8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.
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8.3 Fibonacci Heaps

Additional implementation details:
» Every node x stores its degree in a field x.degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.
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8.3 Fibonacci Heaps

The potential function:
» t(S) denotes the number of trees in the heap.

» m(S) denotes the number of marked nodes.

» We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.
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8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

345



8.3 Fibonacci Heaps

S. minimum ()

» Access through the min-pointer.

v

Actual cost O(1).

v

v

Amortized cost O(1).
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No change in potential.
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- In the figure below the dashed edges are

83 FibonaCCi HeapS replaced by red edges.

S.merge(S’)

» Merge the root lists.
» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.
» Hence, amortized cost is O(1).
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'x is inserted next to the min-pointer as

8.3 Fibonacci HeapS | this is our entry point into the root-list.

S. insert(x)
» Create a new tree containing x.
» Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
» Amortized costis c + O(1) = O(1).
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' D(min) is the number of !

83 FibonaCCi HeapS ! children of the node that E

I P
| stores the minimum.

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (¢t + D(min)) - O(1).
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' D(min) is the number of !

83 FibonaCCi HeapS ! children of the node that E

I P
| stores the minimum.

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (¢t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).
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8.3 Fibonacci Heaps

Consolidate:

current

: During the consolidation we traverse the root list. Whenever we discover two
1 trees that have the same degree we merge these trees. In order to efficiently
: check whether two trees have the same degree, we use an array that contains
 for every degree value d a pointer to a tree left of the current pointer whose root

1 has degree d (if such a tree exist).
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current / l
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8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current / l
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current
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8.3 Fibonacci Heaps

Consolidate:

current k\/'
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8.3 Fibonacci Heaps

Consolidate:

current k\/'
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8.3 Fibonacci Heaps

Consolidate:
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8.3 Fib i H 't and t’ denote the number of trees before and
L] Ibonacci eaps 1 after the delete-min() operation, respectively.
: Dy, is an upper bound on the degree (i.e., num-

! ber of children) of a tree node.
Actual cost for delete-min() b

» At most D, +t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (D4, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (D, +t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.

» Therefore A® <D, +1—¢;

» We can pay ¢ - (t — Dy, — 1) from the potential decrease.

» The amortized cost is
c1-Dp+t)—c-(t—Dyp-1)

<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc=cy .
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8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy, <logn.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.

Nothing else to do.
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Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

353
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.
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Fibonacci Heaps: decrease-key(handle h, v)
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Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.

» Cut the parent edge of x, and make x into a root.

» Adjust min-pointers, if necessary. ' Marking a node can be viewed as a |

A 1 first step towards becoming a
>
Execute the following:  root. The first time x loses a child

p — parent[x]; | itis marked; the second time it

while (p is marked) | 95 2 elle [ 5 i e 1l &l [T |

pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp;

if p is unmarked and not a root mark it;
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Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢».

Amortized cost:
» t'=t+4,as every cut creates one new root.

»m' ' <m—-{L—-1)+1=m-"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

» AP <l +2(-0+2)=4-1 R — :

t and t": number of
| trees before and after
| operation.
co(l+1)+c(4d—-¥) < (c2—c)l+4c+c2 = O(1),! mand m’: number of
, marked nodes before
if c > Co. 1 and after operation.
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Delete node

H. delete(x):
» decrease value of x to —co.

» delete-min.

Amortized cost: @ (Dy,)
» O(1) for decrease-key.
» O(D,) for delete-min.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

356



8.3 Fibonacci Heaps

Lemma 1
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(yi) Z{ i-2 ifi>1

:The marking process is very important for the proof of
1 this lemma. It ensures that a node can have lost at most
: one child since the last time it became a non-root node.
| When losing a first child the node gets marked; when
1 losing the second child it is cut from the parent and
: made into a root.
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8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.
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8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so=1and s; = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits

children.
k
Sk=2+ Z size(y;)
i=2
k
> 2+ Z Si—2

i=2

k-2
=2+ Z Si
i=0
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i i '$ = (1 + /5) denotes the golden ratio. !
8.3 Fibonacci Heaps | ote that 62 1 1 b |

Definition 2
Consider the following non-standard Fibonacci type sequence:

1 ifk=0

Fr=4 2 ifk=1
Fy_q1 +Fx_» if k=2

Facts:
1. Fk>c/>k
2. Fork =2: F =2+ Y52 F.

The above facts can be easily proved by induction. From this it
follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.
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k=0: 1=Fy=®%=1

7. _ 1 - P2

k=1: 2=F >o! ~1.61

k-2,k-1— ki Fy = Fx_q + Fg_p = &K1 4+ k-2 = pk=2(p + 1) = pk

k=2: 3=F=2+1=2+F
k-1— k: Fy=F 1 +F =2+ F+F_,=2+3CF
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