8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

m Ernst Mayr, Harald Racke

342

8.3 Fibonacci Heaps

Additional implementation details:
» Every node x stores its degree in a field x.degree. Note that
this can be updated in constant time when adding a child to
X.
» Every node stores a boolean value x. marked that specifies
whether x is marked or not.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

343

8.3 Fibonacci Heaps

The potential function:
» t(S) denotes the number of trees in the heap.

» m(S) denotes the number of marked nodes.

» We use the potential function ®(S) = t(S) + 2m(S).

The potential is ®(S) =5+2-3 =11.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

344

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant
amount of work, where the constant is chosen “big enough” (to
take care of the constants that occur).

To make this more explicit we use ¢ to denote the amount of
work that a unit of potential can pay for.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

345

8.3 Fibonacci Heaps

S. minimum ()

» Access through the min-pointer.

v

Actual cost O(1).

v

v

Amortized cost O(1).

m Ernst Mayr, Harald Racke

No change in potential.

8.3 Fibonacci Heaps

346

- In the figure below the dashed edges are

83 FibonaCCi HeapS replaced by red edges.

S.merge(S’)

» Merge the root lists.
» Adjust the min-pointer

Running time:
» Actual cost O(1).
» No change in potential.
» Hence, amortized cost is O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

I
: e The minimum of the left heap becomes
: the new minimum of the merged heap.

347

'x is inserted next to the min-pointer as

8.3 Fibonacci HeapS | this is our entry point into the root-list.

S. insert(x)
» Create a new tree containing x.
» Insert x into the root-list.
» Update min-pointer, if necessary.

Running time:
» Actual cost O(1).
» Change in potential is +1.
» Amortized costis c + O(1) = O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 348

' D(min) is the number of !

83 FibonaCCi HeapS ! children of the node that E

I P
| stores the minimum.

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (¢t + D(min)) - O(1).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 349

' D(min) is the number of !

83 FibonaCCi HeapS ! children of the node that E

I P
| stores the minimum.

S. delete-min(x)

» Delete minimum; add child-trees to heap;
time: D(min) - O(1).

» Update min-pointer; time: (¢t + D(min)) - O(1).

» Consolidate root-list so that no roots have the same degree.
Time t - O(1) (see next slide).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 349

8.3 Fibonacci Heaps

Consolidate:

current

: During the consolidation we traverse the root list. Whenever we discover two
1 trees that have the same degree we merge these trees. In order to efficiently
: check whether two trees have the same degree, we use an array that contains
 for every degree value d a pointer to a tree left of the current pointer whose root

1 has degree d (if such a tree exist).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

350

8.3 Fibonacci Heaps

Consolidate:

current

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

350

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current / l

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350

8.3 Fibonacci Heaps

Consolidate:
o[1]2]3
?lelqle°
current / l

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350

8.3 Fibonacci Heaps

Consolidate:

current

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

350

8.3 Fibonacci Heaps

Consolidate:

current

m Ernst Mayr, Harald Racke

8.3 Fibonacci Heaps

350

8.3 Fibonacci Heaps

Consolidate:

current k\/'

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350

8.3 Fibonacci Heaps

Consolidate:

current k\/'

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 350

8.3 Fibonacci Heaps

Consolidate:

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

350

8.3 Fib i H 't and t’ denote the number of trees before and
L] Ibonacci eaps 1 after the delete-min() operation, respectively.
: Dy, is an upper bound on the degree (i.e., num-

! ber of children) of a tree node.
Actual cost for delete-min() b

» At most D, +t elements in root-list before consolidate.

» Actual cost for a delete-min is at most O(1) - (D4, + t).
Hence, there exists ¢y s.t. actual costis at most ¢y - (D, +t).

Amortized cost for delete-min()

» t' < Dy, + 1 as degrees are different after consolidating.

» Therefore A® <D, +1—¢;

» We can pay ¢ - (t — Dy, — 1) from the potential decrease.

» The amortized cost is
c1-Dp+t)—c-(t—Dyp-1)

<(c1+c)Dp+(c1—c)t+c<2c(Dy+1)<0O(Dy)

forc=cy .

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 351

8.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial
trees (for example only singleton vertices) then the output will
be a set of distinct binomial trees, and, hence, the Fibonacci
heap will be (more or less) a Binomial heap right after the
consolidation.

If we do not have delete or decrease-key operations then
Dy, <logn.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 352

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property

> Just decrease the key-value of element referenced by h.

Nothing else to do.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

353

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

353

Fibonacci Heaps: decrease-key(handle h, v)

Case 2: heap-property is violated, but parent is not marked
» Decrease key-value of element x reference by h.
> If the heap-property is violated, cut the parent edge of x,
and make x into a root.
» Adjust min-pointers, if necessary.
» Mark the (previous) parent of x (unless it’s a root).

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

353

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

353

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.
» Cut the parent edge of x, and make x into a root.
» Adjust min-pointers, if necessary.
» Continue cutting the parent until you arrive at an unmarked
node.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

353

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked
» Decrease key-value of element x reference by h.

» Cut the parent edge of x, and make x into a root.

» Adjust min-pointers, if necessary. ' Marking a node can be viewed as a |

A 1 first step towards becoming a
>
Execute the following: root. The first time x loses a child

p — parent[x]; | itis marked; the second time it

while (p is marked) | 95 2 elle [5 i e 1l &l [T |

pp — parent[p];
cut of p; make it into a root; unmark it;
p < pp;

if p is unmarked and not a root mark it;

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 354

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
» Constant cost for decreasing the value.
» Constant cost for each of £ cuts.

» Hence, cost is at most ¢» - (£ + 1), for some constant ¢».

Amortized cost:
» t'=t+4,as every cut creates one new root.

»m' ' <m—-{L—-1)+1=m-"L+ 2, since all but the first cut
unmarks a node; the last cut may mark a node.

» AP <l +2(-0+2)=4-1 R — :

t and t": number of
| trees before and after
| operation.
co(l+1)+c(4d—-¥) < (c2—c)l+4c+c2 = O(1),! mand m’: number of
, marked nodes before
if c > Co. 1 and after operation.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 355

» Amortized cost is at most

Delete node

H. delete(x):
» decrease value of x to —co.

» delete-min.

Amortized cost: @ (Dy,)
» O(1) for decrease-key.
» O(D,) for delete-min.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

356

8.3 Fibonacci Heaps

Lemma 1
Let x be a node with degree k and let y1,..., vy denote the
children of x in the order that they were linked to x. Then

0 ifi=1

degree(yi) Z{ i-2 ifi>1

:The marking process is very important for the proof of
1 this lemma. It ensures that a node can have lost at most
: one child since the last time it became a non-root node.
| When losing a first child the node gets marked; when
1 losing the second child it is cut from the parent and
: made into a root.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

357

8.3 Fibonacci Heaps

Proof

» When y; was linked to x, at least y1,...,y;_1 were already
linked to x.

» Hence, at this time degree(x) > i — 1, and therefore also

degree(y;) = i — 1 as the algorithm links nodes of equal
degree only.

» Since, then y; has lost at most one child.
» Therefore, degree(y;) > i — 2.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

358

8.3 Fibonacci Heaps
> Let sp be the minimum possible size of a sub-tree rooted at
a node of degree k that can occur in a Fibonacci heap.
» s, monotonically increases with k
» so=1and s; = 2.
Let x be a degree k node of size s, and let y1,..., Vi beits

children.
k
Sk=2+ Z size(y;)
i=2
k
> 2+ Z Si—2

i=2

k-2
=2+ Z Si
i=0

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 359

i i '$ = (1 + /5) denotes the golden ratio. !
8.3 Fibonacci Heaps | ote that 62 1 1 b |

Definition 2
Consider the following non-standard Fibonacci type sequence:

1 ifk=0

Fr=4 2 ifk=1
Fy_q1 +Fx_» if k=2

Facts:
1. Fk>c/>k
2. Fork =2: F =2+ Y52 F.

The above facts can be easily proved by induction. From this it
follows that s > Fy > ¢X, which gives that the maximum degree
in a Fibonacci heap is logarithmic.

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke 360

k=0: 1=Fy=®%=1

7. _ 1 - P2

k=1: 2=F >o! ~1.61

k-2,k-1— ki Fy = Fx_q + Fg_p = &K1 4+ k-2 = pk=2(p + 1) = pk

k=2: 3=F=2+1=2+F
k-1— k: Fy=F 1 +F =2+ F+F_,=2+3CF

‘m 8.3 Fibonacci Heaps
Ernst Mayr, Harald Racke

361

	Fibonacci Heaps

