Complexity Analysis of Algorithms

Jordi Cortadella

Department of Computer Science

Estimating runtime

What is the runtime of g(n)?

```
void g(int n) {
   for (int i = 0; i < n; ++i) f();
}</pre>
```

 $\operatorname{Runtime}(g(n)) \approx n \cdot \operatorname{Runtime}(f())$

```
void g(int n) {
  for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j) f();
}</pre>
```

 $\operatorname{Runtime}(g(n)) \approx n^2 \cdot \operatorname{Runtime}(f())$

Estimating runtime

What is the runtime of g(n)?

Runtime
$$(g(n)) \approx (1+2+3+\dots+n) \cdot \text{Runtime}(f())$$

$$\approx \frac{n^2+n}{2} \cdot \text{Runtime}(f())$$

Complexity analysis

- A technique to characterize the execution time of an algorithm independently from the machine, the language and the compiler.
- Useful for:
 - evaluating the variations of execution time with regard to the input data
 - comparing algorithms
- We are typically interested in the execution time of large instances of a problem, e.g., when n → ∞, (asymptotic complexity).

Big O

- A method to characterize the execution time of an algorithm:
 - Adding two square matrices is $O(n^2)$
 - Searching in a dictionary is O(log n)
 - Sorting a vector is $O(n \log n)$
 - Solving Towers of Hanoi is $O(2^n)$
 - Multiplying two square matrices is $O(n^3)$

• The O notation only uses the dominating terms of the execution time. Constants are disregarded.

Big O: formal definition

- Let T(n) be the execution time of an algorithm when the size of input data is n.
- T(n) is O(f(n)) if there are positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ when $n \ge n_0$.

Big O: example

- Let $T(n) = 3n^2 + 100n + 5$, then $T(n) = O(n^2)$
- Proof:
 - Let c = 4 and $n_0 = 100.05$

- For $n \ge 100.05$, we have that $4n^2 \ge 3n^2 + 100n + 5$

T(n) is also O(n³), O(n⁴), etc.
 Typically, the smallest complexity is used.

Big O: examples

$$\begin{array}{c|ccc} T(n) & \text{Complexity} \\ \hline 5n^3 + 200n^2 + 15 & \text{O}(n^3) \\ 3n^2 + 2^{300} & \text{O}(n^2) \\ 5\log_2 n + 15\ln n & \text{O}(\log n) \\ 2\log n^3 & \text{O}(\log n) \\ 4n + \log n & \text{O}(\log n) \\ 4n + \log n & \text{O}(n) \\ 2^{64} & \text{O}(1) \\ \log n^{10} + 2\sqrt{n} & \text{O}(\sqrt{n}) \\ 2^n + n^{1000} & \text{O}(2^n) \end{array}$$

Complexity ranking

Function	Common name
n!	factorial
2^n	exponential
$n^d, d > 3$	polynomial
n^3	cubic
n^2	quadratic
$n\sqrt{n}$	
$n\log n$	quasi-linear
n	linear
\sqrt{n}	root - n
$\log n$	logarithmic
1	constant

Introduction to Programming

Complexity analysis: examples

$$\begin{array}{rcl} \text{void f(int n) } \{ & & \\ & \text{if } (n > 0) \ \\ & &$$

$$T(n)$$
 is $O(n)$

void f(int n) {
 if (n > 0) {
 DoSomething(n); // O(n)
 f(n/2); f(n/2);
}

T(n) is $O(n \log n)$

}

$$T(n) = n + T(n - 1)$$

$$T(n) = n + (n - 1) + (n - 2) + \dots + 2 + 1$$

$$T(n) = \frac{n^2 + n}{2}$$

T(n) is $O(n^2)$

$$T(n) = 1 + 2 \cdot T(n - 1)$$

= 1 + 2 + 4 \cdot T(n - 2)
= 1 + 2 + 4 + 8 \cdot T(n - 3)
:
= 1 + 2 + 4 + 8 + \cdots + 2^{n-1}
= $\sum_{i=0}^{n-1} 2^i = 2^n - 1$

Asymptotic complexity (small values)

Asymptotic complexity (larger values)

Execution time: example

Let us consider that every operation can be executed in 1 ns (10⁻⁹ s).

	Time								
Function	$(n = 10^3)$	$(n = 10^4)$	$(n = 10^5)$						
$\log_2 n$	10 ns	$13.3 \mathrm{ns}$	$16.6 \mathrm{~ns}$						
\sqrt{n}	$31.6 \mathrm{ns}$	100 ns	$316 \mathrm{~ns}$						
n	$1~\mu{ m s}$	$10~\mu{ m s}$	$100~\mu{ m s}$						
$n\log_2 n$	$10~\mu{ m s}$	$133~\mu{ m s}$	$1.7 \mathrm{\ ms}$						
n^2	$1 \mathrm{ms}$	$100 \mathrm{\ ms}$	$10 \ { m s}$						
n^3	$1 \mathrm{~s}$	$16.7 \min$	$11.6 \mathrm{~days}$						
n^4	$16.7 \min$	$116 \mathrm{~days}$	$3171 { m yr}$						
2^n	$3.4 \cdot 10^{284} \text{ yr}$	$6.3 \cdot 10^{2993} \text{ yr}$	$3.2 \cdot 10^{30086} \text{ yr}$						

How about "big data"?

Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	п	$n \log_2 n$	n^2	<i>n</i> ³	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
<i>n</i> = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
<i>i</i> = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

This is often the practical limit for big data

Summary

- Complexity analysis is a technique to analyze and compare algorithms (not programs).
- It helps to have preliminary back-of-the-envelope estimations of runtime (milliseconds, seconds, minutes, days, years?).
- Worst-case analysis is sometimes overly pessimistic. Average case is also interesting (not covered in this course).
- In many application domains (e.g., big data) quadratic complexity, $O(n^2)$, is not acceptable.
- Recommendation: avoid last-minute surprises by doing complexity analysis before writing code.