
C File Input and Output (I/O)

CSE303
Todd Schiller

November 9, 2009



11/09/09  2

Lecture goal

Build a practical toolkit for working with files



11/09/09  3

Files in C

● #include <stdio.h>
● FILE object contains file stream information
● Special files defined in stdio:

● stdin: Standard input
● stdout: Standard ouput
● stderr: Standard error

● EOF: end-of-file, a special negative integer 
constant
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Opening and closing a file
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Opening a file

FILE* fopen(char* filename, char* mode)

mode strings

"r" Open a file for reading. The file must exist.

"w" Create an empty file for writing. If a file with the same 
name already exists its content is erased and the file is 
treated as a new empty file. 

"a" Append to a file. Writing operations append data at 
the end of the file. The file is created if it does not 
exist.

OUPUT
● If successful, returns a pointer to a FILE object
● If fails, returns NULL
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Opening a file

FILE *fp = fopen(“myfile.txt”, “r”);

if (fp == NULL){
//report error and try to recover

}else{
//do something with the file

}
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Closing a file

int fclose ( FILE * stream )

OUTPUT 
● On success, returns 0
● On failure, returns EOF
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Reading from a file
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Reading a character from a file

int fgetc ( FILE * stream )

OUTPUT 
● On success, returns the next character
● On failure, returns EOF and sets end-of-file indicator

Note: EOF < 0; so you can test for failure by checking if 
the output of fgetc is negative
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Reading a character from a file

UW\n
CSE\n

FILE *fp = ...
...

while ( (c = fgetc(fp)) != EOF){
    printf("char:'%c'\n",c);
}

char:'U'
char:'W'
char:'
'
char:'C'
char:'S'
char:'E'
char:'
'
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Un-reading a character
int ungetc ( int character, FILE * stream );

EFFECT
● Virtually puts a character back into the file
● Doesn't modify the file
● May be a different character than the last one read

OUTPUT 
● On success, returns the character that was pushed
● On failure, returns EOF and sets end-of-file indicator
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Un-reading a character

...

FILE *fp = ...
int c;
...

while ((c = fgetc(fp)) != EOF){
if (c == 'a'){

ungetc('4',fp);
}else{

printf(“read char %c\n”,c);
}

}
...
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Reading a string from a file
char * fgets ( char * str, int num, FILE * stream )

BEHAVIOR 
● Reads at most (num-1) characters from the stream into str
● Null-terminates the string read (adds a '\0' to the end)
● Stops after a newline character is read
● Stops if the end of the file is encountered

● Caveat: if no characters are read, str is not modified

OUTPUT 
● On success, a pointer to str
● On failure, returns NULL
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Reading a string from a file

#define BUFFER_SIZE 80
...

FILE *fp = ...

...

char buf[BUFFER_SIZE];
fgets(buf, BUFFER_SIZE, fp);
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Are we at the end of a file?

int feof ( FILE * stream )

OUTPUT 
● If at the end of the file, returns a non-zero value
● If not at the end of the file, returns 0

Note: checks the end-of-file indicator which is set by 
fgets, fgetc, etc.
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Are we at the end of a file?

FILE *fp = ...

...

while (!feof(fp)){
//read something

}
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Are we at the end of a file
UW\n
CSE\n
\n

  while ( !feof(fp)){
    fgets(buf,BUFFER_SIZE,fp);
    printf("Read line: %s\n",buf);
  }

Read line: UW

Read line: CSE

Read line: CSE
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Reading formatted data from a file
int fscanf ( FILE * stream, const char * format, ... )

OUTPUT 
● On success, returns the number of items read; can   

be 0 if the pattern doesn't match
● On failure, returns EOF

INPUT 
● Format string is analogous to printf format string

● %d for integer
● %c for char
● %s for string

● Must have an argument for each format specifier
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Reading formatted data from a file

1 string1
42 string2
54 string3
...

FILE *fp = ...

char buf[BUFFER_SIZE];
int num;

while (!feof(fp)){
fscanf(fp, “%d %s”, &d, buf)
//do something

}
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What's wrong with this?

...

FILE *fp = ...
char state[3];

while(fscanf(fp,“%s”, state) != EOF);
printf(“I read: %s\n”,state);

}

...

WA
MO
...
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What's wrong with this?

WA
MO
Florida
...

...

FILE *fp = ...
char state[3];

while(fscanf(fp,“%s”, state) != EOF);
printf(“I read: %s\n”,state);

}

...
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Buffer overruns

● Data is written to locations past the end of the 
buffer

● Hackers can exploit to execute arbitrary code
● User can always create an input longer than 

fixed size of buffer

Don't use: scanf, fscanf, gets
● Use functions that limit the number of data read

Use: fgets
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Writing to a file
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Writing a character to a file
int fputc ( int character, FILE * stream )

OUTPUT / EFFECT
● On success, writes the character to the file and    

returns the character written
● On failure, returns EOF and sets the error indicator

Note: EOF < 0; so you can test for failure by checking if 
the output of fputc is negative
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Writing a character to a file
...

FILE *fp = fopen(“myfile.txt”,”w”);
char str[] = “Huskies > Trojans”;
int i;

if (fp != NULL){
for (i = 0; i < strlen(str); i++){

if (fputc(str[i], fp) < 0){
// Something bad happened

}
}
fclose(fp);

}

...
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Writing a string to a file
int fputs ( const char * str, FILE * stream )

OUTPUT / EFFECT
● On success, a writes the character to the file and    

returns the character written
● On failure, returns EOF and sets the error indicator

Note: EOF < 0; so you can test for failure by checking if 
the output of fputs is negative

OUTPUT / EFFECT
● On success, writes the string to the file and    

returns a non-negative value
● On failure, returns EOF and sets the error indicator
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Writing a string to a file
...

FILE *fp = fopen(“myfile.txt”,”w”);
char str[] = “Huskies > Trojans”;

if (fp != NULL){
if (fputs(str, fp) < 0){

// Something bad happened
}
fclose(fp);

}

...
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Writing a formatted string to a file
int fprintf ( FILE * stream, const char * format, ... )

INPUT
● The format string is same as for printf
● Must have an argument for each specifier in the format

OUTPUT / EFFECT
● On success, returns the number of character written
● On failure, returns a negative number
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Writing a formatted string to a file
...
FILE *fp = fopen(“myfile.txt”,”w”);
int h = 16;
int t = 13;
char str[] = “Huskies > Trojans”;

if (fp != NULL){
fprintf(stdout,“%s | Score: %d to %d\n”,str,h,t);
fclose(fp);

}
...

Huskies > Trojans | Score: 16 to 13
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Error Handling
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Was there an error?
int ferror ( FILE * stream )

OUTPUT
● If the error indicator is set, returns a non-zero integer
● Otherwise returns 0
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Was there an error?
...

FILE *fp = ...
...

fputs(“I love CSE303”,fp);

if (ferror(fp)){
//Report error and recover

}

...
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Printing an error description
void perror ( const char * str )

EFFECT
● Prints a description of the file error prefixed by the 

supplied string str and a “:”
● Can pass NULL to just print the error description
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Printing an error description
...

FILE *fp = ...
...

fputs(“I love CSE303”,fp);

if (ferror(fp)){
perror(“Could not tell the world how I feel”);
//recover from the error

}

...
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Clearing error indicator
void clearerr ( FILE * stream );

EFFECT
● Clears error indicator
● Clears end-of-file indicator
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Moving around a file
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Going to the beginning of a file
void rewind ( FILE * stream );

EFFECT
● Moves file pointer to beginning of file
● Resets end-of-file indicator
● Reset error indicator
● Forgets any virtual characters from ungetc
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Moving to a location
int fseek ( FILE * stream, long int offset, int origin )

INPUT
● Offset is in bytes
● Origin can be

● SEEK_SET: beginning of the file
● SEEK_CUR: current file position
● SEEK_END: end of the file

OUTPUT / EFFECT
● On success

● returns 0
● resets end-of-file indicator
● forgets any virtual characters from ungetc

● On failure, returns 0
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Moving to a location
...

FILE * fp = fopen("myfile.txt" , "w" );
fputs ( "This is an apple." , fp );
fseek ( fp , 9 , SEEK_SET );
fputs ( " sam" , fp );
fclose ( fp );

...
 

This is a sample



11/09/09  40

Working with the filesystem
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Removing a file
int remove ( const char * filename )

OUTPUT
● On success, returns 0
● On failure, returns a non-zero value
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Renaming a file
int rename ( const char * oldname, const char * newname );

OUTPUT
● On success, returns 0
● On failure, returns a non-zero value
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Binary files
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Opening binary files

● Add “b” to the fopen mode string
● “rb” : read a binary file
● “wb” : write a binary file
● “ab” : append to a binary file
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Writing to binary files
size_t fwrite (const void * ptr, size_t size, size_t count, FILE * stream)

INPUT
● A ptr to an array of elements (or just one)
● The size of each element
● The number of elements

OUTPUT
● Returns the number of elements written
● If return value is different than count, there was an error
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Writing to binary files
...

FILE *fp = fopen(“myfile.bin”,”wb”);
...

int nums[] = {1,2,3};
fwrite(nums, sizeof(int), 3, fp);

double dub = 3.1;
fwrite(&dub, sizeof(double), 1, fp);

...
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Reading binary files
size_t fread ( void * ptr, size_t size, size_t count, FILE * stream )

INPUT
● A ptr to some memory of size at least (size * count)
● The size of each element to read
● The number of elements to read

OUTPUT
● Returns the number of elements read
● If return value is different than count, there was an error 

or the end of the file was reached
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Reading binary files
...

FILE *fp = fopen(“myfile.bin”,”rb”);
...
int nr;

int nums[3];
nr = fread(nums, sizeof(int), 3, fp);
//Check for errors

double dub;
nr = fread(&dub, sizeof(double), 1, fp);
//Check for errors

...
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Overview
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Where can I learn more?

http://www.cplusplus.com/reference/clibrary/cstdio/
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