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Graphs

Graphs provide the ultimate in data structure flexibility. Graphs can model both

real-world systems and abstract problems, so they are used in hundreds of applica-

tions. Here is a small sampling of the range of problems that graphs are routinely

applied to.

1. Modeling connectivity in computer and communications networks.

2. Representing a map as a set of locations with distances between locations;

used to compute shortest routes between locations.

3. Modeling flow capacities in transportation networks.

4. Finding a path from a starting condition to a goal condition; for example, in

artificial intelligence problem solving.

5. Modeling computer algorithms, showing transitions from one program state

to another.

6. Finding an acceptable order for finishing subtasks in a complex activity, such

as constructing large buildings.

7. Modeling relationships such as family trees, business or military organiza-

tions, and scientific taxonomies.

We begin in Section 11.1 with some basic graph terminology and then define

two fundamental representations for graphs, the adjacency matrix and adjacency

list. Section 11.2 presents a graph ADT and simple implementations based on the

adjacency matrix and adjacency list. Section 11.3 presents the two most commonly

used graph traversal algorithms, called depth-first and breadth-first search, with

application to topological sorting. Section 11.4 presents algorithms for solving

some problems related to finding shortest routes in a graph. Finally, Section 11.5

presents algorithms for finding the minimum-cost spanning tree, useful for deter-

mining lowest-cost connectivity in a network. Besides being useful and interesting

in their own right, these algorithms illustrate the use of some data structures pre-

sented in earlier chapters.
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Figure 11.1 Examples of graphs and terminology. (a) A graph. (b) A directed

graph (digraph). (c) A labeled (directed) graph with weights associated with the

edges. In this example, there is a simple path from Vertex 0 to Vertex 3 containing

Vertices 0, 1, and 3. Vertices 0, 1, 3, 2, 4, and 1 also form a path, but not a simple

path because Vertex 1 appears twice. Vertices 1, 3, 2, 4, and 1 form a simple cycle.

11.1 Terminology and Representations

A graph G = (V,E) consists of a set of vertices V and a set of edges E, such

that each edge in E is a connection between a pair of vertices in V.1 The number

of vertices is written |V|, and the number of edges is written |E|. |E| can range

from zero to a maximum of |V|2 − |V|. A graph with relatively few edges is called

sparse, while a graph with many edges is called dense. A graph containing all

possible edges is said to be complete.

A graph with edges directed from one vertex to another (as in Figure 11.1(b))

is called a directed graph or digraph. A graph whose edges are not directed is

called an undirected graph (as illustrated by Figure 11.1(a)). A graph with labels

associated with its vertices (as in Figure 11.1(c)) is called a labeled graph. Two

vertices are adjacent if they are joined by an edge. Such vertices are also called

neighbors. An edge connecting Vertices U and V is written (U, V). Such an edge

is said to be incident on Vertices U and V . Associated with each edge may be a

cost or weight. Graphs whose edges have weights (as in Figure 11.1(c)) are said to

be weighted.

A sequence of vertices v1, v2, ..., vn forms a path of length n− 1 if there exist

edges from vi to vi+1 for 1 ≤ i < n. A path is simple if all vertices on the path are

distinct. The length of a path is the number of edges it contains. A cycle is a path

of length three or more that connects some vertex v1 to itself. A cycle is simple if

the path is simple, except for the first and last vertices being the same.

1Some graph applications require that a given pair of vertices can have multiple or parallel edges

connecting them, or that a vertex can have an edge to itself. However, the applications discussed

in this book do not require either of these special cases, so for simplicity we will assume that they

cannot occur.



Sec. 11.1 Terminology and Representations 383

0 2

4

1 3

6

5

7

Figure 11.2 An undirected graph with three connected components. Vertices 0,

1, 2, 3, and 4 form one connected component. Vertices 5 and 6 form a second

connected component. Vertex 7 by itself forms a third connected component.

A subgraph S is formed from graph G by selecting a subset Vs of G’s vertices

and a subset Es of G’s edges such that for every edge E in Es, both of E’s vertices

are in Vs.

An undirected graph is connected if there is at least one path from any vertex

to any other. The maximally connected subgraphs of an undirected graph are called

connected components. For example, Figure 11.2 shows an undirected graph with

three connected components.

A graph without cycles is called acyclic. Thus, a directed graph without cycles

is called a directed acyclic graph or DAG.

A free tree is a connected, undirected graph with no simple cycles. An equiv-

alent definition is that a free tree is connected and has |V| − 1 edges.

There are two commonly used methods for representing graphs. The adja-

cency matrix is illustrated by Figure 11.3(b). The adjacency matrix for a graph

is a |V| × |V| array. Assume that |V| = n and that the vertices are labeled from

v0 through vn−1. Row i of the adjacency matrix contains entries for Vertex vi.

Column j in row i is marked if there is an edge from vi to vj and is not marked oth-

erwise. Thus, the adjacency matrix requires one bit at each position. Alternatively,

if we wish to associate a number with each edge, such as the weight or distance

between two vertices, then each matrix position must store that number. In either

case, the space requirements for the adjacency matrix are Θ(|V|2).

The second common representation for graphs is the adjacency list, illustrated

by Figure 11.3(c). The adjacency list is an array of linked lists. The array is

|V| items long, with position i storing a pointer to the linked list of edges for Ver-

tex vi. This linked list represents the edges by the vertices that are adjacent to

Vertex vi. The adjacency list is therefore a generalization of the “list of children”

representation for trees described in Section 6.3.1.

Example 11.1 The entry for Vertex 0 in Figure 11.3(c) stores 1 and 4

because there are two edges in the graph leaving Vertex 0, with one going
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Figure 11.3 Two graph representations. (a) A directed graph. (b) The adjacency

matrix for the graph of (a). (c) The adjacency list for the graph of (a).

to Vertex 1 and one going to Vertex 4. The list for Vertex 2 stores an entry

for Vertex 4 because there is an edge from Vertex 2 to Vertex 4, but no entry

for Vertex 3 because this edge comes into Vertex 2 rather than going out.

The storage requirements for the adjacency list depend on both the number of

edges and the number of vertices in the graph. There must be an array entry for

each vertex (even if the vertex is not adjacent to any other vertex and thus has no

elements on its linked list), and each edge must appear on one of the lists. Thus,

the cost is Θ(|V|+ |E|).

Both the adjacency matrix and the adjacency list can be used to store directed

or undirected graphs. Each edge of an undirected graph connecting Vertices U

and V is represented by two directed edges: one from U to V and one from V to

U. Figure 11.4 illustrates the use of the adjacency matrix and the adjacency list for

undirected graphs.

Which graph representation is more space efficient depends on the number of

edges in the graph. The adjacency list stores information only for those edges that

actually appear in the graph, while the adjacency matrix requires space for each

potential edge, whether it exists or not. However, the adjacency matrix requires

no overhead for pointers, which can be a substantial cost, especially if the only
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Figure 11.4 Using the graph representations for undirected graphs. (a) An undi-

rected graph. (b) The adjacency matrix for the graph of (a). (c) The adjacency list

for the graph of (a).

information stored for an edge is one bit to indicate its existence. As the graph be-

comes denser, the adjacency matrix becomes relatively more space efficient. Sparse

graphs are likely to have their adjacency list representation be more space efficient.

Example 11.2 Assume that a vertex index requires two bytes, a pointer

requires four bytes, and an edge weight requires two bytes. Then the adja-

cency matrix for the graph of Figure 11.3 requires 2|V2| = 50 bytes while

the adjacency list requires 4|V| + 6|E| = 56 bytes. For the graph of Fig-

ure 11.4, the adjacency matrix requires the same space as before, while the

adjacency list requires 4|V| + 6|E| = 92 bytes (because there are now 12

edges instead of 6).

The adjacency matrix often requires a higher asymptotic cost for an algorithm

than would result if the adjacency list were used. The reason is that it is common

for a graph algorithm to visit each neighbor of each vertex. Using the adjacency list,

only the actual edges connecting a vertex to its neighbors are examined. However,

the adjacency matrix must look at each of its |V| potential edges, yielding a total

cost of Θ(|V2|) time when the algorithm might otherwise require only Θ(|V|+ |E|)
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time. This is a considerable disadvantage when the graph is sparse, but not when

the graph is closer to full.

11.2 Graph Implementations

We next turn to the problem of implementing a general-purpose graph class. Fig-

ure 11.5 shows an abstract class defining an ADT for graphs. Vertices are defined

by an integer index value. In other words, there is a Vertex 0, Vertex 1, and so

on. We can assume that a graph application stores any additional information of

interest about a given vertex elsewhere, such as a name or application-dependent

value. Note that this ADT is not implemented using a template, because it is the

Graph class users’ responsibility to maintain information related to the vertices

themselves. The Graph class need have no knowledge of the type or content of

the information associated with a vertex, only the index number for that vertex.

Abstract class Graph has methods to return the number of vertices and edges

(methods n and e, respectively). Function weight returns the weight of a given

edge, with that edge identified by its two incident vertices. For example, calling

weight(0, 4) on the graph of Figure 11.1 (c) would return 4. If no such edge

exists, the weight is defined to be 0. So calling weight(0, 2) on the graph of

Figure 11.1 (c) would return 0.

Functions setEdge and delEdge set the weight of an edge and remove an

edge from the graph, respectively. Again, an edge is identified by its two incident

vertices. setEdge does not permit the user to set the weight to be 0, because this

value is used to indicate a non-existent edge, nor are negative edge weights per-

mitted. Functions getMark and setMark get and set, respectively, a requested

value in the Mark array (described below) for Vertex V .

Nearly every graph algorithm presented in this chapter will require visits to all

neighbors of a given vertex. Two methods are provided to support this. They work

in a manner similar to linked list access functions. Function first takes as input

a vertex V , and returns the edge to the first neighbor for V (we assume the neighbor

list is sorted by vertex number). Function next takes as input Vertices V1 and V2

and returns the index for the vertex forming the next edge with V1 after V2 on V1’s

edge list. Function next will return a value of n = |V| once the end of the edge

list for V1 has been reached. The following line appears in many graph algorithms:

for (w = G=>first(v); w < G->n(); w = G->next(v,w))

This for loop gets the first neighbor of v, then works through the remaining neigh-

bors of v until a value equal to G->n() is returned, signaling that all neighbors

of v have been visited. For example, first(1) in Figure 11.4 would return 0.

next(1, 0) would return 3. next(0, 3) would return 4. next(1, 4)

would return 5, which is not a vertex in the graph.
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// Graph abstract class. This ADT assumes that the number
// of vertices is fixed when the graph is created.
class Graph {
private:

void operator =(const Graph&) {} // Protect assignment
Graph(const Graph&) {} // Protect copy constructor

public:
Graph() {} // Default constructor
virtual ˜Graph() {} // Base destructor

// Initialize a graph of n vertices
virtual void Init(int n) =0;

// Return: the number of vertices and edges
virtual int n() =0;
virtual int e() =0;

// Return v’s first neighbor
virtual int first(int v) =0;

// Return v’s next neighbor
virtual int next(int v, int w) =0;

// Set the weight for an edge
// i, j: The vertices
// wgt: Edge weight
virtual void setEdge(int v1, int v2, int wght) =0;

// Delete an edge
// i, j: The vertices
virtual void delEdge(int v1, int v2) =0;

// Determine if an edge is in the graph
// i, j: The vertices
// Return: true if edge i,j has non-zero weight
virtual bool isEdge(int i, int j) =0;

// Return an edge’s weight
// i, j: The vertices
// Return: The weight of edge i,j, or zero
virtual int weight(int v1, int v2) =0;

// Get and Set the mark value for a vertex
// v: The vertex
// val: The value to set
virtual int getMark(int v) =0;
virtual void setMark(int v, int val) =0;

};

Figure 11.5 A graph ADT. This ADT assumes that the number of vertices is

fixed when the graph is created, but that edges can be added and removed. It also

supports a mark array to aid graph traversal algorithms.
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It is reasonably straightforward to implement our graph and edge ADTs using

either the adjacency list or adjacency matrix. The sample implementations pre-

sented here do not address the issue of how the graph is actually created. The user

of these implementations must add functionality for this purpose, perhaps reading

the graph description from a file. The graph can be built up by using the setEdge

function provided by the ADT.

Figure 11.6 shows an implementation for the adjacency matrix. Array Mark

stores the information manipulated by the setMark and getMark functions. The

edge matrix is implemented as an integer array of size n × n for a graph of n ver-

tices. Position (i, j) in the matrix stores the weight for edge (i, j) if it exists. A

weight of zero for edge (i, j) is used to indicate that no edge connects Vertices i
and j.

Given a vertex V , function first locates the position in matrix of the first

edge (if any) of V by beginning with edge (V , 0) and scanning through row V until

an edge is found. If no edge is incident on V , then first returns n.

Function next locates the edge following edge (i, j) (if any) by continuing

down the row of Vertex i starting at position j + 1, looking for an edge. If no

such edge exists, next returns n. Functions setEdge and delEdge adjust the

appropriate value in the array. Function weight returns the value stored in the

appropriate position in the array.

Figure 11.7 presents an implementation of the adjacency list representation for

graphs. Its main data structure is an array of linked lists, one linked list for each

vertex. These linked lists store objects of type Edge, which merely stores the index

for the vertex pointed to by the edge, along with the weight of the edge. Because

the Edge class is assumed to be private to the Graphl class, its data members

have been made public for convenience.

// Edge class for Adjacency List graph representation
class Edge {
int vert, wt;

public:
Edge() { vert = -1; wt = -1; }
Edge(int v, int w) { vert = v; wt = w; }
int vertex() { return vert; }
int weight() { return wt; }

};

Implementation for Graphl member functions is straightforward in principle,

with the key functions being setEdge, delEdge, and weight. They simply

start at the beginning of the adjacency list and move along it until the desired vertex

has been found. Note that isEdge checks to see if j is already the current neighbor

in i’s adjacency list, since this will often be true when processing the neighbors of

each vertex in turn.
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// Implementation for the adjacency matrix representation
class Graphm : public Graph {
private:

int numVertex, numEdge; // Store number of vertices, edges
int **matrix; // Pointer to adjacency matrix
int *mark; // Pointer to mark array

public:
Graphm(int numVert) // Constructor

{ Init(numVert); }

˜Graphm() { // Destructor
delete [] mark; // Return dynamically allocated memory
for (int i=0; i<numVertex; i++)

delete [] matrix[i];
delete [] matrix;

}

void Init(int n) { // Initialize the graph
int i;
numVertex = n;
numEdge = 0;
mark = new int[n]; // Initialize mark array
for (i=0; i<numVertex; i++)

mark[i] = UNVISITED;
matrix = (int**) new int*[numVertex]; // Make matrix
for (i=0; i<numVertex; i++)

matrix[i] = new int[numVertex];
for (i=0; i< numVertex; i++) // Initialize to 0 weights

for (int j=0; j<numVertex; j++)
matrix[i][j] = 0;

}

int n() { return numVertex; } // Number of vertices
int e() { return numEdge; } // Number of edges

// Return first neighbor of "v"
int first(int v) {

for (int i=0; i<numVertex; i++)
if (matrix[v][i] != 0) return i;

return numVertex; // Return n if none
}

// Return v’s next neighbor after w
int next(int v, int w) {

for(int i=w+1; i<numVertex; i++)
if (matrix[v][i] != 0)

return i;
return numVertex; // Return n if none

}

Figure 11.6 An implementation for the adjacency matrix implementation.
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// Set edge (v1, v2) to "wt"
void setEdge(int v1, int v2, int wt) {

Assert(wt>0, "Illegal weight value");
if (matrix[v1][v2] == 0) numEdge++;
matrix[v1][v2] = wt;

}

void delEdge(int v1, int v2) { // Delete edge (v1, v2)
if (matrix[v1][v2] != 0) numEdge--;
matrix[v1][v2] = 0;

}

bool isEdge(int i, int j) // Is (i, j) an edge?
{ return matrix[i][j] != 0; }

int weight(int v1, int v2) { return matrix[v1][v2]; }
int getMark(int v) { return mark[v]; }
void setMark(int v, int val) { mark[v] = val; }

};

Figure 11.6 (continued)

11.3 Graph Traversals

Often it is useful to visit the vertices of a graph in some specific order based on the

graph’s topology. This is known as a graph traversal and is similar in concept to

a tree traversal. Recall that tree traversals visit every node exactly once, in some

specified order such as preorder, inorder, or postorder. Multiple tree traversals exist

because various applications require the nodes to be visited in a particular order.

For example, to print a BST’s nodes in ascending order requires an inorder traver-

sal as opposed to some other traversal. Standard graph traversal orders also exist.

Each is appropriate for solving certain problems. For example, many problems in

artificial intelligence programming are modeled using graphs. The problem domain

may consist of a large collection of states, with connections between various pairs

of states. Solving the problem may require getting from a specified start state to a

specified goal state by moving between states only through the connections. Typi-

cally, the start and goal states are not directly connected. To solve this problem, the

vertices of the graph must be searched in some organized manner.

Graph traversal algorithms typically begin with a start vertex and attempt to

visit the remaining vertices from there. Graph traversals must deal with a number

of troublesome cases. First, it may not be possible to reach all vertices from the

start vertex. This occurs when the graph is not connected. Second, the graph may

contain cycles, and we must make sure that cycles do not cause the algorithm to go

into an infinite loop.
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class Graphl : public Graph {
private:

List<Edge>** vertex; // List headers
int numVertex, numEdge; // Number of vertices, edges
int *mark; // Pointer to mark array

public:
Graphl(int numVert)

{ Init(numVert); }

˜Graphl() { // Destructor
delete [] mark; // Return dynamically allocated memory
for (int i=0; i<numVertex; i++) delete [] vertex[i];
delete [] vertex;

}

void Init(int n) {
int i;
numVertex = n;
numEdge = 0;
mark = new int[n]; // Initialize mark array
for (i=0; i<numVertex; i++) mark[i] = UNVISITED;
// Create and initialize adjacency lists
vertex = (List<Edge>**) new List<Edge>*[numVertex];
for (i=0; i<numVertex; i++)

vertex[i] = new LList<Edge>();
}

int n() { return numVertex; } // Number of vertices
int e() { return numEdge; } // Number of edges

int first(int v) { // Return first neighbor of "v"
if (vertex[v]->length() == 0)

return numVertex; // No neighbor
vertex[v]->moveToStart();
Edge it = vertex[v]->getValue();
return it.vertex();

}

// Get v’s next neighbor after w
int next(int v, int w) {

Edge it;
if (isEdge(v, w)) {

if ((vertex[v]->currPos()+1) < vertex[v]->length()) {
vertex[v]->next();
it = vertex[v]->getValue();
return it.vertex();

}
}
return n(); // No neighbor

}

Figure 11.7 An implementation for the adjacency list.
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// Set edge (i, j) to "weight"
void setEdge(int i, int j, int weight) {

Assert(weight>0, "May not set weight to 0");
Edge currEdge(j, weight);
if (isEdge(i, j)) { // Edge already exists in graph

vertex[i]->remove();
vertex[i]->insert(currEdge);

}
else { // Keep neighbors sorted by vertex index

numEdge++;
for (vertex[i]->moveToStart();

vertex[i]->currPos() < vertex[i]->length();
vertex[i]->next()) {

Edge temp = vertex[i]->getValue();
if (temp.vertex() > j) break;

}
vertex[i]->insert(currEdge);

}
}

void delEdge(int i, int j) { // Delete edge (i, j)
if (isEdge(i,j)) {

vertex[i]->remove();
numEdge--;

}
}

bool isEdge(int i, int j) { // Is (i,j) an edge?
Edge it;
for (vertex[i]->moveToStart();

vertex[i]->currPos() < vertex[i]->length();
vertex[i]->next()) { // Check whole list

Edge temp = vertex[i]->getValue();
if (temp.vertex() == j) return true;

}
return false;

}

int weight(int i, int j) { // Return weight of (i, j)
Edge curr;
if (isEdge(i, j)) {

curr = vertex[i]->getValue();
return curr.weight();

}
else return 0;

}

int getMark(int v) { return mark[v]; }
void setMark(int v, int val) { mark[v] = val; }

};

Figure 11.7 (continued)
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Graph traversal algorithms can solve both of these problems by maintaining a

mark bit for each vertex on the graph. At the beginning of the algorithm, the mark

bit for all vertices is cleared. The mark bit for a vertex is set when the vertex is first

visited during the traversal. If a marked vertex is encountered during traversal, it is

not visited a second time. This keeps the program from going into an infinite loop

when it encounters a cycle.

Once the traversal algorithm completes, we can check to see if all vertices have

been processed by checking the mark bit array. If not all vertices are marked, we

can continue the traversal from another unmarked vertex. Note that this process

works regardless of whether the graph is directed or undirected. To ensure visiting

all vertices, graphTraverse could be called as follows on a graph G:

void graphTraverse(Graph* G) {
int v;
for (v=0; v<G->n(); v++)

G->setMark(v, UNVISITED); // Initialize mark bits
for (v=0; v<G->n(); v++)

if (G->getMark(v) == UNVISITED)
doTraverse(G, v);

}

Function “doTraverse” might be implemented by using one of the graph traver-

sals described in this section.

11.3.1 Depth-First Search

The first method of organized graph traversal is called depth-first search (DFS).

Whenever a vertex V is visited during the search, DFS will recursively visit all

of V’s unvisited neighbors. Equivalently, DFS will add all edges leading out of v
to a stack. The next vertex to be visited is determined by popping the stack and

following that edge. The effect is to follow one branch through the graph to its

conclusion, then it will back up and follow another branch, and so on. The DFS

process can be used to define a depth-first search tree. This tree is composed of

the edges that were followed to any new (unvisited) vertex during the traversal, and

leaves out the edges that lead to already visited vertices. DFS can be applied to

directed or undirected graphs. Here is an implementation for the DFS algorithm:

void DFS(Graph* G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G->setMark(v, VISITED);
for (int w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == UNVISITED)
DFS(G, w);

PostVisit(G, v); // Take appropriate action
}

This implementation contains calls to functions PreVisit and PostVisit.

These functions specify what activity should take place during the search. Just
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Figure 11.8 (a) A graph. (b) The depth-first search tree for the graph when

starting at Vertex A.

as a preorder tree traversal requires action before the subtrees are visited, some

graph traversals require that a vertex be processed before ones further along in the

DFS. Alternatively, some applications require activity after the remaining vertices

are processed; hence the call to function PostVisit. This would be a natural

opportunity to make use of the visitor design pattern described in Section 1.3.2.

Figure 11.8 shows a graph and its corresponding depth-first search tree. Fig-

ure 11.9 illustrates the DFS process for the graph of Figure 11.8(a).

DFS processes each edge once in a directed graph. In an undirected graph,

DFS processes each edge from both directions. Each vertex must be visited, but

only once, so the total cost is Θ(|V|+ |E|).

11.3.2 Breadth-First Search

Our second graph traversal algorithm is known as a breadth-first search (BFS).

BFS examines all vertices connected to the start vertex before visiting vertices fur-

ther away. BFS is implemented similarly to DFS, except that a queue replaces

the recursion stack. Note that if the graph is a tree and the start vertex is at the

root, BFS is equivalent to visiting vertices level by level from top to bottom. Fig-

ure 11.10 provides an implementation for the BFS algorithm. Figure 11.11 shows

a graph and the corresponding breadth-first search tree. Figure 11.12 illustrates the

BFS process for the graph of Figure 11.11(a).

11.3.3 Topological Sort

Assume that we need to schedule a series of tasks, such as classes or construction

jobs, where we cannot start one task until after its prerequisites are completed. We

wish to organize the tasks into a linear order that allows us to complete them one
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Figure 11.9 A detailed illustration of the DFS process for the graph of Fig-

ure 11.8(a) starting at Vertex A. The steps leading to each change in the recursion

stack are described.
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void BFS(Graph* G, int start, Queue<int>* Q) {
int v, w;
Q->enqueue(start); // Initialize Q
G->setMark(start, VISITED);
while (Q->length() != 0) { // Process all vertices on Q

v = Q->dequeue();
PreVisit(G, v); // Take appropriate action
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == UNVISITED) {
G->setMark(w, VISITED);
Q->enqueue(w);

}
}

}

Figure 11.10 Implementation for the breadth-first graph traversal algorithm

(a) (b)

B

C

A

C

B

DD

F

EE

A

F

Figure 11.11 (a) A graph. (b) The breadth-first search tree for the graph when

starting at Vertex A.

at a time without violating any prerequisites. We can model the problem using a

DAG. The graph is directed because one task is a prerequisite of another — the

vertices have a directed relationship. It is acyclic because a cycle would indicate

a conflicting series of prerequisites that could not be completed without violating

at least one prerequisite. The process of laying out the vertices of a DAG in a

linear order to meet the prerequisite rules is called a topological sort. Figure 11.14

illustrates the problem. An acceptable topological sort for this example is J1, J2,

J3, J4, J5, J6, J7.

A topological sort may be found by performing a DFS on the graph. When a

vertex is visited, no action is taken (i.e., function PreVisit does nothing). When

the recursion pops back to that vertex, function PostVisit prints the vertex. This

yields a topological sort in reverse order. It does not matter where the sort starts, as

long as all vertices are visited in the end. Figure 11.13 shows an implementation

for the DFS-based algorithm.
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Initial call to BFS on A.
Mark A and put on the queue.

Dequeue A.
Process (A, C).
Mark and enqueue C. Print (A, C).
Process (A, E).
Mark and enqueue E. Print(A, E).

Dequeue C.
Process (C, A). Ignore.
Process (C, B).
Mark and enqueue B. Print (C, B).
Process (C, D).
Mark and enqueue D. Print (C, D).
Process (C, F).
Mark and enqueue F. Print (C, F).

Dequeue E.
Process (E, A). Ignore.
Process (E, F). Ignore.

Dequeue B.
Process (B, C). Ignore.
Process (B, F). Ignore.

Dequeue D.
Process (D, C). Ignore.
Process (D, F). Ignore.

Dequeue F.
Process (F, B). Ignore.
Process (F, C). Ignore.
Process (F, D). Ignore.
BFS is complete.

A

E B D F

D F

C E

B D F

F

Figure 11.12 A detailed illustration of the BFS process for the graph of Fig-

ure 11.11(a) starting at Vertex A. The steps leading to each change in the queue

are described.
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void topsort(Graph* G) { // Topological sort: recursive
int i;
for (i=0; i<G->n(); i++) // Initialize Mark array

G->setMark(i, UNVISITED);
for (i=0; i<G->n(); i++) // Process all vertices

if (G->getMark(i) == UNVISITED)
tophelp(G, i); // Call recursive helper function

}

void tophelp(Graph* G, int v) { // Process vertex v
G->setMark(v, VISITED);
for (int w=G->first(v); w<G->n(); w = G->next(v,w))

if (G->getMark(w) == UNVISITED)
tophelp(G, w);

printout(v); // PostVisit for Vertex v
}

Figure 11.13 Implementation for the recursive topological sort.

J1 J2

J3 J4

J5 J7

J6

Figure 11.14 An example graph for topological sort. Seven tasks have depen-

dencies as shown by the directed graph.

Using this algorithm starting at J1 and visiting adjacent neighbors in alphabetic

order, vertices of the graph in Figure 11.14 are printed out in the order J7, J5, J4,

J6, J2, J3, J1. Reversing this yields the topological sort J1, J3, J2, J6, J4, J5, J7.

We can implement topological sort using a queue instead of recursion, as fol-

lows. First visit all edges, counting the number of edges that lead to each vertex

(i.e., count the number of prerequisites for each vertex). All vertices with no pre-

requisites are placed on the queue. We then begin processing the queue. When

Vertex V is taken off of the queue, it is printed, and all neighbors of V (that is, all

vertices that have V as a prerequisite) have their counts decremented by one. Place

on the queue any neighbor whose count becomes zero. If the queue becomes empty

without printing all of the vertices, then the graph contains a cycle (i.e., there is no

possible ordering for the tasks that does not violate some prerequisite). The printed

order for the vertices of the graph in Figure 11.14 using the queue version of topo-

logical sort is J1, J2, J3, J6, J4, J5, J7. Figure 11.15 shows an implementation for

the algorithm.
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// Topological sort: Queue
void topsort(Graph* G, Queue<int>* Q) {
int Count[G->n()];
int v, w;
for (v=0; v<G->n(); v++) Count[v] = 0; // Initialize
for (v=0; v<G->n(); v++) // Process every edge

for (w=G->first(v); w<G->n(); w = G->next(v,w))
Count[w]++; // Add to v’s prereq count

for (v=0; v<G->n(); v++) // Initialize queue
if (Count[v] == 0) // Vertex has no prerequisites

Q->enqueue(v);
while (Q->length() != 0) { // Process the vertices

v = Q->dequeue();
printout(v); // PreVisit for "v"
for (w=G->first(v); w<G->n(); w = G->next(v,w)) {

Count[w]--; // One less prerequisite
if (Count[w] == 0) // This vertex is now free

Q->enqueue(w);
}

}
}

Figure 11.15 A queue-based topological sort algorithm.

11.4 Shortest-Paths Problems

On a road map, a road connecting two towns is typically labeled with its distance.

We can model a road network as a directed graph whose edges are labeled with

real numbers. These numbers represent the distance (or other cost metric, such as

travel time) between two vertices. These labels may be called weights, costs, or

distances, depending on the application. Given such a graph, a typical problem

is to find the total length of the shortest path between two specified vertices. This

is not a trivial problem, because the shortest path may not be along the edge (if

any) connecting two vertices, but rather may be along a path involving one or more

intermediate vertices. For example, in Figure 11.16, the cost of the path from A to

B to D is 15. The cost of the edge directly from A to D is 20. The cost of the path

from A to C to B to D is 10. Thus, the shortest path from A to D is 10 (not along

the edge connecting A to D). We use the notation d(A, D) = 10 to indicate that the

shortest distance from A to D is 10. In Figure 11.16, there is no path from E to B, so

we set d(E, B) = ∞. We define w(A, D) = 20 to be the weight of edge (A, D), that

is, the weight of the direct connection from A to D. Because there is no edge from

E to B, w(E, B) = ∞. Note that w(D, A) = ∞ because the graph of Figure 11.16

is directed. We assume that all weights are positive.
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Figure 11.16 Example graph for shortest-path definitions.

11.4.1 Single-Source Shortest Paths

This section presents an algorithm to solve the single-source shortest-paths prob-

lem. Given Vertex S in Graph G, find a shortest path from S to every other vertex

in G. We might want only the shortest path between two vertices, S and T . How-

ever in the worst case, while finding the shortest path from S to T , we might find

the shortest paths from S to every other vertex as well. So there is no better alg-

orithm (in the worst case) for finding the shortest path to a single vertex than to find

shortest paths to all vertices. The algorithm described here will only compute the

distance to every such vertex, rather than recording the actual path. Recording the

path requires modifications to the algorithm that are left as an exercise.

Computer networks provide an application for the single-source shortest-paths

problem. The goal is to find the cheapest way for one computer to broadcast a

message to all other computers on the network. The network can be modeled by a

graph with edge weights indicating time or cost to send a message to a neighboring

computer.

For unweighted graphs (or whenever all edges have the same cost), the single-

source shortest paths can be found using a simple breadth-first search. When

weights are added, BFS will not give the correct answer.

One approach to solving this problem when the edges have differing weights

might be to process the vertices in a fixed order. Label the vertices v0 to vn−1, with

S = v0. When processing Vertex v1, we take the edge connecting v0 and v1. When

processing v2, we consider the shortest distance from v0 to v2 and compare that to

the shortest distance from v0 to v1 to v2. When processing Vertex vi, we consider

the shortest path for Vertices v0 through vi−1 that have already been processed.

Unfortunately, the true shortest path to vi might go through Vertex vj for j > i.
Such a path will not be considered by this algorithm. However, the problem would

not occur if we process the vertices in order of distance from S. Assume that we

have processed in order of distance from S to the first i− 1 vertices that are closest

to S; call this set of vertices S. We are now about to process the ith closest vertex;
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// Compute shortest path distances from "s".
// Return these distances in "D".
void Dijkstra(Graph* G, int* D, int s) {
int i, v, w;
for (int i=0; i<G->n(); i++) // Initialize

D[i] = INFINITY;
D[0] = 0;
for (i=0; i<G->n(); i++) { // Process the vertices

v = minVertex(G, D);
if (D[v] == INFINITY) return; // Unreachable vertices
G->setMark(v, VISITED);
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > (D[v] + G->weight(v, w)))
D[w] = D[v] + G->weight(v, w);

}
}

Figure 11.17 An implementation for Dijkstra’s algorithm.

call it X. A shortest path from S to X must have its next-to-last vertex in S. Thus,

d(S,X) = min
U∈S

(d(S,U) + w(U,X)).

In other words, the shortest path from S to X is the minimum over all paths that go

from S to U, then have an edge from U to X, where U is some vertex in S.

This solution is usually referred to as Dijkstra’s algorithm. It works by main-

taining a distance estimate D(X) for all vertices X in V. The elements of D are ini-

tialized to the value INFINITE. Vertices are processed in order of distance from

S. Whenever a vertex V is processed, D(X) is updated for every neighbor X of V .

Figure 11.17 shows an implementation for Dijkstra’s algorithm. At the end, array D

will contain the shortest distance values.

There are two reasonable solutions to the key issue of finding the unvisited

vertex with minimum distance value during each pass through the main for loop.

The first method is simply to scan through the list of |V| vertices searching for the

minimum value, as follows:

int minVertex(Graph* G, int* D) { // Find min cost vertex
int i, v = -1;
// Initialize v to some unvisited vertex
for (i=0; i<G->n(); i++)

if (G->getMark(i) == UNVISITED) { v = i; break; }
for (i++; i<G->n(); i++) // Now find smallest D value

if ((G->getMark(i) == UNVISITED) && (D[i] < D[v]))
v = i;

return v;
}

Because this scan is done |V| times, and because each edge requires a constant-

time update to D, the total cost for this approach is Θ(|V|2 + |E|) = Θ(|V|2),
because |E| is in O(|V|2).
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The second method is to store unprocessed vertices in a min-heap ordered by

distance values. The next-closest vertex can be found in the heap in Θ(log |V|)
time. Every time we modify D(X), we could reorder X in the heap by deleting

and reinserting it. This is an example of a priority queue with priority update, as

described in Section 5.5. To implement true priority updating, we would need to

store with each vertex its array index within the heap. A simpler approach is to

add the new (smaller) distance value for a given vertex as a new record in the heap.

The smallest value for a given vertex currently in the heap will be found first, and

greater distance values found later will be ignored because the vertex will already

be marked as VISITED. The only disadvantage to repeatedly inserting distance

values is that it will raise the number of elements in the heap from Θ(|V|) to Θ(|E|)
in the worst case. The time complexity is Θ((|V| + |E|) log |E|), because for each

edge we must reorder the heap. Because the objects stored on the heap need to

know both their vertex number and their distance, we create a simple class for the

purpose called DijkElem, as follows. DijkElem is quite similar to the Edge

class used by the adjacency list representation.

class DijkElem {
public:

int vertex, distance;
DijkElem() { vertex = -1; distance = -1; }
DijkElem(int v, int d) { vertex = v; distance = d; }

};

Figure 11.18 shows an implementation for Dijkstra’s algorithm using the prior-

ity queue.

Using MinVertex to scan the vertex list for the minimum value is more ef-

ficient when the graph is dense, that is, when |E| approaches |V|2. Using a prior-

ity queue is more efficient when the graph is sparse because its cost is Θ((|V| +
|E|) log |E|). However, when the graph is dense, this cost can become as great as

Θ(|V|2 log |E|) = Θ(|V |2 log |V |).

Figure 11.19 illustrates Dijkstra’s algorithm. The start vertex is A. All vertices

except A have an initial value of ∞. After processing Vertex A, its neighbors have

their D estimates updated to be the direct distance from A. After processing C

(the closest vertex to A), Vertices B and E are updated to reflect the shortest path

through C. The remaining vertices are processed in order B, D, and E.

11.5 Minimum-Cost Spanning Trees

The minimum-cost spanning tree (MST) problem takes as input a connected,

undirected graph G, where each edge has a distance or weight measure attached.

The MST is the graph containing the vertices of G along with the subset of G’s

edges that (1) has minimum total cost as measured by summing the values for all of
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// Dijkstra’s shortest paths algorithm with priority queue
void Dijkstra(Graph* G, int* D, int s) {
int i, v, w; // v is current vertex
DijkElem temp;
DijkElem E[G->e()]; // Heap array with lots of space
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap<DijkElem, DDComp> H(E, 1, G->e()); // Create heap
for (int i=0; i<G->n(); i++) // Initialize

D[i] = INFINITY;
D[0] = 0;
for (i=0; i<G->n(); i++) { // Now, get distances

do {
if (H.size() == 0) return; // Nothing to remove
temp = H.removefirst();
v = temp.vertex;

} while (G->getMark(v) == VISITED);
G->setMark(v, VISITED);
if (D[v] == INFINITY) return; // Unreachable vertices
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > (D[v] + G->weight(v, w))) { // Update D
D[w] = D[v] + G->weight(v, w);
temp.distance = D[w]; temp.vertex = w;
H.insert(temp); // Insert new distance in heap

}
}

}

Figure 11.18 An implementation for Dijkstra’s algorithm using a priority queue.

A B C D E

Initial 0 ∞ ∞ ∞ ∞
Process A 0 10 3 20 ∞
Process C 0 5 3 20 18
Process B 0 5 3 10 18
Process D 0 5 3 10 18
Process E 0 5 3 10 18

Figure 11.19 A listing for the progress of Dijkstra’s algorithm operating on the

graph of Figure 11.16. The start vertex is A.
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Figure 11.20 A graph and its MST. All edges appear in the original graph.

Those edges drawn with heavy lines indicate the subset making up the MST. Note

that edge (C, F) could be replaced with edge (D, F) to form a different MST with

equal cost.

the edges in the subset, and (2) keeps the vertices connected. Applications where a

solution to this problem is useful include soldering the shortest set of wires needed

to connect a set of terminals on a circuit board, and connecting a set of cities by

telephone lines in such a way as to require the least amount of cable.

The MST contains no cycles. If a proposed MST did have a cycle, a cheaper

MST could be had by removing any one of the edges in the cycle. Thus, the MST

is a free tree with |V| − 1 edges. The name “minimum-cost spanning tree” comes

from the fact that the required set of edges forms a tree, it spans the vertices (i.e.,

it connects them together), and it has minimum cost. Figure 11.20 shows the MST

for an example graph.

11.5.1 Prim’s Algorithm

The first of our two algorithms for finding MSTs is commonly referred to as Prim’s

algorithm. Prim’s algorithm is very simple. Start with any Vertex N in the graph,

setting the MST to be N initially. Pick the least-cost edge connected to N. This

edge connects N to another vertex; call this M. Add Vertex M and Edge (N, M) to

the MST. Next, pick the least-cost edge coming from either N or M to any other

vertex in the graph. Add this edge and the new vertex it reaches to the MST. This

process continues, at each step expanding the MST by selecting the least-cost edge

from a vertex currently in the MST to a vertex not currently in the MST.

Prim’s algorithm is quite similar to Dijkstra’s algorithm for finding the single-

source shortest paths. The primary difference is that we are seeking not the next

closest vertex to the start vertex, but rather the next closest vertex to any vertex

currently in the MST. Thus we replace the lines

if (D[w] > (D[v] + G->weight(v, w)))

D[w] = D[v] + G->weight(v, w);
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void Prim(Graph* G, int* D, int s) { // Prim’s MST algorithm
int V[G->n()]; // Store closest vertex
int i, w;
for (int i=0; i<G->n(); i++) // Initialize

D[i] = INFINITY;
D[0] = 0;
for (i=0; i<G->n(); i++) { // Process the vertices

int v = minVertex(G, D);
G->setMark(v, VISITED);
if (v != s)

AddEdgetoMST(V[v], v); // Add edge to MST
if (D[v] == INFINITY) return; // Unreachable vertices
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > G->weight(v,w)) {
D[w] = G->weight(v,w); // Update distance
V[w] = v; // Where it came from

}
}

}

Figure 11.21 An implementation for Prim’s algorithm.

in Djikstra’s algorithm with the lines

if (D[w] > G->weight(v, w))

D[w] = G->weight(v, w);

in Prim’s algorithm.

Figure 11.21 shows an implementation for Prim’s algorithm that searches the

distance matrix for the next closest vertex. For each vertex I, when I is processed

by Prim’s algorithm, an edge going to I is added to the MST that we are building.

Array V[I] stores the previously visited vertex that is closest to Vertex I. This

information lets us know which edge goes into the MST when Vertex I is processed.

The implementation of Figure 11.21 also contains calls to AddEdgetoMST to

indicate which edges are actually added to the MST.

Alternatively, we can implement Prim’s algorithm using a priority queue to find

the next closest vertex, as shown in Figure 11.22. As with the priority queue version

of Dijkstra’s algorithm, the heap’s Elem type stores a DijkElem object.

Prim’s algorithm is an example of a greedy algorithm. At each step in the

for loop, we select the least-cost edge that connects some marked vertex to some

unmarked vertex. The algorithm does not otherwise check that the MST really

should include this least-cost edge. This leads to an important question: Does

Prim’s algorithm work correctly? Clearly it generates a spanning tree (because

each pass through the for loop adds one edge and one unmarked vertex to the

spanning tree until all vertices have been added), but does this tree have minimum

cost?

Theorem 11.1 Prim’s algorithm produces a minimum-cost spanning tree.
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// Prim’s MST algorithm: priority queue version
void Prim(Graph* G, int* D, int s) {

int i, v, w; // "v" is current vertex
int V[G->n()]; // V[I] stores I’s closest neighbor
DijkElem temp;
DijkElem E[G->e()]; // Heap array with lots of space
temp.distance = 0; temp.vertex = s;
E[0] = temp; // Initialize heap array
heap<DijkElem, DDComp> H(E, 1, G->e()); // Create heap
for (int i=0; i<G->n(); i++) // Initialize

D[i] = INFINITY;
D[0] = 0;
for (i=0; i<G->n(); i++) { // Now build MST

do {
if(H.size() == 0) return; // Nothing to remove
temp = H.removefirst();
v = temp.vertex;

} while (G->getMark(v) == VISITED);
G->setMark(v, VISITED);
if (v != s) AddEdgetoMST(V[v], v); // Add edge to MST
if (D[v] == INFINITY) return; // Ureachable vertex
for (w=G->first(v); w<G->n(); w = G->next(v,w))

if (D[w] > G->weight(v, w)) { // Update D
D[w] = G->weight(v, w);
V[w] = v; // Update who it came from
temp.distance = D[w]; temp.vertex = w;
H.insert(temp); // Insert new distance in heap

}
}

}

Figure 11.22 An implementation of Prim’s algorithm using a priority queue.

Proof: We will use a proof by contradiction. Let G = (V,E) be a graph for which

Prim’s algorithm does not generate an MST. Define an ordering on the vertices

according to the order in which they were added by Prim’s algorithm to the MST:

v0, v1, ..., vn−1. Let edge ei connect (vx, vi) for some x < i and i ≥ 1. Let ej be the

lowest numbered (first) edge added by Prim’s algorithm such that the set of edges

selected so far cannot be extended to form an MST for G. In other words, ej is the

first edge where Prim’s algorithm “went wrong.” Let T be the “true” MST. Call vp
(p < j) the vertex connected by edge ej , that is, ej = (vp, vj).

Because T is a tree, there exists some path in T connecting vp and vj . There

must be some edge e′ in this path connecting vertices vu and vw, with u < j and

w ≥ j. Because ej is not part of T, adding edge ej to T forms a cycle. Edge e′ must

be of lower cost than edge ej , because Prim’s algorithm did not generate an MST.

This situation is illustrated in Figure 11.23. However, Prim’s algorithm would have

selected the least-cost edge available. It would have selected e′, not ej . Thus, it is a

contradiction that Prim’s algorithm would have selected the wrong edge, and thus,

Prim’s algorithm must be correct. ✷
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Figure 11.23 Prim’s MST algorithm proof. The left oval contains that portion of

the graph where Prim’s MST and the “true” MST T agree. The right oval contains

the rest of the graph. The two portions of the graph are connected by (at least)

edges ej (selected by Prim’s algorithm to be in the MST) and e′ (the “correct”

edge to be placed in the MST). Note that the path from vw to vj cannot include

any marked vertex vi, i ≤ j, because to do so would form a cycle.

Example 11.3 For the graph of Figure 11.20, assume that we begin by

marking Vertex A. From A, the least-cost edge leads to Vertex C. Vertex C

and edge (A, C) are added to the MST. At this point, our candidate edges

connecting the MST (Vertices A and C) with the rest of the graph are (A, E),

(C, B), (C, D), and (C, F). From these choices, the least-cost edge from the

MST is (C, D). So we add Vertex D to the MST. For the next iteration, our

edge choices are (A, E), (C, B), (C, F), and (D, F). Because edges (C, F)

and (D, F) happen to have equal cost, it is an arbitrary decision as to which

gets selected. Say we pick (C, F). The next step marks Vertex E and adds

edge (F, E) to the MST. Following in this manner, Vertex B (through edge

(C, B)) is marked. At this point, the algorithm terminates.

11.5.2 Kruskal’s Algorithm

Our next MST algorithm is commonly referred to as Kruskal’s algorithm. Kruskal’s

algorithm is also a simple, greedy algorithm. First partition the set of vertices into

|V| equivalence classes (see Section 6.2), each consisting of one vertex. Then pro-

cess the edges in order of weight. An edge is added to the MST, and two equiva-

lence classes combined, if the edge connects two vertices in different equivalence

classes. This process is repeated until only one equivalence class remains.
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Example 11.4 Figure 11.24 shows the first three steps of Kruskal’s Alg-

orithm for the graph of Figure 11.20. Edge (C, D) has the least cost, and

because C and D are currently in separate MSTs, they are combined. We

next select edge (E, F) to process, and combine these vertices into a single

MST. The third edge we process is (C, F), which causes the MST contain-

ing Vertices C and D to merge with the MST containing Vertices E and F.

The next edge to process is (D, F). But because Vertices D and F are cur-

rently in the same MST, this edge is rejected. The algorithm will continue

on to accept edges (B, C) and (A, C) into the MST.

The edges can be processed in order of weight by using a min-heap. This is

generally faster than sorting the edges first, because in practice we need only visit

a small fraction of the edges before completing the MST. This is an example of

finding only a few smallest elements in a list, as discussed in Section 7.6.

The only tricky part to this algorithm is determining if two vertices belong to

the same equivalence class. Fortunately, the ideal algorithm is available for the

purpose — the UNION/FIND algorithm based on the parent pointer representation

for trees described in Section 6.2. Figure 11.25 shows an implementation for the

algorithm. Class KruskalElem is used to store the edges on the min-heap.

Kruskal’s algorithm is dominated by the time required to process the edges.

The differ and UNION functions are nearly constant in time if path compression

and weighted union is used. Thus, the total cost of the algorithm is Θ(|E| log |E|)
in the worst case, when nearly all edges must be processed before all the edges of

the spanning tree are found and the algorithm can stop. More often the edges of the

spanning tree are the shorter ones,and only about |V| edges must be processed. If

so, the cost is often close to Θ(|V| log |E|) in the average case.

11.6 Further Reading

Many interesting properties of graphs can be investigated by playing with the pro-

grams in the Stanford Graphbase. This is a collection of benchmark databases and

graph processing programs. The Stanford Graphbase is documented in [Knu94].

11.7 Exercises

11.1 Prove by induction that a graph with n vertices has at most n(n−1)/2 edges.

11.2 Prove the following implications regarding free trees.

(a) IF an undirected graph is connected and has no simple cycles, THEN

the graph has |V| − 1 edges.
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Figure 11.24 Illustration of the first three steps of Kruskal’s MST algorithm as

applied to the graph of Figure 11.20.

(b) IF an undirected graph has |V| − 1 edges and no cycles, THEN the

graph is connected.

11.3 (a) Draw the adjacency matrix representation for the graph of Figure 11.26.

(b) Draw the adjacency list representation for the same graph.

(c) If a pointer requires four bytes, a vertex label requires two bytes, and

an edge weight requires two bytes, which representation requires more

space for this graph?

(d) If a pointer requires four bytes, a vertex label requires one byte, and

an edge weight requires two bytes, which representation requires more

space for this graph?

11.4 Show the DFS tree for the graph of Figure 11.26, starting at Vertex 1.

11.5 Write a pseudocode algorithm to create a DFS tree for an undirected, con-

nected graph starting at a specified vertex V .
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class KruskElem { // An element for the heap
public:

int from, to, distance; // The edge being stored
KruskElem() { from = -1; to = -1; distance = -1; }
KruskElem(int f, int t, int d)

{ from = f; to = t; distance = d; }
};

void Kruskel(Graph* G) { // Kruskal’s MST algorithm
ParPtrTree A(G->n()); // Equivalence class array
KruskElem E[G->e()]; // Array of edges for min-heap
int i;
int edgecnt = 0;
for (i=0; i<G->n(); i++) // Put the edges on the array

for (int w=G->first(i); w<G->n(); w = G->next(i,w)) {
E[edgecnt].distance = G->weight(i, w);
E[edgecnt].from = i;
E[edgecnt++].to = w;

}
// Heapify the edges
heap<KruskElem, Comp> H(E, edgecnt, edgecnt);
int numMST = G->n(); // Initially n equiv classes
for (i=0; numMST>1; i++) { // Combine equiv classes

KruskElem temp;
temp = H.removefirst(); // Get next cheapest edge
int v = temp.from; int u = temp.to;
if (A.differ(v, u)) { // If in different equiv classes

A.UNION(v, u); // Combine equiv classes
AddEdgetoMST(temp.from, temp.to); // Add edge to MST
numMST--; // One less MST

}
}

}

Figure 11.25 An implementation for Kruskal’s algorithm.

11.6 Show the BFS tree for the graph of Figure 11.26, starting at Vertex 1.

11.7 Write a pseudocode algorithm to create a BFS tree for an undirected, con-

nected graph starting at a specified vertex V .

11.8 The BFS topological sort algorithm can report the existence of a cycle if one

is encountered. Modify this algorithm to print the vertices possibly appearing

in cycles (if there are any cycles).

11.9 Explain why, in the worst case, Dijkstra’s algorithm is (asymptotically) as

efficient as any algorithm for finding the shortest path from some vertex I to

another vertex J.

11.10 Show the shortest paths generated by running Dijkstra’s shortest-paths alg-

orithm on the graph of Figure 11.26, beginning at Vertex 4. Show the D

values as each vertex is processed, as in Figure 11.19.

11.11 Modify the algorithm for single-source shortest paths to actually store and

return the shortest paths rather than just compute the distances.



Sec. 11.7 Exercises 411

2 5

420

10
3

6
11

3
3

15 5

10

2

1

Figure 11.26 Example graph for Chapter 11 exercises.

11.12 The root of a DAG is a vertex R such that every vertex of the DAG can be

reached by a directed path from R. Write an algorithm that takes a directed

graph as input and determines the root (if there is one) for the graph. The

running time of your algorithm should be Θ(|V|+ |E|).

11.13 Write an algorithm to find the longest path in a DAG, where the length of

the path is measured by the number of edges that it contains. What is the

asymptotic complexity of your algorithm?

11.14 Write an algorithm to determine whether a directed graph of |V| vertices

contains a cycle. Your algorithm should run in Θ(|V|+ |E|) time.

11.15 Write an algorithm to determine whether an undirected graph of |V| vertices

contains a cycle. Your algorithm should run in Θ(|V|) time.

11.16 The single-destination shortest-paths problem for a directed graph is to find

the shortest path from every vertex to a specified vertex V . Write an algorithm

to solve the single-destination shortest-paths problem.

11.17 List the order in which the edges of the graph in Figure 11.26 are visited

when running Prim’s MST algorithm starting at Vertex 3. Show the final

MST.

11.18 List the order in which the edges of the graph in Figure 11.26 are visited

when running Kruskal’s MST algorithm. Each time an edge is added to the

MST, show the result on the equivalence array, (e.g., show the array as in

Figure 6.7).

11.19 Write an algorithm to find a maximum cost spanning tree, that is, the span-

ning tree with highest possible cost.

11.20 When can Prim’s and Kruskal’s algorithms yield different MSTs?

11.21 Prove that, if the costs for the edges of Graph G are distinct, then only one

MST exists for G.

11.22 Does either Prim’s or Kruskal’s algorithm work if there are negative edge

weights?

11.23 Consider the collection of edges selected by Dijkstra’s algorithm as the short-

est paths to the graph’s vertices from the start vertex. Do these edges form
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a spanning tree (not necessarily of minimum cost)? Do these edges form an

MST? Explain why or why not.

11.24 Prove that a tree is a bipartite graph.

11.25 Prove that any tree (i.e., a connected, undirected graph with no cycles) can

be two-colored. (A graph can be two colored if every vertex can be assigned

one of two colors such that no adjacent vertices have the same color.)

11.26 Write an algorithm that determines if an arbitrary undirected graph is a bipar-

tite graph. If the graph is bipartite, then your algorithm should also identify

the vertices as to which of the two partitions each belongs to.

11.8 Projects

11.1 Design a format for storing graphs in files. Then implement two functions:

one to read a graph from a file and the other to write a graph to a file. Test

your functions by implementing a complete MST program that reads an undi-

rected graph in from a file, constructs the MST, and then writes to a second

file the graph representing the MST.

11.2 An undirected graph need not explicitly store two separate directed edges to

represent a single undirected edge. An alternative would be to store only a

single undirected edge (I, J) to connect Vertices I and J. However, what if the

user asks for edge (J, I)? We can solve this problem by consistently storing

the edge such that the lesser of I and J always comes first. Thus, if we have

an edge connecting Vertices 5 and 3, requests for edge (5, 3) and (3, 5) both

map to (3, 5) because 3 < 5.

Looking at the adjacency matrix, we notice that only the lower triangle of

the array is used. Thus we could cut the space required by the adjacency

matrix from |V|2 positions to |V|(|V|−1)/2 positions. Read Section 12.2 on

triangular matrices. The re-implement the adjacency matrix representation

of Figure 11.6 to implement undirected graphs using a triangular array.

11.3 While the underlying implementation (whether adjacency matrix or adja-

cency list) is hidden behind the graph ADT, these two implementations can

have an impact on the efficiency of the resulting program. For Dijkstra’s

shortest paths algorithm, two different implementations were given in Sec-

tion 11.4.1 that provide different ways for determining the next closest vertex

at each iteration of the algorithm. The relative costs of these two variants

depend on who sparse or dense the graph is. They might also depend on

whether the graph is implemented using an adjacency list or adjacency ma-

trix.

Design and implement a study to compare the effects on performance for

three variables: (i) the two graph representations (adjacency list and adja-

cency matrix); (ii) the two implementations for Djikstra’s shortest paths alg-

orithm (searching the table of vertex distances or using a priority queue to
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track the distances), and (iii) sparse versus dense graphs. Be sure to test your

implementations on a variety of graphs that are sufficiently large to generate

meaningful times.

11.4 The example implementations for DFS and BFS show calls to functions

PreVisit and PostVisit. Re-implement the BFS and DFS functions

to make use of the visitor design pattern to handle the pre/post visit function-

ality.

11.5 Write a program to label the connected components for an undirected graph.

In other words, all vertices of the first component are given the first com-

ponent’s label, all vertices of the second component are given the second

component’s label, and so on. Your algorithm should work by defining any

two vertices connected by an edge to be members of the same equivalence

class. Once all of the edges have been processed, all vertices in a given equiv-

alence class will be connected. Use the UNION/FIND implementation from

Section 6.2 to implement equivalence classes.
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