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Outline for this Week

● Binomial Heaps (Today)
● A simple, flexible, and versatile priority 

queue.

● Lazy Binomial Heaps (Today)
● A powerful building block for designing 

advanced data structures.

● Fibonacci Heaps (Wednesday)
● A heavyweight and theoretically excellent 

priority queue.



  

Review: Priority Queues



  

Priority Queues

● A priority queue is a data structure that 
stores a set of elements annotated with keys 
and allows efficient extraction of the element 
with the least key.

● More concretely, supports these operations:
● pq.enqueue(v, k), which enqueues element v 

with key k;
● pq.find-min(), which returns the element with 

the least key; and
● pq.extract-min(), which removes and returns 

the element with the least key,



  

Binary Heaps

● Priority queues are frequently implemented as 
binary heaps.

● enqueue and extract-min run in time O(log n); 
find-min runs in time O(1).

● We're not going to cover binary heaps this quarter; 
I assume you've seen them before.
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Priority Queues in Practice

● Many graph algorithms directly rely priority queues 
supporting extra operations:

● meld(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their 
elements into a single priority queue.

● pq.decrease-key(v, k'): Given a pointer to element v 
already in the queue, lower its key to have new value k'.

● pq.add-to-all(Δk): Add Δk to the keys of each element in 
the priority queue (typically used with meld).

● In lecture, we'll cover binomial heaps to efficiently 
support meld and Fibonacci heaps to efficiently 
support meld and decrease-key.

● After the TAs ensure that it's not too hard to do so, 
you'll design a priority queue supporting efficient meld 
and add-to-all on the problem set.



  

Meldable Priority Queues

● A priority queue supporting the meld operation is 
called a meldable priority queue.

● meld(pq₁, pq₂) destructively modifies pq₁ and pq₂ 
and produces a new priority queue containing all 
elements of pq₁ and pq₂.
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Efficiently Meldable Queues

● Standard binary heaps do not efficiently 
support meld.

● Intuition: Binary heaps are complete binary 
trees, and two complete binary trees cannot 
easily be linked to one another.



  

Binomial Heaps

● The binomial heap is an efficient priority 
queue data structure that supports efficient 
melding.

● We'll study binomial heaps for several 
reasons:
● Implementation and intuition is totally different 

than binary heaps.
● Used as a building block in other data structures 

(Fibonacci heaps, soft heaps, etc.)
● Has a beautiful intuition; similar ideas can be 

used to produce other data structures.



  

The Intuition: Binary Arithmetic



  

1 0 1 1 0

1 111

Adding Binary Numbers

● Given the binary representations of two 
numbers n and m, we can add those 
numbers in time Θ(max{log m, log n}).
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A Different Intuition

● Represent n and m as a collection of “packets” whose 
sizes are powers of two.

● Adding together n and m can then be thought of as 
combining the packets together, eliminating duplicates
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Why This Works

● In order for this arithmetic procedure to 
work efficiently, the packets must obey 
the following properties:
● The packets must be stored in 

ascending/descending order of size.
● The packets must be stored such that there 

are no two packets of the same size.
● Two packets of the same size must be 

efficiently “fusable” into a single packet.



  

Building a Priority Queue

● Idea: Adapt this approach to build a 
priority queue.

● Store elements in the priority queue in 
“packets” whose sizes are powers of two.

● Store packets in ascending size order.
● We'll choose a representation of a packet 

so that two packets of the same size can 
easily be fused together.



  

64

41

97

93

84

62

23

59

+

53

58

26

31

53

58

64

41

97

93

84

62

23

59

26

31



  

Building a Priority Queue

● What properties must our packets have?
● Sizes must be powers of two.
● Can efficiently fuse packets of the same size.
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As long as the packets 
provide O(1) access to 
the minimum, we can 
execute find-min in 

time O(log n).



  

Inserting into the Queue

● If we can efficiently meld two priority queues, we 
can efficiently enqueue elements to the queue.

● Idea: Meld together the queue and a new queue 
with a single packet.

53

58

2627

28

18

45

84

62

23

59

14



  

Inserting into the Queue

● If we can efficiently meld two priority queues, we 
can efficiently enqueue elements to the queue.

● Idea: Meld together the queue and a new queue 
with a single packet.
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Fracturing Packets

● If we have a packet with 2k elements in it 
and remove a single element, we are left 
with 2k – 1 remaining elements.

● Fun fact: 2k – 1 = 1 + 2 + 4 + … + 2k-1.
● Idea: “Fracture” the packet into k – 1 

smaller packets, then add them back in.



  

Fracturing Packets

● We can extract-min by fracturing the packet 
containing the minimum and adding the fragments 
back in.
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Fracturing Packets

● We can extract-min by fracturing the packet 
containing the minimum and adding the fragments 
back in.
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Fracturing Packets

● We can extract-min by fracturing the packet 
containing the minimum and adding the fragments 
back in.

● Runtime is O(log n) fuses in meld, plus fragment cost.
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Building a Priority Queue

● What properties must our packets have?

● Size must be a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of 

each packet.
● Can efficiently “fracture” a packet of 2k nodes 

into packets of 1, 2, 4, 8, …, 2k-1 nodes.
● What representation of packets will give us these 

properties?



  

Binomial Trees

● A binomial tree of order k is a type of tree 
recursively defined as follows:

A binomial tree of order k is a single node whose 
children are binomial trees of order 0, 1, 2, …, k – 1.

● Here are the first few binomial trees:
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Binomial Trees

● Theorem: A binomial tree of order k has 
exactly 2k nodes.

● Proof: Induction on k. Assuming that 
binomial trees of orders 0, 1, 2, …, k – 1 
have 20, 21, 22, …, 2k-1 nodes, then then 
number of nodes in an order-k binomial 
tree is

20 + 21 + … + 2k-1 + 1 = 2k – 1 + 1 = 2k

So the claim holds for k as well. ■



  

Binomial Trees

● A heap-ordered binomial tree is a binomial 
tree whose nodes obey the heap property: all 
nodes are less than or equal to their 
descendants.

● We will use heap-ordered binomial trees to 
implement our “packets.”
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Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets 

of 1, 2, 4, 8, …, 2k-1 nodes. 
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Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets 

of 1, 2, 4, 8, …, 2k-1 nodes. 

Make the binomial tree with 
the larger root the first child 
of the tree with the smaller 

root.

Make the binomial tree with 
the larger root the first child 
of the tree with the smaller 
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Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
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The Binomial Heap

● A binomial heap is a collection of heap-ordered 
binomial trees stored in ascending order of size.

● Operations defined as follows:

● meld(pq₁, pq₂): Use addition to combine all the trees.

– Fuses O(log n) trees. Total time: O(log n).
● pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).

– Total time: O(log n).
● pq.find-min(): Find the minimum of all tree roots.

– Total time: O(log n).
● pq.extract-min(): Find the min, delete the tree root, 

then meld together the queue and the exposed children.

– Total time: O(log n).



  

Time-Out for Announcements!



  

Office Hours Update

● Keith's office hours are now moved to 
Gates 178 going forward – looks like we 
didn't actually have Hewlett 201 after 
lecture. ☺

● Thursday office hours changed from 
7:30PM – 9:30PM, location TBA.

● As always, feel free to email us with 
questions!



  

Problem Set Two Graded

● Problem Set Two has been graded; will 
be returned at end of lecture.

● Rough solution sketches available up 
front!



  

Problem Set Three Clarification

● Many of you have questions about Q2 on 
Problem Set Three.

● For parts (iii) and (iv), assume the following:
● The basic data structure can be constructed in 

worst-case time O(n).
● The cost of a cut is worst-case O(min{|T₁|, |T₂|}).

● You don't need to justify these facts. We're 
mostly interested in seeing your amortized 
analyses.



  

Your Questions



  

“What's a popular data structure in place 
of map for military purposes, where 
guaranteed time of operations are 

required?”

Red/black trees are the gold standard here – 
they've got excellent worst-case performance and 

support fast insertions and deletions.
 

Hash tables have expected O(1) operations, but 
that requires good hash functions. Search 

“HashDoS” for an attack on many programming 
languages' implementations of hash tables.

Red/black trees are the gold standard here – 
they've got excellent worst-case performance and 

support fast insertions and deletions.
 

Hash tables have expected O(1) operations, but 
that requires good hash functions. Search 

“HashDoS” for an attack on many programming 
languages' implementations of hash tables.



  

"How do you determine out of how many 
fewer points a problem set will be worth 
for people working alone vs. in pairs? Are 

you happy with how the optional pairs 
system has worked thus far?"

For PS1, about 25% the class worked in pairs.
For PS2, about 50% of the class worked in pairs.

I'm hoping to encourage people to work in pairs 
without punishing people who choose not to. I'm 

still tuning the buffer amount.

For PS1, about 25% the class worked in pairs.
For PS2, about 50% of the class worked in pairs.

I'm hoping to encourage people to work in pairs 
without punishing people who choose not to. I'm 

still tuning the buffer amount.



  

"Can you write a CS-themed musical for us?"

I'm thinking Les Miserables could be adapted for CS. 
Some sample songs:

“Server in the Cloud”
 

“Red and Black”
 

“Do you Hear the Balanced Tree?”

I'm thinking Les Miserables could be adapted for CS. 
Some sample songs:

“Server in the Cloud”
 

“Red and Black”
 

“Do you Hear the Balanced Tree?”



  

Back to CS166!



  

Analyzing Insertions

● Each enqueue into a binomial heap 
takes time O(log n), since we have to 
meld the new node into the rest of the 
trees.

● However, it turns out that the amortized 
cost of an insertion is lower in the case 
where we do a series of n insertions.



  

Adding One

● Suppose we want to execute n++ on the binary 
representation of n.

● Do the following:
● Find the longest span of 1's at the right side of n.
● Flip those 1's to 0's.
● Set the preceding bit to 1.

● Runtime: Θ(b), where b is the number of bits flipped.



  

An Amortized Analysis

● Claim: Starting at zero, the amortized 
cost of adding one to the total is O(1).

● Idea: Use as a potential function the 
number of 1's in the number.

0 0 0 1 1Φ = 2



  

An Amortized Analysis

● Claim: Starting at zero, the amortized 
cost of adding one to the total is O(1).

● Idea: Use as a potential function the 
number of 1's in the number.

0 0 0 01Φ = 1
Actual cost: 3
ΔΦ: -1
 

Amortized cost: 2

Actual cost: 3
ΔΦ: -1
 

Amortized cost: 2



  

Properties of Binomial Heaps

● Starting with an empty binomial heap, the 
amortized cost of each insertion into the heap 
is O(1), assuming there are no deletions.

● Rationale: Binomial heap operations are 
isomorphic to integer arithmetic.

● Since the amortized cost of incrementing a 
binary counter starting at zero is O(1), the 
amortized cost of enqueuing into an initially 
empty binomial heap is O(1).



  

Binomial vs Binary Heaps

● Interesting comparison:
● The cost of inserting n elements into a 

binary heap, one after the other, is Θ(n log n) 
in the worst-case.

● If n is known in advance, a binary heap can 
be constructed out of n elements in time 
Θ(n).

● The cost of inserting n elements into a 
binomial heap, one after the other, is Θ(n), 
even if n is not known in advance!



  

A Catch

● This amortized time bound does not hold if 
enqueue and extract-min are intermixed.

● Intuition: Can force expensive insertions to 
happen repeatedly.
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Question: Can we make insertions 
amortized O(1), regardless of whether we 

do deletions?



  

Where's the Cost?

● Why does enqueue take time O(log n)?
● Answer: May have to combine together 

O(log n) different binomial trees together 
into a single tree.

● New Question: What happens if we 
don't combine trees together?

● That is, what if we just add a new 
singleton tree to the list?



  

Lazy Melding

● More generally, consider the following lazy 
melding approach:

To meld together two binomial heaps, just combine 
the two sets of trees together.

● If we assume the trees are stored in doubly-linked 
lists, this can be done in time O(1).
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The Catch: Part One

● When we use eager melding, the number of trees 
is O(log n).

● Therefore, find-min runs in time O(log n).

● Problem: find-min no longer runs in time 
O(log n) because there can be Θ(n) trees.
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A Solution

● Have the binomial heap store a pointer to the 
minimum element.

● Can be updated in time O(1) after doing a meld by 
comparing the minima of the two heaps.
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A Solution

● Have the binomial heap store a pointer to the 
minimum element.

● Can be updated in time O(1) after doing a meld by 
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The Catch: Part Two

● Even with a pointer to the minimum, deletions 
might now run in time Θ(n).

● Rationale: Need to update the pointer to the 
minimum.
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Resolving the Issue

● Idea: When doing an extract-min, 
coalesce all of the trees so that there's at 
most one tree of each order.

● Intuitively:
● The number of trees in a heap grows slowly 

(only during an insert or meld).
● The number of trees in a heap drops rapidly 

after coalescing (down to O(log n)).
● Can backcharge the work done during an 
extract-min to enqueue or meld.



  

Coalescing Trees

● Our eager melding algorithm assumes that

● there is either zero or one tree of each order, and that

● the trees are stored in ascending order.

● Challenge: When coalescing trees in this case, neither 
of these properties necessarily hold.
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Wonky Arithmetic

● Compute the number of bits necessary to hold 
the sum.
● Only O(log n) bits are needed.

● Create an array of that size, initially empty.
● For each packet:

● If there is no packet of that size, place the 
packet in the array at that spot.

● If there is a packet of that size:

– Fuse the two packets together.
– Recursively add the new packet back into the 

array.



  

Now With Trees!

● Compute the number of trees necessary to hold 
the nodes.
● Only O(log n) trees are needed.

● Create an array of that size, initially empty.
● For each tree:

● If there is no tree of that size, place the tree in 
the array at that spot.

● If there is a tree of that size:

– Fuse the two trees together.
– Recursively add the new tree back into the 

array.



  

Analyzing Coalesce

● Suppose there are T trees.
● We spend Θ(T) work iterating across the main 

list of trees twice:
● Pass one: Count up number of nodes (if each tree 

stores its order, this takes time Θ(T)).
● Pass two: Place each node into the array.

● Each merge takes time O(1).
● The number of merges is O(T).
● Total work done: Θ(T).
● In the worst case, this is O(n).



  

The Story So Far

● A binomial heap with lazy melding has 
these worst-case time bounds:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(n).

● These are worst-case time bounds. What 
about an amortized time bounds?



  

An Observation

● The expensive step here is extract-min, 
which runs in time proportional to the number 
of trees.

● Each tree can be traced back to one of three 
sources:
● An enqueue.
● A meld with another heap.
● A tree exposed by an extract-min.

● Let's use an amortized analysis to shift the 
blame for the extract-min performance to 
other operations.



  

The Potential Method

● We will use the potential method in this 
analysis.

● When analyzing insertions with eager 
merges, we set Φ(D) to be the number of 
trees in D.

● Let's see what happens if we use this Φ 
here.



  

Analyzing an Insertion

● To enqueue a key, we add a new binomial tree 
to the forest and possibly update the min 
pointer.

Actual time: O(1). ΔΦ: +1

Amortized time: O(1).
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Analyzing an Insertion

● To enqueue a key, we add a new binomial tree 
to the forest and possibly update the min 
pointer.

Actual time: O(1). ΔΦ: +1

Amortized time: O(1).
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Analyzing a Meld

● Suppose that we meld two lazy binomial heaps B₁ and B₂. Actual 
cost: O(1).

● Let ΦB₁ and ΦB₂ be the initial potentials of B₁ and B₂.

● The new heap B has potential ΦB₁ + ΦB₂ and B₁ and B₂ have 
potential 0.

● ΔΦ is zero.

● Amortized cost: O(1).
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Analyzing a Find-Min

● Each find-min does O(1) work and does not 
add or remove trees.

● Amortized cost: O(1).
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Analyzing Extract-Min

● Initially, we expose the children of the minimum 
element. This takes time O(log n).

● Suppose that at this point there are T trees. As we 
saw earlier, the runtime for the coalesce is Θ(T).

● When we're done merging, there will be O(log n) 
trees remaining, so ΔΦ = -T + O(log n).

● Amortized cost is

   = O(log n) + Θ(T) + O(1) · (-T + O(log n))

   = O(log n) + Θ(T) – O(1) · T + O(1) · O(log n)

   = O(log n).



  

The Overall Analysis

● The amortized costs of the operations on 
a lazy binomial heap are as follows:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)

● Any series of e enqueues mixed with d 
extract-mins will take time 
O(e + d log e).



  

Why This Matters

● Lazy binomial heaps are a powerful 
building block used in many other data 
structures.

● We'll see one of them, the Fibonacci 
heap, when we come back on Wednesday.

● Assuming the TAs think it's reasonable, 
you'll see another (supporting 
add-to-all) on the problem set.



  

Next Time

● The Need for decrease-key
● A powerful and versatile operation on 

priority queues.

● Fibonacci Heaps
● A variation on lazy binomial heaps with 

efficient decrease-key.

● Implementing Fibonacci Heaps
● … is harder than it looks!
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