Programming

More String Functions

• Included in the string.h are several more string-related functions that are
free for you to use. Here is a brief table of some of the more popular ones
Function Operation
strcat Appends to a string
strchr Finds first occurrence of a given character
strcmp Compares two strings
strcmpi Compares two, strings, non-case sensitive
strcpy Copies one string to another
strlen Finds length of a string
strncat Appends n characters of string
strncmp Compares n characters of two strings
strncpy Copies n characters of one string to another
strnset Sets n characters of string to a given character
strrchr Finds last occurrence of given character in string
strspn Finds first substring from given character set in string

96
C Programming

More String Functions Continued

• Most of the functions on the previous page are self-explanatory. The UNIX
man pages provide a full description of their operation. Take for example,
strcmp which has this syntax

strcmp(string1,string2);

• It returns an integer that is less than zero, equal to zero, or greater than zero
depending on whether string1 is less than, equal to, or greater than
string2.

• String comparison is done character by character using the ASCII numerical
code

97
C Programming

Examples of String Functions

• Here are some examples of string functions in action:

static char s1[]="big sky country";

static char s2[]="blue moon";

static char s3[]="then falls Caesar";

Function Result
strlen(s1) 15 /* e-o-s not counted */
strlen(s2) 9
strcmp(s1,s2) negative number
strcmp(s3,s2) positive number
strcat(s2,” tonight”) blue moon tonight

98
C Programming

Character I/O Functions

• Analogous to the gets and puts functions there are the getchar and putchar
functions specially designed for character I/O. The following program
illustrates their use:

• A sample session using this code would look like:

#include <stdio.h>
main() {

int n; char lett;
putchar('?');
n=45;
putchar(n-2);
lett=getchar();
putchar(lett);
putchar('\n');

}

?+f
f

99
C Programming

More Character Functions

• As with strings, there is a library of functions designed to work with character
variables. The file ctype.h defines additional routines for manipulating
characters. Here is a partial list
Function Operation
isalnum Tests for alphanumeric character
isalpha Tests for alphabetic character
isascii Tests for ASCII character
iscntrl Tests for control character
isdigit Tests for 0 to 9
isgraph Tests for printable character
islower Tests for lowercase character
isprint Tests for printable character
ispunct Tests for punctuation character
isspace Tests for space character
isupper Tests for uppercase character
isxdigit Tests for hexadecimal
toascii Converts character to ASCII code
tolower Converts character to lowercase
toupper Converts character to upper

100
C Programming

Character Functions Example

• In the following program, character functions are used to convert a string to all
uppercase characters:

• A sample session using this program looks like this:

#include <stdio.h>
#include <ctype.h>
main() {

char name[80];
int loop;
printf ("Please type in your name\n");
gets(name);
for (loop=0; name[loop] !=0; loop++)

name[loop] = toupper(name[loop]);
printf ("You are %s\n",name);

}

Please type in your name
Dexter Xavier
You are DEXTER XAVIER

101
C Programming

Math Library Functions

• “Calculator-class” Functions
• Using Math Library Functions

102
C Programming

“Calculator-class” Library Functions

• You may have started to guess that there should be a header file called
math.h which contains definitions of useful “calculator-class” mathematical
functions. Well there is! Some functions found in math.h are
acos asin atan

cos sin tan

cosh sinh tanh

exp log log10

pow sqrt

ceil floor

erf

gamma

j0 j1 jn

y0 y1 yn

103
C Programming

Using Math Library Functions

• The following code fragment uses the Pythagorean theorem c2 = a2 + b2 to
calculate the length of the hypotenuse given the other two sides of a right
triangle:

double c, a, b
c=sqrt(pow(a,2)+pow(b,2));

• Typically, to use the math functions declared in the math.h include file, the
user must explicitly load the math library during compilation. On most
systems the compilation would look like this:

cc myprog.c -lm

104
C Programming

User-defined Functions

• Introduction to User-defined
Functions

• Reasons for Use
• User-defined Functions Usage
• Function Definition
• User-defined Function Example 1
• User-defined Function Example 2
• return Statement
• return Statement Example
• Using Functions
• Considerations when Using

Functions
• Using Functions Example
• Introduction to Function Prototypes

• Function Prototypes
• Recursion
• Storage Classes
• auto Storage Class
• extern Storage Class
• extern Storage Class Example
• static and register Storage Class

105
C Programming

Introduction to User-defined Functions

• A function in C is a small “sub-program” that performs a particular task, and
supports the concept of modular programming design techniques. In
modular programming the various tasks that your overall program must
accomplish are assigned to individual functions and the main program
basically calls these functions in a certain order.

• We have already been exposed to functions. The main body of a C program,
identified by the keyword main, and enclosed by left and right braces is a
function. It is called by the operating system when the program is loaded, and
when terminated, returns to the operating system. We have also seen examples
of library functions which can be used for I/O, mathematical tasks, and
character/string handling.

• But can the user define and use their own functions? Absolutely YES!

106
C Programming

Reasons for Use

• There are many good reasons to program in a modular style:

– Don’t have to repeat the same block of code many times in your code. Make
that code block a function and call it when needed.

– Function portability: useful functions can be used in a number of programs.
– Supports the top-down technique for devising a program algorithm. Make an

outline and hierarchy of the steps needed to solve your problem and create a
function for each step.

– Easy to debug. Get one function working well then move on to the others.
– Easy to modify and expand. Just add more functions to extend program

capability
– For a large programming project, you will code only a small fraction of the

program.
– Make program self-documenting and readable.

107
C Programming

User-defined Function Usage

• In order to use functions, the programmer must do three things

– Define the function
– Declare the function
– Use the function in the main code.

• In the following pages, we examine each of these steps in detail.

108
C Programming

Function Definition

• The function definition is the C code that implements what the function does.
Function definitions have the following syntax

• where the return_type in the function header tells the type of the value
returned by the function (default is int)

• where the data type variable name list tells what arguments the
function needs when it is called (and what their types are)

• where local declarations in the function body are local constants and
variables the function needs for its calculations.

return_type function_name (data type variable name list)

local declarations;
function statements;

}

{

function
header

function
body

109
C Programming

Function Definition Example 1

• Here is an example of a function that calculates n!

int factorial (int n)
{

int i,product=1;
for (i=2; i<=n; ++i)

product *= i;
return product;

}

110
C Programming

Function Definition Example 2

• Some functions will not actually return a value or need any arguments. For
these functions the keyword void is used. Here is an example:

void write_header(void) {
printf("Navier-Stokes Equations Solver ");
printf("v3.45\n");
printf("Last Modified: ");
printf("12/04/95 - viscous coefficient added\n");

}

• The 1st void keyword indicates that no value will be returned.

• The 2nd void keyword indicates that no arguments are needed for the
function.

• This makes sense because all this function does is print out a header statement.

111
C Programming

return Statement

• A function returns a value to the calling program with the use of the keyword
return, followed by a data variable or constant value. The return statement
can even contain an expression. Some examples

return 3;

return n;

return ++a;

return (a*b);

• When a return is encountered the following events occur:
1 execution of the function is terminated and control is passed back to the

calling program, and
2 the function call evaluates to the value of the return expression.

• If there is no return statement control is passed back when the closing brace
of the function is encountered (“falling off the end”).

112
C Programming

return Statement Examples

• The data type of the return expression must match that of the declared
return_type for the function.

float add_numbers (float n1, float n2) {
return n1 + n2; /*legal*/
return 6; /*illegal, not the same data type*/
return 6.0; /*legal*/ }

• It is possible for a function to have multiple return statements. For example:

double absolute(double x) {
if (x>=0.0)

return x;
else

return -x;
}

113
C Programming

Using Functions

• This is the easiest part! To invoke a function, just type its name in your
program and be sure to supply arguments (if necessary). A statement using our
factorial program would look like

number=factorial(9);

• To invoke our write_header function, use this statement
write_header();

• When your program encounters a function invocation, control passes to the
function. When the function is completed, control passes back to the main
program. In addition, if a value was returned, the function call takes on that
return value. In the above example, upon return from the factorial
function the statement

factorial(9) 362880

• and that integer is assigned to the variable number.

114
C Programming

Considerations when using Functions

• Some points to keep in mind when calling functions (your own or library’s):

– The number of arguments in the function call must match the number of
arguments in the function definition.

– The type of the arguments in the function call must match the type of the
arguments in the function definition.

– The actual arguments in the function call are matched up in-order with the
dummy arguments in the function definition.

– The actual arguments are passed by-value to the function. The dummy
arguments in the function are initialized with the present values of the actual
arguments. Any changes made to the dummy argument in the function will NOT
affect the actual argument in the main program.

115
C Programming

Using Function Example

• The independence of actual and dummy arguments is demonstrated in the
following program.

#include <stdio.h>
int compute_sum(int n) {

int sum=0;
for(;n>0;--n)

sum+=n;
printf("Local n in function is %d\n",n);
return sum; }

main() {
int n=8,sum;
printf ("Main n (before call) is %d\n",n);
sum=compute_sum(n);
printf ("Main n (after call) is %d\n",n);
printf ("\nThe sum of integers from 1 to %d is %d\n",n,sum);}

Main n (before call) is 8
Local n in function is 0
Main n (after call) is 8

The sum of integers from 1 to 8 is 36

116
C Programming

Introduction to Function Prototypes

• Function prototypes are used to declare a function so that it can be used in a
program before the function is actually defined. Consider the program on the
previous page. In some sense, it reads “backwards”. All the secondary
functions are defined first, and then we see the main program that shows the
major steps in the program. This example program can be rewritten using a
function prototype as follows:

#include <stdio.h>
int compute_sum(int n); /* Function Prototype */
main() {

int n=8,sum;
printf ("Main n (before call) is %d\n",n);
sum=compute_sum(n);
printf ("Main n (after call) is %d\n",n);
printf ("\nThe sum of integers from 1 to %d is %d\n",n,sum);}

int compute_sum(int n) {
int sum=0;
for(;n>0;--n)

sum+=n;
printf("Local n in function is %d\n",n);
return sum; }

117
C Programming

Function Prototypes

• Now the program reads in a "natural" order. You know that a function called
compute_sum will be defined later on, and you see its immediate use in the
main program. Perhaps you don’t care about the details of how the sum is
computed and you won’t need to read the actual function definition.

• As this example shows, a function prototype is simply the function header
from the function definition with a semi-colon attached to the end. The
prototype tells the compiler the number and type of the arguments to the
function and the type of the return value. Function prototypes should be placed
before the start of the main program. The function definitions can then
follow the main program. In fact, if you look at one of the include files -- say
string.h -- you will see the prototypes for all the string functions available!

• In addition to making code more readable, the use of function prototypes
offers improved type checking between actual and dummy arguments. In
some cases, the type of actual arguments will automatically be coerced to
match the type of the dummy arguments.

118
C Programming

Recursion

• Recursion is the process in which a function repeatedly calls itself to perform
calculations. Typical applications are games and sorting trees and lists.
Recursive algorithms are not mandatory, usually an iterative approach can be
found.

• The following function calculates factorials recursively:

int factorial(int n) {
int result;

if (n<=1)
result=1;

else
result = n * factorial(n-1);

return result;
}

119
C Programming

Storage Classes

• Every variable in C actually has two attributes: its data type and its storage
class. The storage class refers to the manner in which memory is allocated
for the variable. The storage class also determines the scope of the variable,
that is, what parts of a program the variable’s name has meaning. In C, the
four possible Storage classes are

– auto

– extern

– static

– register

120
C Programming

auto Storage Class

• This is the default classification for all variables declared within a function
body [including main()] .

• Automatic variables are truly local.

• They exist and their names have meaning only while the function is being
executed.

• They are unknown to other functions.

• When the function is exited, the values of automatic variables are not retained.

• They are normally implemented on a stack.

• They are recreated each time the function is called.

121
C Programming

extern Storage Class

• In contrast, extern variables are global.

• If a variable is declared at the beginning of a program outside all functions
[including main()] it is classified as an external by default.

• External variables can be accessed and changed by any function in the
program.

• Their storage is in permanent memory, and thus never disappear or need to be
recreated.

 What is the advantage of using global variables?
 It is a method of transmitting information between functions in a program

without using arguments.

122
C Programming

extern Storage Class Example

• The following program illustrates the global nature of extern variables:

• There are two disadvantages of global variables versus arguments. First, the
function is much less portable to other programs. Second, is the concept of
local dominance. If a local variable has the same name as a global variable,
only the local variable is changed while in the function. Once the function is
exited, the global variable has the same value as when the function started.

#include <stdio.h>
int a=4,b=5,c=6; /* default extern */
int sum(void); int prod(void);
main() {

printf ("The sum is %d\n",sum());
printf ("The product is %d\n",prod());

}
int sum(void) {
return (a+b+c); }

int prod(void) {
return (a*b*c); }

The sum is 15
The product is 120

123
C Programming

static and register Storage Class

static Storage Class
• A static variable is a local variable that retains its latest value when a

function is recalled. Its scope is still local in that it will only be recognized in
its own function. Basically, static variables are created and initialized once on
the first call to the function. With clever programming, one can use static
variables to enable a function to do different things depending on how many
times it has been called. (Consider a function that counts the number of times
it has been called).

register Storage Class
• It is often true that the time bottleneck in computer calculations is the time it

takes to fetch a variable from memory and store its value in a register where
the CPU can perform some calculation with it. So for performance reasons, it
is sometimes advantageous to store variables directly in registers. This strategy
is most often used with loop counter variables, as shown below.

register int i;
for (i=0; i<n; ++i)

...

124
C Programming

Formatted Input and Output

• Formatted Output
• char and int Formatted Output Example
• f Format Identifier
• e Format Identifier
• Real Formatted Output Example
• s Format Identifier
• Strings Formatted Output Example
• Formatted Input
• Formatted Input Examples

125
C Programming

Formatted Output

• Can you control the appearance of your output on the screen? Or do you have
to accept the default formatting provided by the C compiler? It turns out you
can format your output in a number of ways.

• You can control how many columns will be used to output the contents of a
particular variable by specifying the field width. The desired field width is
inserted in the format specifier after the % and before the letter code indicating
the data type. Thus the format specifier %5d is interpreted as use 5 columns to
display the integer. Further examples:

%3c display the character in 3 columns
%13x display the hexadecimal integer in 13 columns

• Within the field, the argument value is right-adjusted and padded with
blanks. If left adjustment is preferred use the syntax %-3c. If you wish to pad
with zeros use the syntax %04d.
Nice Feature:
If the value to be printed out takes up more columns than the specified field
width, the field is automatically expanded.

126
C Programming

char and int Formatted Output Example

• This program and it output demonstrate various-sized field widths and their
variants.

#include <stdio.h>
main() {

char lett='w';
int i=1,j=29;
printf ("%c\n",lett);
printf ("%4c\n",lett);
printf ("%-3c\n\n",lett);
printf ("%d\n",i);
printf ("%d\n",j);
printf ("%10d\n",j);
printf ("%010d\n",j);
printf ("%-010d\n",j);
printf ("%2o\n",j);
printf ("%2x\n",j);

}

w
w

w

1
29

29
0000000029
29
35
1d

127
C Programming

f Format Identifier

• For floating-point values, in addition to specifying the field width, the number
of decimal places can also be controlled. A sample format specifier would
look like this

• Note that a period separates the two numbers in the format specifier. Don’t
forget to count the column needed for the decimal point when calculating the
field width. We can use the above format identifier as follows:

printf("%10.4f",4.0/3.0); ----1.3333

• where - indicates the blank character.

%10.4f

field
width

number of
decimal places

128
C Programming

e Format Identifier

• When using the e format identifier, the second number after the decimal point
determines how many significant figures (SF) will be displayed. For example

printf("%10.4e",4.0/3.0); _1.333e+10

number of significant figures
• Note that only 4 significant figures are shown. Remember that now the field

size must include the actual numerical digits as well as columns for ‘.’,’e’,
and ‘+00’ in the exponent.

• It is possible to print out as many SFs as you desire. But it only makes sense to
print out as many SFs as match the precision of the data type. The following
table shows a rough guideline applicable to some machines:

Data Type # Mantissa bits Precision (#SF)
float 16 ~7
double 32 ~16
long double 64 ~21

129
C Programming

Real Formatted Output Example

#include <stdio.h>
main() {

float x=333.123456;
double y=333.1234567890123456;
printf ("%f\n",x);
printf ("%.1f\n",x);
printf ("%20.3f\n",x);
printf ("%-20.3f\n",x);
printf ("%020.3f\n",x);
printf ("%f\n",y);
printf ("%.9f\n",y);
printf ("%.20f\n",y);
printf ("%20.4e\n",y);

}

333.123444
333.1

333.123
333.123
0000000000000333.123
333.123457
333.123456789
333.12345678901232304270

3.331e+02

130
C Programming

s Format Identifier

• For strings, the field length specifier works as before and will automatically
expand if the string size is bigger than the specification. A more sophisticated
string format specifier looks like this

%6.3s

field width maximum number of characters printed

• where the value after the decimal point specifies the maximum number of
characters printed.

• For example;

printf("3.4s\n","Sheridan"); Sher

131
C Programming

Strings Formatted Output Example

#include <stdio.h>
main() {

static char s[]="an evil presence";
printf ("%s\n",s);
printf ("%7s\n",s);
printf ("%20s\n",s);
printf ("%-20s\n",s);
printf ("%.5s\n",s);
printf ("%.12s\n",s);
printf ("%15.12s\n",s);
printf ("%-15.12s\n",s);
printf ("%3.12s\n",s);

}

an evil presence
an evil presence

an evil presence
an evil presence
an ev
an evil pres

an evil pres
an evil pres
an evil pres

132
C Programming

Formatted Input

• Modifications can be made to the control string of the scanf function which
enable more sophisticated input. The formatting features that can be inserted
into the control string are

– Ordinary characters (not just format identifiers) can appear in the scanf
control string. They must exactly match corresponding characters in the input.
These “normal” characters will not be read in as input.

– An asterisk can be put after the % symbol in an input format specifier to
suppress the input.

– As with formatted output, a field width can be specified for inputting values.
The field width specifies the number of columns used to gather the input.

133
C Programming

Formatted Input Examples

#include <stdio.h>
main() {

int i; char lett; char word[15];
scanf("%d , %*s %c %5s",&i,&lett,word);
printf("%d \n %s \n %s\n",i,lett,word);

}

45 , ignore_this C read_this
45
C
read_

#include <stdio.h>
main() {

int m,n,o;
scanf("%d : %d : %d",&m,&n,&o);
printf("%d \n %d \n %d\n",m,n,o);

}

10 : 15 : 17
10
15
17

134
C Programming

Pointers

• Introduction to Pointers
• Memory Addressing
• The Address Operator
• Pointer Variables
• Pointer Arithmetic
• Indirection Operator
• “Call-by-Reference” Arguments
• “Call-by-Reference” Example

• Pointers and Arrays
• Pointers and Arrays Illustration
• Pointers and Arrays Examples
• Arrays as Function Arguments
• Arrays as Function Arguments

Example
• Pointers and Character Strings
• Pointers and Character Strings

Example

135
C Programming

Introduction to Pointers

• Pointers are an intimate part of C and separate it from more traditional
programming languages. Pointers make C more powerful allowing a wide
variety of tasks to be accomplished. Pointers enable us to

– effectively represent sophisticated data structures
– change values of actual arguments passed to functions (“call-by-reference”)
– work with memory which has been dynamically allocated
– more concisely and efficiently deal with arrays

• On the other hand, pointers are usually difficult for new C programmers to
comprehend and use. If you remember the following simple statement,
working with pointers should be less painful…

POINTERS CONTAIN MEMORY ADDRESSES, NOT DATA VALUES!

136
C Programming

Memory Addressing

POINTERS CONTAIN MEMORY ADDRESSES, NOT DATA VALUES!

• When you declare a simple variable, like
int i;

• a memory location with a certain address is set aside for any values that will be
placed in i. We thus have the following picture:

• After the statement i=35; the location corresponding to i will be filled

memory
location variable nameFFD2 ?? i

FFD2 3535 i

137
C Programming

The Address Operator

• You can find out the memory address of a variable by simply using the
address operator &. Here is an example of its use:

&v

• The above expression should be read as “address of v”, and it returns the
memory address of the variable v.

• The following simple program demonstrates the difference between the
contents of a variable and its memory address:

#include <stdio.h>
main() {

float x;
x=2.171828;
printf("The value of x is %f\n",x);
printf("The address of x is %X\n",&x); }

The value of x is 2.171828
The address of x is EFFFFBA4

138
C Programming

Pointer Variables

• A pointer is a C variable that contains memory addresses. Like all other C
variables, pointers must be declared before they are used. The syntax for
pointer declaration is as follows:

int *p;
double *offset;

• Note that the prefix * defines the variable to a pointer. In the above example,
p is the type “pointer to integer” and offset is the type “pointer to double”.

• Once a pointer has been declared, it can be assigned an address. This is usually
done with the address operator. For example,

int *p;
int count;
p=&count;

• After this assignment, we say that p is “referring to” the variable count or
“pointing to” the variable count. The pointer p contains the memory address
of the variable count.

139
C Programming

Pointer Arithmetic

• A limited amount of pointer arithmetic is possible. The "unit" for the
arithmetic is the size of the variable being pointed to in bytes. Thus,
incrementing a pointer-to-an-int variable automatically adds to the pointer
address the number of bytes used to hold an int (on that machine).

– Integers and pointers can be added and subtracted from each other, and
– incremented and decremented.
– In addition, different pointers can be assigned to each other

• Some examples,

int *p, *q;
p=p+2;
q=p;

140
C Programming

Indirection Operator

• The indirection operator, * , can be considered as the complement to the
address operator. It returns the contents of the address stored in a pointer
variable. It is used as follows:

*p;

• The above expression is read as “contents of p”. What is returned is the value
stored at the memory address p.

• Consider the sample code:

• Note that b ends up with the value of a but it is done indirectly; by using a
pointer to a.

#include <stdio.h>
main() {

int a=1,b=78,*ip;
ip=&a;
b=*ip; /* equivalent to b=a */
printf("The value of b is %d\n",b); }

The value of b is 1

141
C Programming

“Call-by-Reference” Arguments

• We learned earlier that if a variable in the main program is used as an actual
argument in a function call, its value won’t be changed no matter what is done
to the corresponding dummy argument in the function.

• What if we would like the function to change the main variable’s contents?

– To do this we use pointers as dummy arguments in functions and indirect
operations in the function body. (The actual arguments must then be
addresses)

– Since the actual argument variable and the corresponding dummy
pointer refer to the same memory location, changing the contents of the
dummy pointer will- by necessity- change the contents of the actual
argument variable.

142
C Programming

“Call-by-Reference” Example

• The classic example of “call-by-reference” is a swap function designed to
exchange the values of two variables in the main program. Here is a swapping
program:

#include <stdio.h>
void swap(int *p,int *q);

main() {
int i=3,j=9876;
swap(&i,&j);
printf("After swap, i=%d j=%d\n",i,j);

}

void swap(int *p,int *q) {
int temp;
temp=*p;
*p=*q;
*q=temp;

}

After swap, i=9876 j=3

143
C Programming

Pointers and Arrays

• Although this may seem strange at first, in C an array name is an address. In
fact, it is the base address of all the consecutive memory locations that make
up the entire array.

• We have actually seen this fact before: when using scanf to input a character
string variable called name the statement looked like

• scanf("%s",name); NOT scanf("%s",&name);

• Given this fact, we can use pointer arithmetic to access array elements.

144
C Programming

Pointers and Arrays Illustration

• Given the following array declaration
int a[467];

• The following two statements do the exact same thing:
a[5]=56;
*(a+5)=56;

• Here is the layout in memory:
a 133268

a+1 133272

a+2 133276

a+3 133280

a+4 133284

a+5 133288

a[0]a[0]

a[1]a[1]

a[2]a[2]

a[3]a[3]

a[4]a[4]

a[5]a[5]

145
C Programming

Pointers and Arrays Examples

• The next examples show how to sum up all the elements of a 1D array using
pointers:
– Normal way

– Other way

– Another way

int a[100],i,*p,sum=0;

for(i=0; i<100; ++i)
sum +=a[i];

int a[100],i,*p,sum=0;

for(i=0; i<100; ++i)
sum += *(a+i);

int a[100],i,*p,sum=0;

for(p=a; p<&a[100]; ++p)
sum += *p;

146
C Programming

Arrays as Function Arguments

• When you are writing functions that work on arrays, it is convenient to use
pointers as arguments. Once the function has the base address of the array, it
can use pointer arithmetic to work with all the array elements. The alternative
is to use global array variables or -- more horribly -- pass all the array elements
to the function.

• Consider the following function designed to take the sum of elements in a 1D
array of doubles:

• Note that all the sum function needed was a starting address in the array
and the number of elements to be summed together (n). A very efficient
argument list.

double sum(double *dp, int n) {
int i; double res=0.0;
for(i=0; i<n; ++i)

res += *(dp+i);
return res;

}

147
C Programming

Arrays as Function Arguments Example

• Considering the previous example

• In the main program, the sum function could be used as follows

double position[150],length;
length=sum(position,150); /* sum entire array */
length=sum(position,75); /* sum first half */
length=sum(&position[10],10);/* sum from element

10 to element 20 */

double sum(double *dp, int n) {
int i; double res=0.0;
for(i=0; i<n; ++i)

res += *(dp+i);
return res;

}

148
C Programming

Pointers and Character Strings

• As strange as this sounds, a string constant -- such as “Happy Thanksgiving” --
is treated by the compiler as an address (Just like we saw with an array name).
The value of the string constant address is the base address of the character
array.

• Thus, we can use pointers to work with character strings, in a similar
manner that we used pointers to work with “normal” arrays. This is
demonstrated in the following code:
#include <stdio.h>

main() {
char *cp;
cp="Civil War";
printf("%c\n",*cp);
printf("%c\n",*(cp+6));

}

C
W

149
C Programming

Pointers and Character Strings Example

• Another example illustrates easy string input using pointers:

#include <stdio.h>

main() {
char *name;
printf("Who are you?\n");
scanf("%s",name);
printf("Hi %s welcome to the party, pal\n",name);

}

Who are you?
Seymour
Hi Seymour welcome to the party, pal

150
C Programming

Structures

• Introduction to Structures
• Structure Variable Declaration
• Structure Members
• Initializing Structure Members
• Structures Example
• Structures Example Continued
• More Structures Example Continued
• Structures within Structures
• Initializing Structures within Structures
• Pointers to Structures
• Pointers to Structures: ->

151
C Programming

Introduction to Structures

• A structure is a variable in which different types of data can be stored
together in one variable name. Consider the data a teacher might need for a
high school student: Name, Class, GPA, test scores, final score, ad final course
grade. A structure data type called student can hold all this information:

struct student {
char name[45];
char class;
float gpa;
int test[3];
int final;
char grade;

};

• The above is a declaration of a data type called student. It is not a
variable declaration, but a type declaration.

keyword

structure
data type name member name & type

152
C Programming

Structure Variable Declaration

• To actually declare a structure variable, the standard syntax is used:

struct student Lisa, Bart, Homer;

• You can declare a structure type and variables simultaneously. Consider the
following structure representing playing cards.

struct playing_card {

int pips;

char *suit;

} card1,card2,card3;

153
C Programming

Structure Members

• The different variable types stored in a structure are called its members. To
access a given member the dot notation is use. The “dot” is officially called
the member access operator. Say we wanted to initialize the structure card1
to the two of hearts. It would be done this way:

card1.pips=2;
card1.suit="Hearts";

• Once you know how to create the name of a member variable, it can be treated
the same as any other variable of that type. For example the following code:

card2.pips=card1.pips+5;

• would make card2 the seven of some suit.
• Structure variables can also be assigned to each other, just like with other

variable types:
card3 = card1;

• would fill in the card3 pips member with 2 and the suit member with
“Hearts”. In other words, each member of card3 gets assigned the value of
the corresponding member of card1.

154
C Programming

Initializing Structure Members

• Structure members can be initialized at declaration. This is similar to the
initialization of arrays; the initial values are simply listed inside a pair of braces,
with each value separated by a comma. The structure declaration is preceded by the
keyword static

static struct student Lisa = {
"Simpson",'S',3.95,100,87,92,96,'A'};

• The same member names can appear in different structures. There will be no
confusion to the compiler because when the member name is used it is prefixed by
the name of the structure variable. For example:

struct fruit {
char *name;
int calories; } snack;

struct vegetable {
char *name;
int calories; } dinner_course;

snack.name="banana";
dinner_course.name="broccoli";

155
C Programming

Structures Example

• What data type are allowed to structure members? Anything goes: basic types,
arrays, strings, pointers, even other structures. You can even make an array of
structures.

• Consider the program on the next few pages which uses an array of structures
to make a deck of cards and deal out a poker hand.

#include <stdio.h>
struct playing_card {

int pips;
char *suit; } deck[52];

void make_deck(void);
void show_card(int n);
main() {

make_deck();
show_card(5);
show_card(37);
show_card(26);
show_card(51);
show_card(19);

}

156
C Programming

Structures Example Continued

void make_deck(void) {
int k;
for(k=0; k<52; ++k) {

if (k>=0 && k<13) {
deck[k].suit="Hearts";
deck[k].pips=k%13+2; }

if (k>=13 && k<26) {
deck[k].suit="Diamonds";
deck[k].pips=k%13+2; }

if (k>=26 && k<39) {
deck[k].suit="Spades";
deck[k].pips=k%13+2; }

if (k>=39 && k<52) {
deck[k].suit="Clubs";
deck[k].pips=k%13+2; }

}
}

157
C Programming

More on Structures Example Continued
void show_card(int n) {

switch(deck[n].pips) {
case 11:

printf("%c of %s\n",'J',deck[n].suit);
break;

case 12:
printf("%c of %s\n",'Q',deck[n].suit);
break;

case 13:
printf("%c of %s\n",'K',deck[n].suit);
break;

case 14:
printf("%c of %s\n",'A',deck[n].suit);
break;

default:
printf("%c of %s\n",deck[n].pips,deck[n].suit);
break; }

}

7 of Hearts
K of Spades
2 of Spades
A of Clubs
8 of Diamonds

158
C Programming

Structures within Structures

• As mentioned earlier, structures can have as members other structures. Say
you wanted to make a structure that contained both date and time information.
One way to accomplish this would be to combine two separate structures; one
for the date and one for the time. For example,

struct date {
int month;
int day;
int year; };

struct time {
int hour;
int min;
int sec; };

struct date_time {
struct date today;
struct time now; };

• This declares a structure whose elements consist of two other previously
declared structures.

159
C Programming

Initializing Structures within Structures

• Initialization could be done as follows,

static struct date_time veteran = {{11,11,1918},{11,11,11}};

• which sets the today element of the structure veteran to the eleventh of
November, 1918. The now element of the structure is initialized to eleven
hours, eleven minutes, eleven seconds. Each item within the structure can be
referenced if desired. For example,

++veteran.now.sec;

if (veteran.today.month == 12)

printf("Wrong month! \n");

160
C Programming

Pointers to Structures

• One can have pointer variable that contain the address of complete structures,
just like with the basic data types. Structure pointers are declared and used in
the same manner as “simple” pointers:

struct playing_card *card_pointer,down_card;
card_pointer=&down_card;
(*card_pointer).pips=8;
(*card_pointer).suit="Clubs";

• The above code has indirectly initialized the structure down_card to the
Eight of Clubs through the use of the pointer card_pointer.

• The type of the variable card_pointer is “pointer to a playing_card
structure”.

161
C Programming

Pointers to Structures: ->

• In C, there is a special symbol -> which is used as a shorthand when working
with pointers to structures. It is officially called the structure pointer
operator. Its syntax is as follows:
*(struct_ptr).member is the same as struct_ptr->member

• Thus, the last two lines of the previous example could also have been written
as:

card_pointer->pips=8;

card_pointer->suit="Clubs";

Question: What is the value of *(card_pointer->suit+2)?
Answer: ‘u’

• As with arrays, use structure pointers as arguments to functions working
with structures. This is efficient, since only an address is passed and can also
enable “call-by-reference” arguments.

162
C Programming

Unions

• Introduction to Unions
• Unions and Memory
• Unions Example

163
C Programming

Introduction to Unions

• Unions are C variables whose syntax look similar to structures, but act in a
completely different manner. A union is a variable that can take on different
data types in different situations. The union syntax is:

union tag_name {
type1 member1;
type2 member2;
…

};

• For example, the following code declares a union data type called intfloat
and a union variable called proteus:

union intfloat {
float f;
int i;

};
union intfloat proteus;

164
C Programming

Unions and Memory

• Once a union variable has been declared, the amount of memory reserved is
just enough to be able to represent the largest member. (Unlike a structure
where memory is reserved for all members).

• In the previous example, 4 bytes are set aside for the variable proteus since
a float will take up 4 bytes and an int only 2 (on some machines).

• Data actually stored in a union’s memory can be the data associated with any
of its members. But only one member of a union can contain valid data at a
given point in the program.

• It is the user’s responsibility to keep track of which type of data has most
recently been stored in the union variable.

165
C Programming

Unions Example

• The following code illustrates the chameleon-like nature of the union variable
proteus defined earlier.

• After Statement 1, data stored in proteus is an integer the the float member
is full of junk.

• After Statement 2, the data stored in proteus is a float, and the integer
value is meaningless.

#include <stdio.h>
main() {
union intfloat {

float f;
int i;

} proteus;
proteus.i=4444 /* Statement 1 */
printf(“i:%12d f:%16.10e\n”,proteus.i,proteus.f);
proteus.f=4444.0; /* Statement 2 */
printf(“i:%12d f:%16.10e\n”,proteus.i,proteus.f);

}

i: 4444 f:6.2273703755e-42
i: 1166792216 f:4.440000000e+03

166
C Programming

File Input and Output

• Introduction to File Input and Output
• Declaring FILE Variables
• Opening a Disk File for I/O
• Reading and Writing to Disk Files
• Closing a Disk File
• Additional File I/O Functions
• Sample File I/O Program
• Sample File I/O Program: main
• Sample File I/O Program: processfile
• Sample File I/O Program: getrecord
• Sample File I/O Program: printrecord
• Sample File I/O Program: sample session

167
C Programming

Introduction to File Input and Output

• So far, all the output (formatted or not) in this course has been written out to
what is called standard output (which is usually the monitor). Similarly all
input has come from standard input (usually associated with the keyboard).
The C programmer can also read data directly from files and write directly to
files. To work with files, the following steps must be taken:

1 Declare variables to be of type FILE.

2 Connect the internal FILE variable with an actual data file on your hard
disk. This association of a FILE variable with a file name is done with the
fopen() function.

3 Perform I/O with the actual files using fprint() and fscanf()
functions.

4 Break the connection between the internal FILE variable and actual disk
file. This disassociation is done with the fclose() function.

168
C Programming

Declaring FILE variables

• Declarations of the file functions highlighted on the previous page must be
included into your program. This is done in the standard manner by having

#include <stdio.h>

• as the first statement in your program.

• The first step is using files in C programs is to declare a file variable. This
variable must be of type FILE (which is a predefined type in C) and it is a
pointer variable. For example, the following statement

FILE *in_file;

• declares the variable in_file to be a “pointer to type FILE”.

169
C Programming

Opening a Disk File for I/O

• Before using a FILE variable, it must be associated with a specific file name.
The fopen() function performs this association and takes two arguments: 1)
the pathname of the disk file, and 2) the access mode which indicates how the
file is to be used. The following statement

in_file = fopen("myfile.dat","r");

• connects the variable in_file to the disk file myfile.dat for read
access. Thus, myfile.dat will only be read from. Two other access modes
can be used:

“w” indicating write-mode
“a” indicating append_mode

170
C Programming

Reading and Writing to Disk Files

• The functions fprintf and fscanf are provided by C to perform the
analogous operations for the printf and scanf functions but on a file.

• These functions take an additional (first) argument which is the FILE pointer
that identifies the file to which data is to be written to or read from. Thus the
statement,

fscanf(in_file,"%f %d",&x,&m);

• will input -- from the file myfile.dat -- real and integer values into the
variables x and m respectively.

171
C Programming

Closing a Disk File

• The fclose function in a sense does the opposite of what the fopen does: it
tells the system that we no longer need access to the file. This allows the
operating system to cleanup any resources or buffers associated with the file.

• The syntax for file closing is simply

fclose(in_file);

172
C Programming

Additional File I/O Functions

• Many of the specialized I/O functions for characters and strings that we have
described in this course have analogs which can be used for file I/O. Here is a
list of these functions

• Another useful function for file I/O is feof() which tests for the end-of-file
condition. feof takes one argument -- the FILE pointer -- and returns a
nonzero integer value (TRUE) if an attempt has been made to read past the end
of a file. It returns zero (FALSE) otherwise. A sample use:

if (feof(in_file))

printf ("No more data \n");

Function Result
fgets file string input
fputs file string output
getc(file_ptr) file character input
putc(file_ptr) file character output

173
C Programming

Sample File I/O Program

• The program on the next few pages illustrates the use of file I/O functions. It is
an inventory program that reads from the following file

• which contains stock information for a store. The program will output those
items which need to be reordered because their quantity is below a certain
limit

lima beans
1.20
10
5
thunder tea
2.76
5
10
Greaters ice-cream
3.47
5
5
boneless chicken
4.58
12
10

174
C Programming

Sample File I/O Program: main

#include <stdio.h>
#include <ctype.h>
#include <string.h>
struct goods {

char name[20];
float price;
int quantity;
int reorder;

};
FILE *input_file;
void processfile(void);
void getrecord(struct goods *recptr);
void printrecord(struct goods record);

main() {
char filename[40];
printf("Example Goods Re-Order File Program\n");
printf("Enter database file \n");
scanf("%s",filename);
input_file = fopen(filename, "r");
processfile();

}

175
C Programming

Sample File I/O Program: processfile

void processfile(void) {
struct goods record;
while (!feof(input_file)) {

getrecord(&record);
if (record.quantity <= record.reorder)

printrecord(record);
}

}

176
C Programming

Sample File I/O Program: getrecord

void getrecord(struct goods *recptr) {
int loop=0,number,toolow;
char buffer[40],ch;
float cost;
ch=fgetc(input_file);
while (ch!='\n') {

buffer[loop++]=ch;
ch=fgetc(input_file);

}
buffer[loop]=0;
strcpy(recptr->name,buffer);
fscanf(input_file,"%f",&cost);
recptr->price = cost;
fscanf(input_file,"%d",&number);
recptr->quantity = number;
fscanf(input_file,"%d",&toolow);
recptr->reorder = toolow;

}

177
C Programming

Sample File I/O Program: printrecord

void printrecord (struct goods record) {
printf("\nProduct name \t%s\n",record.name);
printf("Product price \t%f\n",record.price);
printf("Product quantity \t%d\n",record.quantity);
printf("Product reorder level \t%d\n",record.reorder);

}

178
C Programming

Sample File I/O Program: sample session

Example Goods Re-Order File Program
Enter database file food.dat

Product name thunder tea
Product price 2.76
Product quantity 5
Product reorder level 10

Product name Greaters ice-cream
Product price 3.47
Product quantity 5
Product reorder level 5

179
C Programming

Dynamic Memory Allocation

• Introduction to Dynamic Memory Allocation
• Dynamic Memory Allocation: sizeof
• Dynamic Memory Allocation: calloc
• Dynamic Memory Allocation: free

180
C Programming

Introduction to Dynamic Memory Allocation

• A common programming problem is knowing how large to make arrays when
they are declared. Consider a grading program used by a professor which
keeps track of student information in structures. We want his program to be
general-purpose so we need to make arrays large enough to handle the biggest
possible class size:

struct student class[600];

• But when a certain upper-level class has only seven students, this approach can
be inelegant and extremely wasteful of memory especially if the student
structure is quite large itself.

• Thus, it is desirable to create correct-sized array variables at runtime. The
C programming language allows users to dynamically allocate and deallocate
memory when required. The functions that accomplish this are calloc()
which allocates memory to a variable, sizeof(), which determines how
much memory a specified variable occupies, and free(), which deallocates
the memory assigned to a variable back to the system

181
C Programming

Dynamic Memory Allocation: sizeof

• The sizeof() function returns the memory size (in bytes) of the requested
variable type. This call should be used in conjunction with the calloc()
function call, so that only the necessary memory is allocated, rather than a
fixed size. Consider the following code fragment:

struct time {
int hour;
int min;
int sec;

};
int x;
x=sizeof(struct time);

• x now contains how many bytes are taken up by a time structure (which
turns out to be 12 on many machines). sizeof can also be used to determine
the memory size of basic data type variables as well. For example, it is valid to
write sizeof(double).

182
C Programming

Dynamic Memory Allocation: calloc

• The calloc function is used to allocate storage to a variable while the
program is running. The function takes two arguments that specify the number
of elements to be reserved, and the size of each element in bytes (obtained
from sizeof). The function returns a pointer to the beginning of the
allocated storage area in memory. The storage area is also initialized to zeros.

struct time *appt;
appt = (struct time *) calloc(100,sizeof(struct time));

• The code(struct time *) is a type cast operator which converts the
pointer returned from calloc to a pointer to a structure of type time. The
above function call will allocate just enough memory for one hundred time
structures, and appt will point to the first in the array. Now the array of time
structures can be used, just like a statically declared array:

appt[5].hour=10;
appt[5].min=30;
appt[5].sec=0;

183
C Programming

Dynamic Memory Allocation: free

• When the variables are no longer required, the space which was allocated to
them by calloc should be returned to the system. This is done by,

free(appt);

184
C Programming

Command-Line Arguments

• Introduction to Command-Line Arguments
• Command-Line Arguments Example
• Command-Line Arguments Sample Session

185
C Programming

Introduction to Command-Line Arguments

• In every program you have seen so far, the main function has had no dummy
arguments between its parentheses. The main function is allowed to have
dummy arguments and they match up with command-line arguments used
when the program is run.

• The two dummy arguments to the main function are called argc and argv.

– argc contains the number of command-line arguments passed to the main
program and

– argv[] is an array of pointers-to-char, each element of which points
to a passed command-line argument.

186
C Programming

Command-Line Arguments Example

• A simple example follows, which checks to see if only a single argument is
supplied on the command line when the program is invoked

• Note that *argv[0] is the program name itself, which means that
*argv[1] is a pointer to the first “actual” argument supplied, and
*argv[n] is the last argument. If no arguments are supplied, argc will be
one. Thus for n arguments, argc will be equal to n+1.

#include <stdio.h>
main(int argc, char *argv[]) {

if (argc == 2)
printf("The argument supplied is %s\n", argv[1]);

else if (argc > 2)
printf("Too many arguments supplied.\n");

else
printf("One argument expected.\n");

}

187
C Programming

Command-Line Arguments: Sample Session

• A sample session using the previous example follows:

#include <stdio.h>
main(int argc, char *argv[]) {

if (argc == 2)
printf("The argument supplied is %s\n", argv[1]);

else if (argc > 2)
printf("Too many arguments supplied.\n");

else
printf("One argument expected.\n");

}

a.out
One argument expected.
a.out help
The argument supplied is help
a.out help verbose
Too many arguments supplied.

188
C Programming

Operator Precedence Table

Description Represented by
1 Parenthesis () []
1 Structure Access . ->
2 Unary ! ++ -- - * &
3 Multiply, Divide, Modulus * / %
4 Add, Subtract + -
5 Shift Right, Left >> <<
6 Greater, Less Than, etc. > < => <=
7 Equal, Not Equal == !=
8 Bitwise AND &
9 Bitwise Exclusive OR ^
10 Bitwise OR |
11 Logical AND &&
12 Logical OR ||
13 Conditional Expression ? :
14 Assignment = += -= etc
15 Comma ,

