Complexity Analysis
of Algorithms

B

Jordi Cortadella
Department of Computer Science

Estimating runtime

What is the runtime of g(n)?

void g(int n) {
for (int 1 = 0; 1 < n; ++1i) f();

}
Runtime(g(n)) ~ n - Runtime(f())

void g(int n) {
for (int i = 0; 1 < n; ++1i)
for (int j = 0; j < n; ++j) f();
}

Runtime(g(n)) ~ n* - Runtime(f())

Estimating runtime

What is the runtime of g(n)?

void g(int n) {
for (int 1 = 0; 1 < n; ++1i)
for (int j = 0; j <= i; ++j) f();

Runtime(g(n))

2
—
+
+

.-+ +n) - Runtime(f())

2

- Runtime(f())

Introduction to Programming © Dept. CS, UPC 3

Complexity analysis

* A technique to characterize the execution time of

an algorithm independently from the machine, the
language and the compiler.

e Useful for:

— evaluating the variations of execution time with regard
to the input data

— comparing algorithms

* We are typically interested in the execution time

of large instances of a problem, e.g., whenn — oo,
(asymptotic complexity).

Big O

* A method to characterize the execution time of
an algorithm:
— Adding two square matrices is O(n?)
— Searching in a dictionary is O(log n)
— Sorting a vector is O(n log n)
— Solving Towers of Hanoi is O(2")
— Multiplying two square matrices is O(n?)

* The O notation only uses the dominating terms
of the execution time. Constants are disregarded.

Big O: formal definition

* Let T(n) be the execution time of an algorithm when
the size of input data is n.

* T(n)is O(f(n)) if there are positive constants ¢ and n;
such that T(n) < c-f(n) when n > n,.

No 7

Introduction to Programming © Dept. CS, UPC

Big O: example

* Let T(n) =3n%+ 100n + 5, then T(n) = O(n?)

* Proof:
— Letc =4 and n, = 100.05
— For n > 100.05, we have that 4n? > 3n2 + 100n + 5

* T(n) is also O(n3), O(n%), etc.
Typically, the smallest complexity is used.

Big O: examples

T(n) Complexity
5n° 4+ 200n* + 15 | O(n?)

22 L 9300 O(n?)
S5logon+ 15Inn | O(logn)

2 log n° O(logn)

4An + logn O(n)

204 O(1)

log n'® 4+ 2/n O(y/n)

L 1 nlOOO O(2n)

Introduction to Programming © Dept. CS, UPC

Complexity ranking

Introduction to Programming

Function | Common name
n! factorial

2™ exponential
n?, d > 3 | polynomial
ns cubic

n? quadratic
nyn

nlogn quasi-linear
n linear

VN root - n
logn logarithmic
1 constant

© Dept. CS, UPC

Complexity analysis: examples

Let us assume that () has complexity O(1)

for (int i =

for (int i =
for (int j

for (int i =
for (int j

for (int i
for (int

. |l

for (int k

for (int i =
for (int j
for (int

0; 1 <

0; 1 <
=@;j

0; 1 <
= 0; J

<
;]
0;

<
0; J

n; ++i) f();

n; ++i)
< n; ++j) £();

n; ++i)
<= 15 ++3) f();

n; ++i)

< n; ++3j)

k < n; ++k) f();
m; ++i)

< n; ++j)

; k < p; ++k) f();

—

O(n)
O(n?)

Complexity analysis: examples

if (condition) {
0(n?) o)

} else {
0(n) 0(n?)

}

! !

O(n?) O(n?)

Complexity analysis: recursion

void f(int n) {
if (n > 0) {
DoSomething(n); // O(n)

£(n/2);

}

}
T(n) = n+T(n/2)

n o n on
T(n) = nd ot ododidt241
(n) n 2—|—4—|—8—|— + 2+
nonon
2-T(n) = 2n4+n+—-+—-+—-+---+4+42

2 4 8
2:-T(n)—T(n)=T(n)=2n-1

T'(n) is O(n)

Complexity analysis: recursion

i a0 I
if (n > 0) {
ISR 2 | o2
f(n/2); £(n/2); n/2 n/2

)
]
)~ ma2 Tn/2)
n n n
— n__2.§_|_4.1_|_8.§_|_...
= n4+n+n+---+n = nlogyn
logs n

T'(n) is O(nlogn)

Introduction to Programming © Dept. CS, UPC 13

Complexity analysis: recursion

void f(int n) {
if (n > 0) {
DoSomething(n); // O(n)

f(n-1);
}
}
Tn) = n+Tn-—1)
Tn) = n+nh—-1)+n—-2)+---4+2+1
T(n) = n;—n

T(n) is O(n?)

Complexity analysis: recursion

void f(int n) {
if (n > 0) {
DoSomething(); // O(1)
f(n-1); £(n-1);
}
}

= 14+2-T(n—1)
= 14244-T(n—2)
— 1424448 -T(n—3)
T'(n) is O(2")

= 14+2+448+---4+2""1

n—1
— E:T:Q”—l
1=0

Asymptotic complexity (small values)

Introduction to Programming © Dept. CS, UPC

16

Asymptotic complexity (larger values)

2n| 13 /

~ 180H)

= 160

- 1400

= 1200

= 1000

— 800

- GO0

=400

— 200

Introduction to Programming © Dept. CS, UPC 17

Execution time: example

Let us consider that every operation can be
executed in 1 ns (107 s).

Time
Function (n = 10°) (n = 10%) (n = 10°)
logomn 10 ns 13.3 ns 16.6 ns
Vn 31.6 ns 100 ns 316 ns
n 1 us 10 ps 100 ws
nlog, n 10 s 133 us 1.7 ms
n? I ms 100 ms 10 s
n’ 1s 16.7 min 11.6 days
n? 16.7 min 116 days 3171 yr
AL 3.4-10%%* yr | 6.3-10%993 yr | 3.2.1030980 yr

Introduction to Programming

© Dept. CS, UPC

18

How about “big data”?

Source: Jon Kleinberg and Eva Tardos, Algorithm Design, Addison Wesley 2006.

Table 2.1 The running times (rounded up) of different algorithms on inputs of

increasing size, for a processor performing a million high-level instructions per second.
In cases where the running time exceeds 10?° years, we simply record the algorithm as
taking a very long time.

n nlog, n n? n3 1.57 e n!
n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n=230 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18 min 10%° years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec <1lsec | <1 sec 1sec 12,892 years 10!7 years very long

n=1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1 sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec 12 days 31,710 years very long very long very long
v
This is often the practical limit for big data
Algorithm Analysis © Dept. CS, UPC 19

Summary

Complexity analysis is a technique to analyze and compare
algorithms (not programs).

It helps to have preliminary back-of-the-envelope
estimations of runtime (milliseconds, seconds, minutes,
days, years?).

Worst-case analysis is sometimes overly pessimistic.
Average case is also interesting (not covered in this course).

In many application domains (e.g., big data) quadratic
complexity, 0(n?), is not acceptable.

Recommendation: avoid last-minute surprises by doing
complexity analysis before writing code.

