and Communications
Engineering




IDAMN School of Electronic
and Communications

Engineering a H’aYS

* So far, we have been using only scalar

variables
— “scalar” meaning a variable with a single value

But many things require a set of related

values

— coordinates or vectors require 3 (or 2, or 4, or more)
values

— text requires a long list of characters 1n a specified
order

— spreadsheet data is often a long list of numbers

C Programming Language - Arrays



IBREN School of Electronic
and Communications

Engineering What lS ah aH"ayz

* The spec says: ““...a continuously allocated
nonempty set of objects with a particular
" member object type”

* In real language: a bunch of things of the same
type
— each value 1s like a little variable

— but all you really need to know 1s
* where the array starts (a pointer, usually)
» what type of data is in the array

— all elements of an array are always the same data type
* how many elements are in the array

C Programming Language - Arrays



I0RYN School of Electronic
and Communications
Engineering

scores example

* So let’s keep things simple: 1magine there
are only 5 students 1n a class

— they get the following scores on an exam: 57, 85, 97, 16,

82

— this 1s what I’d like my program to do:

57 85 97 16 82 -1

Average: 61.4
Median: 82
Standard Deviation:

32

2

Scores: a program to compute grade statistics.
Enter all scores, finish with

-1:

C Programming Language - Arrays




IBREN School of Electronic
and Communications

Engineering l'.)C)\N Caﬂ W¢E Cto thatz

Since we don’t know how many scores
will be entered, we can’t know how many
variables to create

— this will actually be a problem anyway, so we’ll
have to build in a maximum class size

— let’s say there will never be more than 250
students in a class

— but still, the program will be awkward at best,
since we have to read 1n an arbitrary number of
values, and then add them up

C Programming Language - Arrays



ISR School of Electronic
and Communications
Engineering

so look at this example

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *,

int main (void)

{

double scores[250];
int numScores;
printf (“Enter all scores,

numScores =
PrintStats (scores,

int) ;

printf (“Scores: a program to compute grade statistics.\n”);

finish with -1:\n\n”);

InputScores (scores);
numScores) ;

C Programming Language - Arrays




| School of Electronic
and Communications

Engineering a H”ay deCla YaJClOD

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *, int);

int main (void)

{
Qouble scores [250 |5

int numScores;

printf (“Scores: a program to compute grade statistics.\n”);

W

. This declares a variable named “scores”

— 1t1s an array of 250 doubles

— thus, it reserves enough memory for 250 contiguous doubles (1000 bytes)

C Programming Language - Arrays



| School of Electronic

Ehaineerng o array declarations

 As with other declarations, array variable
declarations include:

— adata type
— a variable name

— ends with a semicolon

 But in addition, an array declaration has:

— alength, enclosed in square brackets
type name [length] ;

— we say that name has the type “array length of type”

* S0 1n our previous example, scores 1s “array 250 of
double”

C Programming Language - Arrays



IBRRN School of Electronic

and Communications ln ltla l lza‘tlon

Engineering

*  As with other declarations, array
declarations can include an optional
initialization

— scalar variables are initialized with a single value

— arrays are 1nitialized with a list of values

* the list 1s enclosed 1n curly braces

int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};

C Programming Language - Arrays



IOAMN School of Electronic

and Communicationsmore gbout initialization

e  The number of initializers cannot be more than

1 the number of elements in the array
" — but it can be less
— 1n which case, the remaining elements are 1nitialized to 0

.+ Ifyou like, the array size can be inferred from the

number of 1nitializers

'\ — by leaving the square brackets empty
W . . .
00‘“ — so these are 1dentical declarations
int arrayl [8] = {2, 4, 6, 8, 10, 12, 14, 16};

int array2 [] = {2, 4, 6, 8, 10, 12, 14, 16};

‘1
o

C Programming Language - Arrays



IBRRN School of Electronic
o munications but what does this do?

int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};

F 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 53 54 55

oz s e e e

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

C Programming Language - Arrays



IBREN School of Electronic What can we Cto Wlth

and Communications

Engineering a HfayS?

« All well and good, but how do we use arrays?

e There are two main things you can do with an
array:
— you can refer to an element 1n the array

— you can get the address of the first element in the array

C Programming Language - Arrays



Engineering

I0RYN School of Electronic
and Communications

array elements

When we refer to an array element, we use
a subscript expression:

— the operator 1s the square bracket pair [ ]

— the operands are the array variable, and the index
expression

int array [8] = {2,

int 1i;

for (i = 0; i < 8;
printf (“%d\n”

4, 6, 8, 10,

12,

14,

16} ;

C Programming Language -

Arrays

++j
s/ array[i]) ;




IBRRN School of Electronic
and Communications

Engineering subscript expression

Some details about the subscript expression

— for an array N of T, the data type of the subscript
expression 1s T

 that s, the data type of array[i] 1s int

— the expression inside the square brackets must have
integral type

* that 1s, 1t can be char, short, int, or long

* but not double, float, long double, a pointer,
an array, ...

C Programming Language - Arrays



IDAMN School of Electronic

and Communications address of first element

Engineering

When we use the array name 1n any value
context, it 1s converted 1nto a pointer to the first
element of the array

— what’s a value context?

e any use where the expression simply retrieves the value, and
doesn’t try to modify it

— the type of the pointer 1s “pointer to T”

* when the array type 1s “array N of T”

C Programming Language - Arrays



IBREN School of Electronic
and Communications
Engineering The RUIG

In a value context, the name of an array of
type “array N of T” becomes a “pointer to T”

* Remembering this rule will make arrays and
pointers seem much more sensible

«  Forgetting this rule will make them confusing

C Programming Language - Arrays



BR8N School of Electronic
and Communications
Engineering

example

#include <stdio.h>

int main (void)

{

int *pl, *p2;

pl array;
p2 = &array|[0];

printf (“%d %d\n”,

return 0;

int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};

*pl, *p2);

C Programming Language - Arrays




IDAMN School of Electronic

and_Com_munications a Hﬂay reCaP:
Croineering array declarations

We have to declare an array variable just
= like any other variable

fype name [size] ;
type name [size]l = { initializer list };
type namel]l = { initializer list };

— common elements:

 type: the data type of each element of the array

* name: the name of the variable we are declaring

 size: either explicit or implicit, 1t’s the number of elements

C Programming Language - Arrays



DIT |
B scren ofcocren array recap:
array definitions

Engineering

*  As with other declarations, a defining
declaration will reserve storage

— this will allocate an adjacent block of memory
large enough to store all elements of the array

— all of the declarations we’ve seen (and probably
will see) have been definitions

C Programming Language - Arrays



IBRRN School of Electronic

and Communications 3 H,.ay decla ra‘tlon eXd mpleS

Engineering

Some examples of array declarations

double coordinatel[3];

« this defines an array named coordinate
— each element is a double

— 1t reserves space for 3 elements

int frequency [26];

* this defines an array named frequency
— each element 1s an int

— 1t reserves space for 26 elements
int *pointer [6];

* this defines an array named pointer

— each element is a pointer to an int

— 1t reserves space for 6 elements

C Programming Language - Arrays



IBREN School of Electronic

Erameanmare2®ns - Multi —~dimensional arrays

Multi-dimensional arrays can be also
= 1mplemented in C, although their use 1s rare.
Higher order arrays are treated as arrays of
array objects
* In this manner
char calendar [12] [31]

can be considered as 12 (month) objects of 31

days holding char objects or
(calendar [12]) [31]

C Programming Language - Arrays



IDAMN School of Electronic
and Communications

Multi —dimensional arrays

C Programming Language - Arrays

cnomeern initialization
Exercises
b 1. charx [3][2] = {1,2},{3.,4},{5,6}
* 2. chary [2][3] = {1,2,3},{4,5,6}
3. char z [3] [2] = {1,2},{3.,4}
4. chara[2] [3] = {1,2},{3.,4}
5. char b [3] [3] = {1,2,3},{4,5,6}



I3RGIN School of Electronic
mdCommunications 3 v pecap: USing 3rrays

We can only do two things with arrays:

B refer to an element of the array

* we can then do lots of different things with
that element

— get a pointer to the first element of the array

C Programming Language - Arrays



BR8N School of Electronic 3 H‘ay Fecg P3

and Communications

e subscript expression

We refer to an array element using a
subscript expression

— array name[index]

— details
 the index 1s any expression with integral value
 the index value selects a specific element of the array

— the first element is index 0 (!!!)
 a subscript expression is usually an Ivalue
— which means we can assign a value to an array element

C Programming Language - Arrays



IBREN School of Electronic

and_Com_munications a Hﬂay reCaP:
o subscript expression

* Given the following declaration:
p— int al[8];

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 .48 49 5051 52 53 54 55

Y CYESN ECYETI IYCT BT

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

o [ e [ o

— 1t’s not 1llegal to use an index off the end of the array

 but 1t may have undefined results, since it will mean
you’re referring to memory that isn’t part of the array

« we’ll see why this 1s legal a little later...

C Programming Language - Arrays



IBRRN School of Electronic
and Communications
Engineering

subscript expression
examples

 Soremember our example declarations:

double coor|[3];

int frequency [26];

int *pointer

printf (“(%f,
coor[2]);

pointer[3] =

C Programming Language - Arrays

for (i=0; i<26;

[6];

£,

frequency[i]

— the following code 1s legal:

%f) \n”, coor[0], coor[l],

++1)

=O;

&frequency[12];



I0RYN School of Electronic
and Communications
Engineering

rray recap:
array hame 3s pointer

 In many contexts, using the array name by
itself gets you a pointer to the first element

int frequency [26];

int *pointer
pointer[3] =

pointer[2] =

C Programming Language - Arrays

[6];
&frequency[12];

frequency;



IRBN School of Electronic
and Communications

Engineering baCk to Oour GXa mPle

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *, int);

int main (void)

{

double scores[250];
int numScores;

printf (“Scores: a program to compute grade statistics.\n”);
printf (“Enter all scores, finish with -1:\n\n”);

numScores = InputScores (scores);
PrintStats (scores, numScores) ;

Note that we call the two functions with the argument scores

C Programming Language - Arrays



IDAMN School of Electronic
and Communications

Engineering Pa SSing a H’ayS

« [Iti1s perfectly legal to put an array name into

e a list of arguments to a function
— this 1s a value context

— therefore, the array name expression becomes a pointer to the
first element of the array

— note that the prototype for InputScores looks like this:

int InputScores (double *);

* So when we pass an array into a function, we’re

really just passing a pointer to the beginning of the
array

C Programming Language - Arrays



IBREN School of Electronic
and Communications .
Engineering PaSSlng al’l’ayS

* Note the “difference” between passing a scalar
variable and an array

— up to now, when we put a variable name 1n an argument list,
its value was passed to the function

— with an array, what gets passed is a pointer

 There’s no discrepancy here, really...

— remember The Array Rule:

« In a value context, the name of an array of type “array N of T” becomes a
“pointer to T”

— so 1n a manner of speaking, the “value” of the variable 1s the
pointer to the first array element.

C Programming Language - Arrays



DIT i | |
B oo functions with array
arguments

Engineering

We’ve talked about passing arrays into
functions, but what does 1t look like from the
function side?

— The function gets a pointer as an argument.

* but we only know how to dereference a pointer to a single value

* how does the function access the whole array?

C Programming Language - Arrays



IBRRIN School of Electronic
Engineering arrays and pointers

* Here’s where we start getting into the real overlap

between arrays and pointers
“ — remember The Rule:

* In a value context, the name of an array of type “array N
of T” becomes a “pointer to T”

— and remember the syntax of the subscript expression
array_name [index]

— 1n fact, there’s nothing special about this use of the array name
— 1t’s simply a value context too

* A subscript expression 1s really a pointer expression,

not an array expression
— and to understand this, we have to delve into pointer arithmetic

C Programming Language - Arrays



I0RYN School of Electronic
and Communications

Engineering POIDJ(G IS aga l n

* So far, we have discussed three operators
that deal with pointers:

— the “address-of” operator: &
— the dereference operator: *

— the assignment operator

* There are other pointer operators you can
use, including:

— addition: +

— subtraction: -

C Programming Language - Arrays



ISRRN School of Electronic

and Communications POl nter a ch metl.c

Engineering

e o The familiar arithmetic operators + and —
can also be used with pointers

— but there are rules...

— The computer addresses are just numbers, but
pointer arithmetic 1sn’t quite as simple as that...

C Programming Language - Arrays



ISRRN School of Electronic

and Communications POlhfer addlthn

Engineering

*  One of the operands of + can be a pointer

" — but then the other operand must be an integer
w’ — and 1t doesn’t just add the integer to the address
 1instead, it adds the integer times the size of the thing the
pointer points to
— so given the declarations:

int 1i;

int *p &i;

p+2

32 33 34 35 36 37 38 39 40 41 42 43344 45 46 47 48 49 50 51v»2 53 54 55

m i

C Programming Language - Arrays



DI-T i ' '
B oo, the logic of pointer
Engineering addlflOD

* Why do things work this way?

— remember, things are different sizes on different computers

* so we can’t build into our programs an assumption that, say, ints
are always 4 bytes long

— plus, there’s array indexing...
* you can step through an array by simply incrementing a pointer

* adding 1 to a pointer gets you to the next “thing” in the array

— whether it’s actually pointing to an array or not

C Programming Language - Arrays



B criommenos  pointer addition and
Engineering aH-ay lndexn‘)g

* So given an array declared like this:
— 1nt a[8];

— remember that using the array name by itself
just  gets a pointer to the first element

— that means:
e aisequivalentto &a[0]
e *3isequivalentto a[0]

— now if we mix in pointer addition:
e a+1lisequivalentto &a[1]

e *(a+l) isequivalenttoal[l]

C Programming Language - Arrays



B e rorene,  pointer addition and
Engineering aﬂ"ay lndeXlng

In fact, the C language defines the subscript
Lo €xpression in terms of pointer addition
— that 1s, the expression a[b] is 1dentical to *(a+b)
* So back to the original reason we brought up
pointer addition:

— you can use an array name or a pointer in a

subscript expression, because to C 1t’s the same thing
* 1t all becomes pointer arithmetic

C Programming Language - Arrays



B S, some mote details of
pointer addition

Engineering

 If one operand of + 1s a pointer, the other
- operand must be an integer type

— you cannot add two pointers

— the data type of the expression is the same
type as the pointer

* It doesn’t matter what order you add the
operands

— p+1ii1sthe same as i+p

C Programming Language - Arrays



JOAMN School of Electronic
Egimoarna " catons pointer subtraction

*  Subtraction with pointers follows the same logic
as addition, but the rules are necessarily different

— 1nstead of moving forward in the array, as addition
does, we’re moving backwards

— so given the declarations:
int al[8];
int *p = a+4;

— p now points to element a [4], the fifth element of

— the expression p-2 evaluates to a pointer to a [2],
the third element of a.

C Programming Language - Arrays




IORBN School of Electronic
and Communications
example

Engineering

int al[8];
int *p, *q;
p = a+4;
qQ = p-2;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

IO ECYER CYE N ECYET T

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

= | et | e [ T ]

C Programming Language - Arrays



IORBN School of Electronic
and Communications
example

Engineering

int al[8];

b" int *p, *q;

p = a+4;
q = p-2;

32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50 51 U2 53 54 55

IECIN EYE YT YT I

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 7475 76 77 78 79

=51 | etel | et [ == T ]

C Programming Language - Arrays



IO School of Electronic
and Communications
Engineering exa () P l c

int al[8];
b int *p, *q;
| p = a+4;
A g = p-2;
p-2 p-1 p

32 33 34 35 36 37 38 39 40 41 42 4344 45 46 47 48 49 50 51 %2 53 54 55
YO YT TR YT YTV

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74|75 76 77 78 15

e | e | e [ =8I o4 ]

C Programming Language - Arrays



288 School of Electronic

Egimoarna " catons pointer subtraction

*  Sojust like with addition, the — operator can
L take a pointer and an integer as operands

— but you can only subtract an integer from a pointer,
not vice versa

* You can go 2 lockers to the left of locker #583
* You can’t go locker #3583 to the left of 2

*  But unlike addition, you can subtract one
pointer from another
— as long as the two pointers point to exactly the same
type

C Programming Language - Arrays




Engineering

IRBN School of Electronic
and Communications

pointer-pointer

!

*  You can think of this algebraically:

b — given the following declarations:

int al[8];

int *pl = a+2;

int *p2;
if
p2 = pl + 3
then
pl == p2 -
and
p2 - pl ==

C Programming Language - Arrays

3

3



IDAMN School of Electronic
and Communications

Engineering SO PO”T&GY' SUbtraCtion ' v

... gives us the number of “things” between the two pointers.

int al[8];
int *pl = &alll;
int *p2 = &al4];

pl-p2 1S 3
AN

r N\
32 33 34 3536 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

YOI I YETI I YCTI N VYR YTV

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)75 76 77 78 79

B T T o [ = ]

C Programming Language - Arrays



and Communications

Engineering SO baCI< tO OUY’ exa mPle‘ v,

#include <stdio.h>

int InputScores (double *);

ﬁ void PrintStats (double *, int);

int main (void)

{

s double scores[250];
o int numScores;

printf (“Scores: a program to compute grade statistics.\n”);
printf (“Enter all scores, finish with -1:\n\n”);

numScores = InputScores (scores);
PrintStats (scores, numScores) ;

e Now we need to write the two functions

— InputScores
— PrintStats

C Programming Language - Arrays




J8RBN School of Electronic Whatls thls SuPPOSGd tO

and Communications

Engineering do agalnz

* So let’s keep things simple: 1magine there
' are only 5 students 1n the class

— they get the following scores on an exam: 57, 85, 97, 16, 82
— this 1s what I’d like my program to do:

Scores: a program to compute grade statistics.
Enter all scores, finish with -1:

57 85 97 16 82 -1
Average: 61.4

Median: 82
Standard Deviation: 32.2

C Programming Language - Arrays



IOAMN School of Electronic

PrintStats)

e So the PrintStats function should:

) — take the array and the number of scores as arguments
—
* remember that our array can hold up to 250 scores
 but that doesn’t mean that all 250 were entered

— 1t should compute the average, median, and standard
deviation, and print them out
— the function declaration 1s this:

void PrintStats (double *, int);

C Programming Language - Arrays



288 School of Electronic
and Communications

Engineering SO let/s Write the Fu nCtiOn

» First of all, we need to give names to our parameters

_— the declaration doesn’t need names; all it needs are the data
& types

— but the actual function definition 1s declaring local variables to
use within the function; these variables need names

* We also can put in the braces that will surround the
code for the function

void PrintStats (double *scores, int numScores) {

}

C Programming Language - Arrays




Engineering

I0RYN School of Electronic
and Communications

so what's the function

. It must:

. — com

— comy
— comy

oute t!
oute t|

going to do?
e average
ne median
he standard deviation

write

C Programming Language -

oute !

later

Arrays

— print the statistics

 Let’s punt on the math for now...
— after all, this 1s a computer class, not a statistics class
— we’ll just use three more functions, which we can



IO School of Electronic
dC icati .
and Communications our function so far

double ComputeAverage (double *, int);
i double ComputeMedian (double *, int);
iI!'!M double ComputeStandardDev (double *, int);

void PrintStats (double *scores, int num)
'/ double average;
double median;
double stdDev;

average = ComputeAverage (scores, num) ;
median = ComputeMedian (scores, num) ;
stdDev = ComputeStandardDev (scores, num) ;

printf (“Average: %5.1f\n”, average);
printf (“Median: %5.1f\n”, median);
printf (“Standard deviation: %5.1f\n”, stdDev);

C Programming Language - Arrays



DI I '
B oS how would we do those

s functions!

/*
* ComputeAverage: calculate and return the average
* of the numbers in an array
3/

double ComputeAverage (double *array, int size)
{
int 1i;
double sum = 0.0;

for (i = 0; i < size; ++1)
sum += arrayl[il];
return sum/size;

C Programming Language - Arrays



IDAMN School of Electronic
and Communications
Engineering nex‘t P

« Now we have to implement InputScores

P— int InputScores (double *);

e  What this will do:

— keep reading numbers from the keyboard until the user enters a
~  negative number
— store all the entered numbers 1n the array

ntﬂioﬂ';.- — return the number of entries
| |,I' .
@\ e+ So as before, let’s set things up for the code

il
Wb
0l

int InputScores (double *scores)

}

C Programming Language - Arrays



I0RYN School of Electronic
and Communications

Engineering Fu ﬂ CJCIOD l ﬂPUtSCO rFes

e Now what?

— we want to do the following:
* read a number

 1f 1it’s negative, return

e otherwise, store it in the array

* 1increment a running count of the number of entries
» and go back to read another one

— doesn’t this sound a lot like a loop?

* we’re repeating the same steps over and over

C Programming Language - Arrays



IO School of Electronic
and Communications

Engineering ChOOSlng a lOOP

*We have 3 main kinds of loops at our disposal
— for
— while
— do while

* How do we choose?

— 1n reality, we could use any of the three

C Programming Language - Arrays



JOREN School of Electronic
and Communications
Engineering

InputScores using while

« Here’s one way to do 1it:

{

scanf

int InputScores (double *scores)

int count = 0;
double score;

(“%1f”, &score);
while (score >= 0.0) {
scores [count] = score;
count += 1;
scanf (“%1f”, &score);

return count;

C Programming Language - Arrays



IRBN School of Electronic
and Communications l DPUJ(SCO res USing W}') lle

Engineering

. Or slightly more compactly:

int InputScores (double *scores)
int count = 0;
double score;

scanf (“%1f”, &score);

while (score >= 0.0) {
scores [count++] = score;
scanf (“%1f”, &score);

return count;

C Programming Language - Arrays



JORYN School of Elet_:tro_nic
and Communications a no_ther l n‘PUtSCO res

Engineering

int InputScores (double *scores)
int count = 0;
double score;

scanf (“%1lf”, &score);

while (score >= 0.0) {
scores [count++] = score;
scanf (“%1lf”, &score);

return count;

C Programming Language - Arrays



