

C Programming Language - Arrays

arraysarraysarraysarrays

• So far, we have been using only scalar
variables
– “scalar” meaning a variable with a single value
• But many things require a set of related
values
– coordinates or vectors require 3 (or 2, or 4, or more)
values
– text requires a long list of characters in a specified
order
– spreadsheet data is often a long list of numbers

C Programming Language - Arrays

what is an array?what is an array?what is an array?what is an array?

• The spec says: “...a continuously allocated
nonempty set of objects with a particular
member object type”
• In real language: a bunch of things of the same
type
– each value is like a little variable
– but all you really need to know is
• where the array starts (a pointer, usually)
• what type of data is in the array
– all elements of an array are always the same data type
• how many elements are in the array

C Programming Language - Arrays

scores examplescores examplescores examplescores example

• So let’s keep things simple: imagine there
are only 5 students in a class
– they get the following scores on an exam: 57, 85, 97, 16,
82

– this is what I’d like my program to do:

Scores: a program to compute grade statistics.
Enter all scores, finish with –1:

57 85 97 16 82 –1

Average: 61.4
Median: 82
Standard Deviation: 32.2

C Programming Language - Arrays

how can we do that?how can we do that?how can we do that?how can we do that?

• Since we don’t know how many scores
will be entered, we can’t know how many
variables to create
– this will actually be a problem anyway, so we’ll
have to build in a maximum class size
– let’s say there will never be more than 250
students in a class
– but still, the program will be awkward at best,
since we have to read in an arbitrary number of
values, and then add them up

C Programming Language - Arrays

so look at this exampleso look at this exampleso look at this exampleso look at this example

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *, int);

int main (void)
{

double scores[250];
int numScores;

printf (“Scores: a program to compute grade statistics.\n”);
printf (“Enter all scores, finish with –1:\n\n”);

numScores = InputScores (scores);
PrintStats (scores, numScores);

}

C Programming Language - Arrays

array declarationarray declarationarray declarationarray declaration

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *, int);

int main (void)
{

double scores[250];
int numScores;

printf (“Scores: a program to compute grade statistics.\n”);

• This declares a variable named “scores”
– it is an array of 250 doubles

– thus, it reserves enough memory for 250 contiguous doubles (1000 bytes)

C Programming Language - Arrays

array declarationsarray declarationsarray declarationsarray declarations

• As with other declarations, array variable
declarations include:
– a data type
– a variable name
– ends with a semicolon
• But in addition, an array declaration has:
– a length, enclosed in square brackets

type name[length];
– we say that name has the type “array length of type”
• so in our previous example, scores is “array 250 of
double”

C Programming Language - Arrays

initializationinitializationinitializationinitialization

• As with other declarations, array
declarations can include an optional
initialization
– scalar variables are initialized with a single value

– arrays are initialized with a list of values

• the list is enclosed in curly braces
int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};

C Programming Language - Arrays

more about more about more about more about initializationinitializationinitializationinitialization

• The number of initializers cannot be more than
the number of elements in the array
– but it can be less
– in which case, the remaining elements are initialized to 0
• If you like, the array size can be inferred from the
number of initializers
– by leaving the square brackets empty
– so these are identical declarations

int array1 [8] = {2, 4, 6, 8, 10, 12, 14, 16};

int array2 [] = {2, 4, 6, 8, 10, 12, 14, 16};

C Programming Language - Arrays

but what does this do?but what does this do?but what does this do?but what does this do?

int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

2 4 6 8 10

12 14 16

C Programming Language - Arrays

what can we do with what can we do with what can we do with what can we do with
arrays?arrays?arrays?arrays?

• All well and good, but how do we use arrays?

• There are two main things you can do with an
array:
– you can refer to an element in the array

– you can get the address of the first element in the array

C Programming Language - Arrays

array elementsarray elementsarray elementsarray elements

• When we refer to an array element, we use
a subscript expression:
– the operator is the square bracket pair []

– the operands are the array variable, and the index
expression

int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};
int i;

for (i = 0; i < 8; ++i)
printf (“%d\n”, array[i]);

C Programming Language - Arrays

subscript expressionsubscript expressionsubscript expressionsubscript expression

• Some details about the subscript expression
– for an array N of T, the data type of the subscript
expression is T
• that is, the data type of array[i] is int
– the expression inside the square brackets must have
integral type
• that is, it can be char, short, int, or long
• but not double, float, long double, a pointer,
an array, …

C Programming Language - Arrays

address of first elementaddress of first elementaddress of first elementaddress of first element

• When we use the array name in any value
context, it is converted into a pointer to the first
element of the array
– what’s a value context?
• any use where the expression simply retrieves the value, and
doesn’t try to modify it

– the type of the pointer is “pointer to T”

• when the array type is “array N of T”

C Programming Language - Arrays

The RuleThe RuleThe RuleThe Rule

In a value context, the name of an array of
type “array N of T” becomes a “pointer to T”

• Remembering this rule will make arrays and
pointers seem much more sensible

• Forgetting this rule will make them confusing

C Programming Language - Arrays

exampleexampleexampleexample

#include <stdio.h>

int main (void)
{

int array [8] = {2, 4, 6, 8, 10, 12, 14, 16};
int *p1, *p2;

p1 = array;
p2 = &array[0];

printf (“%d %d\n”, *p1, *p2);

return 0;
}

C Programming Language - Arrays

array recap: array recap: array recap: array recap:
array declarationsarray declarationsarray declarationsarray declarations

• We have to declare an array variable just
like any other variable

type name[size];
type name[size] = { initializer list };
type name[] = { initializer list };

– common elements:
• type: the data type of each element of the array
• name: the name of the variable we are declaring
• size: either explicit or implicit, it’s the number of elements

C Programming Language - Arrays

array recap: array recap: array recap: array recap:
array definitionsarray definitionsarray definitionsarray definitions

• As with other declarations, a defining
declaration will reserve storage
– this will allocate an adjacent block of memory
large enough to store all elements of the array

– all of the declarations we’ve seen (and probably
will see) have been definitions

C Programming Language - Arrays

array declaration examplesarray declaration examplesarray declaration examplesarray declaration examples

• Some examples of array declarations
double coordinate[3];
• this defines an array named coordinate
– each element is a double
– it reserves space for 3 elements
int frequency [26];

• this defines an array named frequency
– each element is an int
– it reserves space for 26 elements
int *pointer [6];
• this defines an array named pointer
– each element is a pointer to an int
– it reserves space for 6 elements

C Programming Language - Arrays

Multi Multi Multi Multi ––––dimensional arraysdimensional arraysdimensional arraysdimensional arrays

• Multi-dimensional arrays can be also
implemented in C, although their use is rare.
• Higher order arrays are treated as arrays of
array objects
• In this manner

char calendar [12] [31]

can be considered as 12 (month) objects of 31
days holding char objects or
(calendar [12]) [31]

C Programming Language - Arrays

Multi Multi Multi Multi ––––dimensional arrays dimensional arrays dimensional arrays dimensional arrays
initializationinitializationinitializationinitialization

Exercises
1. char x [3] [2] = {1,2},{3,4},{5,6}
2. char y [2] [3] = {1,2,3},{4,5,6}
3. char z [3] [2] = {1,2},{3,4}
4. char a [2] [3] = {1,2},{3,4}
5. char b [3] [3] = {1,2,3},{4,5,6}

C Programming Language - Arrays

array recap: using arraysarray recap: using arraysarray recap: using arraysarray recap: using arrays

• We can only do two things with arrays:
– refer to an element of the array

• we can then do lots of different things with
that element
– get a pointer to the first element of the array

C Programming Language - Arrays

array recap: array recap: array recap: array recap:
subscript expressionsubscript expressionsubscript expressionsubscript expression

• We refer to an array element using a
subscript expression
– array_name[index]
– details
• the index is any expression with integral value
• the index value selects a specific element of the array
– the first element is index 0 (!!!)
• a subscript expression is usually an lvalue
– which means we can assign a value to an array element

C Programming Language - Arrays

array recap: array recap: array recap: array recap:
subscript expressionsubscript expressionsubscript expressionsubscript expression

• Given the following declaration:
int a[8];

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

a[0] a[1] a[2] a[3] a[4]

a[5] a[6] a[7]

– it’s not illegal to use an index off the end of the array
• but it may have undefined results, since it will mean
you’re referring to memory that isn’t part of the array
• we’ll see why this is legal a little later…

C Programming Language - Arrays

subscript expression subscript expression subscript expression subscript expression
examplesexamplesexamplesexamples

• So remember our example declarations:
double coor[3];

int frequency [26];

int *pointer [6];

– the following code is legal:
printf (“(%f, %f, %f)\n”, coor[0], coor[1],
coor[2]);

for (i=0; i<26; ++i)

frequency[i] = 0;

pointer[3] = &frequency[12];

C Programming Language - Arrays

array recap: array recap: array recap: array recap:
array name as pointerarray name as pointerarray name as pointerarray name as pointer

• In many contexts, using the array name by
itself gets you a pointer to the first element
int frequency [26];

int *pointer [6];

pointer[3] = &frequency[12];

pointer[2] = frequency;

C Programming Language - Arrays

back to our exampleback to our exampleback to our exampleback to our example

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *, int);

int main (void)
{

double scores[250];
int numScores;

printf (“Scores: a program to compute grade statistics.\n”);
printf (“Enter all scores, finish with –1:\n\n”);

numScores = InputScores (scores);
PrintStats (scores, numScores);

}

Note that we call the two functions with the argument scores

C Programming Language - Arrays

passing arrayspassing arrayspassing arrayspassing arrays

• It is perfectly legal to put an array name into
a list of arguments to a function
– this is a value context
– therefore, the array name expression becomes a pointer to the
first element of the array
– note that the prototype for InputScores looks like this:

• So when we pass an array into a function, we’re
really just passing a pointer to the beginning of the
array

int InputScores (double *);

C Programming Language - Arrays

passing arrayspassing arrayspassing arrayspassing arrays

• Note the “difference” between passing a scalar
variable and an array
– up to now, when we put a variable name in an argument list,
its value was passed to the function
– with an array, what gets passed is a pointer

• There’s no discrepancy here, really…
– remember The Array Rule:
• In a value context, the name of an array of type “array N of T” becomes a
“pointer to T”

– so in a manner of speaking, the “value” of the variable is the
pointer to the first array element.

C Programming Language - Arrays

functions with array functions with array functions with array functions with array
argumentsargumentsargumentsarguments

• We’ve talked about passing arrays into
functions, but what does it look like from the
function side?

– The function gets a pointer as an argument.
• but we only know how to dereference a pointer to a single value

• how does the function access the whole array?

C Programming Language - Arrays

arrays and pointersarrays and pointersarrays and pointersarrays and pointers

• Here’s where we start getting into the real overlap
between arrays and pointers
– remember The Rule:
• In a value context, the name of an array of type “array N
of T” becomes a “pointer to T”
– and remember the syntax of the subscript expression

array_name [index]
– in fact, there’s nothing special about this use of the array name
– it’s simply a value context too
• A subscript expression is really a pointer expression,
not an array expression
– and to understand this, we have to delve into pointer arithmetic

C Programming Language - Arrays

pointers againpointers againpointers againpointers again

• So far, we have discussed three operators
that deal with pointers:

– the “address-of” operator: &

– the dereference operator: *

– the assignment operator

• There are other pointer operators you can
use, including:

– addition: +

– subtraction: -

C Programming Language - Arrays

pointer arithmeticpointer arithmeticpointer arithmeticpointer arithmetic

• The familiar arithmetic operators + and –
can also be used with pointers
– but there are rules…

– The computer addresses are just numbers, but
pointer arithmetic isn’t quite as simple as that…

C Programming Language - Arrays

pointer additionpointer additionpointer additionpointer addition

• One of the operands of + can be a pointer
– but then the other operand must be an integer
– and it doesn’t just add the integer to the address
• instead, it adds the integer times the size of the thing the
pointer points to
– so given the declarations:

int i;

int *p = &i;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

44 ip

p+2

C Programming Language - Arrays

the logic of pointer the logic of pointer the logic of pointer the logic of pointer
additionadditionadditionaddition

• Why do things work this way?
– remember, things are different sizes on different computers

• so we can’t build into our programs an assumption that, say, ints
are always 4 bytes long

– plus, there’s array indexing…
• you can step through an array by simply incrementing a pointer

• adding 1 to a pointer gets you to the next “thing” in the array

– whether it’s actually pointing to an array or not

C Programming Language - Arrays

pointer addition and pointer addition and pointer addition and pointer addition and
array indexingarray indexingarray indexingarray indexing

• So given an array declared like this:
– int a[8];
– remember that using the array name by itself

just gets a pointer to the first element
– that means:

• a is equivalent to &a[0]
• *a is equivalent to a[0]

– now if we mix in pointer addition:
• a+1 is equivalent to &a[1]
• *(a+1) is equivalent to a[1]

C Programming Language - Arrays

pointer addition and pointer addition and pointer addition and pointer addition and
array indexingarray indexingarray indexingarray indexing

•In fact, the C language defines the subscript
expression in terms of pointer addition
– that is, the expression a[b] is identical to *(a+b)

• So back to the original reason we brought up
pointer addition:
– you can use an array name or a pointer in a
subscript expression, because to C it’s the same thing

• it all becomes pointer arithmetic

C Programming Language - Arrays

some more details of some more details of some more details of some more details of
pointer additionpointer additionpointer additionpointer addition

• If one operand of + is a pointer, the other
operand must be an integer type

– you cannot add two pointers

– the data type of the expression is the same
type as the pointer

• It doesn’t matter what order you add the
operands

– p+i is the same as i+p

C Programming Language - Arrays

pointer subtractionpointer subtractionpointer subtractionpointer subtraction

• Subtraction with pointers follows the same logic
as addition, but the rules are necessarily different

– instead of moving forward in the array, as addition
does, we’re moving backwards

– so given the declarations:

int a[8];

int *p = a+4;

– p now points to element a[4], the fifth element of
a

– the expression p-2 evaluates to a pointer to a[2],
the third element of a.

C Programming Language - Arrays

exampleexampleexampleexample

int a[8];
int *p, *q;
p = a+4;
q = p-2;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

a[0] a[1] a[2] a[3] a[4]

a[5] a[6] a[7]

C Programming Language - Arrays

exampleexampleexampleexample

int a[8];
int *p, *q;
p = a+4;
q = p-2;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

a[0] a[1] a[2] a[3] a[4]

a[5] a[6] a[7] 52

C Programming Language - Arrays

exampleexampleexampleexample

int a[8];
int *p, *q;
p = a+4;
q = p-2;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

a[0] a[1] a[2] a[3] a[4]

a[5] a[6] a[7] 52 44

pp-1
p-2

C Programming Language - Arrays

pointer subtractionpointer subtractionpointer subtractionpointer subtraction

• So just like with addition, the – operator can
take a pointer and an integer as operands
– but you can only subtract an integer from a pointer,
not vice versa
• You can go 2 lockers to the left of locker #583
• You can’t go locker #583 to the left of 2
• But unlike addition, you can subtract one

pointer from another
– as long as the two pointers point to exactly the same
type

C Programming Language - Arrays

pointerpointerpointerpointer----pointerpointerpointerpointer

• You can think of this algebraically:
– given the following declarations:
int a[8];

int *p1 = a+2;

int *p2;

if
p2 = p1 + 3

then
p1 == p2 – 3

and
p2 – p1 == 3

C Programming Language - Arrays

so pointer subtraction…so pointer subtraction…so pointer subtraction…so pointer subtraction…

• … gives us the number of “things” between the two pointers.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

a[0] a[1] a[2] a[3] a[4]

a[5] a[6] a[7] 40 52

int a[8];
int *p1 = &a[1];
int *p2 = &a[4];

p1-p2 is 3

C Programming Language - Arrays

so back to our example…so back to our example…so back to our example…so back to our example…

• Now we need to write the two functions
– InputScores
– PrintStats

#include <stdio.h>

int InputScores (double *);
void PrintStats (double *, int);

int main (void)
{

double scores[250];
int numScores;

printf (“Scores: a program to compute grade statistics.\n”);
printf (“Enter all scores, finish with –1:\n\n”);

numScores = InputScores (scores);
PrintStats (scores, numScores);

}

C Programming Language - Arrays

what’s this supposed to what’s this supposed to what’s this supposed to what’s this supposed to
do again?do again?do again?do again?

• So let’s keep things simple: imagine there
are only 5 students in the class
– they get the following scores on an exam: 57, 85, 97, 16, 82
– this is what I’d like my program to do:

Scores: a program to compute grade statistics.
Enter all scores, finish with –1:

57 85 97 16 82 –1

Average: 61.4
Median: 82
Standard Deviation: 32.2

C Programming Language - Arrays

PrintStatsPrintStatsPrintStatsPrintStats()()()()

• So the PrintStats function should:
– take the array and the number of scores as arguments

• remember that our array can hold up to 250 scores
• but that doesn’t mean that all 250 were entered

– it should compute the average, median, and standard
deviation, and print them out

– the function declaration is this:

void PrintStats (double *, int);

C Programming Language - Arrays

so let’s write the functionso let’s write the functionso let’s write the functionso let’s write the function

• First of all, we need to give names to our parameters
– the declaration doesn’t need names; all it needs are the data

types

– but the actual function definition is declaring local variables to
use within the function; these variables need names

• We also can put in the braces that will surround the
code for the function

void PrintStats (double *scores, int numScores){
...

}

C Programming Language - Arrays

so what’s the function so what’s the function so what’s the function so what’s the function
going to do?going to do?going to do?going to do?

• It must:
– compute the average
– compute the median
– compute the standard deviation
– print the statistics
• Let’s punt on the math for now…
– after all, this is a computer class, not a statistics class
– we’ll just use three more functions, which we can

write later

C Programming Language - Arrays

our function so farour function so farour function so farour function so far

double ComputeAverage (double *, int);
double ComputeMedian (double *, int);
double ComputeStandardDev (double *, int);

void PrintStats (double *scores, int num)
{

double average;
double median;
double stdDev;

average = ComputeAverage (scores, num);
median = ComputeMedian (scores, num);
stdDev = ComputeStandardDev (scores, num);

printf (“Average: %5.1f\n”, average);
printf (“Median: %5.1f\n”, median);
printf (“Standard deviation: %5.1f\n”, stdDev);

}

C Programming Language - Arrays

how would we do those how would we do those how would we do those how would we do those
functions?functions?functions?functions?

/*
* ComputeAverage: calculate and return the average
* of the numbers in an array
*/
double ComputeAverage (double *array, int size)
{

int i;
double sum = 0.0;

for (i = 0; i < size; ++i)
sum += array[i];

return sum/size;
}

C Programming Language - Arrays

next…next…next…next…

• Now we have to implement InputScores

• What this will do:
– keep reading numbers from the keyboard until the user enters a
negative number
– store all the entered numbers in the array
– return the number of entries

• So as before, let’s set things up for the code

int InputScores (double *);

int InputScores (double *scores){
...

}

C Programming Language - Arrays

function function function function InputScoresInputScoresInputScoresInputScores

• Now what?
– we want to do the following:

• read a number
• if it’s negative, return
• otherwise, store it in the array
• increment a running count of the number of entries
• and go back to read another one

– doesn’t this sound a lot like a loop?
• we’re repeating the same steps over and over

C Programming Language - Arrays

choosing a loopchoosing a loopchoosing a loopchoosing a loop

•We have 3 main kinds of loops at our disposal
– for
– while
– do while

• How do we choose?
– in reality, we could use any of the three

C Programming Language - Arrays

InputScoresInputScoresInputScoresInputScores using whileusing whileusing whileusing while

• Here’s one way to do it:

int InputScores (double *scores)
{

int count = 0;
double score;

scanf (“%lf”, &score);
while (score >= 0.0) {

scores[count] = score;
count += 1;
scanf (“%lf”, &score);

}

return count;
}

C Programming Language - Arrays

InputScoresInputScoresInputScoresInputScores using whileusing whileusing whileusing while

• Or slightly more compactly:
int InputScores (double *scores)
{

int count = 0;
double score;

scanf (“%lf”, &score);
while (score >= 0.0) {

scores[count++] = score;
scanf (“%lf”, &score);

}

return count;
}

C Programming Language - Arrays

another another another another InputScoresInputScoresInputScoresInputScores

int InputScores (double *scores)
{

int count = 0;
double score;

scanf (“%lf”, &score);
while (score >= 0.0) {

scores[count++] = score;
scanf (“%lf”, &score);

}

return count;
}

