
Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 11

Introduction to

Programming in C

2CSE 240

Programming Levels

 Application

 Languages

 (Java, C#)

 System Programming Languages

 (C, C++)

 Scripting

 Languages

 (Perl, Python, VB)

 Assembly Language

 (x86, PowerPC, SPARC, MIPS)

 Machine Language

 (x86, PowerPC, SPARC, MIPS)

 Hardware

 (Application-Specific Integrated
Circuits or ASICs)

 High-Level

Languages

 Low-Level

Languages

 Compilation

 Assembly

 Interpreted

 Or Compiled

3CSE 240

The Course Thus Far…

 We did digital logic

• Bits are bits

• Ultimately, to understand a simple processor

 We did assembly language programming

• Programming the “raw metal” of the computer

• Ultimately, to understand C programming

 Starting today: we’re doing C programming

• C is still common for systems programming

• You’ll need it for the operating systems class (CSE380)

• Ultimately, for a deeper understanding of any language (Java)

4CSE 240

Why High-Level Languages?

 Easier than assembly. Why?
• Less primitive constructs

• Variables

• Type checking

 Portability
• Write program once, run it on the LC-3 or Intel’s x86

 Disadvantages
• Slower and larger programs (in most cases)

• Can’t manipulate low-level hardware

!All operating systems have some assembly in them

 Verdict: assembly coding is rare today

5CSE 240

Our Challenge

 All of you already know Java
• We’re going to try to cover the basics quickly

• We’ll spend more time on pointers & other C-specific nastiness

 Created two decades apart
• C: 1970s - AT&T Bell Labs

• C++: 1980s - AT&T Bell Labs

• Java: 1990s - Sun Microsystems

 Java and C/C++
• Syntactically similar (Java uses C syntax)

• C lacks many of Java’s features

• Subtly different semantics

6CSE 240

C is Similar To Java Without:

 Objects
• No classes, objects, methods, or inheritance

 Exceptions
• Check all error codes explicitly

 Standard class library
• C has only a small standard library

 Garbage collection
• C requires explicit memory allocate and free

 Safety
• Java has strong type checking, checks array bounds

• In C, anything goes

 Portability
• Source: C code is less portable (but better than assembly)

• Binary: C compiles to specific machine code

7CSE 240

More C vs Java differences

 C has a “preprocessor”
• A separate pre-pass over the code

• Performs replacements

 Include vs Import
• Java has import java.io.*;

• C has: #include <stdio.h>

• #include is part of the preprocessor

 Boolean type
• Java has an explicit boolean type

• C just uses an “int” as zero or non-zero

• C’s lack of boolean causes all sorts of trouble

 More differences as we go along…
8CSE 240

History of C and Unix

 Unix is the most influential operating system

 First developed in 1969 at AT&T Bell Labs
• By Ken Thompson and Dennis Ritchie

• Designed for “smaller” computers of the day

• Reject some of the complexity of MIT’s Multics

 They found writing in assembly tedious
• Dennis Ritchie invented the C language in 1973

• Based on BCPL and B, needed to be efficient (24KB of memory)

 Unix introduced to UC-Berkeley (Cal) in 1974
• Bill Joy was an early Unix hacker as a PhD student at Cal

• Much of the early internet consisted of Unix systems Mid-80s

• Good, solid TCP/IP for BSD in 1984

 Linux - Free (re)implementation of Unix (libre and gratuit)
• Announced by Linus Torvalds in 1991

 Much more in CSE380!

9CSE 240

Aside: The Unix Command Line

 Text-based approach to give commands

• Commonly used before graphical displays

• Many advantages even today

 Examples

• mkdir cse240hw8 make a directory

• cd cse240hw8 change to the directory

• ls list contents of directory

• cp /mnt/eniac/home1/c/cse240/project/hw/hw8/* .

!Copy files from one location to current dir (“.”)

• emacs foo.c & run the command “emacs” with input “foo.c”

• gcc -o foo foo.c compile foo.c (create program called “foo”)

 Unix eventually developed graphical UIs (GUIs)

• X-windows (long before Microsoft Windows)

10CSE 240

What is C++?

 C++ is an extension of C
• Also done at AT&T Bell Labs (1983)

• Backward compatible (good and bad)

• That is, all C programs are legal C++ programs

 C++ adds many features to C
• Classes, objects, inheritance

• Templates for polymorphism

• A large, cumbersome class library (using templates)

• Exceptions (not actually implemented for a long time)

• More safety (though still unsafe)

• Operator and function overloading

• Kitchen sink

 Thus, many people uses it (to some extent)
• However, we’re focusing on only C, not C++

11CSE 240

Quotes on C/C++ vs Java

 “C is to assembly language as Java is to C”

• Unknown

 "With all due respect, saying Java is just a C++ subset is

rather like saying that `Pride and Prejudice' is just a

subset of the Encyclopedia Britanica. While it is true that

one is shorter than the other, and that both have the

same syntax, there are rather overwhelming differences.”

• Sam Weber, on the ACM SIGSCE mailing list

 “Java is C++ done right.”

• Unknown

12CSE 240

More quotes on C/C++

 "The C programming language combines the power of

assembly language with the ease-of-use of assembly

language.”

• Unknown

 "It is my impression that it's possible to write good

programs in C++, but nobody does.”

• John Levine, moderator of comp.compilers

 “C makes it easy to shoot yourself in the foot; C++ makes

it harder, but when you do it, it blows your whole leg off.”

• Bjarne Stroustrup, creator of C++

13CSE 240

Program Execution: Compilation vs Interpretation
 Different ways of executing high-level languages

 Interpretation
• Interpreter: program that executes program statements

!Directly interprets program (portable but slow)

!Limited optimization

• Easy to debug, make changes, view intermediate results

• Languages: BASIC, LISP, Perl, Python, Matlab

 Compilation
• Compiler: translates statements into machine language

!Creates executable program (non-portable, but fast)

!Performs optimization over multiple statements

• Harder to debug, change requires recompilation

• Languages: C, C++, Fortran, Pascal

 Hybrid
• Java, has features of both interpreted and compiled languages

14CSE 240

Compilation vs. Interpretation

 Consider the following algorithm:
• Get W from the keyboard.

• X = W + W

• Y = X + X

• Z = Y + Y

• Print Z to screen.

 If interpreting, how many arithmetic operations occur?

 If compiling, we can analyze the entire program and
possibly reduce the number of operations.

• Can we simplify the above algorithm to use a single
arithmetic operation?

15CSE 240

Compiling a C Program

 Entire mechanism is usually called

the “compiler”

 Preprocessor

• Macro substitution

• Conditional compilation

• “Source-level” transformations

!Output is still C

 Compiler

• Generates object file

!Machine instructions

 Linker

• Combine object files

(including libraries)

into executable image

C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

16CSE 240

Compiler

 Source Code Analysis

• “Front end”

• Parses programs to identify its pieces

!Variables, expressions, statements, functions, etc.

• Depends on language (not on target machine)

 Code Generation

• “Back end”

• Generates machine code from analyzed source

• May optimize machine code to make it run more efficiently

• Very dependent on target machine

 Example Compiler: GCC

• The Free-Software Foundation’s compiler

• Many front ends: C, C++, Fortran, Java

• Many back ends: Intel x86, PowerPC, SPARC, MIPS, Itanium

17CSE 240

A Simple C Program
 #include <stdio.h>
 #define STOP 0

 void main()
 {
 /* variable declarations */
 int counter; /* an integer to hold count values */
 int startPoint; /* starting point for countdown */

 /* prompt user for input */
 printf("Enter a positive number: ");
 scanf("%d", &startPoint); /* read into startPoint */

 /* count down and print count */
 for (counter=startPoint; counter >= STOP; counter--) {
 printf("%d\n", counter);
 }
 }

18CSE 240

Preprocessor Directives

 #include <stdio.h>

• Before compiling, copy contents of header file (stdio.h)

into source code.

• Header files typically contain descriptions of functions and

variables needed by the program.

!no restrictions -- could be any C source code

 #define STOP 0

• Before compiling, replace all instances of the string

"STOP" with the string "0"

• Called a macro

• Used for values that won't change during execution,

but might change if the program is reused. (Must recompile.)

19CSE 240

Comments

 Begins with /* and ends with */

• Can span multiple lines

• Comments are not recognized within a string

!example: "my/*don't print this*/string"

would be printed as: my/*don't print this*/string

 Begins with // and ends with “end of line”

• Single-line comment

• Much like “;” in LC-3 assembly

• Introduced in C++, later back-ported to C

 As before, use comments to help reader, not to confuse

or to restate the obvious

20CSE 240

main Function

 Every C program must have a function called main()

• Starting point for every program

• Similar to Java’s main method

!public static void main(String[] args)

 The code for the function lives within brackets:

 void main()

 {

 /* code goes here */

 }

21CSE 240

Variable Declarations

 Variables are used as names for data items

 Each variable has a type, tells the compiler:

• How the data is to be interpreted

• How much space it needs, etc.

 int counter;

 int startPoint;

 C has similar primitive types as Java

• int, char, long, float, double

• More later

22CSE 240

Input and Output
 Variety of I/O functions in C Standard Library

• Must include <stdio.h> to use them

 printf("%d\n", counter);

• String contains characters to print and formatting directions for
variables

• This call says to print the variable counter as a decimal integer,
followed by a linefeed (\n)

 scanf("%d", &startPoint);

• String contains formatting directions for looking at input

• This call says to read a decimal integer and assign it to the variable
startPoint (Don't worry about the & yet)

23CSE 240

More About Output

 Can print arbitrary expressions, not just variables

 printf("%d\n", startPoint - counter);

 Print multiple expressions with a single statement

 printf("%d %d\n", counter,
 startPoint - counter);

 Different formatting options:

 %d decimal integer

 %x hexadecimal integer

 %c ASCII character

 %f floating-point number

24CSE 240

Examples
 This code:
 printf("%d is a prime number.\n", 43);
 printf("43 plus 59 in decimal is %d.\n", 43+59);
 printf("43 plus 59 in hex is %x.\n", 43+59);
 printf("43 plus 59 as a character is %c.\n", 43+59);

 produces this output:
 43 is a prime number.
 43 plus 59 in decimal is 102.
 43 plus 59 in hex is 66.
 43 plus 59 as a character is f.

25CSE 240

Examples of Input

 Many of the same formatting characters are

available for user input

 scanf("%c", &nextChar);

• reads a single character and stores it in nextChar

 scanf("%f", &radius);

• reads a floating point number and stores it in radius

 scanf("%d %d", &length, &width);

• reads two decimal integers (separated by whitespace),

stores the first one in length and the second in width

 Must use ampersand (&) for variables being modified
(Explained in Chapter 16.)

26CSE 240

Compiling and Linking

 Various compilers available

• cc, gcc

• includes preprocessor, compiler, and linker

 Lots and lots of options!

• level of optimization, debugging

• preprocessor, linker options

• intermediate files --

object (.o), assembler (.s), preprocessor (.i), etc.

27CSE 240

Remaining Chapters

 A more detailed look at many C features

• Variables and declarations

• Operators

• Control Structures

• Functions

• Pointers and Data Structures

• I/O

 Emphasis on how C is converted to assembly language

 Also see “C Reference” in Appendix D Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 12

Variables and

Operators

29CSE 240

Basic C Elements

 Variables

• Named, typed data items

 Operators

• Predefined actions performed on data items

• Combined with variables to form expressions, statements

 Statements and Functions

• Group together operations

30CSE 240

Data Types

 C has several basic data types

 int integer (at least 16 bits, commonly 32 bits)

 long integer (at least 32 bits)

 float floating point (at least 32 bits)

 double floating point (commonly 64 bits)

 char character (at least 8 bits)

 Exact size can vary, depending on processor
• int is supposed to be "natural" integer size;

for LC-3, that's 16 bits -- 32 bits for most modern processors

 Signed vs unsigned:
• Default is 2’s complement signed integers

• Use “unsigned” keyword for unsigned numbers

31CSE 240

Variable Names

 Any combination of letters, numbers, and underscore (_)

 Case sensitive

• "sum" is different than "Sum"

 Cannot begin with a number

• Usually, variables beginning with underscore

are used only in special library routines

 Only first 31 characters are definitely used

• Implementations can consider more characters if they like

32CSE 240

Examples

 Legal

 i
wordsPerSecond
words_per_second
_green
aReally_longName_moreThan31chars
aReally_longName_moreThan31characters

 Illegal

 10sdigit
ten'sdigit
done?
double

reserved keyword

same identifier

33CSE 240

Literals

 Integer

 123 /* decimal */

 -123

 0x123 /* hexadecimal */

 Floating point

 6.023

 6.023e23 /* 6.023 x 1023 */

 5E12 /* 5.0 x 1012 */

 Character

 'c'

 '\n' /* newline */

 '\xA' /* ASCII 10 (0xA) */
34CSE 240

Scope: Global and Local

 Where is the variable accessible?

 Global: accessed anywhere in program

 Local: only accessible in a particular region

 Compiler infers scope from where variable is declared
• Programmer doesn't have to explicitly state

 Variable is local to the block in which it is declared
• Block defined by open and closed braces { }

• Can access variable declared in any "containing" block

 Global variable is declared outside all blocks

35CSE 240

Example
 #include <stdio.h>
 int itsGlobal = 0;

 main()
 {
 int itsLocal = 1; /* local to main */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 {
 int itsLocal = 2; /* local to this block */
 itsGlobal = 4; /* change global variable */
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }
 printf("Global %d Local %d\n", itsGlobal, itsLocal);
 }

Output
Global 0 Local 1
Global 4 Local 2
Global 4 Local 1

36CSE 240

Expression

 Any combination of variables, constants, operators,

and function calls

• Every expression has a type, derived from the types of its

components (according to C typing rules)

 Examples:

 counter >= STOP

 x + sqrt(y)

 x & z + 3 || 9 - w-- % 6

37CSE 240

Statement

 Expresses a complete unit of work

• Executed in sequential order

 Simple statement ends with semicolon

 z = x * y; /* assign product to z */

 y = y + 1; /* after multiplication */

 ; /* null statement */

 Compound statement formed with braces

• Syntactically equivalent to a simple statement

 { z = x * y; y = y + 1; }

38CSE 240

Operators
 Three things to know about each operator

 (1) Function
• What does it do?

 (2) Precedence
• In which order are operators combined?

• Example:
"a * b + c * d" is the same as "(a * b) + (c * d)"
because multiply (*) has a higher precedence than addition (+)

 (3) Associativity
• In which order are operators of the same precedence

combined?

• Example:
"a - b - c" is the same as "(a - b) - c"
because add/sub associate left-to-right

39CSE 240

Assignment Operator

 Changes the value of a variable

 x = x + 4;

1. Evaluate right-hand side.

2. Set value of left-hand side variable to result.

40CSE 240

Assignment Operator

 All expressions evaluate to a value,even ones with the

assignment operator

 For assignment, the result is the value assigned

• Usually (but not always) the value of the right-hand side

!Type conversion might make assigned value

different than computed value

 Assignment associates right to left.

 y = x = 3;

 y gets the value 3, because (x = 3) evaluates to the value 3

 y = (x = 3);

41CSE 240

Arithmetic Operators

 Symbol Operation Usage Precedence Assoc

 * multiply x * y 6 l-to-r

 / divide x / y 6 l-to-r

 % modulo x % y 6 l-to-r

 + addition x + y 7 l-to-r

 - subtraction x - y 7 l-to-r

 All associate left to right

* / % have higher precedence than + -

 Example

• 2 + 3 * 4 versus

• (2 + 3) * 4

42CSE 240

Arithmetic Expressions

 If mixed types, smaller type is "promoted" to larger

 x + 4.3
if x is int, converted to double and result is double

 Integer division -- fraction is dropped

 x / 3
if x is int and x=5, result is 1 (not 1.666666...)

 Modulo -- result is remainder

 x % 3

 if x is int and x=5, result is 2

43CSE 240

Bitwise Operators
 Symbol Operation Usage Precedence Assoc

 ~ bitwise NOT ~x 4 r-to-l

 << left shift x << y 8 l-to-r

 >> right shift x >> y 8 l-to-r

 & bitwise AND x & y 11 l-to-r

 ^ bitwise XOR x ^ y 12 l-to-r

 | bitwise OR x | y 13 l-to-r

 Operate on variables bit-by-bit

• Like LC-3 AND and NOT instructions

 Shift operations are logical (not arithmetic)

• Operate on values -- neither operand is changed

• x = y << 1 same as x = y+y

44CSE 240

Logical Operators

 Symbol Operation Usage Precedence Assoc

 ! logical NOT !x 4 r-to-l

 && logical AND x && y 14 l-to-r

 || logical OR x || y 15 l-to-r

 Treats entire variable (or value) as
• TRUE (non-zero), or

• FALSE (zero).

 Result is 1 (TRUE) or 0 (FALSE)
• x = 15; y = 0; printf(“%d”, x || y);

 Bit-wise vs Logical
• 1 & 8 = 0 (000001 AND 001000 = 000000)

• 1 && 8 = 1 (True & True = True)

45CSE 240

Relational Operators

 Symbol Operation Usage Precedence Assoc

 > greater than x > y 9 l-to-r

 >= greater than or equal x >= y 9 l-to-r

 < less than x < y 9 l-to-r

 <= less than or equal x <= y 9 l-to-r

 == equal x == y 10 l-to-r

 != not equal x != y 10 l-to-r

Result is 1 (TRUE) or 0 (FALSE)

46CSE 240

Assignment vs Equality

 Don't confuse equality (==) with assignment (=)

 int x = 9;

 int y = 10;

 if (x == y) {

 printf(“not executed\n”);

 }

 if (x = y) {

 printf(“%d %d”, x, y);

 }

 Compiler will not stop you! (What happens in Java?)

 Result: “10 10” is printed. Why?

47CSE 240

Special Operators: ++ and --

 Changes value of variable before (or after) its value is

used in an expression

 Symbol Operation Usage Precedence Assoc

 ++ postincrement x++ 2 r-to-l

 -- postdecrement x-- 2 r-to-l

 ++ preincrement ++x 3 r-to-l

 -- predecrement --x 3 r-to-l

 Pre: Increment/decrement variable before using its value

 Post: Increment/decrement variable after using its value

48CSE 240

Using ++ and --

 x = 4;

 y = x++;

 Results: x = 5, y = 4

(because x is incremented after assignment)

 x = 4;

 y = ++x;

 Results: x = 5, y = 5

(because x is incremented before assignment)

 Please, don’t combine ++ and =. Really. Just don’t!

49CSE 240

Special Operators: +=, *=, etc.

 Arithmetic and bitwise operators can be combined
with assignment operator

 Statement Equivalent assignment

 x += y; x = x + y;

 x -= y; x = x - y;

 x *= y; x = x * y;

 x /= y; x = x / y;

 x %= y; x = x % y;

 x &= y; x = x & y;

 x |= y; x = x | y;

 x ^= y; x = x ^ y;

 x <<= y; x = x << y;

 x >>= y; x = x >> y;

All have same
precedence and
associativity as =

and associate
right-to-left.

50CSE 240

Special Operator: Conditional

 Symbol Operation Usage Precedence Assoc

 ?: conditional x?y:z 16 l-to-r

 x ? y : z

• If x is non-zero, result is y

• If x is zero, result is z

 Seems useful, but I don’t use it

• A normal “if” is almost always more clear

• You don’t need to use every language feature

• Really, don’t use it (you don’t have to show how clever you are)

51CSE 240

Practice with Precedence

 Assume a=1, b=2, c=3, d=4

 x = a * b + c * d / 2; /* x = 8 */

 same as:

 x = (a * b) + ((c * d) / 2);

 For long or confusing expressions, use parentheses,

because reader might not have memorized precedence

table

 Note: Assignment operator has lowest precedence,

so all the arithmetic operations on the right-hand side

are evaluated first

52CSE 240

Practice with Operators
 In preparation for our dis-assembler (HW#8):

 int opcode(int ir)

 {

 /* code to extract bits 15 through 12 of ir */

 }

 int get_field(int bits, int hi_bit, int lo_bit)

 {

 /* code to extract hi_bit through lo_bit of bits */

 }

 For example, body of opcode function is now just

• get_field(ir, 15, 12);

 What about a “signed-extended” version?

 hi lo

 0010

 0010

53CSE 240

Practice with Operators (Solution 1)
 int opcode(int ir)

 {

 ir = ir >> 12;

 ir = ir & 0xf;

 return ir;

 }

 OR

 int opcode(int ir)

 {

 ir = ir & 0xf000;

 ir = ir >> 12;

 return ir;

 }

54CSE 240

Practice with Operators (Solution 2)
 int get_field(int bits, int hi_bit, int lo_bit)

 {

 int inv_mask = ~0 << (hi_bit+1)

 int mask = ~inv_mask;

 bits = bits & mask; // Mask off high-order bits

 bits = bits >> lo_bit; // Shift away low-order bits

 return bits;

 }

 OR

 int get_field(int bits, int hi_bit, int lo_bit)

 {

 bits = ~(~0 << (hi_bit+1)) & bits; // Mask high bits

 bits = bits >> lo_bit; // Shift away low-order bits

 return bits;

 }

55CSE 240

Sign Extended Version
 int get_sext_field(int bits, int hi_bit, int lo_bit)

 {

 int most_significant_bit = bits & (1 << hi_bit);

 if (most_significant_bit != 0) {

 bits = (~0 << hi_bit) | bits; // One extend

 } else {

 bits = ~(~0 << (hi_bit+1)) & bits; // Zero extend

 }

 bits = bits >> lo_bit; // Shift away low-order bits

 return bits;

 }
Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 13

Control Structures

57CSE 240

Control Structures

 Conditional

• Making decision about which code to execute, based on

evaluated expression

• if

• if-else

• switch

 Iteration

• Executing code multiple times, ending based on evaluated

expression

• while

• for

• do-while

58CSE 240

If

 if (condition)
 action; condition

action

T

F

Condition is a C expression,

which evaluates to TRUE (non-zero) or FALSE (zero).

Action is a C statement,

which may be simple or compound (a block).

59CSE 240

Example If Statements

 if (x <= 10)
 y = x * x + 5;

 if (x <= 10) {
 y = x * x + 5;
 z = (2 * y) / 3;
}

if (x <= 10)

 y = x * x + 5;

 z = (2 * y) / 3;

compound statement;

both executed if x <= 10

only first statement is conditional;

second statement is

always executed

Style: avoid singleton

if statements

(I really dislike them)

60CSE 240

More If Examples

 if (0 <= age && age <= 11) {
 kids = kids + 1;

 }

 if (month == 4 || month == 6 ||

 month == 9 || month == 11) {
 printf(“The month has 30 days.\n”);

 }

 if (x = 2) {
 y = 5;

 }

 This is a common programming error (= instead of ==),

not caught by compiler because it’s syntactically correct.

Common C error, assignment (=)

Versus equality (==)

61CSE 240

Generating Code for If Statement

 if (x == 2) {

 y = 5;

 }

 LDR R0, R6, #0 ; load x into R0

 ADD R0, R0, #-2 ; subtract 2

 BRnp NOT_TRUE ; if non-zero, x is not 2

 AND R1, R1, #0 ; store 5 to y

 ADD R1, R1, #5

 STR R1, R6, #1

NOT_TRUE ... ; next statement

62CSE 240

If-else

 if (condition)
 action_if;
else
 action_else;

condition

action_if action_else

T F

Else allows choice between

two mutually exclusive actions without re-testing condition.

63CSE 240

Generating Code for If-Else

 if (x) {
 y++;
 z--;

 } else {
 y--;
 z++;

 }

 LDR R0, R6, #0
 BRz ELSE
 ; x is not zero

 LDR R1, R6, #1 ; incr y

 ADD R1, R1, #1
 STR R1, R6, #1
 LDR R1, R6, #2 ; decr z

 ADD R1, R1, #-1
 STR R1, R6, #2
 BR DONE ; skip else code

 ; x is zero

ELSE LDR R1, R6, #1 ; decr y

 ADD R1, R1, #-1
 STR R1, R6, #1
 LDR R1, R6, #2 ; incr z

 ADD R1, R1, #1
 STR R1, R6, #2
DONE ... ; next statement 64CSE 240

Matching Else with If

 Else is always associated with closest unassociated if

if (x != 10)
 if (y > 3)
 z = z / 2;
 else

 z = z * 2;

if (x != 10) {
 if (y > 3)
 z = z / 2;
 else
 z = z * 2;

}

is the same as...

if (x != 10) {
 if (y > 3)
 z = z / 2;

}
else
 z = z * 2;

is NOT the same as...

 Solution: always use braces

 (avoids the problem entirely)

65CSE 240

Chaining If’s and Else’s

 if (month == 4 || month == 6 || month == 9 ||
 month == 11) {
 printf(“Month has 30 days.\n”);
} else if (month == 1 || month == 3 ||
 month == 5 || month == 7 ||
 month == 8 || month == 10 ||
 month == 12) {

 printf(“Month has 31 days.\n”);

 } else if (month == 2) {

 printf(“Month has 28 or 29 days.\n”);

 } else {

 printf(“Don’t know that month.\n”);

 }

66CSE 240

While

 while (test)
 loop_body; test

loop_body

T

F

Executes loop body as long as

test evaluates to TRUE (non-zero)

Note: Test is evaluated before executing loop body

67CSE 240

Generating Code for While

x = 0;
while (x < 10) {
 printf(“%d ”, x);
 x = x + 1;
}

 AND R0, R0, #0
 STR R0, R6, #0 ; x = 0

 ; test

LOOP LDR R0, R6, #0 ; load x

 ADD R0, R0, #-10
 BRzp DONE
 ; loop body

 LDR R0, R6, #0 ; load x

 ...
 <printf>
 ...
 ADD R0, R0, #1 ; incr x

 STR R0, R6, #0
 BR LOOP ; test again

DONE ; next statement

68CSE 240

Infinite Loops

 The following loop will never terminate:

 x = 0;
while (x < 10) {
 printf(“%d ”, x);

 }

 Loop body does not change condition...

• ...so test is never false

 Common programming error that can be difficult to find

69CSE 240

For

 for (init; end-test; re-init)
 statement

init

test

loop_body

re-init

F

T

Executes loop body as long as

test evaluates to TRUE (non-zero).

Initialization and re-initialization

code included in loop statement.

Note: Test is evaluated before executing loop body
70CSE 240

Generating Code for For

for (i = 0; i < 10; i++) {
 printf(“%d ”, i);

}

 ; init

 AND R0, R0, #0
 STR R0, R6, #0 ; i = 0

 ; test

LOOP LDR R0, R6, #0 ; load i

 ADD R0, R0, #-10
 BRzp DONE
 ; loop body

 LDR R0, R6, #0 ; load i

 ...
 <printf>
 ...
 ; re-init
 ADD R0, R0, #1 ; incr i

 STR R0, R6, #0
 BR LOOP ; test again

DONE ; next statement

This is the same

as the while example!

71CSE 240

Example For Loops
 /* -- what is the output of this loop? -- */

 for (i = 0; i <= 10; i++) {
 printf("%d ", i);

 }

 /* -- what does this one output? -- */

 letter = 'a';

 for (c = 0; c < 26; c++) {
 printf("%c ", letter+c);

 }

 /* -- what does this loop do? -- */

 numberOfOnes = 0;
 for (bitNum = 0; bitNum < 16; bitNum++) {
 if (inputValue & (1 << bitNum)) {
 numberOfOnes++;
 }

 }

72CSE 240

Nested Loops

 Loop body can (of course) be another loop

 /* print a multiplication table */

 for (mp1 = 0; mp1 < 10; mp1++) {
 for (mp2 = 0; mp2 < 10; mp2++) {
 printf(“%d\t”, mp1*mp2);
 }
 printf(“\n”);

 }

73CSE 240

Another Nested Loop

 Here, test for the inner loop depends on counter variable

of outer loop

 for (outer = 1; outer <= input; outer++) {
 for (inner = 0; inner < outer; inner++) {
 sum += inner;
 }
}

74CSE 240

For vs. While

 In general:

 For loop is preferred for counter-based loops

• Explicit counter variable

• Easy to see how counter is modified each loop

 While loop is preferred for sentinel-based loops

• Test checks for sentinel value.

 Either kind of loop can be expressed as other,

so really a matter of style and readability

75CSE 240

Do-While

 do
 loop_body;

 while (test);

loop_body

test
T

F

Executes loop body as long as

test evaluates to TRUE (non-zero).

Note: Test is evaluated after executing loop body

76CSE 240

Break and Continue

 break;

• used only in switch statement or iteration statement

• passes control out of the “nearest” (loop or switch) statement

containing it to the statement immediately following

• usually used to exit a loop before terminating condition occurs

(or to exit switch statement when case is done)

 continue;

• used only in iteration statement

• terminates the execution of the loop body for this iteration

• loop expression is evaluated to see whether another

iteration should be performed

• if for loop, also executes the re-initializer

77CSE 240

Example

 What does the following loop do?

for (i = 0; i <= 20; i++) {

 if (i%2 == 0) {

 continue;

 }

 printf("%d ", i);

}

 What would be an easier way to write this?

 What happens if break instead of continue?

78CSE 240

Switch
switch (expression) {
 case const1:
 action1;
 break;
 case const2:
 action2;
 break;
 default:
 action3;
 }

evaluate

expression

= const1?

= const2?

action1

action2

action3

T

T

F

F

Alternative to long if-else chain.

If break is not used, then

case "falls through" to the next.

79CSE 240

Switch Example
 /* same as month example for if-else */

 switch (month) {
 case 4:
 case 6:
 case 9:
 case 11:
 printf(“Month has 30 days.\n”);
 break;
 case 1:
 case 3:
 /* some cases omitted for brevity...*/
 printf(“Month has 31 days.\n”);
 break;

 case 2:
 printf(“Month has 28 or 29 days.\n”);
 break;
 default:
 printf(“Don’t know that month.\n”);

 }

80CSE 240

More About Switch

 Case expressions must be constant

 case i: /* illegal if i is a variable */

 If no break, then next case is also executed

 switch (a) {
 case 1:
 printf(“A”);
 case 2:
 printf(“B”);
 default:
 printf(“C”);
 }

If a is 1, prints “ABC”.

If a is 2, prints “BC”.

Otherwise, prints “C”.

81CSE 240

Enumerations
 Keyword enum declares a new type

• enum colors { RED, GREEN, BLUE, GREEN, YELLOW, MAUVE };

• RED is now 0, GREEN is 1, etc.

• Gives meaning to constants, groups constants

 enum colors house_color;
 house_color = get_color();
 switch (house_color) {
 case RED:
 /* code here */
 break;
 /* more here… */
 }

Enums are just ints, but can provide more type checking
• Warning on assignment (example: house_color = 85;)

• Warning on “partial” switch statement

• C++ adds even more checking support
82CSE 240

Example: Searching for Substring

 Have user type in a line of text (ending with linefeed)

and print the number of occurrences of "the"

 Reading characters one at a time

• Use the getchar() function -- returns a single character

 Don't need to store input string; look for substring as

characters are being typed

• Similar to state machine:

based on characters seen, move toward success state

or move back to start state

• Switch statement is a good match to state machine

83CSE 240

Substring: State machine to flow chart

matched

't'

matched

'th'

't'

'h'

'e'

't'

't'

no

match

other

other

other

increment

count

read char

match = 0

match = 1

match = 2

if 't', match=1

if 'h', match=2

if 't', match=1

else match=0

if 'e', count++

and match = 0

if 't', match=1

else match=0

T

T

T

F

F

F

84CSE 240

Substring: Code (Part 1)
 #include <stdio.h>

 enum state { NO_MATCH, ONE_MATCH, TWO_MATCHES };

 main()

 {
 char key; /* input character from user */
 int match = NO_MATCH ; /* state of matching */
 int count = 0; /* number of substring matches */
 /* Read character until newline is typed */

 key = getchar();
 while (key != '\n') {
 /* Action depends on number of matches so far */
 switch (match) {

 }

 key = getchar();

 }
 printf("Number of matches = %d\n", count);
}

 See next two slides for
contents of switch statement

85CSE 240

Substring: Code (Part 2)
 case NO_MATCH: /* starting - no matches yet */
 if (key == 't') {

 match = ONE_MATCH;

 } else {

 match = NO_MATCH;

 }
 break;

 case ONE_MATCH: /* 't' has been matched */
 if (key == 'h') {
 match = TWO_MATCHES;
 } else if (key == 't') {
 match = ONE_MATCH;
 } else {
 match = NO_MATCH;
 }

 break;

86CSE 240

Substring: Code (Part 3)

 case TWO_MATCHES: /* 'th' has been matched */
 if (key == 'e') {
 count++; /* increment count */
 match = NO_MATCH; /* go to starting point */

 } else if (key == 't') {

 match = ONE_MATCH;
 } else {

 match = NO_MATCH;

 }
 break;

87CSE 240

…C and the Right Shift Operator (>>)

 Does right shift sign extend or not?
• Answer: Yes and No

 Unsigned values: zero extend
• unsigned int x = ~0;

• Then, (x >> 10) will have 10 leading zeros

 Signed values:
• “Right shifting a signed quantity will fill with

sign bits (“arithmetic shift”) on some machines and
with 0-bits (“logical shift”) on others.” - Kernighan and Ritchie

• In practice, it does sign extend

!int x = ~0; /* signed */

!Then, (x >> 10) will still be all 1s

Based on slides © McGraw-Hill

Additional material © 2004/2005/2006 Lewis/Martin

Chapter 14

Functions

89CSE 240

Function

 Smaller, simpler, subcomponent of program

 Provides abstraction

• Hide low-level details

• Give high-level structure to program,

easier to understand overall program flow

• Enables separable, independent development

 C functions

• Zero or multiple arguments (or parameters) passed in

• Single result returned (optional)

• Return value is always a particular type

 In other languages, called procedures, subroutines, ...

90CSE 240

Example of High-Level Structure

 void main()
{
 setup_board(); /* place pieces on board */

 determine_sides(); /* choose black/white */

 /* Play game */
 while (no_outcome_yet()){
 whites_turn();
 blacks_turn();
 }

 }

Structure of program
is evident, even without
knowing implementation.

91CSE 240

Functions in C

 Definition

 int factorial(int n)
 {
 int i;
 int result = 1;
 for (i = 1; i <= n; i++) {
 result = result * i;
 }
 return result;
 }

 Function call -- used in expression
 a = x + factorial(f + g);

type of

return value

name of

function

types of all

arguments

1. evaluate arguments

2. execute function

3. use return value in expression

exits function with

specified return value

92CSE 240

Implementing Functions and Variables in LC-3

 We’ve talked about…

• Variables

!Local

!Global

• Functions

!Parameter passing

!Return values

 What does the assembly code look like for these idioms?

 Important notes

• Different compilers for different ISAs do things differently

• As long as a compiler is consistent

• We’re straying from the book’s version to simplify things

!Leaving out the R5 “frame pointer”

93CSE 240

Allocating Space for Variables

 Global data section

• All global variables stored here

(actually all static variables)

• R4 points to beginning

 Run-time stack

• Used for local variables

• R6 points to top of stack

• New frame for each block

(goes away when block exited)

 Offset = distance from beginning

of storage area

• Global: LDR R1, R4, #4

• Local: LDR R2, R6, #3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6

94CSE 240

Local Variable Storage

 Local variables stored in activation record (stack frame)

 Symbol table “offset” gives the

distance from the base of the frame

• A new frame is pushed on the

run-time stack each time block is entered

• R6 is the stack pointer – holds address

of current top of run-time stack

• Because stack grows downward,

stack pointer is the smallest address

of the frame, and variable offsets are >= 0.

amount

hours

minute

seconds

R6

95CSE 240

Symbol Table

 Compiler tracks each symbol (identifiers) and its location

• In assembler, all identifiers were labels

• In compiler, identifiers are variables

 Compiler keeps more information

 Name (identifier)

 Type

 Location in memory

 Scope

Name Type Offset Scope

amount

hours

minutes

seconds

double

int

int

int

0

1

2

3

main

main

main

main

96CSE 240

Symbol Table Example

 int main()

 {

 int seconds;

 int minutes;

 int hours;

 double amount;

 …

 }

Name Type Offset Scope

amount

hours

minutes

seconds

double

int

int

int

0

1

2

3

main

main

main

main

amount

hours

minute

seconds

R6

R6

97CSE 240

Example: Compiling to LC-3
 #include <stdio.h>
 int inGlobal;

 main()
 {
 int inLocal;
 int outLocalA;
 int outLocalB;

 /* initialize */
 inLocal = 5;
 inGlobal = 3;

 /* perform calculations */
 outLocalA = inLocal & ~inGlobal;
 outLocalB = (inLocal + inGlobal) + outLocalB;

 /* print results */
 printf("The results are: outLocalA = %d, outLocalB = %d\n",
 outLocalA, outLocalB);
 }

main0intoutLocalB

main1intoutLocalA

main2intinLocal

global0intinGlobal

ScopeOffsetTypeName

98CSE 240

Example: Code Generation

 ; main

 ; inLocal = 5

 AND R0, R0, #0

 ADD R0, R0, #5 ; inLocal = 5

 STR R0, R6, #2 ; (offset = 2)

 ; inGlobal = 3

 AND R0, R0, #0

 ADD R0, R0, #3 ; inGlobal = 3

 STR R0, R4, #0 ; (offset = 0)

99CSE 240

Example (continued)
 ; first statement:

 ; outLocalA = inLocal & ~inGlobal;

 LDR R0, R6, #2 ; get inLocal(offset = 2)

 LDR R1, R4, #0 ; get inGlobal

 NOT R1, R1 ; ~inGlobal

 AND R2, R0, R1 ; inLocal & ~inGlobal

 STR R2, R6, #1 ; store in outLocalA

 ; (offset = 1)

100CSE 240

Example (continued)

 ;outLocalB = (inLocal + inGlobal) + outLocalA;

 LDR R0, R6, #2 ; inLocal
 LDR R1, R4, #0 ; inGlobal
 ADD R0, R0, R1 ; R0 is sum

 LDR R1, R6, #1 ; outLocalA
 ADD R2, R0, R1 ; R2 is sum
 STR R2, R6, #0 ; outLocalB (offset = 0)

 R0

101CSE 240

Implementing Functions

 Activation record

• Information about each function,

including arguments and local variables

• Also stored on run-time stack

Calling function

copy args into

 stack or regs

call function

get result

Called function

allocate activation record

save registers

execute code

put result in AR or reg

pop activation record

return

102CSE 240

Run-Time Stack for Functions

main

Memory

R6

func

Memory

R6

main

Memory

main

Before call During call After call

R6

103CSE 240

Activation Record
 int func(int a, int b)
{
 int w, x, y;
 .
 .
 .
 return y;
}

Name Type Offset Scope

b
a
“ret. value”
w
x
y

int
int
int
int
int
int

7
6
5
2
1
0

func
func
func
func
func
func

y

x

w

save R0

return addr. (R7)

return value

a

b

bookkeeping

locals

args

R6

104CSE 240

Activation Record Bookkeeping

 Return value

• Space for value returned by function

• Allocated even if function does not return a value

 Return address

• Save pointer to next instruction in calling function

• Convenient location to store R7

! in case another function (JSR) is called

 Save registers

• Save all other registers used (but not R6, and often not R4)

105CSE 240

Function Call Example
 int main()
 {
 int x, y, val;
 x = 10;
 y = 11;
 val = max(x + 10, y);
 return val;
 }

 int max(int a, int b)
 {
 int result;
 result = a;
 if (b > a) {
 result = b;
 }
 return result;
 }

“val”

“y”

“x”
main return value

“result”

save R0

save R1

save R7
max return value

0

1

2

3

4

5

6

R6

 max’s

view

R6
0

1

2

3

-3

-2

-1

 main’s

view

“a”

“b”

106CSE 240

Main Function (1 of 2)

 MAIN ADD R6, R6, #-4 ; allocate frame
 AND R0, R0, #0 ; x = 10
 ADD R0, R0, #10
 STR R0, R6, #2

 AND R0, R0, #0 ; y = 11
 ADD R0, R0, #11
 STR R0, R6, #1

 LDR R0, R6, #1 ; load y into R0
 STR R0, R6, #-1 ; 2nd argument

 LDR R1, R6, #2 ; load x into R1
 ADD R1, R1, #10 ; R1 = x + 10
 STR R1, R6, #-2 ; 1st argument

 JSR MAX ; call max function

 … ; more here

107CSE 240

Max Function

 MAX ADD R6, R6, #-7 ; allocate frame
 STR R7, R6, #3 ; save R7 (link register)
 STR R1, R6, #2 ; save R1
 STR R0, R6, #1 ; save R0

 LDR R0, R6, #5 ; load "a"
 STR R0, R6, #0 ; store "a" into "result"

 LDR R1, R6, #6 ; load "b"
 NOT R1, R1 ; calculate -b
 ADD R1, R1, 1
 LDR R0, R6, #5 ; load "a"
 ADD R0, R1, R0 ; compare

 BRp AFTER
 LDR R0, R6, #6 ; load "b"
 STR R0, R6, #0 ; store "b" into "result"

 AFTER LDR R0, R6, #0 ; load "result"
 STR R0, R6, #4 ; store "result" into return value

 LDR R0, R6, #1 ; restore R0
 LDR R1, R6, #2 ; restore R1
 LDR R7, R6, #3 ; restore R7 (link register)
 ADD R6, R6, #7 ; pop stack
 RET

108CSE 240

Main Function (2 of 2)

 ; previous code here

 JSR MAX ; call max function

 LDR R0, R6, #-3 ; read return value of max
 STR R0, R6, #0 ; put value into local "val"

 LDR R0, R6, #0 ; load "val"
 STR R0, R6, #3 ; put "val" into main’s
 ; return value

 ADD R6, R6, #4 ; pop stack
 RET

109CSE 240

Summary of LC-3 Function Call Implementation

1. Caller places arguments on stack (last to first)

2. Caller invokes subroutine (JSR)

3. Callee allocates frame

4. Callee saves R7 and other registers

5. Callee executes function code

6. Callee stores result into return value slot

7. Callee restores registers

8. Callee deallocates frame (local vars, other registers)

9. Callee returns (RET or JMP R7)

10. Caller loads return value

11. Caller resumes computation…

110CSE 240

Callee versus Caller Saved Registers

 Callee saved registers
• In our examples, the callee saved and restored registers

• Saves/restores any registers it modifies

 What if a you wants R7 to be preserved across a call?
• Before call: caller saves it on the stack

• After call: caller restores it from the stack

 Caller saved registers
• R7 is an example of a caller saved register

• Value assumed destroyed across calls

• Only needs to save R7 when it’s in use

 Which is better? Callee or Caller saved registers?
• Neither: many ISA calling conventions specify some of each

111CSE 240

Compilers are Smart(er)

 In our examples, variables always stored in memory
• Read from stack, written to stack

 Compiler will perform code optimizations
• Keeps many variables in registers

• Avoids many save/restores of registers

• Why?

 Passing parameter values in registers
• First few parameters in registers

• Return value in register

• Like in your homework projects

• Again, why?

