
Complexity Analysis
of Algorithms

Jordi Cortadella

Department of Computer Science



Estimating runtime

What is the runtime of g(n)?

Introduction to Programming © Dept. CS, UPC 2

void g(int n) {
for (int i = 0; i < n; ++i) f();

}

void g(int n) {
for (int i = 0; i < n; ++i)

for (int j = 0; j < n; ++j) f();
}



Estimating runtime

What is the runtime of g(n)?

Introduction to Programming © Dept. CS, UPC 3

void g(int n) {
for (int i = 0; i < n; ++i)

for (int j = 0; j <= i; ++j) f();
}



Complexity analysis

• A technique to characterize the execution time of 
an algorithm independently from the machine, the 
language and the compiler.

• Useful for:
– evaluating the variations of execution time with regard 

to the input data

– comparing algorithms

• We are typically interested in the execution time 
of large instances of a problem, e.g., when 𝑛 → ∞, 
(asymptotic complexity).

Introduction to Programming © Dept. CS, UPC 4



Big O

• A method to characterize the execution time of 
an algorithm:

– Adding two square matrices is O(n2)

– Searching in a dictionary is O(log n)

– Sorting a vector is O(n log n)

– Solving Towers of Hanoi is O(2n)

– Multiplying two square matrices is O(n3)

– …

• The O notation only uses the dominating terms 
of the execution time. Constants are disregarded.

Introduction to Programming © Dept. CS, UPC 5



Big O: formal definition

• Let T(n) be the execution time of an algorithm when 
the size of input data is n.

• T(n) is O(f(n)) if there are positive constants c and n0

such that T(n)  cf(n) when n  n0.

Introduction to Programming © Dept. CS, UPC 6

n0 n

cf(n)

T(n)



Big O: example

• Let T(n) = 3n2 + 100n + 5, then T(n) = O(n2)

• Proof:

– Let c = 4 and n0 = 100.05

– For n  100.05, we have that 4n2  3n2 + 100n + 5

• T(n) is also O(n3), O(n4), etc.
Typically, the smallest complexity is used.

Introduction to Programming © Dept. CS, UPC 7



Big O: examples

Introduction to Programming © Dept. CS, UPC 8



Complexity ranking

Introduction to Programming © Dept. CS, UPC 9



Complexity analysis: examples

Let us assume that f() has complexity O(1)

Introduction to Programming © Dept. CS, UPC 10

for (int i = 0; i < n; ++i) f();

for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j) f();

for (int i = 0; i < n; ++i)
for (int j = 0; j <= i; ++j) f();

for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
for (int k = 0; k < n; ++k) f();

for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
for (int k = 0; k < p; ++k) f();



Complexity analysis: examples

Introduction to Programming © Dept. CS, UPC 11

if (condition) {

O(𝒏)

} else {

O(𝒏𝟐)

}

O(𝒏)

O(𝒏𝟐)



Complexity analysis: recursion
void f(int n) {

if (n > 0) {  
DoSomething(n); // O(n)
f(n/2);

}
}

Introduction to Programming © Dept. CS, UPC 12



Complexity analysis: recursion
void f(int n) {

if (n > 0) {  
DoSomething(n); // O(n)
f(n/2); f(n/2);

}
}

Introduction to Programming © Dept. CS, UPC 13

n

n/2

n/4

…

1 1

…

1 1

n/4

…

1 1

…

1 1

n/2

n/4

…

1 1

…

1 1

n/4

…

1 1

…

1 1



Complexity analysis: recursion
void f(int n) {

if (n > 0) {  
DoSomething(n); // O(n)
f(n-1);

}
}

Introduction to Programming © Dept. CS, UPC 14



Complexity analysis: recursion
void f(int n) {

if (n > 0) {  
DoSomething(); // O(1)
f(n-1); f(n-1);

}
}

Introduction to Programming © Dept. CS, UPC 15



Asymptotic complexity (small values)

Introduction to Programming © Dept. CS, UPC 16



Asymptotic complexity (larger values)

Introduction to Programming © Dept. CS, UPC 17



Execution time: example

Let us consider that every operation can be 
executed in 1 ns (10-9 s).

Introduction to Programming © Dept. CS, UPC 18



How about “big data”?

Algorithm Analysis © Dept. CS, UPC 19

Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

This is often the practical limit for big data



Summary
• Complexity analysis is a technique to analyze and compare 

algorithms (not programs).

• It helps to have preliminary back-of-the-envelope 
estimations of runtime (milliseconds, seconds, minutes, 
days, years?).

• Worst-case analysis is sometimes overly pessimistic.  
Average case is also interesting (not covered in this course).

• In many application domains (e.g., big data) quadratic 
complexity, 𝑂 𝑛2 , is not acceptable.

• Recommendation: avoid last-minute surprises by doing 
complexity analysis before writing code.

Introduction to Programming © Dept. CS, UPC 20


