CS 21: Red Black Tree Deleton ~ February 25, 1998

Deletion from Red-Black
Trees

222222

CS 21: Red Black Tree Deletion February 25, 1998

Setting Up Deletion

As with binary search trees, we can always

delete a node that has at least one external child

If the key to be deleted is stored at a node that
has no external children, we move there the key

of its inorder predecessor (or successor), and

delete that node instead

Example: to delete key 7, we move key 5 to
node u, and delete node v

erm 12.236 .

CS 21: Red Black Tree Deletion February 25, 1998

Deletion Algorithm

1. Removerwith a removeAboveExternal of
eration

2. If v wasred, coloru black. Else, colou
double black

y u
V .
u u

3. While adouble blackedge exists, perforn
one of the following actions ...

—

12.237 .

CS 21: Red Black Tree Deletion February 25, 1998

How to Eliminate the
Double Black Edge

* The Intuitive idea Is to perform &dlor
compensatiof

* Find a red edge nearby, and change th
pair (red, double black) into
(black , black)

e As for insertion, we have two cases:
e restructuring, and

* recoloring (demotion inverse of
promotion)

* Restructuring resolves the problem lo-
cally, whilerecoloringmay propagate it
two levels up

« Slightly more complicated than inser-
tion, since two restructurings may occut
(instead of just one)

erm

c

12.238 .

CS 21: Red Black Tree Deletion February 25, 1998

Case 1: black siblingwith ared
child

e If sibling is black and one of its children is
red, perform arestructuring

o

P Z
v s)]
: Y

12.239

CS 21: Red Black Tree Deletion February 25, 1998

(2,4) Tree Interpretation

erm

12.240 .

CS 21: Red Black Tree Deletion February 25, 1998

Case 2: black sibling with
black childern

e If sibling and its children arbklack, per-
form arecoloring

* |f parent becomedouble black, continue
upward

erm 12.241 .

CS 21: Red Black Tree Deletion February 25, 1998

(2,4) Tree Interpretation

20 30

erm 12.242 .

CS 21: Red Black Tree Deletion February 25, 1998

Case 3: red sibling

o If sibling Is red, perform aadjustment

* Now the sibling idlack and one the of pre-
vious cases applies

o If the next case Is recoloring, there is no
propagation upward (parent is no®)

LR

12.243 .

CS 21: Red Black Tree Deletion February 25, 1998

How About an Example?

Remove 9

CS 21: Red Black Tree Deletion February 25, 1998

Example

What do we know?

 Sibling is black with black
children

What do we do?
» Recoloring

erm 12.245 .

CS 21: Red Black Tree Deletion February 25, 1998

Example

Delete 8
* no double black

erm 12.246 .

CS 21: Red Black Tree Deletion February 25, 1998

Example

Delete 7
e Restructuring

erm 12.247

CS 21: Red Black Tree Deletion

February 25, 1998

Example

erm

12.248

CS 21: Red Black Tree Deletion

February 25, 1998

Example

erm

12.249

CS 21: Red Black Tree Deletion February 25, 1998

Time Complexity of Deletion

Take a guess at the time complexity of deletig
In ared-black tree . . .

DN

erm 12.250 i

CS 21: Red Black Tree Deletion February 25, 1998

logN

What else could it be?!

erm 12.251 .

CS 21: Red Black Tree Deletion February 25, 1998

Colors and Weights

Color Welight

red 0
black 1
double black

Y @
Every root-to-leaf path has the same weight

There are no two consecutiveed edges

* Therefore, the length of any root-to-leaf
path is at most twice the weight

erm 12.252 .

CS 21: Red Black Tree Deletion February 25, 1998

Bottom-Up Rebalancing
of Red-Black Trees

* An insertion or deletion may cause a log
perturbation(two consecutiveededges, of
adouble-black edge)

e The perturbation is either
 resolved locallyrestructuring), or
e propagatedo a higher level in the tre

by recoloring (promotion or demotion)

* O(1) time for a restructuring or recolorin

« At most one restructuring per insertion, a
at most two restructurings per deletion

* O(log N) recolorings

e Total time: O(log N)

al

c

0
nd

erm 12.253 .

Operation Time

Search O(log N)

Insert O(log N)
Delete O(log N)

