

Binomial Heaps

Outline for this Week

● Binomial Heaps (Today)
● A simple, flexible, and versatile priority

queue.

● Lazy Binomial Heaps (Today)
● A powerful building block for designing

advanced data structures.

● Fibonacci Heaps (Wednesday)
● A heavyweight and theoretically excellent

priority queue.

Review: Priority Queues

Priority Queues

● A priority queue is a data structure that
stores a set of elements annotated with keys
and allows efficient extraction of the element
with the least key.

● More concretely, supports these operations:
● pq.enqueue(v, k), which enqueues element v

with key k;
● pq.find-min(), which returns the element with

the least key; and
● pq.extract-min(), which removes and returns

the element with the least key,

Binary Heaps

● Priority queues are frequently implemented as
binary heaps.

● enqueue and extract-min run in time O(log n);
find-min runs in time O(1).

● We're not going to cover binary heaps this quarter;
I assume you've seen them before.

26

41 31

58 53 97

Priority Queues in Practice

● Many graph algorithms directly rely priority queues
supporting extra operations:

● meld(pq₁, pq₂): Destroy pq₁ and pq₂ and combine their
elements into a single priority queue.

● pq.decrease-key(v, k'): Given a pointer to element v
already in the queue, lower its key to have new value k'.

● pq.add-to-all(Δk): Add Δk to the keys of each element in
the priority queue (typically used with meld).

● In lecture, we'll cover binomial heaps to efficiently
support meld and Fibonacci heaps to efficiently
support meld and decrease-key.

● After the TAs ensure that it's not too hard to do so,
you'll design a priority queue supporting efficient meld
and add-to-all on the problem set.

Meldable Priority Queues

● A priority queue supporting the meld operation is
called a meldable priority queue.

● meld(pq₁, pq₂) destructively modifies pq₁ and pq₂
and produces a new priority queue containing all
elements of pq₁ and pq₂.

13

25

16137

24

6
18

19

72

Meldable Priority Queues

● A priority queue supporting the meld operation is
called a meldable priority queue.

● meld(pq₁, pq₂) destructively modifies pq₁ and pq₂
and produces a new priority queue containing all
elements of pq₁ and pq₂.

13

25

16137

24
6

18
19

72

Efficiently Meldable Queues

● Standard binary heaps do not efficiently
support meld.

● Intuition: Binary heaps are complete binary
trees, and two complete binary trees cannot
easily be linked to one another.

Binomial Heaps

● The binomial heap is an efficient priority
queue data structure that supports efficient
melding.

● We'll study binomial heaps for several
reasons:
● Implementation and intuition is totally different

than binary heaps.
● Used as a building block in other data structures

(Fibonacci heaps, soft heaps, etc.)
● Has a beautiful intuition; similar ideas can be

used to produce other data structures.

The Intuition: Binary Arithmetic

1 0 1 1 0

1 111

Adding Binary Numbers

● Given the binary representations of two
numbers n and m, we can add those
numbers in time Θ(max{log m, log n}).

1 0 1 1 0

1 111+

A Different Intuition

● Represent n and m as a collection of “packets” whose
sizes are powers of two.

● Adding together n and m can then be thought of as
combining the packets together, eliminating duplicates

+

1432

16 4 2

1248

Why This Works

● In order for this arithmetic procedure to
work efficiently, the packets must obey
the following properties:
● The packets must be stored in

ascending/descending order of size.
● The packets must be stored such that there

are no two packets of the same size.
● Two packets of the same size must be

efficiently “fusable” into a single packet.

Building a Priority Queue

● Idea: Adapt this approach to build a
priority queue.

● Store elements in the priority queue in
“packets” whose sizes are powers of two.

● Store packets in ascending size order.
● We'll choose a representation of a packet

so that two packets of the same size can
easily be fused together.

64

41

97

93

84

62

23

59

+

53

58

26

31

53

58

64

41

97

93

84

62

23

59

26

31

Building a Priority Queue

● What properties must our packets have?
● Sizes must be powers of two.
● Can efficiently fuse packets of the same size.

53

58

64

41

97

93

2627

28

18

45

84

62

23

59 As long as the packets
provide O(1) access to
the minimum, we can
execute find-min in

time O(log n).

As long as the packets
provide O(1) access to
the minimum, we can
execute find-min in

time O(log n).

Inserting into the Queue

● If we can efficiently meld two priority queues, we
can efficiently enqueue elements to the queue.

● Idea: Meld together the queue and a new queue
with a single packet.

53

58

2627

28

18

45

84

62

23

59

14

Inserting into the Queue

● If we can efficiently meld two priority queues, we
can efficiently enqueue elements to the queue.

● Idea: Meld together the queue and a new queue
with a single packet.

27

28

18

45

84

62

23

59

53

14

58

26

Time required:
O(log n) fuses.

Time required:
O(log n) fuses.

Fracturing Packets

● If we have a packet with 2k elements in it
and remove a single element, we are left
with 2k – 1 remaining elements.

● Fun fact: 2k – 1 = 1 + 2 + 4 + … + 2k-1.
● Idea: “Fracture” the packet into k – 1

smaller packets, then add them back in.

Fracturing Packets

● We can extract-min by fracturing the packet
containing the minimum and adding the fragments
back in.

53

58

64

41

97

93

2627

28 45

84

62

23

59

Fracturing Packets

● We can extract-min by fracturing the packet
containing the minimum and adding the fragments
back in.

27

28

64

41

97

93

26

45

84

62

23

59

53

58

Fracturing Packets

● We can extract-min by fracturing the packet
containing the minimum and adding the fragments
back in.

● Runtime is O(log n) fuses in meld, plus fragment cost.

27

28

64

41

97

93

26

45

84

62

23

59

53

58

+

Building a Priority Queue

● What properties must our packets have?

● Size must be a power of two.
● Can efficiently fuse packets of the same size.
● Can efficiently find the minimum element of

each packet.
● Can efficiently “fracture” a packet of 2k nodes

into packets of 1, 2, 4, 8, …, 2k-1 nodes.
● What representation of packets will give us these

properties?

Binomial Trees

● A binomial tree of order k is a type of tree
recursively defined as follows:

A binomial tree of order k is a single node whose
children are binomial trees of order 0, 1, 2, …, k – 1.

● Here are the first few binomial trees:

0

0

1

0

0

1

2

0

0

1

2

0

1 0

3

Binomial Trees

● Theorem: A binomial tree of order k has
exactly 2k nodes.

● Proof: Induction on k. Assuming that
binomial trees of orders 0, 1, 2, …, k – 1
have 20, 21, 22, …, 2k-1 nodes, then then
number of nodes in an order-k binomial
tree is

20 + 21 + … + 2k-1 + 1 = 2k – 1 + 1 = 2k

So the claim holds for k as well. ■

Binomial Trees

● A heap-ordered binomial tree is a binomial
tree whose nodes obey the heap property: all
nodes are less than or equal to their
descendants.

● We will use heap-ordered binomial trees to
implement our “packets.”

5

9

2

7

5

3

1

Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets

of 1, 2, 4, 8, …, 2k-1 nodes.

4

8

6

2

7

5

3

1

Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets

of 1, 2, 4, 8, …, 2k-1 nodes.

Make the binomial tree with
the larger root the first child
of the tree with the smaller

root.

Make the binomial tree with
the larger root the first child
of the tree with the smaller

root.4

8

6

2 7

5

3

1

Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets

of 1, 2, 4, 8, …, 2k-1 nodes. ✓

4

8

6

2 7

5

3

1

Binomial Trees

● What properties must our packets have?
● Size must be a power of two. ✓
● Can efficiently fuse packets of the same size. ✓
● Can efficiently find the minimum element of each packet. ✓
● Can efficiently “fracture” a packet of 2k nodes into packets

of 1, 2, 4, 8, …, 2k-1 nodes. ✓

4

8

6

2 7

5

3

The Binomial Heap

● A binomial heap is a collection of heap-ordered
binomial trees stored in ascending order of size.

● Operations defined as follows:

● meld(pq₁, pq₂): Use addition to combine all the trees.

– Fuses O(log n) trees. Total time: O(log n).
● pq.enqueue(v, k): Meld pq and a singleton heap of (v, k).

– Total time: O(log n).
● pq.find-min(): Find the minimum of all tree roots.

– Total time: O(log n).
● pq.extract-min(): Find the min, delete the tree root,

then meld together the queue and the exposed children.

– Total time: O(log n).

Time-Out for Announcements!

Office Hours Update

● Keith's office hours are now moved to
Gates 178 going forward – looks like we
didn't actually have Hewlett 201 after
lecture. ☺

● Thursday office hours changed from
7:30PM – 9:30PM, location TBA.

● As always, feel free to email us with
questions!

Problem Set Two Graded

● Problem Set Two has been graded; will
be returned at end of lecture.

● Rough solution sketches available up
front!

Problem Set Three Clarification

● Many of you have questions about Q2 on
Problem Set Three.

● For parts (iii) and (iv), assume the following:
● The basic data structure can be constructed in

worst-case time O(n).
● The cost of a cut is worst-case O(min{|T₁|, |T₂|}).

● You don't need to justify these facts. We're
mostly interested in seeing your amortized
analyses.

Your Questions

“What's a popular data structure in place
of map for military purposes, where
guaranteed time of operations are

required?”

Red/black trees are the gold standard here –
they've got excellent worst-case performance and

support fast insertions and deletions.

Hash tables have expected O(1) operations, but
that requires good hash functions. Search

“HashDoS” for an attack on many programming
languages' implementations of hash tables.

Red/black trees are the gold standard here –
they've got excellent worst-case performance and

support fast insertions and deletions.

Hash tables have expected O(1) operations, but
that requires good hash functions. Search

“HashDoS” for an attack on many programming
languages' implementations of hash tables.

"How do you determine out of how many
fewer points a problem set will be worth
for people working alone vs. in pairs? Are

you happy with how the optional pairs
system has worked thus far?"

For PS1, about 25% the class worked in pairs.
For PS2, about 50% of the class worked in pairs.

I'm hoping to encourage people to work in pairs
without punishing people who choose not to. I'm

still tuning the buffer amount.

For PS1, about 25% the class worked in pairs.
For PS2, about 50% of the class worked in pairs.

I'm hoping to encourage people to work in pairs
without punishing people who choose not to. I'm

still tuning the buffer amount.

"Can you write a CS-themed musical for us?"

I'm thinking Les Miserables could be adapted for CS.
Some sample songs:

“Server in the Cloud”

“Red and Black”

“Do you Hear the Balanced Tree?”

I'm thinking Les Miserables could be adapted for CS.
Some sample songs:

“Server in the Cloud”

“Red and Black”

“Do you Hear the Balanced Tree?”

Back to CS166!

Analyzing Insertions

● Each enqueue into a binomial heap
takes time O(log n), since we have to
meld the new node into the rest of the
trees.

● However, it turns out that the amortized
cost of an insertion is lower in the case
where we do a series of n insertions.

Adding One

● Suppose we want to execute n++ on the binary
representation of n.

● Do the following:
● Find the longest span of 1's at the right side of n.
● Flip those 1's to 0's.
● Set the preceding bit to 1.

● Runtime: Θ(b), where b is the number of bits flipped.

An Amortized Analysis

● Claim: Starting at zero, the amortized
cost of adding one to the total is O(1).

● Idea: Use as a potential function the
number of 1's in the number.

0 0 0 1 1Φ = 2

An Amortized Analysis

● Claim: Starting at zero, the amortized
cost of adding one to the total is O(1).

● Idea: Use as a potential function the
number of 1's in the number.

0 0 0 01Φ = 1
Actual cost: 3
ΔΦ: -1

Amortized cost: 2

Actual cost: 3
ΔΦ: -1

Amortized cost: 2

Properties of Binomial Heaps

● Starting with an empty binomial heap, the
amortized cost of each insertion into the heap
is O(1), assuming there are no deletions.

● Rationale: Binomial heap operations are
isomorphic to integer arithmetic.

● Since the amortized cost of incrementing a
binary counter starting at zero is O(1), the
amortized cost of enqueuing into an initially
empty binomial heap is O(1).

Binomial vs Binary Heaps

● Interesting comparison:
● The cost of inserting n elements into a

binary heap, one after the other, is Θ(n log n)
in the worst-case.

● If n is known in advance, a binary heap can
be constructed out of n elements in time
Θ(n).

● The cost of inserting n elements into a
binomial heap, one after the other, is Θ(n),
even if n is not known in advance!

A Catch

● This amortized time bound does not hold if
enqueue and extract-min are intermixed.

● Intuition: Can force expensive insertions to
happen repeatedly.

4

8

6

3 57

8

Question: Can we make insertions
amortized O(1), regardless of whether we

do deletions?

Where's the Cost?

● Why does enqueue take time O(log n)?
● Answer: May have to combine together

O(log n) different binomial trees together
into a single tree.

● New Question: What happens if we
don't combine trees together?

● That is, what if we just add a new
singleton tree to the list?

Lazy Melding

● More generally, consider the following lazy
melding approach:

To meld together two binomial heaps, just combine
the two sets of trees together.

● If we assume the trees are stored in doubly-linked
lists, this can be done in time O(1).

4

8

6

3 57

8

1 32

9

4

The Catch: Part One

● When we use eager melding, the number of trees
is O(log n).

● Therefore, find-min runs in time O(log n).

● Problem: find-min no longer runs in time
O(log n) because there can be Θ(n) trees.

4

8

6

3 57

8

1 32

9

4

A Solution

● Have the binomial heap store a pointer to the
minimum element.

● Can be updated in time O(1) after doing a meld by
comparing the minima of the two heaps.

4

8

6

3 57

8

min

1 32

9

4

min

A Solution

● Have the binomial heap store a pointer to the
minimum element.

● Can be updated in time O(1) after doing a meld by
comparing the minima of the two heaps.

4

8

6

3 57

8

min

1 32

9

4

The Catch: Part Two

● Even with a pointer to the minimum, deletions
might now run in time Θ(n).

● Rationale: Need to update the pointer to the
minimum.

4

8

6

3 57

8

min ?

32

9

4

Resolving the Issue

● Idea: When doing an extract-min,
coalesce all of the trees so that there's at
most one tree of each order.

● Intuitively:
● The number of trees in a heap grows slowly

(only during an insert or meld).
● The number of trees in a heap drops rapidly

after coalescing (down to O(log n)).
● Can backcharge the work done during an
extract-min to enqueue or meld.

Coalescing Trees

● Our eager melding algorithm assumes that

● there is either zero or one tree of each order, and that

● the trees are stored in ascending order.

● Challenge: When coalescing trees in this case, neither
of these properties necessarily hold.

4

8

6

3 57

8

min

1 32

9

4

Wonky Arithmetic

● Compute the number of bits necessary to hold
the sum.
● Only O(log n) bits are needed.

● Create an array of that size, initially empty.
● For each packet:

● If there is no packet of that size, place the
packet in the array at that spot.

● If there is a packet of that size:

– Fuse the two packets together.
– Recursively add the new packet back into the

array.

Now With Trees!

● Compute the number of trees necessary to hold
the nodes.
● Only O(log n) trees are needed.

● Create an array of that size, initially empty.
● For each tree:

● If there is no tree of that size, place the tree in
the array at that spot.

● If there is a tree of that size:

– Fuse the two trees together.
– Recursively add the new tree back into the

array.

Analyzing Coalesce

● Suppose there are T trees.
● We spend Θ(T) work iterating across the main

list of trees twice:
● Pass one: Count up number of nodes (if each tree

stores its order, this takes time Θ(T)).
● Pass two: Place each node into the array.

● Each merge takes time O(1).
● The number of merges is O(T).
● Total work done: Θ(T).
● In the worst case, this is O(n).

The Story So Far

● A binomial heap with lazy melding has
these worst-case time bounds:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(n).

● These are worst-case time bounds. What
about an amortized time bounds?

An Observation

● The expensive step here is extract-min,
which runs in time proportional to the number
of trees.

● Each tree can be traced back to one of three
sources:
● An enqueue.
● A meld with another heap.
● A tree exposed by an extract-min.

● Let's use an amortized analysis to shift the
blame for the extract-min performance to
other operations.

The Potential Method

● We will use the potential method in this
analysis.

● When analyzing insertions with eager
merges, we set Φ(D) to be the number of
trees in D.

● Let's see what happens if we use this Φ
here.

Analyzing an Insertion

● To enqueue a key, we add a new binomial tree
to the forest and possibly update the min
pointer.

Actual time: O(1). ΔΦ: +1

Amortized time: O(1).

4

8

6

3 57

8

min

Analyzing an Insertion

● To enqueue a key, we add a new binomial tree
to the forest and possibly update the min
pointer.

Actual time: O(1). ΔΦ: +1

Amortized time: O(1).

4

8

6

3 57

8

min

1

Analyzing a Meld

● Suppose that we meld two lazy binomial heaps B₁ and B₂. Actual
cost: O(1).

● Let ΦB₁ and ΦB₂ be the initial potentials of B₁ and B₂.

● The new heap B has potential ΦB₁ + ΦB₂ and B₁ and B₂ have
potential 0.

● ΔΦ is zero.

● Amortized cost: O(1).

4

8

6

3 57

8

min

1 32

9

4

Analyzing a Find-Min

● Each find-min does O(1) work and does not
add or remove trees.

● Amortized cost: O(1).

4

8

6

3 57

8

min

1 32

9

4

Analyzing Extract-Min

● Initially, we expose the children of the minimum
element. This takes time O(log n).

● Suppose that at this point there are T trees. As we
saw earlier, the runtime for the coalesce is Θ(T).

● When we're done merging, there will be O(log n)
trees remaining, so ΔΦ = -T + O(log n).

● Amortized cost is

 = O(log n) + Θ(T) + O(1) · (-T + O(log n))

 = O(log n) + Θ(T) – O(1) · T + O(1) · O(log n)

 = O(log n).

The Overall Analysis

● The amortized costs of the operations on
a lazy binomial heap are as follows:
● enqueue: O(1)
● meld: O(1)
● find-min: O(1)
● extract-min: O(log n)

● Any series of e enqueues mixed with d
extract-mins will take time
O(e + d log e).

Why This Matters

● Lazy binomial heaps are a powerful
building block used in many other data
structures.

● We'll see one of them, the Fibonacci
heap, when we come back on Wednesday.

● Assuming the TAs think it's reasonable,
you'll see another (supporting
add-to-all) on the problem set.

Next Time

● The Need for decrease-key
● A powerful and versatile operation on

priority queues.

● Fibonacci Heaps
● A variation on lazy binomial heaps with

efficient decrease-key.

● Implementing Fibonacci Heaps
● … is harder than it looks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

