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Data Structures and Algorithms

How many cities with more than 250,000 people lie within 500 miles of Dallas,

Texas? How many people in my company make over $100,000 per year? Can we

connect all of our telephone customers with less than 1,000 miles of cable? To

answer questions like these, it is not enough to have the necessary information. We

must organize that information in a way that allows us to find the answers in time

to satisfy our needs.

Representing information is fundamental to computer science. The primary

purpose of most computer programs is not to perform calculations, but to store and

retrieve information — usually as fast as possible. For this reason, the study of

data structures and the algorithms that manipulate them is at the heart of computer

science. And that is what this book is about — helping you to understand how to

structure information to support efficient processing.

This book has three primary goals. The first is to present the commonly used

data structures. These form a programmer’s basic data structure “toolkit.” For

many problems, some data structure in the toolkit provides a good solution.

The second goal is to introduce the idea of tradeoffs and reinforce the concept

that there are costs and benefits associated with every data structure. This is done

by describing, for each data structure, the amount of space and time required for

typical operations.

The third goal is to teach how to measure the effectiveness of a data structure or

algorithm. Only through such measurement can you determine which data structure

in your toolkit is most appropriate for a new problem. The techniques presented

also allow you to judge the merits of new data structures that you or others might

invent.

There are often many approaches to solving a problem. How do we choose

between them? At the heart of computer program design are two (sometimes con-

flicting) goals:

1. To design an algorithm that is easy to understand, code, and debug.

2. To design an algorithm that makes efficient use of the computer’s resources.
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Ideally, the resulting program is true to both of these goals. We might say that

such a program is “elegant.” While the algorithms and program code examples pre-

sented here attempt to be elegant in this sense, it is not the purpose of this book to

explicitly treat issues related to goal (1). These are primarily concerns of the disci-

pline of Software Engineering. Rather, this book is mostly about issues relating to

goal (2).

How do we measure efficiency? Chapter 3 describes a method for evaluating

the efficiency of an algorithm or computer program, called asymptotic analysis.

Asymptotic analysis also allows you to measure the inherent difficulty of a problem.

The remaining chapters use asymptotic analysis techniques to estimate the time cost

for every algorithm presented. This allows you to see how each algorithm compares

to other algorithms for solving the same problem in terms of its efficiency.

This first chapter sets the stage for what is to follow, by presenting some higher-

order issues related to the selection and use of data structures. We first examine the

process by which a designer selects a data structure appropriate to the task at hand.

We then consider the role of abstraction in program design. We briefly consider

the concept of a design pattern and see some examples. The chapter ends with an

exploration of the relationship between problems, algorithms, and programs.

1.1 A Philosophy of Data Structures

1.1.1 The Need for Data Structures

You might think that with ever more powerful computers, program efficiency is

becoming less important. After all, processor speed and memory size still con-

tinue to improve. Won’t any efficiency problem we might have today be solved by

tomorrow’s hardware?

As we develop more powerful computers, our history so far has always been to

use that additional computing power to tackle more complex problems, be it in the

form of more sophisticated user interfaces, bigger problem sizes, or new problems

previously deemed computationally infeasible. More complex problems demand

more computation, making the need for efficient programs even greater. Worse yet,

as tasks become more complex, they become less like our everyday experience.

Today’s computer scientists must be trained to have a thorough understanding of the

principles behind efficient program design, because their ordinary life experiences

often do not apply when designing computer programs.

In the most general sense, a data structure is any data representation and its

associated operations. Even an integer or floating point number stored on the com-

puter can be viewed as a simple data structure. More commonly, people use the

term “data structure” to mean an organization or structuring for a collection of data

items. A sorted list of integers stored in an array is an example of such a structuring.
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Given sufficient space to store a collection of data items, it is always possible to

search for specified items within the collection, print or otherwise process the data

items in any desired order, or modify the value of any particular data item. Thus,

it is possible to perform all necessary operations on any data structure. However,

using the proper data structure can make the difference between a program running

in a few seconds and one requiring many days.

A solution is said to be efficient if it solves the problem within the required

resource constraints. Examples of resource constraints include the total space

available to store the data — possibly divided into separate main memory and disk

space constraints — and the time allowed to perform each subtask. A solution is

sometimes said to be efficient if it requires fewer resources than known alternatives,

regardless of whether it meets any particular requirements. The cost of a solution is

the amount of resources that the solution consumes. Most often, cost is measured

in terms of one key resource such as time, with the implied assumption that the

solution meets the other resource constraints.

It should go without saying that people write programs to solve problems. How-

ever, it is crucial to keep this truism in mind when selecting a data structure to solve

a particular problem. Only by first analyzing the problem to determine the perfor-

mance goals that must be achieved can there be any hope of selecting the right data

structure for the job. Poor program designers ignore this analysis step and apply a

data structure that they are familiar with but which is inappropriate to the problem.

The result is typically a slow program. Conversely, there is no sense in adopting

a complex representation to “improve” a program that can meet its performance

goals when implemented using a simpler design.

When selecting a data structure to solve a problem, you should follow these

steps.

1. Analyze your problem to determine the basic operations that must be sup-

ported. Examples of basic operations include inserting a data item into the

data structure, deleting a data item from the data structure, and finding a

specified data item.

2. Quantify the resource constraints for each operation.

3. Select the data structure that best meets these requirements.

This three-step approach to selecting a data structure operationalizes a data-

centered view of the design process. The first concern is for the data and the op-

erations to be performed on them, the next concern is the representation for those

data, and the final concern is the implementation of that representation.

Resource constraints on certain key operations, such as search, inserting data

records, and deleting data records, normally drive the data structure selection pro-

cess. Many issues relating to the relative importance of these operations are ad-

dressed by the following three questions, which you should ask yourself whenever

you must choose a data structure:
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• Are all data items inserted into the data structure at the beginning, or are

insertions interspersed with other operations? Static applications (where the

data are loaded at the beginning and never change) typically require only

simpler data structures to get an efficient implementation than do dynamic

applications.

• Can data items be deleted? If so, this will probably make the implementation

more complicated.

• Are all data items processed in some well-defined order, or is search for spe-

cific data items allowed? “Random access” search generally requires more

complex data structures.

1.1.2 Costs and Benefits

Each data structure has associated costs and benefits. In practice, it is hardly ever

true that one data structure is better than another for use in all situations. If one

data structure or algorithm is superior to another in all respects, the inferior one

will usually have long been forgotten. For nearly every data structure and algorithm

presented in this book, you will see examples of where it is the best choice. Some

of the examples might surprise you.

A data structure requires a certain amount of space for each data item it stores,

a certain amount of time to perform a single basic operation, and a certain amount

of programming effort. Each problem has constraints on available space and time.

Each solution to a problem makes use of the basic operations in some relative pro-

portion, and the data structure selection process must account for this. Only after a

careful analysis of your problem’s characteristics can you determine the best data

structure for the task.

Example 1.1 A bank must support many types of transactions with its

customers, but we will examine a simple model where customers wish to

open accounts, close accounts, and add money or withdraw money from

accounts. We can consider this problem at two distinct levels: (1) the re-

quirements for the physical infrastructure and workflow process that the

bank uses in its interactions with its customers, and (2) the requirements

for the database system that manages the accounts.

The typical customer opens and closes accounts far less often than he

or she accesses the account. Customers are willing to wait many minutes

while accounts are created or deleted but are typically not willing to wait

more than a brief time for individual account transactions such as a deposit

or withdrawal. These observations can be considered as informal specifica-

tions for the time constraints on the problem.

It is common practice for banks to provide two tiers of service. Hu-

man tellers or automated teller machines (ATMs) support customer access
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to account balances and updates such as deposits and withdrawals. Spe-

cial service representatives are typically provided (during restricted hours)

to handle opening and closing accounts. Teller and ATM transactions are

expected to take little time. Opening or closing an account can take much

longer (perhaps up to an hour from the customer’s perspective).

From a database perspective, we see that ATM transactions do not mod-

ify the database significantly. For simplicity, assume that if money is added

or removed, this transaction simply changes the value stored in an account

record. Adding a new account to the database is allowed to take several

minutes. Deleting an account need have no time constraint, because from

the customer’s point of view all that matters is that all the money be re-

turned (equivalent to a withdrawal). From the bank’s point of view, the

account record might be removed from the database system after business

hours, or at the end of the monthly account cycle.

When considering the choice of data structure to use in the database

system that manages customer accounts, we see that a data structure that

has little concern for the cost of deletion, but is highly efficient for search

and moderately efficient for insertion, should meet the resource constraints

imposed by this problem. Records are accessible by unique account number

(sometimes called an exact-match query). One data structure that meets

these requirements is the hash table described in Chapter 9.4. Hash tables

allow for extremely fast exact-match search. A record can be modified

quickly when the modification does not affect its space requirements. Hash

tables also support efficient insertion of new records. While deletions can

also be supported efficiently, too many deletions lead to some degradation

in performance for the remaining operations. However, the hash table can

be reorganized periodically to restore the system to peak efficiency. Such

reorganization can occur offline so as not to affect ATM transactions.

Example 1.2 A company is developing a database system containing in-

formation about cities and towns in the United States. There are many

thousands of cities and towns, and the database program should allow users

to find information about a particular place by name (another example of

an exact-match query). Users should also be able to find all places that

match a particular value or range of values for attributes such as location or

population size. This is known as a range query.

A reasonable database system must answer queries quickly enough to

satisfy the patience of a typical user. For an exact-match query, a few sec-

onds is satisfactory. If the database is meant to support range queries that

can return many cities that match the query specification, the entire opera-
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tion may be allowed to take longer, perhaps on the order of a minute. To

meet this requirement, it will be necessary to support operations that pro-

cess range queries efficiently by processing all cities in the range as a batch,

rather than as a series of operations on individual cities.

The hash table suggested in the previous example is inappropriate for

implementing our city database, because it cannot perform efficient range

queries. The B+-tree of Section 10.5.1 supports large databases, insertion

and deletion of data records, and range queries. However, a simple linear in-

dex as described in Section 10.1 would be more appropriate if the database

is created once, and then never changed, such as an atlas distributed on a

CD or accessed from a website.

1.2 Abstract Data Types and Data Structures

The previous section used the terms “data item” and “data structure” without prop-

erly defining them. This section presents terminology and motivates the design

process embodied in the three-step approach to selecting a data structure. This mo-

tivation stems from the need to manage the tremendous complexity of computer

programs.

A type is a collection of values. For example, the Boolean type consists of the

values true and false. The integers also form a type. An integer is a simple

type because its values contain no subparts. A bank account record will typically

contain several pieces of information such as name, address, account number, and

account balance. Such a record is an example of an aggregate type or composite

type. A data item is a piece of information or a record whose value is drawn from

a type. A data item is said to be a member of a type.

A data type is a type together with a collection of operations to manipulate

the type. For example, an integer variable is a member of the integer data type.

Addition is an example of an operation on the integer data type.

A distinction should be made between the logical concept of a data type and its

physical implementation in a computer program. For example, there are two tra-

ditional implementations for the list data type: the linked list and the array-based

list. The list data type can therefore be implemented using a linked list or an ar-

ray. Even the term “array” is ambiguous in that it can refer either to a data type

or an implementation. “Array” is commonly used in computer programming to

mean a contiguous block of memory locations, where each memory location stores

one fixed-length data item. By this meaning, an array is a physical data structure.

However, array can also mean a logical data type composed of a (typically ho-

mogeneous) collection of data items, with each data item identified by an index

number. It is possible to implement arrays in many different ways. For exam-
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ple, Section 12.2 describes the data structure used to implement a sparse matrix, a

large two-dimensional array that stores only a relatively few non-zero values. This

implementation is quite different from the physical representation of an array as

contiguous memory locations.

An abstract data type (ADT) is the realization of a data type as a software

component. The interface of the ADT is defined in terms of a type and a set of

operations on that type. The behavior of each operation is determined by its inputs

and outputs. An ADT does not specify how the data type is implemented. These

implementation details are hidden from the user of the ADT and protected from

outside access, a concept referred to as encapsulation.

A data structure is the implementation for an ADT. In an object-oriented lan-

guage such as C++, an ADT and its implementation together make up a class.

Each operation associated with the ADT is implemented by a member function or

method. The variables that define the space required by a data item are referred

to as data members. An object is an instance of a class, that is, something that is

created and takes up storage during the execution of a computer program.

The term “data structure” often refers to data stored in a computer’s main mem-

ory. The related term file structure often refers to the organization of data on

peripheral storage, such as a disk drive or CD.

Example 1.3 The mathematical concept of an integer, along with oper-

ations that manipulate integers, form a data type. The C++ int variable

type is a physical representation of the abstract integer. The int variable

type, along with the operations that act on an int variable, form an ADT.

Unfortunately, the int implementation is not completely true to the ab-

stract integer, as there are limitations on the range of values an int variable

can store. If these limitations prove unacceptable, then some other repre-

sentation for the ADT “integer” must be devised, and a new implementation

must be used for the associated operations.

Example 1.4 An ADT for a list of integers might specify the following

operations:

• Insert a new integer at a particular position in the list.

• Return true if the list is empty.

• Reinitialize the list.

• Return the number of integers currently in the list.

• Delete the integer at a particular position in the list.

From this description, the input and output of each operation should be

clear, but the implementation for lists has not been specified.
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One application that makes use of some ADT might use particular member

functions of that ADT more than a second application, or the two applications might

have different time requirements for the various operations. These differences in the

requirements of applications are the reason why a given ADT might be supported

by more than one implementation.

Example 1.5 Two popular implementations for large disk-based database

applications are hashing (Section 9.4) and the B+-tree (Section 10.5). Both

support efficient insertion and deletion of records, and both support exact-

match queries. However, hashing is more efficient than the B+-tree for

exact-match queries. On the other hand, the B+-tree can perform range

queries efficiently, while hashing is hopelessly inefficient for range queries.

Thus, if the database application limits searches to exact-match queries,

hashing is preferred. On the other hand, if the application requires support

for range queries, the B+-tree is preferred. Despite these performance is-

sues, both implementations solve versions of the same problem: updating

and searching a large collection of records.

The concept of an ADT can help us to focus on key issues even in non-comp-

uting applications.

Example 1.6 When operating a car, the primary activities are steering,

accelerating, and braking. On nearly all passenger cars, you steer by turn-

ing the steering wheel, accelerate by pushing the gas pedal, and brake by

pushing the brake pedal. This design for cars can be viewed as an ADT

with operations “steer,” “accelerate,” and “brake.” Two cars might imple-

ment these operations in radically different ways, say with different types

of engine, or front- versus rear-wheel drive. Yet, most drivers can oper-

ate many different cars because the ADT presents a uniform method of

operation that does not require the driver to understand the specifics of any

particular engine or drive design. These differences are deliberately hidden.

The concept of an ADT is one instance of an important principle that must be

understood by any successful computer scientist: managing complexity through

abstraction. A central theme of computer science is complexity and techniques

for handling it. Humans deal with complexity by assigning a label to an assembly

of objects or concepts and then manipulating the label in place of the assembly.

Cognitive psychologists call such a label a metaphor. A particular label might be

related to other pieces of information or other labels. This collection can in turn be

given a label, forming a hierarchy of concepts and labels. This hierarchy of labels

allows us to focus on important issues while ignoring unnecessary details.
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Example 1.7 We apply the label “hard drive” to a collection of hardware

that manipulates data on a particular type of storage device, and we ap-

ply the label “CPU” to the hardware that controls execution of computer

instructions. These and other labels are gathered together under the label

“computer.” Because even the smallest home computers today have mil-

lions of components, some form of abstraction is necessary to comprehend

how a computer operates.

Consider how you might go about the process of designing a complex computer

program that implements and manipulates an ADT. The ADT is implemented in

one part of the program by a particular data structure. While designing those parts

of the program that use the ADT, you can think in terms of operations on the data

type without concern for the data structure’s implementation. Without this ability

to simplify your thinking about a complex program, you would have no hope of

understanding or implementing it.

Example 1.8 Consider the design for a relatively simple database system

stored on disk. Typically, records on disk in such a program are accessed

through a buffer pool (see Section 8.3) rather than directly. Variable length

records might use a memory manager (see Section 12.3) to find an appro-

priate location within the disk file to place the record. Multiple index struc-

tures (see Chapter 10) will typically be used to access records in various

ways. Thus, we have a chain of classes, each with its own responsibili-

ties and access privileges. A database query from a user is implemented

by searching an index structure. This index requests access to the record

by means of a request to the buffer pool. If a record is being inserted or

deleted, such a request goes through the memory manager, which in turn

interacts with the buffer pool to gain access to the disk file. A program such

as this is far too complex for nearly any human programmer to keep all of

the details in his or her head at once. The only way to design and imple-

ment such a program is through proper use of abstraction and metaphors.

In object-oriented programming, such abstraction is handled using classes.

Data types have both a logical and a physical form. The definition of the data

type in terms of an ADT is its logical form. The implementation of the data type as

a data structure is its physical form. Figure 1.1 illustrates this relationship between

logical and physical forms for data types. When you implement an ADT, you

are dealing with the physical form of the associated data type. When you use an

ADT elsewhere in your program, you are concerned with the associated data type’s

logical form. Some sections of this book focus on physical implementations for a
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Data Type

Data Structure:
Storage Space
Subroutines

ADT:
Type
Operations

Data Items:

Data Items:
  Physical Form

  Logical Form

Figure 1.1 The relationship between data items, abstract data types, and data

structures. The ADT defines the logical form of the data type. The data structure

implements the physical form of the data type.

given data structure. Other sections use the logical ADT for the data structure in

the context of a higher-level task.

Example 1.9 A particular C++ environment might provide a library that

includes a list class. The logical form of the list is defined by the public

functions, their inputs, and their outputs that define the class. This might be

all that you know about the list class implementation, and this should be all

you need to know. Within the class, a variety of physical implementations

for lists is possible. Several are described in Section 4.1.

1.3 Design Patterns

At a higher level of abstraction than ADTs are abstractions for describing the design

of programs — that is, the interactions of objects and classes. Experienced software

designers learn and reuse patterns for combining software components. These have

come to be referred to as design patterns.

A design pattern embodies and generalizes important design concepts for a

recurring problem. A primary goal of design patterns is to quickly transfer the

knowledge gained by expert designers to newer programmers. Another goal is

to allow for efficient communication between programmers. It is much easier to

discuss a design issue when you share a technical vocabulary relevant to the topic.

Specific design patterns emerge from the realization that a particular design

problem appears repeatedly in many contexts. They are meant to solve real prob-

lems. Design patterns are a bit like templates. They describe the structure for a

design solution, with the details filled in for any given problem. Design patterns

are a bit like data structures: Each one provides costs and benefits, which implies
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