
C File Input and Output (I/O)

CSE303
Todd Schiller

November 9, 2009

11/09/09 2

Lecture goal

Build a practical toolkit for working with files

11/09/09 3

Files in C

● #include <stdio.h>
● FILE object contains file stream information
● Special files defined in stdio:

● stdin: Standard input
● stdout: Standard ouput
● stderr: Standard error

● EOF: end-of-file, a special negative integer
constant

11/09/09 4

Opening and closing a file

11/09/09 5

Opening a file

FILE* fopen(char* filename, char* mode)

mode strings

"r" Open a file for reading. The file must exist.

"w" Create an empty file for writing. If a file with the same
name already exists its content is erased and the file is
treated as a new empty file.

"a" Append to a file. Writing operations append data at
the end of the file. The file is created if it does not
exist.

OUPUT
● If successful, returns a pointer to a FILE object
● If fails, returns NULL

11/09/09 6

Opening a file

FILE *fp = fopen(“myfile.txt”, “r”);

if (fp == NULL){
//report error and try to recover

}else{
//do something with the file

}

11/09/09 7

Closing a file

int fclose (FILE * stream)

OUTPUT
● On success, returns 0
● On failure, returns EOF

11/09/09 8

Reading from a file

11/09/09 9

Reading a character from a file

int fgetc (FILE * stream)

OUTPUT
● On success, returns the next character
● On failure, returns EOF and sets end-of-file indicator

Note: EOF < 0; so you can test for failure by checking if
the output of fgetc is negative

11/09/09 10

Reading a character from a file

UW\n
CSE\n

FILE *fp = ...
...

while ((c = fgetc(fp)) != EOF){
 printf("char:'%c'\n",c);
}

char:'U'
char:'W'
char:'
'
char:'C'
char:'S'
char:'E'
char:'
'

11/09/09 11

Un-reading a character
int ungetc (int character, FILE * stream);

EFFECT
● Virtually puts a character back into the file
● Doesn't modify the file
● May be a different character than the last one read

OUTPUT
● On success, returns the character that was pushed
● On failure, returns EOF and sets end-of-file indicator

11/09/09 12

Un-reading a character

...

FILE *fp = ...
int c;
...

while ((c = fgetc(fp)) != EOF){
if (c == 'a'){

ungetc('4',fp);
}else{

printf(“read char %c\n”,c);
}

}
...

11/09/09 13

Reading a string from a file
char * fgets (char * str, int num, FILE * stream)

BEHAVIOR
● Reads at most (num-1) characters from the stream into str
● Null-terminates the string read (adds a '\0' to the end)
● Stops after a newline character is read
● Stops if the end of the file is encountered

● Caveat: if no characters are read, str is not modified

OUTPUT
● On success, a pointer to str
● On failure, returns NULL

11/09/09 14

Reading a string from a file

#define BUFFER_SIZE 80
...

FILE *fp = ...

...

char buf[BUFFER_SIZE];
fgets(buf, BUFFER_SIZE, fp);

11/09/09 15

Are we at the end of a file?

int feof (FILE * stream)

OUTPUT
● If at the end of the file, returns a non-zero value
● If not at the end of the file, returns 0

Note: checks the end-of-file indicator which is set by
fgets, fgetc, etc.

11/09/09 16

Are we at the end of a file?

FILE *fp = ...

...

while (!feof(fp)){
//read something

}

11/09/09 17

Are we at the end of a file
UW\n
CSE\n
\n

 while (!feof(fp)){
 fgets(buf,BUFFER_SIZE,fp);
 printf("Read line: %s\n",buf);
 }

Read line: UW

Read line: CSE

Read line: CSE

11/09/09 18

Reading formatted data from a file
int fscanf (FILE * stream, const char * format, ...)

OUTPUT
● On success, returns the number of items read; can

be 0 if the pattern doesn't match
● On failure, returns EOF

INPUT
● Format string is analogous to printf format string

● %d for integer
● %c for char
● %s for string

● Must have an argument for each format specifier

11/09/09 19

Reading formatted data from a file

1 string1
42 string2
54 string3
...

FILE *fp = ...

char buf[BUFFER_SIZE];
int num;

while (!feof(fp)){
fscanf(fp, “%d %s”, &d, buf)
//do something

}

11/09/09 20

What's wrong with this?

...

FILE *fp = ...
char state[3];

while(fscanf(fp,“%s”, state) != EOF);
printf(“I read: %s\n”,state);

}

...

WA
MO
...

11/09/09 21

What's wrong with this?

WA
MO
Florida
...

...

FILE *fp = ...
char state[3];

while(fscanf(fp,“%s”, state) != EOF);
printf(“I read: %s\n”,state);

}

...

11/09/09 22

Buffer overruns

● Data is written to locations past the end of the
buffer

● Hackers can exploit to execute arbitrary code
● User can always create an input longer than

fixed size of buffer

Don't use: scanf, fscanf, gets
● Use functions that limit the number of data read

Use: fgets

11/09/09 23

Writing to a file

11/09/09 24

Writing a character to a file
int fputc (int character, FILE * stream)

OUTPUT / EFFECT
● On success, writes the character to the file and

returns the character written
● On failure, returns EOF and sets the error indicator

Note: EOF < 0; so you can test for failure by checking if
the output of fputc is negative

11/09/09 25

Writing a character to a file
...

FILE *fp = fopen(“myfile.txt”,”w”);
char str[] = “Huskies > Trojans”;
int i;

if (fp != NULL){
for (i = 0; i < strlen(str); i++){

if (fputc(str[i], fp) < 0){
// Something bad happened

}
}
fclose(fp);

}

...

11/09/09 26

Writing a string to a file
int fputs (const char * str, FILE * stream)

OUTPUT / EFFECT
● On success, a writes the character to the file and

returns the character written
● On failure, returns EOF and sets the error indicator

Note: EOF < 0; so you can test for failure by checking if
the output of fputs is negative

OUTPUT / EFFECT
● On success, writes the string to the file and

returns a non-negative value
● On failure, returns EOF and sets the error indicator

11/09/09 27

Writing a string to a file
...

FILE *fp = fopen(“myfile.txt”,”w”);
char str[] = “Huskies > Trojans”;

if (fp != NULL){
if (fputs(str, fp) < 0){

// Something bad happened
}
fclose(fp);

}

...

11/09/09 28

Writing a formatted string to a file
int fprintf (FILE * stream, const char * format, ...)

INPUT
● The format string is same as for printf
● Must have an argument for each specifier in the format

OUTPUT / EFFECT
● On success, returns the number of character written
● On failure, returns a negative number

11/09/09 29

Writing a formatted string to a file
...
FILE *fp = fopen(“myfile.txt”,”w”);
int h = 16;
int t = 13;
char str[] = “Huskies > Trojans”;

if (fp != NULL){
fprintf(stdout,“%s | Score: %d to %d\n”,str,h,t);
fclose(fp);

}
...

Huskies > Trojans | Score: 16 to 13

11/09/09 30

Error Handling

11/09/09 31

Was there an error?
int ferror (FILE * stream)

OUTPUT
● If the error indicator is set, returns a non-zero integer
● Otherwise returns 0

11/09/09 32

Was there an error?
...

FILE *fp = ...
...

fputs(“I love CSE303”,fp);

if (ferror(fp)){
//Report error and recover

}

...

11/09/09 33

Printing an error description
void perror (const char * str)

EFFECT
● Prints a description of the file error prefixed by the

supplied string str and a “:”
● Can pass NULL to just print the error description

11/09/09 34

Printing an error description
...

FILE *fp = ...
...

fputs(“I love CSE303”,fp);

if (ferror(fp)){
perror(“Could not tell the world how I feel”);
//recover from the error

}

...

11/09/09 35

Clearing error indicator
void clearerr (FILE * stream);

EFFECT
● Clears error indicator
● Clears end-of-file indicator

11/09/09 36

Moving around a file

11/09/09 37

Going to the beginning of a file
void rewind (FILE * stream);

EFFECT
● Moves file pointer to beginning of file
● Resets end-of-file indicator
● Reset error indicator
● Forgets any virtual characters from ungetc

11/09/09 38

Moving to a location
int fseek (FILE * stream, long int offset, int origin)

INPUT
● Offset is in bytes
● Origin can be

● SEEK_SET: beginning of the file
● SEEK_CUR: current file position
● SEEK_END: end of the file

OUTPUT / EFFECT
● On success

● returns 0
● resets end-of-file indicator
● forgets any virtual characters from ungetc

● On failure, returns 0

11/09/09 39

Moving to a location
...

FILE * fp = fopen("myfile.txt" , "w");
fputs ("This is an apple." , fp);
fseek (fp , 9 , SEEK_SET);
fputs (" sam" , fp);
fclose (fp);

...

This is a sample

11/09/09 40

Working with the filesystem

11/09/09 41

Removing a file
int remove (const char * filename)

OUTPUT
● On success, returns 0
● On failure, returns a non-zero value

11/09/09 42

Renaming a file
int rename (const char * oldname, const char * newname);

OUTPUT
● On success, returns 0
● On failure, returns a non-zero value

11/09/09 43

Binary files

11/09/09 44

Opening binary files

● Add “b” to the fopen mode string
● “rb” : read a binary file
● “wb” : write a binary file
● “ab” : append to a binary file

11/09/09 45

Writing to binary files
size_t fwrite (const void * ptr, size_t size, size_t count, FILE * stream)

INPUT
● A ptr to an array of elements (or just one)
● The size of each element
● The number of elements

OUTPUT
● Returns the number of elements written
● If return value is different than count, there was an error

11/09/09 46

Writing to binary files
...

FILE *fp = fopen(“myfile.bin”,”wb”);
...

int nums[] = {1,2,3};
fwrite(nums, sizeof(int), 3, fp);

double dub = 3.1;
fwrite(&dub, sizeof(double), 1, fp);

...

11/09/09 47

Reading binary files
size_t fread (void * ptr, size_t size, size_t count, FILE * stream)

INPUT
● A ptr to some memory of size at least (size * count)
● The size of each element to read
● The number of elements to read

OUTPUT
● Returns the number of elements read
● If return value is different than count, there was an error

or the end of the file was reached

11/09/09 48

Reading binary files
...

FILE *fp = fopen(“myfile.bin”,”rb”);
...
int nr;

int nums[3];
nr = fread(nums, sizeof(int), 3, fp);
//Check for errors

double dub;
nr = fread(&dub, sizeof(double), 1, fp);
//Check for errors

...

11/09/09 49

Overview

11/09/09 50

Where can I learn more?

http://www.cplusplus.com/reference/clibrary/cstdio/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

