0SC

Introduction to the C Programming Language

Science & Technology Support
High Performance Computing

Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43212-1163

Table of Contents

e Introduction o User-defined Functions
e C Program Structure e Formatted Input and Output
 Variables, Expressions, & Pointers
Operators e Structures
e |nput and Output « Unions
* Program L ooping FileInput and Output
» Decison Making Statements e Dynamic Memory Allocation
« Array Variables e Command Line Arguments
e Strings e QOperator Precedence Table

« Math Library Functions

2
Osc C Programming

Introduction

e Why Learn C?

3
GSC C Programming

Why Learn C?

o Compact, fast, and powerful

 “Mid-level” Language

« Standard for program development (wide acceptance)

* |tiseverywhere! (portable)

e Supports modular programming style

o Useful for all applications

o Cisthe native language of UNIX

« Easy to interface with system devices/assembly routines
« Cisterse

4
Osc C Programming

C Program Structure

e Canonical First Program
e Header Files

e NamesinC

e Comments

e Symbolic Constants

)
OSC C Programming

Canonical First Program

» Thefollowing program is written in the C programming language:

#1 ncl ude <stdi o. h>
mai n()

[* My first program */
printf("Hello World! \n");

e Ciscasesendgtive. All commandsin C must be lowercase.

e Chasafreeform linestructure. End of each statement must be marked
with a semicolon. Multiple statements can be on the same line. White spaceis
ignored. Statements can continue over many lines.

6
Osc C Programming

Canonical First Program Continued

#i ncl ude <stdi o. h>
mai n()

[* My first program */
printf("Hello Wrld! \n");

* The C program starting point isidentified by the word mai n() .

» Thisinformsthe computer as to where the program actually starts. The
parentheses that follow the keyword nai n indicate that there are no arguments
supplied to this program (this will be examined later on).

« Thetwobraces, { and}, signify the begin and end segments of the

program. In general, braces are used throughout C to enclose a block of
statementsto be treated as a unit. COMMON ERROR: unbalanced number
of open and close curly brackets!

7
Osc C Programming

More on the Canonical First Program

mai n()

[* My first program */
printf("Hello Wrld! \n");

e The purpose of the statement Isto allow the use of
theprintf statement to provide program output. For each function built
into the language, an associated header file must be included. Text to be
displayed by pri nt f () must be enclosed in double quotes. The program
only hastheonepri ntf () statement.

« printf() isactualy afunction (procedure) in C that is used for printing
variables and text. Where text appears in double quotes " " , it is printed

without modification. There are some exceptions however. This hasto do with
the\ and %characters. These characters are modifiers, and for the present the
\ followed by the n character represents a newline character.

8
OSC C Programming

Canonical First Program Output & Comments

e Thusthe program prints
Hel l o Worl d!

* And the cursor is set to the beginning of the next line. As we shall see later on,
what followsthe\ character will determine what is printed (i.e., atab, clear

screen, clear line, etc.)

[* My first program */
e Comments can be inserted into C programs by bracketing text with the/ * and
*[delimiters. Aswill be discussed later, comments are useful for a variety of

reasons. Primarily they serve as internal documentation for program structure
and functionality.

9
Osc C Programming

Header Files

Header files contain definitions of functions and variables which can be
incorporated into any C program by using the pre-processor #i ncl ude statement.

Standard header files are provided with each compiler, and cover arange of areas.
string handling, mathematics, data conversion, printing and reading of variables, etc.
To use any of the standard functions, the appropriate header file should be included.

Thisis done at the beginning of the C source file. For example, to use the function
printf() inaprogram, theline

#i ncl ude <stdio. h>
should be at the beginning of the source file, because the declaration for pri ntf () is

found inthefilest di o. h. All header files have the extension . h and generally reside
inthe/ usr /i ncl ude subdirectory.

#i ncl ude <string. h>

#i ncl ude <mat h. h>

#i nclude "nylib.n"
The use of angle brackets <> informs the compiler to search the compiler’ sinclude
directories for the specified file. The use of the double quotes " " around the filename
informs the compiler to start the search in the current directory for the specified file.

10
Osc C Programming

Names in C

o ldentifiersin C must begin with a character or under scor e, and may be
followed by any combination of characters, underscores, or the digits 0-9.

sumrary exit _flag |
Jerry7 Nunber of noves id
e You should ensure that you use meaningful (but short) names for your

identifiers. The reasons for this are to make the program easier to read and
self-documenting. Example:

di stance = speed * tine;
» Some users choose to adopt the convention that variable names are al lower
case while symbolic names for constants are all upper case.

 Keywords arereserved identifiers that have strict meaning to the C compiler.
C only has 29 keywords. Example keywords are:

| f, else, char, Iint, while

11
GSC C Programming

Comments

* Theaddition of comments inside programsis desirable. These may be added to
C programs by enclosing them as follows,

/ *

Conput ational Kernel: In this section of code we inplenent the

Runge- Kutta algorithmfor the nunerical solution of the
differential Einstein Equations.

*/

 Notethat the/ * opensthe comment field and the */ closes the comment
field. Comments may span multiple lines. Comments may not be nested one
inside the another.

/[* this is a cooment. /* this comment is inside */ wong */

* Inthe above example, the first occurrence of */ closes the comment

statement for the entire line, meaning that the text wrong isinterpreted asa C
statement or variable, and in this example, generates an error.

12
GSC C Programming

Why use comments?

» Documentation of variables and functions and their usage
« Explaining difficult sections of code
» Describes the program, author, date, modification changes, revisions...

Best programmers comment asthey write the code, not after the fact.

13
OSC C Programming

Symbolic Constants

* Names given to valuesthat cannot be changed. Implemented with the
#def | ne preprocessor directive.
#defi ne N 3000
#define FALSE O
#define PI 3. 14159
#define FIGQURE "tri angl e"

» Note that preprocessor statements begin with a# symbol, and are NOT
terminated by a semicolon. Traditionally, preprocessor statements are listed at
the beginning of the sourcefile.

* Preprocessor statements are handled by the compiler (or preprocessor) before
the program is actually compiled. All # statements are processed first, and the
symbols (like N) which occur in the C program are replaced by their value
(like 3000). Once this substitution has taken place by the preprocessor, the
program is then compiled.

e Ingenera, preprocessor constants are written in UPPERCASE. Thisactsasa
form of internal documentation to enhance program readability and reuse.

* Inthe program itself, values cannot be assigned to symbolic constants.
14

OSC C Programming

Use of Symbolic Constants

o Consider the following program which defines a constant called

#i ncl ude <stdi o. h>

mai n ()
fl oat bal ance;
fl oat tax;
balance = 72.10;
t ax bal ance *
prlntf(The tax on @62f Is % 2f\n", bal ance, tax);

}
The tax on 72.10 is 7.21

* Thewhole point of using In your programs is to make them easier

to read and modify. Considering the above program as an example, what
changes would you need to make if the was changed to 20%?

15
OSC C Programming

Use of Symbolic Constants

o Obvioudy, the answer isone, wherethe #def | ne statement which declares
the symbolic constant and its value occurs. Y ou would change it to read
#def i ne TAXRATE 0. 20

e Without the use of symbolic constants, you would hard code thevalue 0. 20
In your program, and this might occur several times (or tens of times).

16

Osc C Programming

Variables, Expressions, and Operators

Declaring Variables

Basic Format

Basic Data Types. |nteger

Basic Data Types. Float

Basic Data Types. Double
Basic Data Types. Character
Expressions and Statements
Assignment Operator
Assignment Operator Evaluation
Initializing Variables
Initializing Variables Example
Arithmetic Operators

| ncrement/Decrement Operators
Prefix versus Postfix

0SC

Advanced Assignment Operators

Precedence & Associativity of

Operators
Precedence & Associativity of
Operators Examples

Thei nt DataType
Thef | oat and doubl e Data

Types
Thechar DataType

ASCI| Character Set
Automatic Type Conversion
Automatic Type Conversion with

Assignment Operator
Type Casting

17

C Programming

Declaring Variables

A variableisanamed memory location in which data of a certain type can be
stored. The contents of a variable can change, thus the name. User defined
variables must be declared before they can be used in aprogram. It is during
the declaration phase that the actual memory for the variable isreserved. All
variablesin C must be declared before use.

» Get into the habit of declaring variables using lowercase characters.
Remember that C is case sensitive, so even though the two variables listed
below have the same name, they are considered different variablesin C.

sum Sum

» Thedeclaration of variablesis done after the opening brace of main().
mai n() {
I Nt sum

* |tispossibleto declare variables elsewhere in a program, but lets start ssmply
and then get into variations later on.

18
Osc C Programming

Basic Format

 Thebasicformat for declaring variablesis
data _type var, var, ..

« wheredat a t ype isone of the four basic types, an integer, character, float,
or double type. Examples are

int 1,],Kk;

fl oat |ength, hei ght;
char mdinit;

19
GSC C Programming

Basic Data Types: INTEGER

 |INTEGER: These are whole numbers, both positive and negative. Unsigned
Integers(positive values only) are also supported. In addition, there are short
and long integers. These specialized integer types will be discussed |ater.

» Thekeyword used to define integersis

 Anexample of aninteger valueis 32. An example of declaring an integer
variable called IS

20

OSC C Programming

Basic Data Types: FLOAT

« FLOATING POINT: These are numbers which contain fractional parts, both
positive and negative, and can be written in scientific notation.

e Thekeyword used to define float variablesis

o Typica floating point values are 1.73 and 1.932e5 (1.932 x 10°). An example
of declaring afloat variable called x is

21

OSC C Programming

Basic Data Types: DOUBLE

« DOUBLE: These are floating point numbers, both positive and negative,
which have a higher precision than float variables.

e Thekeyword used to define double variablesis
doubl e
 Anexample of declaring adouble variablecalled vol t age is

doubl e vol t age;

22

Osc C Programming

Basic Data Types: CHAR

« CHARACTER: These are single characters.
e The keyword used to define character variablesis

char

* Typical character values might be the letter A, the character 5, the symbol “,
etc. An example of declaring acharacter variablecalled | et t er is

char letter:

23

Osc C Programming

Expressions and Statements

 Anexpression in Cissome combination of constants, variables, operators
and function calls. Sample expressions are:

a+ b
3.0*x - 9.66553
t an(angl e)

 Most expressions have a value based on their contents.

o A statement in Cisjust an expression terminated with a semicolon. For
example:

sum= X + Yy + Z;
printf("Go Buckeyes!");

24
OSC C Programming

The Assignment Operator

* InC, the assignment operator isthe equal sign = and is used to give avariable
the value of an expression. For example:

| =0;

x=34. 8;

sum=a+b;

sl ope=tan(rise/run);
mdinit="J";

J =] +3;

* When used in this manner, the equal sign should be read as “gets’. Note that
when assigning a character value the character should be enclosed in single

quotes.

25

GSC C Programming

The Assignment Operator Evaluation

* Intheassgnment statement
a="7;

» two things actually occur. Theinteger variable a getsthe value of 7, and the
expression a=7 evaluatesto 7. This allows a shorthand for multiple

assignments of the same value to severa variablesin a single statement. Such
as

x=y=z=13. 0;

26
GSC C Programming

Initializing Variables

o CVariablesmay beinitialized with a value when they are declared. Consider
the following declaration, which declares an integer variable whichis

initialized to

* Ingeneral, the user should not assume that variables are initialized to some
default value “automatically” by the compiler. Programmers must ensure that
variables have proper values before they are used in expressions.

27

OSC C Programming

Initializing Variables Example

« Thefollowing example illustrates the two methods for variable initialization:

0SC

#i ncl ude <stdi o. h>
main () {

}

» which produces the following output:

sumis 33
noney is 44.119999

I Nt sumr33;

fl oat noney=44. 12;

char letter;

doubl e pressure;

letter="E ; /* assign character value */
pressure=2. 0le-10; /*assign doubl e val ue */
printf("value of sumis %\ n", sun;
printf("value of noney is %\n", noney);
printf("value of letter is %\n",letter);
printf("value of pressure is %\n", pressure);

letter is E
pressure is 2.010000e-10

28

C Programming

Arithmetic Operators

« Theprimary arithmetic operators and their corresponding symbolsin C are;

Negation - Modulus %
Multiplication * Addition +
Division / Subtraction -

« Whenthe/ operator isused to perform integer division the resulting integer
Is obtained by discarding (or truncating) the fractional part of the actual
floating point value. For example:

—>
—>

 Themodulus operator %only works with integer operands. The expression
a%b isread as“amodulus b” and evaluates to the remainder obtained after
dividing a by b. For example
_>
_>

29
OSC C Programming

Increment/Decrement Operators

* InC, specialized operators have been set aside for the incrementing and
decrementing of integer variables. The increment and decrement operators are
++ and - - respectively. These operators alow aform of shorthand in C:

++1; iseguivalentto | =i +1;
--1; iIseguivaentto | =I-1;

» The above example shows the prefix form of the increment/decrement
operators. They can also be used in postfix form, asfollows

| ++; iseguivalentto | =i +1;

| --, isequivalentto I =I-1;

30

Osc C Programming

Prefix versus Postfix

« Thedifference between prefix and postfix forms shows up when the operators
are used as part of alarger expression.

— |If Isused in an expression, k isincremented before the expression is
evaluated.

— |If IS used in an expression, k isincremented after the expression is
evaluated.

» Assume that the integer variables mand n have been initialized to zero. Then
in the following statement
—> —> then a —»

 whereasin this form of the statement
—» 0 then m—> —>

31
OSC C Programming

Advanced Assignment Operators

» A further example of C shorthand are operators which combine an arithmetic
operation and a assignment together in one form. For example, the following
statement

k=k+5: canbewrittenask += 5:

 Thegenera syntax is
vari abl e = vari abl e op expression;

e can aternatively be written as
vari abl e op= expression;

e common forms are:

+= - = * = [= 05
 Examples:

JEIH(3+X) 5] T = 3K

a=al/ (s-5); a /= s-5;

32
GSC C Programming

Precedence & Associativity of Operators

» The precedence of operators determines the order in which operations are
performed in an expression. Operators with higher precedence are employed
first. If two operators in an expression have the same precedence, associativity
determines the direction in which the expression will be evaluated.

o Chasabuilt-in operator hierarchy to determine the precedence of operators.
Operators higher up in the following diagram have higher precedence. The
associativity is also shown.

- 4+ -- R—»L
* I % L—+»R
+ - L—R
= R—» L
33
0SC

C Programming

Precedence & Associativity of Operators Examples

e Thisishow the following expression is evaluated

*

2 3 - 4
6 - 4
4

+
+

WNPR PR

* The programmer can use parenthesesto overridethe hierarchy and force a
desired order of evaluation. Expressions enclosed in parenthesesare
evaluated first. For example:

(1 +2) * (3- 4

3 * -1
-3

34
Gsc C Programming

The i nt Data Type

« Atypica i nt variableisintherange +- 32, 767. Thisvaue differsfrom
computer to computer and is thus machine-dependent. It ispossiblein Cto
gpecify that an integer be stored in more memory locations thereby increasing

its effective range and allowing very large integersto be stored. Thisis
accomplished by declaring the integer variable to have typel ong 1 nt .

| ong i nt national debt;
 |long I nt variablestypically havearangeof +- 2, 147, 483, 648.

« Therearealsoshort I nt variableswhich may or may not have a smaller
range than normal i nt variables. All that C guaranteesisthat ashort i nt
will not take up more bytesthani nt .

« Thereareunsi gned versions of all three types of integers. Negative integers
cannot be assigned to unsi gned integers, only arange of positive values. For
example

unsi gned i nt sal ary;

« typicaly hasarangeof O to 65, 535.

35
Osc C Programming

The f | oat and doubl e Data Types

« Aswith integersthe different floating point types available in C correspond to
different ranges of values that can be represented. More importantly, though,
the number of bytes used to represent areal value determines the precision to
which the real value is represented. The more bytes used the higher the
number of decimal places of accuracy in the stored value. The actual ranges
and accuracy are machine-dependent.

» Thethree C floating point types are:

| ong doubl e

* Ingenera, the accuracy of the stored real values increases as you move down
thelist.

0SC 20

C Programming

The char Data Type

» Variables of type char take up exactly one byte in memory and are used to
store printable and non-printable characters. The ASCII codeisused to
associate each character with an integer (see next page). For example the
ASCII code associates the character ‘m’ with the integer 109. Internally, C
treats character variables asintegers.

37
Osc C Programming

ASCII Character Set

Citrl Decimal Code Decimal Char Decimal Char Decimal Char Decimal Char
@ O/NUL 32 sp 32 sp 64 @ 96 °
A 1 SOH 33]! 33]! 65/A 97|a
B 2 STX 34" 34" 66|/ B 98 b
C 3 ETX 35 # 35|# 67 C 99 ¢
D 4/ EOT 36|$ 36 $ 68 D 100 d
"E 5 ENQ 37 % 37|% 69 E 101 e
F 6 ACK 38 & 38 & 70 F 102 f
G 7 BEL 39 39 71 G 103 g
"H 8/BS 40/(40|(72 H 104 h
N 9 HT 41)) 41)) 73]1 105 |
~J 10/LF 42 * 42 * 74|37 106 j
K 11/VT 43 + 43|+ 75K 107 k
N 12 FF 44, 44, 76/|L 108 |
M 13/CR 45 - 45 - 77 M 109 m
N 14 SOH 46/. 46/. 78N 110 n
O 15|ST 47/ 47/ 79 0 111 o
P 16/ SLE 48 0 48 0 80|P 112 p
Q 17/Cs1 491 49|1 81 Q 113/q
R 18/ DC2 502 50|2 82|R 114'r
S 19 DC3 513 513 83 S 115's
T 20/DC4 52 4 52 4 84 T 116t
U 21 NAK 53/5 53|5 85|U 117 u
a4 22|SYN 54 6 54 6 86 V 118 v
NV 23 ETB 557 55|7 87 W 119 w
X 24 CAN 568 56/8 88| X 120 x
Y 25/|EM 57 9 57 9 89'Y 121y
~Z 26 SIB 58/: 58|: 90|z 122 z
N 27|ESC 59 ; 59 ; 91 [123§
AN 28|FS 60 < 60 < 92\ 124 |
o 29/GS 61 = 61 = 93] 125}
M 30/RS 62> 62 > 94~ 126 ~
N 31|Us 63 ? 63 ? 95 _ 127 DEL

38
Osc C Programming

Automatic Type Conversion

 How does C evaluate and type expressions that contain amixtur e of different
data types? For example, if x isadoubleand i an integer, what is the type of
the expression

X +i

 Inthiscase, | will be converted to type double and the expression will
evaluate as adouble. NOTE: the value of i stored in memory isunchanged.
A temporary copy of | isconverted to adouble and used in the expression
evaluation.

« Thisautomatic conversion takes place in two steps. First, all floats are
converted to double and all characters and shorts are converted to ints. In the
second step “lower” types are promoted to “higher” types. The expression
itself will have the type of its highest operand. Thetype hierarchy isas

follows
| ong doubl e

doubl e
unsi gned | ong
| ong
unsi gned
39

Osc n t C Programming

Automatic Type Conversion with Assignment Operator

« Automatic conversion even takes place if the operator is the assignment
operator. This creates a method of type conversion. For example, if x isdouble
and | aninteger, then

X=1;
* | Ispromoted to a double and resulting value given to x
* On the other hand say we have the following expression:
| =X

» A conversion occurs, but result is machine-dependent

40
Osc C Programming

Type Casting

* Programmers can override automatic type conversion and explicitly cast
variablesto be of acertain type when used in an expression. For example,

(doubl e) |

« will forcei to be of type double. The general syntax is
(type) expression

o Some examples,

(char) 3 + 'A
X = (float) 77;
(double) k * 57

41

GSC C Programming

Input and Output

e Basic Output

e printf Function

 Format Specifiers Table

 Common Special Characters for Cursor Control
e Basic Output Examples

 Basic Input

 Basic Input Example

42
Osc C Programming

Basic Output

 Now, let uslook moreclosely at thepri ntf () statement. In aprevious
program, we saw this example

print("value of sumis %\ n", sum;

« which produced this output:

val ue of sumis 33

o Thefirst argument of thepri nt f function is called the control string. When
thepri ntf isexecuted, it starts printing the text in the control string until it
encounters a %character. The %sign isaspecial character in C and marks the
beginning of aformat specifier. A format specifier controls how the value of
avariable will be displayed on the screen. When aformat specifier is found,
orintf looksup the next argument (in this case sur), displaysits value and
continues on. The d character that follows the %indicates that a (d)ecimal
integer will be displayed. At the end of the control statement, pri nt f reads
the special character \ n which indicates print the new line character.

43
Osc C Programming

printf Function

o Generd formof pri nt f function
printf(control string,argunent |ist);

« wherethecontrol stringconsistsof 1) literal text to be displayed, 2)
format specifiers, and 3)special characters. The arguments can be variables,
constants, expressions, or function calls -- anything that produces a value
which can be displayed. Number of arguments must match the number of
format identifiers. Unpredictable results if argument type does not “match”
the identifier.

44
GSC C Programming

Format Specifiers Table

» Thefollowing table show what format specifiers should be used with what

data types.
Specifier Type

% character

%l decimal integer

Yo octal integer (leading 0)

%X hexadecimal integer (leading Ox)
% unsigned decimal integer

% d long int

% floating point

% f double or long double

%e exponential floating point

%s character string

45
Osc C Programming

Common Special Characters for Cursor Control

e Some common specia charactersfor cursor control are:

0SC

\ t
\r
\ f
\v
\'b
\
\ nnn

newline

tab

carriage return

form feed

vertical tab

backspace

Double quote (\ acts as an “escape” mark)
octal character value

46

C Programming

Basic Output Examples

0SC

printf(“ABC");
printf(“%\n”,5);

printf(“%¢ % %", A ,'B, C);
printf(“Fromsea ”);
printf(“to shining “);

printf (“C);
printf(“Fromsea \n");
printf(“to shining \n“);
printf (“C);

| eg1=200. 3; | eg2=357. 4,
printf(“lt was %
mles”, | egl+l eg2);

nunml=10; nunR=33;
printf(“%\t%\n”, nunl, nun) ;
bi g=11e+23;
printf(“% \n”, big);
printf(“% \n",’ ?");
printf(“% \n",’ ?");

printf(“\007 That was a beep\n”);

ABC (cursor after the C)

5 (cursor at start of next line)
ABC

From sea to shining C

From sea
t o shi ni ng
C

It was 557.700012 m | es

10 33

1. 100000e+24
?

63

try it yourself 47

C Programming

Basic Input

 Thereisafunctionin C which alows the programmer to accept input from a
keyboard. The following program illustrates the use of this function.

#i ncl ude <stdio. h>
main() {
i nt pin;
printf("Please type in your PIN\n");
scanf (" %", &pi n) ;
printf("Your access code is %\ n",pin);}

» What happens in this program? An integer called Is defined. A prompt to
enter in anumber is then printed with thefirst pri nt f statement. The scanf
routine, which accepts the response, has a control string and an address|list.
In the control string, the format specifier %al shows what datatype is expected.
The &pi n argument specifies the memory location of the variable the input
will be placed in. After thescanf routine completes, the variable will

be initialized with the input integer. Thisis confirmed with the second
statement. The & character hasavery special meaning in C. It isthe

address operator. (Much more with & when we get to pointers...)

48
OSC C Programming

Basic Input Example

#i ncl ude <stdio. h>
main() {
i nt pin;
printf("Please type in your PIN\n");
scanf (" %", &pi n) ;
printf("Your access code is %\ n",pin);}

* A session using the above code would look like this

Pl ease type your PIN
4589

Your access code is 4589

« Theformat identifier used for a specific C datatype isthe same asfor the
porintf statement, with one exception. If you are inputting values for a
doubl e variable, usethe % f format identifier.

* White space is skipped over in the input stream (including carriage return)
except for character input. A blank isvalid character input.

49
GSC C Programming

Program Looping

* |ntroduction to Program L ooping

o Relational Operators

e Relational Operators Table

o for Loop

e for Loop Example

e for Loop Diagram

e General Comments about for L oop

e General Comments about for Loop Continued
 whileLoop

 while Loop Example

 dowhileLoop

 dowhile Loop Example

* dowhile Loop Example: Error Checking

50
Osc C Programming

Introduction to Program Looping

» Program looping is often desirable in coding in any language to have the
ability to repeat a block of statements a number of times. In C, there are
statements that allow iteration of thistype. Specifically, there are two classes
of program loops -- unconditional and conditional. An unconditional loop is
repeated a set number of times. In aconditional loop the iterations are halted
when a certain condition is true. Thus the actual number of iterations

performed can vary each time the loop is executed.

51

Osc C Programming

Relational Operators

o Our first use of these operators will be to set up the condition required to
control a conditional loop. Relational operators allow the comparison of two
expressions. Such as

a < 4

« whichreadsa “lessthan” 4. If a islessthan 4, this expression will evaluate to
TRUE. If not it will evaluate to FALSE.

» Exactly what does it mean to say an expression is TRUE or FALSE? C uses
the following definition

— FALSE meansevaluatesto ZERO
— TRUE meansevaluatesto any NON-ZERO integer (even negative integers)

52
Osc C Programming

Relational Operators Table

» Thefollowing table shows the various C relational operators

Operator Meaning Example

== Equal to count == 10

I = Not equal to flag !'= DONE

< Less than a<h>

<= L ess than or equal to | <= LIMT

> Greater than pointer > end of |ist
>= Greater thanorequal to | ap >= start

 Therelationa operators have a precedence bel ow the arithmetic operators.

53
Osc C Programming

for Loop

Thefor loop is C'sform of an unconditional loop. The basic syntax of the for
statement is,

for (initialization expression; test expr; increnent expr)
program st at enent ;
Here is an example

sune10;

for (1=0; 1<6; ++i)

sum = SUumti ;

The operation for the loop is as follows
1) Theinitialization expression is evaluated.

2) Thetest expression isevaluated. If it isTRUE, body of theloop is executed. If it is
FAL SE, exit thefor loop.

3) Assumetest expression is TRUE. Execute the program statements making up the
body of theloop.

4) Evaluate the increment expression and return to step 2.
5) When test expression isFAL SE, exit loop and move on to next line of code.

0SC >

C Programming

for Loop Example

o Sample Loop:

* We can trace the execution of the sample loop as follows

0SC

sum = 10:;

for (i=0; i<6;

SUNFESUMt ;

1% 0 TRUE 10
2N 1 TRUE 11
3 2 TRUE 13
A" 3 TRUE 16
5 4 TRUE 20
6" 5 TRUE 25
7" 6 FALSE 25

++i)

m

55

C Programming

f or Loop Diagram

« Thefollowing diagram illustrates the operation of afor loop

56
GSC C Programming

General Comments about f or Loop

o Some general comments regarding the use of the f or statement:
— Control expressions are separ ated by ; not ,

— If thereare multiple C statementsthat make up the loop body, enclose them in
brackets (USE INDENTATION FOR READABILITY)

for (x=100; x!=65; x-=5) {

z=sqrt(x);

printf("The square root of %l is %\n", X, z);
}

— Control expressions can be any valid expression. Don’t necessarily haveto
perform initialization, testing, and incrementation.

— Any of the control expressions can be omitted (but always need the two
semicolons for syntax sake).

product =1;
for (i=1;i<=6;)
product * =i ++;

S7
GSC C Programming

General Comments about f or Loop Continued

o Some general comments regarding the use of the f or statement:

— Sincetest performed at beginning of loop, body may never get executed
x=10;
for (y=10;y! =x; ++y)
printf ("%",vy);

— Can string together multiple expressionsin thef or statement by separating
them by commas
for (x=1,y=5; x+y<100; ++x)
Z=x%;

58
GSC C Programming

whi | e Loop

e« Thewhi | e loop provides a mechanism for repeating C statements while a
condition istrue. Itsformat is

whi | e(control expression)
program st at enent ;

e Thewhi | e statement works as follows:

1) Control expression isevaluated (“entry condition”)
2) If it isFALSE, skip over theloop.

3) If it isTRUE, loop body is executed.

4) Goback tostep 1

59

OSC C Programming

whi | e Loop Example

 Examplewhile loop
| =1; factori al =1;
while (i<=n) {
factorial *=1i;
| =1 +1;

 Programmer isresponsiblefor initialization and incrementation. At some
point in the body of the loop, the control expression must be altered in order to
allow the loop to finish. Otherwise: infinite loop.

« Will thisloop end?
j =15;
while (j--)

g

60

Gsc C Programming

do whil e Loop

e Thedo whi | e statement is avariant of the while statement in which the

condition test is performed at the “bottom” of the loop. This guarantees that
the loop is executed at |east once.

 Thesyntax of thedo whi | e statement is
do
program st at enent ;
while (control expression);

e anditworksasfollows
1) The body of theloop is executed.

2) The control expression is evaluated (“exit condition”).
3) If it isTRUE, go back tostep 1. If it isFALSE, exit loop.

61
Osc C Programming

do whi | e Loop Example

 Hereisasample program that reverses an integer withado whi | e loop:

0SC

mai n() {

int value, r _digit;

printf("Enter the nunber to be reversed.\n");

scanf (" %", &val ue);

do {
r digit = value % 10;
printf("%l", r _digit);
val ue = value / 10;

} while (value !'= 0);

printf("\n");

62

C Programming

do whi | e Loop Example: Error Checking

« A common useof thedo whi | e statement isinput error checking. A ssimple
formis shown here

o Theuser will remain inthisloop continually being prompted for and entering
Integers until a positive oneis entered. A sample session using this loop looks

like this
| nput a positive integer: -4
| nput a positive integer: -34
| nput a positive integer: 6
63
0SC

C Programming

Decision Making Statements

* Introduction to Decision M aking Statements
e | f Statement

e | f Statement Examples

e |f-el se Statement

e |f-el seladder

e SW t ch Statement

e SW t ch Statement Example

e SW t ch Statement Operation

« sw t ch Statement Example: Characters
e sSW t ch Statement Example: Menus

e Conditional Operator

* Conditional Operator Examples

e Logical Operators

o Logica Operators Precedence

64
Osc C Programming

Introduction to Decision Making Statements

» Used to have a program execute different statements depending on certain
conditions. In a sense, makes a program “smarter” by allowing different
choicesto be made. In C, there are three decision making statements.

| f execute a statement or not
| f-el se choose to execute one of two statements
swtch choose to execute one of a number of statements

65
Osc C Programming

| f Statement

« Thei f statement alows branching (decision making) depending upon a
condition. Program code is executed or skipped. The basic syntax is

I f (control expression)
program st at enent ;

« If the control expression is TRUE, the body of thei f isexecuted. If itis
FALSE, the body of thei f is skipped.

« Thereisno “then” keywordin Cl

» Because of the way in which floating point types are stored, it makes it very
difficult to compare such types for equality. Avoid trying to comparereal
variablesfor equality, or you may encounter unpredictable results,

66
GSC C Programming

| f Statement Examples

e Theses code fragments illustrate some uses of thei f statement

— Avoid division by zero
I f (x!=0)
y/ =x;

— Customize output
i f (grade>=90)
printf("\nCongratulations!");
printf("\nYour grade is "%", grade);

— Nestedifs

1 f (letter>="A")
1 f (letter>="2")
printf("The letter is a capital \n");

67
Osc C Programming

| f-el se Statement

e Used to decide between two cour ses of action. The syntax of thei f - el se

statement is

| f (expression)

statenent 1;
el se
st at enent 2;

o |ftheexpressionis TRUE, st at enent 1 isexecuted; st at enent 2 is

o |Iftheexpressionis FALSE, st at enent 2 isexecuted; st at enent 1 is

sKipped.
skipped.
o Some examples
1T (x<y)
m n=x;
el se
m n=y;
0SC

I f (letter == "e"') {
++e_count ;
++vowel count; }
el se

++0t her _count;

68

C Programming

| f-el se Ladder

 What if we wanted to extend the task shown in the previous example and not
just counts how many € sthere arein apiece of text, but also make counts of
the other vowels? Thisis possible by nesting i f - el se statements together to
makewhat iscaledani f - el se ladder. For example, consider the following
code if (letter == "a")
++a_count ;
else if (letter == "'e")
++e_count;
else if (letter =="1")
++i _count;
else if (letter == "'0")
++0_count;
else if (letter == "u")
++U_count ;
el se
++const _count;

 AssoonasaTRUE control expression is found, the statement associated with

it is executed and the rest of the ladder is bypassed. If no control expressions
are found to be TRUE, thefinal el se statement acts as a default.

69
GSC C Programming

swW t ch Statement

« Thesw t ch statement is a better way of writing a program which employs an
| f - el se ladder. It isC’sbuilt-in multiple branch decision statement. The
syntax for theswi t ch statement is as follows:

swtch (integer expression) {
case constant 1:
st at enent 1;
br eak;
case constant 2:
st at enent 2;
br eak;

defaul t:
st at enent ;

}
 Thekeyword br eak should be included at the end of each case statement. In
general, whenever abr eak statement is encountered in C, it interrupts the
normal flow of control. Inthesw t ch statement, it causes an exit from the
switch shunt. Thedef aul t clauseisoptional. The right brace at the end
marks the end of swi t ch statement.

0SC I

C Programming

sw t ch Statement Example

« Hereisasmple exampleof asw t ch statement:

swtch(n) {
case 12:
printf("value is 12\n");
br eak;
case 25:
printf("value is 25\n");
br eak;
case 99:
printf("value is 99\ n");
br eak;
def aul t:
printf("nunber is not part of the Xmas date\n");

71
Osc C Programming

sw t ch Statement Operation

e Thesw t ch statement works as follows

1) Integer control expression isevaluated.

2) A match islooked for between this expression value and thecase
const ant s. If amatch isfound, executethe statementsfor that case. If a
match isnot found, executethedef aul t statement.

3) Terminatesw t ch when a br eak statement isencountered or by “falling out
theend”.

« Some things to be aware of when using a switch statement:

— case values must be unique (How to decide other wise?)
— sw t ch statement only testsfor equality

— Thecontrol expression can beof typecharacter sincethey are
internally treated asintegers

12

OSC C Programming

swi t ch Statement Example: Characters

swtch(ch) {
case 'a':
++a_count ;
br eak;
case 'b':
++b_count;
br eak;
case 'C
case 'C : [* multiple values, sane statenents */
++c_count; }

73
Osc C Programming

swi t ch Statement Example: Menus

« A common application of the swi t ch statement isto control menu-driven
software:

switch(choice) {

case 'S':
check_spelling();
br eak;

case 'C:
correct _errors();
br eak;

case 'D:
di splay _errors();
br eak;

def aul t:
printf("Not a valid option\n"); }

74
Osc C Programming

Conditional Operator

« Short-hand notation for ani f - el se statement that performs assignments.

This conditional expression operator takes THREE operands. The two symbols
used to denote this operator arethe ? and the : . The first operand is placed

before the 7, the second operand between the ? and the : , and the third after
the : . The general syntax isthus

condition ? expressionl : expression2;

e Iftheresult of condi t 1 on isTRUE (non-zero), expr essi onl isevauated

and the result of the evaluation becomes the result of the operation. If the
condition is FALSE (zero), then expr essi on2 isevaluated and its result

becomes the result of the operation. Consider the example on the next page:

75
Osc C Programming

Conditional Operator Examples

S = (x<0) ? -1 : Xx*X;

o |If x islessthan zero, then s=- 1. If x is greater than or equal to zero, then
S=X*X.

« Thefollowing code setsthe logical status of the variable even

I T (nunmber %2==0)
even=1;

el se
even=0;

* |dentical, short-hand code to perform the sametask is
even=(nunber %2==0) ? 1 : O;

76

Gsc C Programming

Logical Operators

» These operators are used to create more sophisticated conditional expressions
which can then be used in any of the C looping or decision making statements
we have just discussed. When expressions are combined with alogical
operator, either TRUE (i.e., 1) or FALSE (i.e., 0) isreturned.

Operator Symbol Usage Operation

LOGICAL && expl && exp2 Requiresboth expl and exp?2 to be

AND TRUE to return TRUE. Otherwise, the
logical expressionis FALSE.

LOGICAL | | expl || exp2 Will be TRUE if either (or both) expl or

OR exp2 is TRUE. Otherwise, it is FALSE.

LOGICAL ! lexp Negates (changes from TRUE to FALSE

NOT and visa versa) the expression.

77
Osc C Programming

Logical Operators Precedence

« Thenegation operator, ! , has the highest precedence and is always performed
first in amixed expression. The remaining logical operators have a precedence
below relational operators.

« Sometypica examplesusing logical operators:

I f (year<1900 && year>1799)
printf("Year in question is in the 19th century\n");

I f (ch=="a" || ch=="¢e" || ch="1" || ch="0" || ch="u")
++vowel count;

done=0;
whi | e(! done) {

}

78
OSC C Programming

Array Variables

e |ntroduction to Array Variables
 Array Variables Example

 Array Elements

 Declaring Arrays

e |nitializing Arrays during Declaration
e Using Arrays

e Multi-dimensional Arrays

e Multi-dimensional Array lllustration
o |nitializing Multi-dimensiona Arrays
e Using Multi-dimensional Arrays

79
Osc C Programming

Introduction to Array Variables

* Arraysare adatastructure which hold multiple values of the same data type.
Arrays are an example of astructured variable in which 1) there are a
number of pieces of data contained in the variable name, and 2) thereis an
ordered method for extracting individual data items from the whole,

o Consider the case where a programmer needs to keep track of the ID numbers
of people within an organization. Her first approach might be to create a
gpecific variable for each user. This might look like

Iint 1dl = 101; Int 1d2 = 232; Int 1d3 = 231;

* It becomesincreasingly more difficult to keep track of the IDs as the number
of variablesincrease. Arrays offer a solution to this problem.

0SC -

C Programming

Array Variables Example

* Anarray isamulti-element box, abit like afiling cabinet, and uses an
indexing system to find each variable stored withinit. In C, indexing starts at
zer 0. Arrays, like other variables in C, must be declared before they can be
used.

* Thereplacement of the previous example using an array looks like this:

I nt 1d[3]; /* declaration of array id */
1 d[0] = 101;
1d[1] = 232;
1 d[2] = 231,

* Inthefirstline, we declared an array called | d, which has space for three

integer variables. Each piece of datain an array is called an element. Thus,
array | d hasthree elements. After thefirst line, each element of | d is

Initialized with an ID number.

81
OSC C Programming

Array Elements

e The syntax for an element of an array called a is

ali]

« wherei iscalledtheindex of the array element. Thearray element i d[1] is
just like any normal integer variable and can betreated as such.

* In memory, one can picture the array id asin the following diagram:

id | 101 | 232 | 231

id[0] id[1] id[2]

82
GSC C Programming

Declaring Arrays

* Arrays may consist of any of the valid datatypes. Arrays are declared along
with all other variablesin the declaration section of the program and the
following syntax is used

type array_nane[n];
 wheren isthe number of elementsin the array. Some examples are

i nt final[160];
fl oat distance[66];

e During declaration consecutive memory locations are reserved for the array
and all its elements. After the declaration, you cannot assume that the elements
have been initialized to zero. Random junk is at each element’s memory
location.

83
GSC C Programming

Initializing Arrays during Declaration

» |f the declaration of an array is preceded by the word static, then the array can
beinitialized at declaration. Theinitial values are enclosed in braces. e.qg.,

static Int val ue[9] {1,2,3,4,5,6,7,8, 9};
static float height[5]={6.0,7.3,2.2,3.6,19. 8};

» Some rulesto remember when initializing during declaration

1 Ifthelist of initial elementsisshorter than the number of array elements, the
remaining elementsareinitialized to zero.

2 Ifadtaticarrayisnot initialized at declaration manually, its elementsare
automatically initialized to zero.

3 If astaticarray isdeclared without a size specification, itssize equalsthe
length of theinitialization list. In the following declaration, a hassize 5.

static Int a[]={-6,12, 18, 2, 323},
84
Gsc C Programming

Using Arrays

» Recall that indexing isthe method of accessing individual array elements.
Thusgr ade[89] refersto the 90th element of the gr adesarray. A
common programming error is out-of-bounds array indexing. Consider the
following code:

| nt gr ade[3] ;
grade[5] = 78;

e Theresult of this mistake is unpredictable and machine and compiler
dependent. Y ou could write over important memory locations, for example.
Often run-time errors result.

 Array variablesand for loops often work hand-in-hand since the for loop

offers a convenient way to successively access array elements and perform
some operation with them. Basically, the for loop counter can do double duty
and act as an index for the array, as in the following summation example:

I nt total =0, I ;

| nt grade[4] ={93, 94, 67, 78} ;

for (1=0; 1<4; ++i)

total += grade[i];

85
GSC C Programming

Multi-Dimensional Arrays

* Multi-dimensional arrays have two or more index values which are used to
gpecify aparticular element in the array. For this 2D array element,

L mage[1][]]

o thefirstindex valuei specifiesarow index, while| specifiesacolumn index.
Declaring multi-dimensional arraysis similar to the 1D case:

I nt a[10]; /[* declare 1D array */
float b[3][5]; [* declare 2D array */
double c[6][4][2]; [/* declare 3D array */

» Notethat it is quite easy to allocate alarge chunk of consecutive memory
with multi-dimensional arrays. Array ¢ contains 6x4x2=48 doubl es.

86

GSC C Programming

Multi-Dimensional Array lllustration

A useful way to picture a2D array isasagrid or matrix. Picture array b as

oth 1St 2nd 3I’d 4th
column column column column column
0" row
1% row
2" row

In C, 2D arraysare stored by row. Which means that in memory the Oth row
IS put into its memory locations, the 1st row then takes up the next memory
locations, the 2nd row takes up the next memory locations, and so on.

87
GSC C Programming

Initializing Multi-Dimensional Arrays

 Thisprocedureis entirely analogous to that used to initialize 1D arrays at their
declaration. For example, this declaration

static int age[?2][3]={4,8,12,19,6,-1},
o will fill upthe array age asit isstored in memory. That is, the array is
initialized row by row. Thus, the above statement is equivalent to:
age[0] [0] =4; age[O][1]=8; age[0][2]=12;
age[1] [0] =19; age[1] [1] =6; age[1][2]=-1;
» Asbefore, if there are fewer initialization values than array e ements, the
remainder areinitialized to zero.

« To make your program more readable, you can explicitly put the valuesto be
assigned to the same row ininner curly brackets:

static int age[?2][3]={{4,8,12},{19,6,-1}};

 Inaddition if the number of rowsis omitted from the actual declaration, itis
set equal to the number of inner brace pairs:

static int age[][3]=]={{4,8,12},{19,6,-1}},

88
GSC C Programming

Using Multi-Dimensional Arrays

 Again, aswith 1D arrays, loops and multi-dimensional arrays often work
hand-in-hand. In this case, though, |oop nests are what is most often used.
Some examples

Summation of array elements

doubl e tenp[256] [3000] , sum=0;
int i,j;
for (i=0; i1<256; ++i)
for (j=0; j<3000; ++j)
sum += tenp[i][]];

Trace of Matrix

i nt voxel [512][512][512];
int i,],k,trace=0;
for (i=0; i1<512; ++i)
for (j=0; j<512; ++4j)
for (k=0; k<512; ++k)
| f (i::j &&j::)
trace += voxel [i][]][K];

89
OSC C Programming

Strings

» Arraysof Characters

e |nitializing Strings

 Copying Strings

e String I/O Functions

 More String Functions

* More String Functions Continued
 Examples of String Functions

o Character 1/0O Functions
 More Character Functions

o Character Functions Example

90
Osc C Programming

Arrays of Characters

o Stringsare 1D arrays of characters. Strings must be terminated by the null
character ' \ O' whichis (naturally) called the end-of-string character. Don't

forget to remember to count the end-of-string character when you calculate the
size of astring.

o Aswill al Cvariables, strings must be declared before they are used. Unlike
other 1D arraysthe number of elements set for astring set during declaration
iIsonly an upper limit. The actual strings used in the program can have fewer
elements. Consider the following code:

static char nane[18] = "lvanova",;
 Thestring called nane actually hasonly 8 elements. They are
S L VAR - S | B o R VAR B W O &
* Notice another interesting feature of this code. String constants mar ked with
double quotes automatically include the end-of-string character. The curly

braces are not required for string initialization at declaration, but can be used
If desired (but don’t for get the end-of-string char acter).

91
OSC C Programming

Initializing Strings

GSC C Programming

Initializing a string can be done in three ways. 1) at declaration, 2) by reading
in avalue for the string, and 3) by using the st r cpy function. Direct
Initialization using the = operator isinvalid. The following code would
produce an error:

char nane[34];
name = "Erickson": [* | LLEGAL */

Toread in avaluefor astring use the % format identifier:
scanf (" %", nane) ;

Note that the address operator & is not needed for inputting a string variable
(explained later). The end-of-string character will automatically be appended
during the input process.

92

Copying Strings

« Thestrcpy function isone of aset of built-in string handling functions

available for the C programmer to use. To use these functions be sure to
includethe st ri ng. h header file at the beginning of your program. The
syntax of st rcpy is

* When this function executes, IS copied into at the
beginning of . The previous contents of are overwritten.

* Inthefollowing code, st r cpy isused for string initialization:

#i ncl ude <string. h>
main ()
char job[50];

printf("You are a % \n",job);

}
93
0SC

C Programming

String 1/0O Functions

» There are special functions designed specifically for string I/O. They are

« The function reads in a string from the keyboard. When the user hitsa
carriage return the string is inputted. The carriage return is not part of the
string and the end-of-string character is automatically appended.

e Thefunction put s displaysastring on the monitor. It does not print the end-
of-string character, but does output a carriage return at the end of the string.
Here is a sample program demonstrating the use of these functions:

char phrase[100];

printf("Please enter a sentence\n");
get s(phrase);

put s(phr ase) ;

A sample session would look like this

Pl ease enter a sentence
The best lack all conviction, while the worst are passionate.

The best lack all conviction, while the worst are passi onate.

94
OSC C Programming

More String Functions

e Includedinthestri ng. h are several more string-related functions that are
free for you to use. Here is a brief table of some of the more popular ones

strcat Appends to a string

strchr Finds first occurrence of a given character
strcnp Compares two strings

st rcnpi Compares two, strings, non-case sensitive
strcpy Copies one string to another

strlen Finds length of astring

strncat Appends n characters of string

strncnp Compares n characters of two strings

strncpy Copies n characters of one string to another
strnset Sets n characters of string to a given character
strrchr Finds last occurrence of given character in string
strspn Finds first substring from given character set in string

95
Osc C Programming

More String Functions Continued

 Most of the functions on the previous page are self-explanatory. The UNI X
man pages provide a full description of their operation. Take for example,
st r cnp which has this syntax

strcnp(stringl, string2);

* |t returns an integer that is less than zero, equal to zero, or greater than zero
depending on whether st r i ngl islessthan, equal to, or greater than

string2.

e String comparison is done character by character using the ASCII numerical
code

96

GSC C Programming

Examples of String Functions

Here are some examples of string functionsin action:

static char sl[]="big sky country";
static char s2[]="bl ue noon",;
static char s3[]="then falls Caesar";

strlen(sl) 15 /* e-0-s not counted */
strlen(s2) 9

strcnp(sl, s2) negati ve nunber

strcnp(s3, s2) posi tive nunber

strcat(s2,” tonight”) blue noon tonight

97

C Programming

Character I/O Functions

* Anaogous to the gets and puts functions there are the getchar and putchar
functions specially designed for character |/O. The following program
Illustrates their use:

#i ncl ude <stdi o. h>
mai n() {
int n; char lett;
putchar (' ?');
n=45;
put char (n-2);
| ett =get char ();
put char (|l ett);
putchar('\n');

}

* A sample session using this code would look like:

f

98
OSC C Programming

More Character Functions

« Aswith strings, thereis alibrary of functions designed to work with character
variables. Thefilect ype. h defines additional routines for manipulating

characters. Hereisapartial list

I sal num Testsfor alphanumeric character
I sal pha Testsfor alphabetic character

| sasci i Testsfor ASCII character

I scntrl Testsfor control character

I sdigit Testsfor 0to 9

I sgraph Testsfor printable character

I sl ower Testsfor lowercase character

I sprint Testsfor printable character

| spunct Testsfor punctuation character

| sspace Testsfor space character

| supper Testsfor uppercase character

i sxdigit Testsfor hexadecimal

t oasci i Converts character to ASCII code
t ol ower Converts character to lower case
t oupper Converts character to upper

99
Osc C Programming

Character Functions Example

« Inthefollowing program, character functions are used to convert a string to all
uppercase characters:

#i ncl ude <stdi o. h>

#i ncl ude <ctype. h>

mai n() {
char nane[80] ;
I nt | oop;
printf ("Please type in your nane\n");
get s(nane) ;
for (1oop=0; nane[l oop] !=0; | oop++)

nane[| oop] = toupper(nane[l oop]);

printf ("You are %\n", nane);

}

e A sample session using this program looks like this:

Pl ease type in your nane
Dext er Xavi er

You are DEXTER XAVI ER

100
OSC C Programming

Math Library Functions

e “Cdculator-class’ Functions
e Using Math Library Functions

101
OSC C Programming

“Calculator-class” Library Functions

* You may have started to guess that there should be a header file called
mat h. h which contains definitions of useful “calculator-class’ mathematical

functions. Well thereisl Some functions found in mat h. h are
acos asin atan
COoS sin tan
cosh sinh tanh
exp log | 0gl0
pow sqrt

ceil floor

erf

ganma

JOJ1n

y0 yl yn

102
GSC C Programming

Using Math Library Functions

« Thefollowing code fragment uses the Pythagorean theorem ¢2 = a2 + b? to
calculate the length of the hypotenuse given the other two sides of aright
triangle:

double c, a, b
c=sqgrt (pow a, 2) +pow b, 2));

« Typicaly, to use the math functions declared in the mat h. h include file, the
user must explicitly load the math library during compilation. On most
systems the compilation would look like this:

cc nyprog.c -Im

103
Osc C Programming

User-defined Functions

| ntroduction to User-defined
Functions

Reasons for Use

User-defined Functions Usage
Function Definition

User-defined Function Example 1
User-defined Function Example 2
return Statement

return Statement Example

Using Functions

Considerations when Using
Functions

Using Functions Example
| ntroduction to Function Prototypes

0SC

Function Prototypes

Recursion

Storage Classes

auto Storage Class

extern Storage Class

extern Storage Class Example

static and register Storage Class

104

C Programming

Introduction to User-defined Functions

A functioninCisasmall “sub-program” that performs a particular task, and
supports the concept of modular programming design techniques. In
modular programming the various tasks that your overall program must
accomplish are assigned to individual functions and the main program
basically calls these functionsin a certain order.

 We have aready been exposed to functions. The main body of a C program,
identified by the keyword mai n, and enclosed by left and right bracesisa

function. It is called by the operating system when the program is loaded, and
when terminated, returns to the operating system. We have also seen examples
of library functionswhich can be used for I/O, mathematical tasks, and
character/string handling.

* But can the user define and use their own functions? Absolutely YES!

105
Osc C Programming

Reasons for Use

* There are many good reasons to program in a modular style:

— Don’t haveto repeat the same block of code many timesin your code. M ake
that code block a function and call it when needed.

— Function portability: useful functions can be used in a number of programs.

— Supportsthetop-down technique for devising a program algorithm. Make an
outline and hierarchy of the steps needed to solve your problem and create a
function for each step.

— Easy to debug. Get one function working well then move on to the others.

— Easy to modify and expand. Just add mor e functionsto extend program
capability

— For alarge programming project, you will code only a small fraction of the
program.

— Make program self-documenting and readable.

106
Osc C Programming

User-defined Function Usage

* Inorder to use functions, the programmer must do three things
— Define the function
— Declar e the function

— Usethe function in the main code.

* Inthefollowing pages, we examine each of these stepsin detail.

107
Osc C Programming

Function Definition

» Thefunction definition is the C code that implements what the function does.
Function definitions have the following syntax

return_type function nanme (data type variable nane |ist)

{ —
| ocal decl arati ons: function
function function statenents; body

header } 4_’/

« wherether et urn type inthefunction header tells the type of the value
returned by the function (default isi nt)

« wherethedata type variable nane |1 st telswhat argumentsthe
function needs when it is called (and what their types are)

« wherel ocal decl arati ons inthefunction body areloca constants and
variables the function needs for its calcul ations.

108
GSC C Programming

Function Definition Example 1

 Hereisan example of afunction that calculates n!

Int factorial (int n)
{
I nt 1, product =1;
for (1=2; 1<=n; ++i)
product *= i;
return product;

0SC

109
C Programming

Function Definition Example 2

« Some functionswill not actually return a value or need any arguments. For
these functions the keyword voi d isused. Hereis an example:

void wite header(void) {
printf("Navier-Stokes Equations Sol ver ");
printf("v3.45\n");
printf("Last Mdified: ");
printf("12/04/95 - viscous coefficient added\n");

}

« Thelst voi d keyword indicates that no value will be returned.

« The2nd voi d keyword indicates that no arguments are needed for the
function.

» Thismakes sense because all this function doesis print out a header statement.

110
OSC C Programming

return Statement

» A function returns avaue to the calling program with the use of the keyword
r et ur n, followed by a data variable or constant value. The return statement

can even contain an expression. Some examples

« Whenar et ur n is encountered the following events occur:

1 execution of the function is terminated and control is passed back to the
calling program, and

2 thefunction call evaluatesto the value of ther et ur n expr essi on.

o |fthereisnor et ur n statement control is passed back when the closing brace
of the function is encountered (“falling off the end”).

111
OSC C Programming

return Statement Examples

« Thedatatypeof ther et urn expr essi on must match that of the declared
ret urn_t ype for the function.

float add nunbers (float nl, float n2) {
return nl + n2; /*legal*/
return 6; [*illegal, not the sane data type*/
return 6. 0; [*l egal */ }

» |tispossiblefor afunction to have multipler et ur n statements. For example:

doubl e absol ut e(doubl e x) {
| f (x>=0.0)
return X;
el se
return -Xx;

112
Osc C Programming

Using Functions

o Thisistheeasiest part! Toinvoke afunction, just typeits nameinyour
program and be sure to supply arguments (if necessary). A statement using our
factorial program would look like

nunber =factori al (9);

 Toinvoke our write_header function, use this statement
write header();

* When your program encounters a function invocation, control passes to the
function. When the function is completed, control passes back to the main
program. In addition, if avalue was returned, the function call takes on that
return value. In the above example, upon return from thef act or i al

function the statement
factorial (9) — 362880
e and that integer is assigned to the variable nunber .

113
Osc C Programming

Considerations when using Functions

« Some points to keep in mind when calling functions (your own or library’s):

0SC

The number of argumentsin the function call must match the number of
argumentsin the function definition.

Thetype of the argumentsin the function call must match the type of the
argumentsin the function definition.

The actual argumentsin the function call are matched up in-order with the
dummy argumentsin the function definition.

The actual arguments are passed by-valueto the function. The dummy
argumentsin the function areinitialized with the present values of the actual
arguments. Any changes made to the dummy argument in the function will NOT
affect the actual argument in the main program.

114

C Programming

Using Function Example

» Theindependence of actual and dummy arguments is demonstrated in the
following program.

#i ncl ude <stdi o. h>
I nt conpute_sun(int n) {
i nt sum=0;
for(; n>0;--n)
sumt=n;
printf("Local n in function is %\ n",n);
return sun }
mai n() {
i nt n=8, sum
printf ("Main n (before call) is %\ n",n);
sum=conput e_sun(n) ;
printf ("Main n (after call) is %\ n",n);
printf ("\nThe sumof integers froml to % is %\ n",n, sun;}

Main n (before call) is 8
Local n in function is O
Main n (after call) is 8

The sum of integers from1l to 8 is 36

OS C 115

C Programming

Introduction to Function Prototypes

» Function prototypes are used to declare a function so that it can be used in a
program before the function is actually defined. Consider the program on the
previous page. In some sensg, it reads “backwards’. All the secondary
functions are defined first, and then we see the main program that shows the
major steps in the program. This example program can be rewritten using a
function prototype as follows:

#i ncl ude <stdi o. h>
i nt conpute_sunm(int n); /* Function Prototype */
mai n() {
I nt n=8, sum
printf ("Main n (before call) is %\ n",n);
sunmFconput e_sum(n) ;
printf ("Main n (after call) is %\ n",n);
printf ("\nThe sum of integers from1l to % is %\ n",n,sum;}
I nt conpute_sun(int n) {
i nt sum=0;
for(; n>0;--n)
sumt=n;
printf("Local n in function is %\ n",n);
return sunm }

116
OSC C Programming

Function Prototypes

* Now the program readsin a"natural" order. Y ou know that a function called
conput e_sumwill be defined later on, and you see its immediate use in the
main program. Perhaps you don’t care about the details of how the sum s
computed and you won't need to read the actual function definition.

» Asthis example shows, afunction prototype is ssmply the function header
from the function definition with a semi-colon attached to the end. The
prototype tells the compiler the number and type of the argumentsto the
function and the type of the return value. Function prototypes should be placed
beforethe start of the main program. The function definitions can then
follow the main program. In fact, if you look at one of the include files -- say
st ri ng. h -- you will seethe prototypes for all the string functions available!

* |naddition to making code more readable, the use of function prototypes
offersimproved type checking between actual and dummy arguments. In
some cases, the type of actual arguments will automatically be coerced to
match the type of the dummy arguments.

117
Osc C Programming

Recursion

» Recursionisthe processin which afunction repeatedly callsitself to perform
calculations. Typical applications are games and sorting trees and lists.
Recursive agorithms are not mandatory, usually an iterative approach can be

found.
« Thefollowing function calculates factorials recursively:

int factorial (int n) {
I nt result;

I f (n<=1)
resul t =1;
el se
result = n * factorial (n-1);

return result:;

118

GSC C Programming

Storage Classes

 Every variablein C actually has two attributes: its data type and its storage
class. The storage classrefersto the manner in which memory is allocated
for the variable. The storage class also determines the scope of the variable,
that is, what parts of a program the variable’ s name has meaning. In C, the
four possible Storage classes are

— auto
— extern
— gtatic

— register

119

Osc C Programming

auto Storage Class

e Thisisthedefault classification for all variables declared within a function
body [including mai n()] .

« Automatic variables are truly local.

» They exist and their names have meaning only while the function is being
executed.

* They are unknown to other functions.
 When the function is exited, the values of automatic variables are not retained.
 They are normally implemented on a stack.

» They arerecreated each time the function is called.

120
Osc C Programming

extern Storage Class

* |Incontrast, extern variables are global.

« |f avariableisdeclared at the beginning of a program outside all functions
[including mai n()] itisclassified as an external by default.

o External variables can be accessed and changed by any function in the
program.

o Their storage isin permanent memory, and thus never disappear or need to be
recreated.

What is the advantage of using global variables?
It isa method of transmitting infor mation between functionsin a program
without using arguments.

121
Osc C Programming

extern Storage Class Example

« Thefollowing program illustrates the global nature of extern variables:
#i ncl ude <stdi o. h>

| nt a=4, b=5, c=6; [* default extern */
I nt sunm(void); int prod(void);
mai n() {

printf ("The sumis %\ n",sum());
printf ("The product is %\ n",prod());

}

I nt sumvoid) {
return (atb+c); }

I nt prod(void) {
return (a*b*c); }

The sumis 15

The product is 120

* There are two disadvantages of global variables versus arguments. Fir st, the
function is much less portable to other programs. Second, is the concept of
local dominance. If alocal variable has the same name as a global variable,
only the local variable is changed while in the function. Once the function is
exited, the global variable has the same value as when the function started.

OS C 122

C Programming

static and register Storage Class

static Storage Class

« A dtaticvariableisalocal variable that retainsitslatest value when a
function isrecalled. Its scope is still local in that it will only be recognized in
its own function. Basically, static variables are created and initialized once on
the first call to the function. With clever programming, one can use static
variables to enable afunction to do different things depending on how many
timesit has been called. (Consider a function that counts the number of times
It has been called).

register Storage Class

« |tisoften true that the time bottleneck in computer calculationsisthetime it
takes to fetch a variable from memory and store its value in aregister where
the CPU can perform some calculation with it. So for performance reasons, it
IS sometimes advantageous to store variables directly in registers. This strategy
Is most often used with loop counter variables, as shown below.

0SC 123

C Programming

Formatted Input and Output

e Formatted Output

» char and int Formatted Output Example
o f Format Identifier

 eFormat |dentifier

 Rea Formatted Output Example
 sFormat Identifier

» Strings Formatted Output Example
 Formatted Input

o Formatted |nput Examples

124
Osc C Programming

Formatted Output

« Canyou control the appearance of your output on the screen? Or do you have
to accept the default formatting provided by the C compiler? It turns out you
can format your output in a number of ways.

* You can control how many columns will be used to output the contents of a

particular variable by specifying the field width. The desired field width is
inserted in the format specifier after the %and before the letter code indicating

the data type. Thus the format specifier %6 d isinterpreted as use 5 columns to
display the integer. Further examples:

%3cC display the character in 3 columns
%d3x display the hexadecimal integer in 13 columns

* Withinthefield, the argument value isright-adjusted and padded with
blanks. If left adjustment is preferred use the syntax % 3c. If you wish to pad
with zeros use the syntax %0 4d.

Nice Feature:

If the value to be printed out takes up more columns than the specified field
width, thefield is automatically expanded.

125
Osc C Programming

char and int Formatted Output Example

« Thisprogram and it output demonstrate various-sized field widths and their
variants.

0SC

#i ncl ude <stdi o. h>
mai n() {

char
I nt

pri
pri
pri
pri
pri
pri
pri
pri
pri
pri

nt f
nt f
nt f
nt f
nt f
nt f
nt f
nt f
nt f
nt f

lett="w;

I—l,j—29
("%\n",lett);
("W&C\n ,lett);
("% 3c\n\n",lett);
("%l\n",i);
("%\n",));
("9%0d\n",]);
("9%910d\n",j);
("@6010d\n)
("9%20\n",j);
("@Qx\n",j);

29

29
0000000029
29
35
1d

126

C Programming

f Format Identifier

» For floating-point values, in addition to specifying the field width, the number
of decimal places can also be controlled. A sample format specifier would

look likethis
%4.0. 4f

field number of
width decimal places

» Note that aperiod separates the two numbersin the format specifier. Don't
forget to count the column needed for the decimal point when calculating the
field width. We can use the above format identifier as follows:

printf("9d0.4f",4.0/3.0); — ----1.3333

 where- indicatesthe blank character.

127

OSC C Programming

e Format Identifier

» When using the e format identifier, the second number after the decimal point
determines how many significant figures (SF) will be displayed. For example

printf("9%0.4e",4.0/3.0); —» _1.333e+10

number of significant figures

* Notethat only 4 significant figures are shown. Remember that now the field
size must include the actual numerical digitsaswell ascolumnsfor ‘. ’’e’,
and ‘+00’ in the exponent.

* |tispossibleto print out asmany SFsasyou desire. But it only makes sense to
print out as many SFs as match the precision of the data type. The following
table shows a rough guideline applicable to some machines:

0SC

Data Type # Mantissa bits Precision (#SF)
float 16 ~7
double 32 ~16
long double 64 ~21

128

C Programming

Real Formatted Output Example

#i ncl ude <stdi o. h>

mai n() {
fl oat x=333. 123456;
doubl e y=333. 1234567890123456;
printf ("%\n", Xx);

printf ("% 1f\n", x);
printf ("%0.3f\n", x);
printf ("% 20.3f\n", x);
printf ("%020.3f\n", x);
printf ("%\n",y);
printf ("%9f\n",y);
printf ("% 20f\n",y);
printf ("%0.4e\n",y);

333. 123444
333.1

333. 123
333. 123

0000000000000333. 123

333. 123457

333. 123456789

333.12345678901232304270
3.331e+02

129
OSC C Programming

s Format Identifier

» For strings, the field length specifier works as before and will automatically
expand if the string size is bigger than the specification. A more sophisticated
string format specifier looks like this

%. 3s

TN

field width maximum number of characters printed

* where the value after the decimal point specifies the maximum number of
character s printed.

* For example;

printf("3.4s\n","Sheridan"); —» Sher

130
GSC C Programming

Strings Formatted Output Example

#i ncl ude <stdio. h>

mai n() {
static char s[]="an evil presence";
printf ("%\n",s);
printf ("%’s\n",s);

printf ("%0s\n",s);

printf ("% 20s\n",s);

printf ("% 5s\n",s);

printf ("% 12s\n",s);

printf ("9%5.12s\n",s);

printf ("% 15.12s\n",s);
(

printf ("%3.12s\n",s);

evil presence
evil presence

an evil presence
evil presence

ev
evil pres
an evil pres
evil pres
evil pres

131
OSC C Programming

Formatted Input

* Maodifications can be made to the control string of thescanf function which
enable more sophisticated input. The formatting features that can be inserted
Into the control string are

— Ordinary characters (not just format identifiers) can appear in the scanf
control string. They must exactly match corresponding charactersin theinput.
These“normal” characterswill not beread in asinput.

— An asterisk can be put after the %symbol in an input format specifier to
suppresstheinput.

— Aswith formatted output, a field width can be specified for inputting values.
Thefield width specifiesthe number of columns used to gather the input.

132

OSC C Programming

Formatted Input Examples

0SC

#i ncl ude <stdi o. h>

mai n() {
int i; char lett; char word[15];
scanf ("% , %Ws % %bs", & , & ett,word);
printf("%l \n % \n %\n",i,lett,wrd);

45 , ignore_ this Cread this
45

C
read

#i ncl ude <stdi o. h>

mai n() {
int mn, o;
scanf ("% : % : %", &nm &n, &o);
printf("% \n % \n %\ n", mn, 0);

133

C Programming

Pointers

* |ntroduction to Pointers .
e Memory Addressing .
 The Address Operator .
* Pointer Variables .

e Pointer Arithmetic .
* |ndirection Operator

o “Cadl-by-Reference” Arguments
o “Cadl-by-Reference” Example *

0SC

Pointers and Arrays

Pointers and Arrays lllustration
Pointers and Arrays Examples

Arrays as Function Arguments
Arrays as Function Arguments

Example
Pointers and Character Strings

Pointers and Character Strings
Example

134
C Programming

Introduction to Pointers

* Pointersare anintimate part of C and separate it from more traditional
programming languages. Pointers make C mor e power ful allowing awide
variety of tasksto be accomplisned. Pointers enable usto

— effectively represent sophisticated data structures

— change values of actual arguments passed to functions (“ call-by-reference’)
— work with memory which has been dynamically allocated

— more concisely and efficiently deal with arrays

* Onthe other hand, pointers are usually difficult for new C programmersto
comprehend and use. If you remember the following simple statement,
working with pointers should be less painful ...

POINTERS CONTAIN MEMORY ADDRESSES, NOT DATA VALUES!

135
Osc C Programming

Memory Addressing

POINTERS CONTAIN MEMORY ADDRESSES, NOT DATA VALUES!

* When you declare asimple variable, like
Int 1;

 amemory location with a certain addressis set aside for any values that will be
placed ini. We thus have the following picture:

memory 5 : .
location —» FFD2 . | «+¥—variablename

o After the statement | =35; thelocation correspondingto i will befilled

FFD2 35 i

136

Osc C Programming

The Address Operator

* You can find out the memory address of a variable by ssmply using the
address operator &. Hereis an example of its use:

» Theabove expression should be read as “address of v”, and it returns the
memory address of the variable

» Thefollowing ssimple program demonstrates the difference between the
contents of avariable and its memory address:

#i ncl ude <stdi 0. h>
mai n() {
fl oat Xx;
x=2.171828;
printf("The value of x is %\n", x);
printf("The address of x is %\ n", &); }

The value of x is 2.171828
The address of X Is EFFFFBA4

0SC 137

C Programming

Pointer Variables

* A pointer isaC variable that contains memory addresses. Like all other C
variables, pointers must be declared before they are used. The syntax for
pointer declaration is asfollows:

I nt *p;
doubl e *of fset;

* Notethat the prefix * defines the variable to a pointer. In the above example,

0 isthetype “pointer to integer” and of f set isthe type “pointer to double”.

* Once apointer has been declared, it can be assigned an address. Thisis usually
done with the address operator. For example,
I nt *p;
| nt count;
p=&count ;

o After thisassignment, we say that p is“referring to” thevariablecount or
“pointing to” the variable count . The pointer p contains the memory address
of thevariablecount .

138
OSC C Programming

Pointer Arithmetic

* A limited amount of pointer arithmetic is possible. The "unit" for the
arithmetic is the size of the variable being pointed to in bytes. Thus,

Incrementing a pointer-to-an-int variable automatically adds to the pointer
address the number of bytes used to hold an int (on that machine).

— Integers and pointers can be added and subtracted from each other, and
— Incremented and decremented.

— In addition, different pointers can be assigned to each other

e Some examples,

0SC 139

C Programming

Indirection Operator

* Theindirection operator, * , can be considered as the complement to the

address operator. It returnsthe contents of the address stored in a pointer
variable. It isused as follows:

 Theabove expression isread as “contents of p”. What is returned is the value
stored at the memory address

» Consider the sample code:

#i ncl ude <stdi o. h>

mai n() {
I nt a=1, b=78, *i p;
| p=&a;
b=*i p; /* equivalent to b=a */

printf("The value of b is %\n",b); }
The value of bis 1

* Notethat b ends up with the value of a but it isdone indirectly; by using a
pointer to a.

140
OSC C Programming

“Call-by-Reference” Arguments

« Welearned earlier that if avariablein the main program is used as an actua
argument in afunction call, its value won’t be changed no matter what is done
to the corresponding dummy argument in the function.

 What if wewould like the function to change the main variable' s contents?

— To do this we use pointers as dummy arguments in functions and indirect
operations in the function body. (The actual arguments must then be
addresses)

— Sincethe actual argument variable and the corresponding dummy
pointer refer to the same memory location, changing the contents of the
dummy pointer will- by necessity- change the contents of the actual
argument variable.

141
Osc C Programming

“Call-by-Reference” Example

 Theclassic example of “call-by-reference’ isaswap function designed to
exchange the values of two variables in the main program. Here is a swapping
program:

0SC

#i ncl ude <stdio. h>
voi d swap(int *p,int *q);

mai n() {
I nt 1 =3,)=9876;
swap(& , &) ;
printf("After swap, i=% j=%\n",i,]);

void swap(int *p,int *q) {
i nt tenp;
t enp=*p,;
*p=*q;
*q=t enp,;

After swap, i=9876 | =3

142

C Programming

Pointers and Arrays

» Although this may seem strange at first, in Canarray nameisan address. In
fact, it iIsthe base address of all the consecutive memory |locations that make
up the entire array.

 We have actually seen thisfact before: when using scanf to input a character
string variable called name the statement looked like

e scanf("%", nane); NOT scanf (" %", &ane) ;

« Given thisfact, we can use pointer arithmetic to access array elements.

143
OSC C Programming

Pointers and Arrays lllustration

» Given thefollowing array declaration

» Thefollowing two statements do the exact same thing:

I nt a[467];

al 5] =56;
*(a+b) =56;

 Hereisthelayout in memory:

0SC

a
a+l
a+2
a+3
at+4
a+b

133268
133272
133276
133280
133284
133288

al 0]
al 1]
al 2]
al 3]
al 4]
al 5]

144

C Programming

Pointers and Arrays Examples

» The next examples show how to sum up all the elements of a 1D array using

pointers.
— Normal way
int a[100],1i, *p, sun=0;
for(i=0; i<100; ++i)
sum +=ali];
— Other way
int a[100],1i, *p, sun=0;
for(i=0; i<100; ++i)
sum += *(a+i);
— Another way
int a[100],i, *p, sum=0;
for(p=a; p<&a[100]; ++p)
sum += *p;
0SC

145

C Programming

Arrays as Function Arguments

When you are writing functions that work on arrays, it is convenient to use
pointer s as arguments. Once the function has the base address of the array, it
can use pointer arithmetic to work with all the array elements. The alternative
ISto use global array variables or -- more horribly -- pass all the array elements
to the function.

Consider the following function designed to take the sum of elementsin alD
array of doubles:
doubl e sun(double *dp, int n) {
int i; double res=0.0;
for(i=0; i<n; ++i)
res += *(dp+i);
return res,;

}

Note that all the sum function needed was a starting addressin the array
and the number of elementsto be summed together (n). A very efficient

argument list.

146
OSC C Programming

Arrays as Function Arguments Example

» Considering the previous example

doubl e sun(double *dp, int n) {
int i; double res=0.0;
for(i=0; i<n; ++i)
res += *(dp+i);
return res;

}
e Inthemain program, the sum function could be used as follows

doubl e position[150], | engt h;

| engt h=sun{ position, 150); /* sumentire array */

| engt h=sun(position,75); [/* sumfirst half */

| engt h=sun(&posi tion[10], 10);/* sum from el enent
10 to elenent 20 */

147

Osc C Programming

Pointers and Character Strings

* Asstrange as this sounds, a string constant -- such as “Happy Thanksgiving” --
IS treated by the compiler as an address (Just like we saw with an array name).
The value of the string constant address is the base addr ess of the character
array.

* Thus, we can use pointersto work with character strings, inasimilar
manner that we used pointers to work with “normal” arrays. Thisis
demonstrated in the following code:

#i ncl ude <stdi o. h>

mai n() {
char *cp;
cp="Civil War";
printf("%\n", *cp);
printf("%\n",*(cp+6));

}
W

148
OSC C Programming

Pointers and Character Strings Example

Another example illustrates easy string input using pointers:

#i ncl ude <stdi o. h>

mai n() {
char *nane;
printf("Who are you?\n");
scanf (" %", nanme) ;
printf("H % welcone to the party, pal\n", nane);

Who are you?
Seynour

H Seynour wel cone to the party, pal

149

C Programming

Structures

e |ntroduction to Structures

e Structure Variable Declaration

e Structure Members

o |nitializing Structure Members

e Structures Example

o Structures Example Continued
 More Structures Example Continued
e Structures within Structures

» |nitializing Structures within Structures
e Pointersto Structures

e Pointersto Structures. ->

150
Osc C Programming

Introduction to Structures

A structureisavariablein which different types of data can be stored
together in one variable name. Consider the data a teacher might need for a

high school student: Name, Class, GPA, test scores, final score, ad final course
grade. A structure datatype called st udent can hold al thisinformation:

struct student {

__— char nane[45];
keyword char cl ass;
fl oat gpa;\

structure

data type name ' nt t _est [3] member name & type
I nt final;
char grade;
}s

« Theaboveisadeclaration of adatatypecaledst udent . ltisnot a
variable declaration, but a type declaration.

151
GSC C Programming

Structure Variable Declaration

» To actually declare a structure variable, the standard syntax is used:

struct student Lisa, Bart, Honer;

* You can declare a structure type and variables simultaneoudly. Consider the
following structure representing playing cards.

struct playing card {
| Nt pi ps;
char *suit;

} cardl, card2, card3;

152
GSC C Programming

Structure Members

 Thedifferent variable types stored in a structure are called its members. To

access a given member the dot notation isuse. The “dot” is officially called
the member access operator. Say we wanted to initialize the structurecar d1

to the two of hearts. It would be done this way:
cardl. pi ps=2;
cardl. suit="Hearts";
* Onceyou know how to create the name of a member variable, it can be treated
the same as any other variable of that type. For example the following code:
card2. pi ps=cardl. pi ps+5;
e would make car d2 the seven of some suit.
e Structure variables can also be assigned to each other, just like with other
variable types.
card3 = cardil,

o would fill inthe card3 pi ps member with 2 and thesui t member with
“Hearts’. In other words, each member of car d3 gets assigned the value of
the corresponding member of car d 1.

153
Osc C Programming

Initializing Structure Members

» Structure members can be initialized at declaration. Thisis similar to the
initialization of arrays; the initial values are simply listed inside a pair of braces,
with each value separated by a comma. The structure declaration is preceded by the
keywordst ati c

static struct student Lisa = {
"Si nmpson”,'S', 3.95,100, 87,92,96,"' A'};

* The same member names can appear in different structures. There will be no
confusion to the compiler because when the member name is used it is prefixed by
the name of the structure variable. For example:

struct fruit {
char *nane;
int calories; } snack;
struct vegetable {
char *nane;
int calories; } dinner_course;
snack. nane="banana";
di nner _course. nane="broccoli";

154

GSC C Programming

Structures Example

* What data type are allowed to structure members? Anything goes. basic types,
arrays, strings, pointers, even other structures. Y ou can even make an array of
structures.

» Consider the program on the next few pages which uses an array of structures
to make a deck of cards and deal out a poker hand.

#i ncl ude <stdio. h>
struct playing card {
I nt pi ps;

char *suit; } deck[52];

voi d make deck(voi d);
voi d show card(int n);
mai n() {

make deck();

show card(5);

show card(37);

show car d(26);

show card(51);

show card(19);

155
OSC C Programming

Structures Example Continued

voi d make_deck(voi d) {
int k;
for(k=0; k<52; ++k) {
I f (k>=0 && k<13) {
deck[k] . sui t="Hearts";
deck[k] . pi ps=k%d.3+2; }
I f (k>=13 && k<26) {
deck[k] . sui t =" Di anbnds";
deck[k] . pi ps=k%d.3+2; }
I f (k>=26 && k<39) {
deck[k] . sui t =" Spades";
deck[k] . pi ps=k%d.3+2; }
I f (k>=39 && k<52) {
deck[k] . sui t =" ubs";
deck[k] . pi ps=k%d.3+2; }

0SC

156

C Programming

More on Structures Example Continued

voi d show card(int n) {

swi tch(deck[n]. pips) {

case 11:
printf("% of %\n",'J',6 deck[n].suit);
br eak;

case 12:
printf ("% of %\n",'Q,6deck[n].suit);
br eak;

case 13:
printf ("% of %\n",'K ,deck[n].suit);
br eak;

case 14:
printf("% of %\n",'A ,6 deck[n].suit);
br eak;

def aul t:
printf("% of %\n",deck[n].pips,deck[n].suit);
break; }

157
OSC C Programming

Structures within Structures

 Asmentioned earlier, structures can have as members other structures. Say
you wanted to make a structure that contained both date and time information.
One way to accomplisn this would be to combine two separate structures; one
for the date and one for the time. For example,

struct date {
I nt nont h;
i nt day;
i nt year; };
struct tine {
| nt hour;
I nt mn;
I nt sec; };
struct date tinme {
struct date today;
struct tinme now, };

e Thisdeclares a structure whose elements consist of two other previously
declared structures.

158
GSC C Programming

Initializing Structures within Structures

* Initialization could be done as follows,

static struct date tine veteran = {{11, 11, 1918}, {11, 11, 11}},;

 whichsetsthet oday element of the structure vet er an to the eleventh of
November, 1918. The now eement of the structureisinitialized to e even

hours, eleven minutes, eleven seconds. Each item within the structure can be
referenced if desired. For example,

++vet er an. now. sec;
| f (veteran.today. nonth == 12)
printf("Wong nonth! \n");

0SC 159

C Programming

Pointers to Structures

* One can have pointer variable that contain the address of complete structures,
just like with the basic data types. Structure pointers are declared and used in
the same manner as “simple”’ pointers.

struct playing card *card poi nter,down _card,
card_poi nt er =&down_card;
(*card _poi nter). pi ps=8;

(*card _pointer).suit="C ubs";

 Theabove code hasindirectly initialized the structure down car d to the
Eight of Clubs through the use of the pointer car d _poi nt er.

 Thetypeof thevariablecar d poi nt er is*pointer to aplaying_card
structure”.

160
OSC C Programming

Pointers to Structures: - >

 InC,thereisasgpecia symbol - > which is used as a shorthand when working
with pointersto structures. It is officially called the structure pointer
operator. Itssyntax is as follows:

*(struct _ptr). nenber isthesameas struct ptr->nenber

e Thus, thelast two lines of the previous example could also have been written
as.
card_poi nt er->pi ps=8;
card_poi nter->suit="0C ubs";

Question: What isthevalueof * (car d_poi nter->sui t+2) ?
Answer: ‘U’

« Aswith arrays, use structure pointers as arguments to functions working
with structures. Thisis efficient, since only an address is passed and can also
enable “call-by-reference” arguments.

161
GSC C Programming

Unions

 |Introduction to Unions
e Unions and Memory
e Unions Example

162
Gsc C Programming

Introduction to Unions

* Unions are C variables whose syntax look similar to structures, but act ina
completely different manner. A unionisavariable that can take on different
data typesin different situations. The union syntax is.

uni on tag nane {
t ypel nenber 1;
t ype2 nenber 2;

}s
» For example, the following code declares a union datatypecaled | nt f | oat
and aunion variable called pr ot eus:

uni on i ntfloat {
float f;
int 1
}

uni on 1 ntfloat proteus;

163
OSC C Programming

Unions and Memory

* Once aunion variable has been declared, the amount of memory reserved is
just enough to be able to represent the lar gest member. (Unlike a structure
where memory is reserved for all members).

* Inthe previous example, 4 bytes are set aside for the variable since
af | oat will takeup 4 bytesand ani nt only 2 (on some machines).

« Dataactually stored in aunion’s memory can be the data associated with any
of its members. But only one member of a union can contain valid data at a
given point in the program.

* |tistheuser’'sresponsibility to keep track of which type of data has most
recently been stored in the union variable.

164
Osc C Programming

Unions Example

« Thefollowing code illustrates the chameleon-like nature of the union variable
defined earlier.

#i ncl ude <stdi o. h>
mai n() {
union intfloat {
float f;
int i;
} proteus;
pr ot eus. i =4444 /[* Statenent 1 */
printf(“i:%2d f:%6.10e\n”, proteus.i,proteus.f);
pr ot eus. f =4444. 0; /[* Statenent 2 */
printf(“i:%2d f:%6. 10e\n”, proteus.i, proteus.f);

4444 f:6.2273703755e-42
1166792216 f: 4. 440000000e+03

o After Statement 1, data stored in IS an integer the the float member
Isfull of junk.
o After Statement 2, the data stored in isafloat, and the integer

value is meaningless.

165
OSC C Programming

File Input and Output

e |ntroduction to File Input and Output
e Declaring FILE Variables

» Opening aDisk Filefor I/O
 Reading and Writing to Disk Files

« ClosingaDisk File

e Additional File I/O Functions
 Sample File I/O Program

 Sample File I/O Program: main
 Sample File I/O Program: processfile
 Sample File I/O Program: getrecord
 Sample File I/O Program: printrecord
o Sample File I/O Program: sample session

166
Osc C Programming

Introduction to File Input and Output

o Sofar, al the output (formatted or not) in this course has been written out to
what is called standard output (which is usually the monitor). Similarly all
input has come from standar d input (usually associated with the keyboard).
The C programmer can also read data directly from files and write directly to
files. To work with files, the following steps must be taken:

1 Declarevariablesto beof type FI LE.

2 Connect theinterna FI LE variable with an actual datafile on your hard
disk. Thisassociation of aFl LE variable with afile name is done with the
fopen() function.

3 Perform /O with the actual filesusing f print () andf scanf ()
functions.

4 Break the connection between the internal FI LE variable and actual disk
file. Thisdisassociation is donewiththef cl ose() function.

167

Osc C Programming

Declaring FILE variables

» Declarations of the file functions highlighted on the previous page must be
included into your program. Thisis done in the standard manner by having

e asthefirst statement in your program.

 Thefirst stepisusing filesin C programsisto declare afile variable. This
variable must be of type (which isapredefined typeinC) and itisa

pointer variable. For example, the following statement

declares the variable to be a*“pointer to type

168

OSC C Programming

Opening a Disk File for 1/0

 Beforeusing aFl LE variable, it must be associated with a specific file name.
Thef open() function performs this association and takes two arguments. 1)
the pathname of the disk file, and 2) the access mode which indicates how the
fileisto be used. The following statement

in file = fopen("nyfile.dat","r");

o connectsthevariablei n il etothedisk filenyfi | e. dat forread
access. Thus, nyfi | e. dat will only be read from. Two other access modes

can be used:

“w’ indicating write-mode
“a” indicating append_mode

169

Osc C Programming

Reading and Writing to Disk Files

« Thefunctionsf printf andf scanf areprovided by C to perform the
analogous operations for thepr i nt f and scanf functions but on afile.

» These functions take an additional (first) argument which isthe FILE pointer
that identifies the file to which datais to be written to or read from. Thusthe
statement,

fscanf(in file,"% %", &, &M ;

o will input -- fromthefilenyfi | e. dat -- real and integer valuesinto the
variables x and mrespectively.

170
Osc C Programming

Closing a Disk File

« The function in a sense does the opposite of what thef open does: it

tells the system that we no longer need access to the file. This allows the
operating system to cleanup any resources or buffers associated with the file.

 Thesyntax for file closing is ssimply

171
OSC C Programming

Additional File I/O Functions

* Many of the specialized I/O functions for characters and strings that we have
described in this course have analogs which can be used for file 1/O. Hereisa
list of these functions

Function Result
fgets file string input
f puts file string output

getc(file_ptr) filecharacter input
putc(file_ptr) filecharacter output

» Another useful function for file1/Oisf eof () which tests for the end-of-file
condition. f eof takes one argument -- the FILE pointer -- and returns a
nonzero integer value (TRUE) if an attempt has been made to read past the end
of afile. It returns zero (FALSE) otherwise. A sample use:

i f (feof(in_file))
printf ("No nore data \n");

172

Osc C Programming

Sample File I/O Program

* Theprogram on the next few pages illustrates the use of file I/O functions. It is
an inventory program that reads from the following file

| i ma beans

1.20

10

5

t hunder tea

2.76

5

10

Greaters i ce-cream
3. 47

5

5

bonel ess chi cken
4.58

12

10

« which contains stock information for a store. The program will output those
items which need to be reordered because their quantity is below acertain
limit

173

Osc C Programming

Sample File I/O Program: main

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
struct goods {
char nane[20] ;
float price;
I nt quantity;
I nt reorder;
1
FI LE *input _file;
voi d processfile(void);
voi d getrecord(struct goods *recptr);
void printrecord(struct goods record);

mai n()
char fil enane[40];
printf("Exanple Goods Re-Order File Programin");
printf("Enter database file \n");
scanf ("9%", fil enane);
input file = fopen(filenane, "r");
processfil e();

174
OSC C Programming

Sample File I/O Program: processfile

voi d processfile(void) {
struct goods record;
while (!feof (input file)) {
getrecord(& ecord);
i f (record.quantity <= record.reorder)
printrecord(record);

175
OSC C Programming

Sample File I/O Program: getrecord

0SC

voi d getrecord(struct goods *recptr) {

I nt | oop=0, nunber, t ool ow;

char buffer[40], ch;

fl oat cost;

ch=fgetc(input _file);

while (ch!'=\n") {
buffer[| oop++] =ch;
ch=fgetc(input _file);

}

buf fer[| oop] =0;
strcpy(recptr->nane, buffer);
fscanf (input file,"%", &ost);
recptr->price = cost;

fscanf (input _file,"%l", &wunber) ;
recptr->quantity = nunber;
fscanf (input _file,"%l", & ool ow) ;
recptr->reorder = tool ow

176

C Programming

Sample File I/O Program: printrecord

void printrecord (struct goods record) {
printf("\nProduct nane \t%\n",record. nane);
printf("Product price \t%\n",record. price);
printf("Product quantity \t%\n",record. quantity);
printf("Product reorder |level \t%l\n",record.reorder);

}

177
OSC C Programming

Sample File I/O Program: sample session

0SC

Exanpl e Goods Re- Order
Ent er dat abase fil e food. dat

Pr oduct
Pr oduct
Pr oduct
Pr oduct

Pr oduct
Pr oduct
Pr oduct
Pr oduct

File Program

nanme thunder tea
price
quantity

reor der

nane Qeaters ice-cream

price
quantity
reor der

| evel

| evel

2. 76
5

3.47
5

10

178

C Programming

Dynamic Memory Allocation

e [ntroduction to Dynamic Memory Allocation
 Dynamic Memory Allocation: sizeof

e Dynamic Memory Allocation: calloc
 Dynamic Memory Allocation: free

179
Osc C Programming

Introduction to Dynamic Memory Allocation

« A common programming problem is knowing how large to make arrays when
they are declared. Consider a grading program used by a professor which
keeps track of student information in structures. We want his program to be
general-purpose so we need to make arrays large enough to handle the biggest
possible class size:

e But when acertain upper-level class has only seven students, this approach can
be inelegant and extremely wasteful of memory especially if the

structure is quite large itsalf.

 Thus, itisdesirableto create correct-sized array variables at runtime. The

C programming language allows users to dynamically allocate and deallocate
memory when required. The functions that accomplish thisarecal | oc()

which allocates memory to avariable, si zeof () , which determines how
much memory a specified variable occupies, and f r ee() , which deallocates
the memory assigned to a variable back to the system

180
OSC C Programming

Dynamic Memory Allocation: sizeof

Thesi zeof () function returnsthe memory size (in bytes) of the requested
variable type. This call should be used in conjunction withthecal | oc()
function call, so that only the necessary memory is allocated, rather than a
fixed size. Consider the following code fragment:

struct tine {
| nt hour;
Int mn;
| nt sec;
R
I nt X;
Xx=si zeof (struct tinme);

X now contains how many bytes aretaken up by at i ne structure (which
turns out to be 12 on many machines). si zeof can also be used to determine
the memory size of basic datatype variables aswell. For example, it isvalid to
writesi zeof (doubl e) .

181

GSC C Programming

Dynamic Memory Allocation: calloc

« Thecal | oc functionisused to allocate storage to a variable while the

program is running. The function takes two arguments that specify the number
of elements to be reserved, and the size of each element in bytes (obtained
fromsi zeof). The function returns a pointer to the beginning of the

allocated storage areain memory. The storage areais aso initialized to zeros.

struct tine *appt;
appt = (struct tine *) calloc(100, sizeof(struct tine));

e Thecode(struct tinme *) isatype cast operator which convertsthe
pointer returned from cal | oc to apointer to a structure of typetime. The
above function call will alocate just enough memory for one hundred t | ne
structures, and appt will point to the first in the array. Now the array of t | ne
structures can be used, just like a statically declared array:

appt [5] . hour =10;
appt [5] . m n=30;
appt [5] . sec=0;

182
GSC C Programming

Dynamic Memory Allocation: free

 Whenthevariablesarenolonger required, the space which was allocated to
them by cal | oc should be returned to the system. Thisis done by,

free(appt);

183
GSC C Programming

Command-Line Arguments

e |Introduction to Command-Line Arguments
e Command-Line Arguments Example
e Command-Line Arguments Sample Session

184
OSC C Programming

Introduction to Command-Line Arguments

* Inevery program you have seen so far, the mai n function has had no dummy
arguments between its parentheses. The nai n function is allowed to have
dummy arguments and they match up with command-line arguments used

when the program is run.

e Thetwo dummy arguments to the mai n function are called ar gc and ar gv.

— ar gc contains the number of command-line arguments passed to the main
program and

— argv/[] isanarray of pointers-to-char, each element of which points
to a passed command-line argument.

185

Osc C Programming

Command-Line Arguments Example

A simple example follows, which checksto see if only asingle argument is
supplied on the command line when the program is invoked

#i ncl ude <stdi o. h>
mai n(i nt argc, char *argv[]) {

i f (argc == 2)
printf("The argunent supplied is %\n", argv[1]);

else if (argc > 2)
printf("Too many argunents supplied.\n");

el se
printf("One argunent expected.\n");

Note that * ar gv[O] isthe program name itsalf, which means that

*ar gv[1] isapointer to thefirst “actual” argument supplied, and

*ar gv[n] isthelast argument. If no arguments are supplied, ar gc will be
one. Thusfor n arguments, ar gc will be equal ton+1.

186

C Programming

0SC

Command-Line Arguments: Sample Session

» A sample session using the previous example follows:

#i ncl ude <stdi o. h>
mai n(i nt argc, char *argv[]) {
I f (argc ==
printf("The argunent supplied is %\n", argv[1]);
else if (argc > 2)
printf("Too many argunents supplied.\n");
el se
printf("One argunent expected.\n");

a. out
One argunent expect ed.
a.out help

The argunent supplied is help
a.out help verbose
Too many argunents suppli ed.

187
OSC C Programming

Operator Precedence Table

Description Represented by

1 Parenthesis () [1]

1 Structure Access .=

2 Unary I ++ -- - * &
3 Multiply, Divide, Modulus * / %

4 Add, Subtract + -

5 Shift Right, Left >> <<

6 Greater, Less Than, €tc. > < => <=
7 Equal, Not Equal == I=

8 Bitwise AND &

9 Bitwise Exclusive OR A

10 BitwiseOR |

11 Logical AND &&

12 Logica OR | |

13 Conditional Expression ?

14 Assgnment = += -= ¢elc
15 Comma ;

188
Osc C Programming

