
5

Binary Trees

The list representations of Chapter 4 have a fundamental limitation: Either search

or insert can be made efficient, but not both at the same time. Tree structures

permit both efficient access and update to large collections of data. Binary trees in

particular are widely used and relatively easy to implement. But binary trees are

useful for many things besides searching. Just a few examples of applications that

trees can speed up include prioritizing jobs, describing mathematical expressions

and the syntactic elements of computer programs, or organizing the information

needed to drive data compression algorithms.

This chapter begins by presenting definitions and some key properties of bi-

nary trees. Section 5.2 discusses how to process all nodes of the binary tree in an

organized manner. Section 5.3 presents various methods for implementing binary

trees and their nodes. Sections 5.4 through 5.6 present three examples of binary

trees used in specific applications: the Binary Search Tree (BST) for implementing

dictionaries, heaps for implementing priority queues, and Huffman coding trees for

text compression. The BST, heap, and Huffman coding tree each have distinctive

structural features that affect their implementation and use.

5.1 Definitions and Properties

A binary tree is made up of a finite set of elements called nodes. This set either

is empty or consists of a node called the root together with two binary trees, called

the left and right subtrees, which are disjoint from each other and from the root.

(Disjoint means that they have no nodes in common.) The roots of these subtrees

are children of the root. There is an edge from a node to each of its children, and

a node is said to be the parent of its children.

If n1, n2, ..., nk is a sequence of nodes in the tree such that ni is the parent of

ni+1 for 1 ≤ i < k, then this sequence is called a path from n1 to nk. The length

of the path is k− 1. If there is a path from node R to node M, then R is an ancestor

of M, and M is a descendant of R. Thus, all nodes in the tree are descendants of the

151

152 Chap. 5 Binary Trees

G I

E F

A

CB

D

H

Figure 5.1 A binary tree. Node A is the root. Nodes B and C are A’s children.

Nodes B and D together form a subtree. Node B has two children: Its left child

is the empty tree and its right child is D. Nodes A, C, and E are ancestors of G.

Nodes D, E, and F make up level 2 of the tree; node A is at level 0. The edges

from A to C to E to G form a path of length 3. Nodes D, G, H, and I are leaves.

Nodes A, B, C, E, and F are internal nodes. The depth of I is 3. The height of this

tree is 4.

root of the tree, while the root is the ancestor of all nodes. The depth of a node M

in the tree is the length of the path from the root of the tree to M. The height of a

tree is one more than the depth of the deepest node in the tree. All nodes of depth d
are at level d in the tree. The root is the only node at level 0, and its depth is 0. A

leaf node is any node that has two empty children. An internal node is any node

that has at least one non-empty child.
Figure 5.1 illustrates the various terms used to identify parts of a binary tree.

Figure 5.2 illustrates an important point regarding the structure of binary trees.

Because all binary tree nodes have two children (one or both of which might be

empty), the two binary trees of Figure 5.2 are not the same.

Two restricted forms of binary tree are sufficiently important to warrant special

names. Each node in a full binary tree is either (1) an internal node with exactly

two non-empty children or (2) a leaf. A complete binary tree has a restricted shape

obtained by starting at the root and filling the tree by levels from left to right. In the

complete binary tree of height d, all levels except possibly level d−1 are completely

full. The bottom level has its nodes filled in from the left side.

Figure 5.3 illustrates the differences between full and complete binary trees.1

There is no particular relationship between these two tree shapes; that is, the tree of

Figure 5.3(a) is full but not complete while the tree of Figure 5.3(b) is complete but

1 While these definitions for full and complete binary tree are the ones most commonly used, they

are not universal. Because the common meaning of the words “full” and “complete” are quite similar,

there is little that you can do to distinguish between them other than to memorize the definitions. Here

is a memory aid that you might find useful: “Complete” is a wider word than “full,” and complete

binary trees tend to be wider than full binary trees because each level of a complete binary tree is as

wide as possible.

Sec. 5.1 Definitions and Properties 153

(b)

(d)(c)

(a)

BEMPTY EMPTY

AA

A

B B

B

A

Figure 5.2 Two different binary trees. (a) A binary tree whose root has a non-

empty left child. (b) A binary tree whose root has a non-empty right child. (c) The

binary tree of (a) with the missing right child made explicit. (d) The binary tree

of (b) with the missing left child made explicit.

(a) (b)

Figure 5.3 Examples of full and complete binary trees. (a) This tree is full (but

not complete). (b) This tree is complete (but not full).

not full. The heap data structure (Section 5.5) is an example of a complete binary

tree. The Huffman coding tree (Section 5.6) is an example of a full binary tree.

5.1.1 The Full Binary Tree Theorem

Some binary tree implementations store data only at the leaf nodes, using the inter-

nal nodes to provide structure to the tree. More generally, binary tree implementa-

tions might require some amount of space for internal nodes, and a different amount

for leaf nodes. Thus, to analyze the space required by such implementations, it is

useful to know the minimum and maximum fraction of the nodes that are leaves in

a tree containing n internal nodes.

Unfortunately, this fraction is not fixed. A binary tree of n internal nodes might

have only one leaf. This occurs when the internal nodes are arranged in a chain

ending in a single leaf as shown in Figure 5.4. In this case, the number of leaves

is low because each internal node has only one non-empty child. To find an upper

bound on the number of leaves for a tree of n internal nodes, first note that the upper

154 Chap. 5 Binary Trees

internal nodes
Any number of

Figure 5.4 A tree containing many internal nodes and a single leaf.

bound will occur when each internal node has two non-empty children, that is,

when the tree is full. However, this observation does not tell what shape of tree will

yield the highest percentage of non-empty leaves. It turns out not to matter, because

all full binary trees with n internal nodes have the same number of leaves. This fact

allows us to compute the space requirements for a full binary tree implementation

whose leaves require a different amount of space from its internal nodes.

Theorem 5.1 Full Binary Tree Theorem: The number of leaves in a non-empty

full binary tree is one more than the number of internal nodes.

Proof: The proof is by mathematical induction on n, the number of internal nodes.

This is an example of an induction proof where we reduce from an arbitrary in-

stance of size n to an instance of size n− 1 that meets the induction hypothesis.

• Base Cases: The non-empty tree with zero internal nodes has one leaf node.

A full binary tree with one internal node has two leaf nodes. Thus, the base

cases for n = 0 and n = 1 conform to the theorem.

• Induction Hypothesis: Assume that any full binary tree T containing n− 1
internal nodes has n leaves.

• Induction Step: Given tree T with n internal nodes, select an internal node I

whose children are both leaf nodes. Remove both of I’s children, making

I a leaf node. Call the new tree T′. T′ has n − 1 internal nodes. From

the induction hypothesis, T′ has n leaves. Now, restore I’s two children. We

once again have tree T with n internal nodes. How many leaves does T have?

Because T′ has n leaves, adding the two children yields n+2. However, node

I counted as one of the leaves in T′ and has now become an internal node.

Thus, tree T has n+ 1 leaf nodes and n internal nodes.

By mathematical induction the theorem holds for all values of n ≥ 0. ✷

When analyzing the space requirements for a binary tree implementation, it is

useful to know how many empty subtrees a tree contains. A simple extension of

the Full Binary Tree Theorem tells us exactly how many empty subtrees there are

in any binary tree, whether full or not. Here are two approaches to proving the

following theorem, and each suggests a useful way of thinking about binary trees.

Sec. 5.2 Binary Tree Traversals 155

Theorem 5.2 The number of empty subtrees in a non-empty binary tree is one

more than the number of nodes in the tree.

Proof 1: Take an arbitrary binary tree T and replace every empty subtree with a

leaf node. Call the new tree T′. All nodes originally in T will be internal nodes in

T′ (because even the leaf nodes of T have children in T′). T′ is a full binary tree,

because every internal node of T now must have two children in T′, and each leaf

node in T must have two children in T′ (the leaves just added). The Full Binary Tree

Theorem tells us that the number of leaves in a full binary tree is one more than the

number of internal nodes. Thus, the number of new leaves that were added to create

T′ is one more than the number of nodes in T. Each leaf node in T′ corresponds to

an empty subtree in T. Thus, the number of empty subtrees in T is one more than

the number of nodes in T. ✷

Proof 2: By definition, every node in binary tree T has two children, for a total of

2n children in a tree of n nodes. Every node except the root node has one parent,

for a total of n− 1 nodes with parents. In other words, there are n− 1 non-empty

children. Because the total number of children is 2n, the remaining n+ 1 children

must be empty. ✷

5.1.2 A Binary Tree Node ADT

Just as a linked list is comprised of a collection of link objects, a tree is comprised

of a collection of node objects. Figure 5.5 shows an ADT for binary tree nodes,

called BinNode. This class will be used by some of the binary tree structures

presented later. Class BinNode is a template with parameter E, which is the type

for the data record stored in the node. Member functions are provided that set or

return the element value, set or return a pointer to the left child, set or return a

pointer to the right child, or indicate whether the node is a leaf.

5.2 Binary Tree Traversals

Often we wish to process a binary tree by “visiting” each of its nodes, each time

performing a specific action such as printing the contents of the node. Any process

for visiting all of the nodes in some order is called a traversal. Any traversal that

lists every node in the tree exactly once is called an enumeration of the tree’s

nodes. Some applications do not require that the nodes be visited in any particular

order as long as each node is visited precisely once. For other applications, nodes

must be visited in an order that preserves some relationship. For example, we might

wish to make sure that we visit any given node before we visit its children. This is

called a preorder traversal.

156 Chap. 5 Binary Trees

// Binary tree node abstract class
template <typename E> class BinNode {
public:

virtual ˜BinNode() {} // Base destructor

// Return the node’s value
virtual E& element() = 0;

// Set the node’s value
virtual void setElement(const E&) = 0;

// Return the node’s left child
virtual BinNode* left() const = 0;

// Set the node’s left child
virtual void setLeft(BinNode*) = 0;

// Return the node’s right child
virtual BinNode* right() const = 0;

// Set the node’s right child
virtual void setRight(BinNode*) = 0;

// Return true if the node is a leaf, false otherwise
virtual bool isLeaf() = 0;

};

Figure 5.5 A binary tree node ADT.

Example 5.1 The preorder enumeration for the tree of Figure 5.1 is

ABDCEGFHI.

The first node printed is the root. Then all nodes of the left subtree are

printed (in preorder) before any node of the right subtree.

Alternatively, we might wish to visit each node only after we visit its children

(and their subtrees). For example, this would be necessary if we wish to return

all nodes in the tree to free store. We would like to delete the children of a node

before deleting the node itself. But to do that requires that the children’s children

be deleted first, and so on. This is called a postorder traversal.

Example 5.2 The postorder enumeration for the tree of Figure 5.1 is

DBGEHIFCA.

An inorder traversal first visits the left child (including its entire subtree), then

visits the node, and finally visits the right child (including its entire subtree). The

Sec. 5.2 Binary Tree Traversals 157

binary search tree of Section 5.4 makes use of this traversal to print all nodes in

ascending order of value.

Example 5.3 The inorder enumeration for the tree of Figure 5.1 is

BDAGECHFI.

A traversal routine is naturally written as a recursive function. Its input pa-

rameter is a pointer to a node which we will call root because each node can be

viewed as the root of a some subtree. The initial call to the traversal function passes

in a pointer to the root node of the tree. The traversal function visits root and

its children (if any) in the desired order. For example, a preorder traversal speci-

fies that root be visited before its children. This can easily be implemented as

follows.

template <typename E>
void preorder(BinNode<E>* root) {

if (root == NULL) return; // Empty subtree, do nothing
visit(root); // Perform desired action
preorder(root->left());
preorder(root->right());

}

Function preorder first checks that the tree is not empty (if it is, then the traversal

is done and preorder simply returns). Otherwise, preorder makes a call to

visit, which processes the root node (i.e., prints the value or performs whatever

computation as required by the application). Function preorder is then called

recursively on the left subtree, which will visit all nodes in that subtree. Finally,

preorder is called on the right subtree, visiting all nodes in the right subtree.

Postorder and inorder traversals are similar. They simply change the order in which

the node and its children are visited, as appropriate.

An important decision in the implementation of any recursive function on trees

is when to check for an empty subtree. Function preorder first checks to see if

the value for root is NULL. If not, it will recursively call itself on the left and right

children of root. In other words, preorder makes no attempt to avoid calling

itself on an empty child. Some programmers use an alternate design in which the

left and right pointers of the current node are checked so that the recursive call is

made only on non-empty children. Such a design typically looks as follows:

template <typename E>
void preorder2(BinNode<E>* root) {

visit(root); // Perform whatever action is desired
if (root->left() != NULL) preorder2(root->left());
if (root->right() != NULL) preorder2(root->right());

}

158 Chap. 5 Binary Trees

At first it might appear that preorder2 is more efficient than preorder,

because it makes only half as many recursive calls. (Why?) On the other hand,

preorder2 must access the left and right child pointers twice as often. The net

result is little or no performance improvement.

In reality, the design of preorder2 is inferior to that of preorder for two

reasons. First, while it is not apparent in this simple example, for more complex

traversals it can become awkward to place the check for the NULL pointer in the

calling code. Even here we had to write two tests for NULL, rather than the one

needed by preorder. The more important concern with preorder2 is that it

tends to be error prone. While preorder2 insures that no recursive calls will

be made on empty subtrees, it will fail if the initial call passes in a NULL pointer.

This would occur if the original tree is empty. To avoid the bug, either preorder2

needs an additional test for a NULL pointer at the beginning (making the subsequent

tests redundant after all), or the caller of preorder2 has a hidden obligation to

pass in a non-empty tree, which is unreliable design. The net result is that many

programmers forget to test for the possibility that the empty tree is being traversed.

By using the first design, which explicitly supports processing of empty subtrees,

the problem is avoided.

Another issue to consider when designing a traversal is how to define the visitor

function that is to be executed on every node. One approach is simply to write a

new version of the traversal for each such visitor function as needed. The disad-

vantage to this is that whatever function does the traversal must have access to the

BinNode class. It is probably better design to permit only the tree class to have

access to the BinNode class.

Another approach is for the tree class to supply a generic traversal function

which takes the visitor either as a template parameter or as a function parameter.

This is known as the visitor design pattern. A major constraint on this approach is

that the signature for all visitor functions, that is, their return type and parameters,

must be fixed in advance. Thus, the designer of the generic traversal function must

be able to adequately judge what parameters and return type will likely be needed

by potential visitor functions.

Handling information flow between parts of a program can be a significant

design challenge, especially when dealing with recursive functions such as tree

traversals. In general, we can run into trouble either with passing in the correct

information needed by the function to do its work, or with returning information

to the recursive function’s caller. We will see many examples throughout the book

that illustrate methods for passing information in and out of recursive functions as

they traverse a tree structure. Here are a few simple examples.

First we consider the simple case where a computation requires that we com-

municate information back up the tree to the end user.

Sec. 5.2 Binary Tree Traversals 159

20

50

40 75

20 to 40

Figure 5.6 To be a binary search tree, the left child of the node with value 40

must have a value between 20 and 40.

Example 5.4 We wish to count the number of nodes in a binary tree. The

key insight is that the total count for any (non-empty) subtree is one for the

root plus the counts for the left and right subtrees. Where do left and right

subtree counts come from? Calls to function count on the subtrees will

compute this for us. Thus, we can implement count as follows.

template <typename E>
int count(BinNode<E>* root) {
if (root == NULL) return 0; // Nothing to count
return 1 + count(root->left())

+ count(root->right());
}

Another problem that occurs when recursively processing data collections is

controlling which members of the collection will be visited. For example, some

tree “traversals” might in fact visit only some tree nodes, while avoiding processing

of others. Exercise 5.20 must solve exactly this problem in the context of a binary

search tree. It must visit only those children of a given node that might possibly

fall within a given range of values. Fortunately, it requires only a simple local

calculation to determine which child(ren) to visit.

A more difficult situation is illustrated by the following problem. Given an

arbitrary binary tree we wish to determine if, for every node A, are all nodes in A’s

left subtree less than the value of A, and are all nodes in A’s right subtree greater

than the value of A? (This happens to be the definition for a binary search tree,

described in Section 5.4.) Unfortunately, to make this decision we need to know

some context that is not available just by looking at the node’s parent or children.

As shown by Figure 5.6, it is not enough to verify that A’s left child has a value

less than that of A, and that A’s right child has a greater value. Nor is it enough to

verify that A has a value consistent with that of its parent. In fact, we need to know

information about what range of values is legal for a given node. That information

might come from any of the node’s ancestors. Thus, relevant range information

must be passed down the tree. We can implement this function as follows.

160 Chap. 5 Binary Trees

template <typename Key, typename E>
bool checkBST(BSTNode<Key,E>* root, Key low, Key high) {

if (root == NULL) return true; // Empty subtree
Key rootkey = root->key();
if ((rootkey < low) || (rootkey > high))

return false; // Out of range
if (!checkBST<Key,E>(root->left(), low, rootkey))

return false; // Left side failed
return checkBST<Key,E>(root->right(), rootkey, high);

}

5.3 Binary Tree Node Implementations

In this section we examine ways to implement binary tree nodes. We begin with

some options for pointer-based binary tree node implementations. Then comes a

discussion on techniques for determining the space requirements for a given imple-

mentation. The section concludes with an introduction to the array-based imple-

mentation for complete binary trees.

5.3.1 Pointer-Based Node Implementations

By definition, all binary tree nodes have two children, though one or both children

can be empty. Binary tree nodes typically contain a value field, with the type of

the field depending on the application. The most common node implementation

includes a value field and pointers to the two children.

Figure 5.7 shows a simple implementation for the BinNode abstract class,

which we will name BSTNode. Class BSTNode includes a data member of type

E, (which is the second template parameter) for the element type. To support search

structures such as the Binary Search Tree, an additional field is included, with cor-

responding access methods, to store a key value (whose purpose is explained in

Section 4.4). Its type is determined by the first template parameter, named Key.

Every BSTNode object also has two pointers, one to its left child and another to

its right child. Overloaded new and delete operators could be added to support

a freelist, as described in Section 4.1.2.Figure 5.8 illustrates the BSTNode imple-

mentation.

Some programmers find it convenient to add a pointer to the node’s parent,

allowing easy upward movement in the tree. Using a parent pointer is somewhat

analogous to adding a link to the previous node in a doubly linked list. In practice,

the parent pointer is almost always unnecessary and adds to the space overhead for

the tree implementation. It is not just a problem that parent pointers take space.

More importantly, many uses of the parent pointer are driven by improper under-

standing of recursion and so indicate poor programming. If you are inclined toward

using a parent pointer, consider if there is a more efficient implementation possible.

Sec. 5.3 Binary Tree Node Implementations 161

// Simple binary tree node implementation
template <typename Key, typename E>
class BSTNode : public BinNode<E> {
private:

Key k; // The node’s key
E it; // The node’s value
BSTNode* lc; // Pointer to left child
BSTNode* rc; // Pointer to right child

public:
// Two constructors -- with and without initial values
BSTNode() { lc = rc = NULL; }
BSTNode(Key K, E e, BSTNode* l =NULL, BSTNode* r =NULL)

{ k = K; it = e; lc = l; rc = r; }
˜BSTNode() {} // Destructor

// Functions to set and return the value and key
E& element() { return it; }
void setElement(const E& e) { it = e; }
Key& key() { return k; }
void setKey(const Key& K) { k = K; }

// Functions to set and return the children
inline BSTNode* left() const { return lc; }
void setLeft(BinNode<E>* b) { lc = (BSTNode*)b; }
inline BSTNode* right() const { return rc; }
void setRight(BinNode<E>* b) { rc = (BSTNode*)b; }

// Return true if it is a leaf, false otherwise
bool isLeaf() { return (lc == NULL) && (rc == NULL); }

};

Figure 5.7 A binary tree node class implementation.

A

C

G H

ED

B

F

I

Figure 5.8 Illustration of a typical pointer-based binary tree implementation,

where each node stores two child pointers and a value.

162 Chap. 5 Binary Trees

4 x

x

c

a

2

*

*

*

−

+

Figure 5.9 An expression tree for 4x(2x+ a)− c.

An important decision in the design of a pointer-based node implementation

is whether the same class definition will be used for leaves and internal nodes.

Using the same class for both will simplify the implementation, but might be an

inefficient use of space. Some applications require data values only for the leaves.

Other applications require one type of value for the leaves and another for the in-

ternal nodes. Examples include the binary trie of Section 13.1, the PR quadtree of

Section 13.3, the Huffman coding tree of Section 5.6, and the expression tree illus-

trated by Figure 5.9. By definition, only internal nodes have non-empty children.

If we use the same node implementation for both internal and leaf nodes, then both

must store the child pointers. But it seems wasteful to store child pointers in the

leaf nodes. Thus, there are many reasons why it can save space to have separate

implementations for internal and leaf nodes.

As an example of a tree that stores different information at the leaf and inter-

nal nodes, consider the expression tree illustrated by Figure 5.9. The expression

tree represents an algebraic expression composed of binary operators such as ad-

dition, subtraction, multiplication, and division. Internal nodes store operators,

while the leaves store operands. The tree of Figure 5.9 represents the expression

4x(2x + a) − c. The storage requirements for a leaf in an expression tree are quite

different from those of an internal node. Internal nodes store one of a small set of

operators, so internal nodes could store a small code identifying the operator such

as a single byte for the operator’s character symbol. In contrast, leaves store vari-

able names or numbers, which is considerably larger in order to handle the wider

range of possible values. At the same time, leaf nodes need not store child pointers.

C++ allows us to differentiate leaf from internal nodes through the use of class

inheritance. A base class provides a general definition for an object, and a subclass

modifies a base class to add more detail. A base class can be declared for binary tree

nodes in general, with subclasses defined for the internal and leaf nodes. The base

class of Figure 5.10 is named VarBinNode. It includes a virtual member function

Sec. 5.3 Binary Tree Node Implementations 163

named isLeaf, which indicates the node type. Subclasses for the internal and leaf

node types each implement isLeaf. Internal nodes store child pointers of the base

class type; they do not distinguish their children’s actual subclass. Whenever a node

is examined, its version of isLeaf indicates the node’s subclass.

Figure 5.10 includes two subclasses derived from class VarBinNode, named

LeafNode and IntlNode. Class IntlNode can access its children through

pointers of type VarBinNode. Function traverse illustrates the use of these

classes. When traverse calls method isLeaf, C++’s runtime environment

determines which subclass this particular instance of rt happens to be and calls that

subclass’s version of isLeaf. Method isLeaf then provides the actual node type

to its caller. The other member functions for the derived subclasses are accessed by

type-casting the base class pointer as appropriate, as shown in function traverse.

There is another approach that we can take to represent separate leaf and inter-

nal nodes, also using a virtual base class and separate node classes for the two types.

This is to implement nodes using the composite design pattern. This approach is

noticeably different from the one of Figure 5.10 in that the node classes themselves

implement the functionality of traverse. Figure 5.11 shows the implementa-

tion. Here, base class VarBinNode declares a member function traverse that

each subclass must implement. Each subclass then implements its own appropriate

behavior for its role in a traversal. The whole traversal process is called by invoking

traverse on the root node, which in turn invokes traverse on its children.

When comparing the implementations of Figures 5.10 and 5.11, each has ad-

vantages and disadvantages. The first does not require that the node classes know

about the traverse function. With this approach, it is easy to add new methods

to the tree class that do other traversals or other operations on nodes of the tree.

However, we see that traverse in Figure 5.10 does need to be familiar with each

node subclass. Adding a new node subclass would therefore require modifications

to the traverse function. In contrast, the approach of Figure 5.11 requires that

any new operation on the tree that requires a traversal also be implemented in the

node subclasses. On the other hand, the approach of Figure 5.11 avoids the need for

the traverse function to know anything about the distinct abilities of the node

subclasses. Those subclasses handle the responsibility of performing a traversal on

themselves. A secondary benefit is that there is no need for traverse to explic-

itly enumerate all of the different node subclasses, directing appropriate action for

each. With only two node classes this is a minor point. But if there were many such

subclasses, this could become a bigger problem. A disadvantage is that the traversal

operation must not be called on a NULL pointer, because there is no object to catch

the call. This problem could be avoided by using a flyweight (see Section 1.3.1) to

implement empty nodes.

Typically, the version of Figure 5.10 would be preferred in this example if

traverse is a member function of the tree class, and if the node subclasses are

164 Chap. 5 Binary Trees

// Node implementation with simple inheritance
class VarBinNode { // Node abstract base class
public:

virtual ˜VarBinNode() {}
virtual bool isLeaf() = 0; // Subclasses must implement

};

class LeafNode : public VarBinNode { // Leaf node
private:

Operand var; // Operand value

public:
LeafNode(const Operand& val) { var = val; } // Constructor
bool isLeaf() { return true; } // Version for LeafNode
Operand value() { return var; } // Return node value

};

class IntlNode : public VarBinNode { // Internal node
private:

VarBinNode* left; // Left child
VarBinNode* right; // Right child
Operator opx; // Operator value

public:
IntlNode(const Operator& op, VarBinNode* l, VarBinNode* r)
{ opx = op; left = l; right = r; } // Constructor

bool isLeaf() { return false; } // Version for IntlNode
VarBinNode* leftchild() { return left; } // Left child
VarBinNode* rightchild() { return right; } // Right child
Operator value() { return opx; } // Value

};

void traverse(VarBinNode *root) { // Preorder traversal
if (root == NULL) return; // Nothing to visit
if (root->isLeaf()) // Do leaf node

cout << "Leaf: " << ((LeafNode *)root)->value() << endl;
else { // Do internal node

cout << "Internal: "
<< ((IntlNode *)root)->value() << endl;

traverse(((IntlNode *)root)->leftchild());
traverse(((IntlNode *)root)->rightchild());

}
}

Figure 5.10 An implementation for separate internal and leaf node representa-

tions using C++ class inheritance and virtual functions.

Sec. 5.3 Binary Tree Node Implementations 165

// Node implementation with the composite design pattern
class VarBinNode { // Node abstract base class
public:

virtual ˜VarBinNode() {} // Generic destructor
virtual bool isLeaf() = 0;
virtual void traverse() = 0;

};

class LeafNode : public VarBinNode { // Leaf node
private:

Operand var; // Operand value

public:
LeafNode(const Operand& val) { var = val; } // Constructor
bool isLeaf() { return true; } // isLeaf for Leafnode
Operand value() { return var; } // Return node value
void traverse() { cout << "Leaf: " << value() << endl; }

};

class IntlNode : public VarBinNode { // Internal node
private:

VarBinNode* lc; // Left child
VarBinNode* rc; // Right child
Operator opx; // Operator value

public:
IntlNode(const Operator& op, VarBinNode* l, VarBinNode* r)
{ opx = op; lc = l; rc = r; } // Constructor

bool isLeaf() { return false; } // isLeaf for IntlNode
VarBinNode* left() { return lc; } // Left child
VarBinNode* right() { return rc; } // Right child
Operator value() { return opx; } // Value

void traverse() { // Traversal behavior for internal nodes
cout << "Internal: " << value() << endl;
if (left() != NULL) left()->traverse();
if (right() != NULL) right()->traverse();

}
};

// Do a preorder traversal
void traverse(VarBinNode *root) {
if (root != NULL) root->traverse();

}

Figure 5.11 A second implementation for separate internal and leaf node repre-

sentations using C++ class inheritance and virtual functions using the composite

design pattern. Here, the functionality of traverse is embedded into the node

subclasses.

166 Chap. 5 Binary Trees

hidden from users of that tree class. On the other hand, if the nodes are objects

that have meaning to users of the tree separate from their existence as nodes in the

tree, then the version of Figure 5.11 might be preferred because hiding the internal

behavior of the nodes becomes more important.

Another advantage of the composite design is that implementing each node

type’s functionality might be easier. This is because you can focus solely on the

information passing and other behavior needed by this node type to do its job. This

breaks down the complexity that many programmers feel overwhelmed by when

dealing with complex information flows related to recursive processing.

5.3.2 Space Requirements

This section presents techniques for calculating the amount of overhead required by

a binary tree implementation. Recall that overhead is the amount of space necessary

to maintain the data structure. In other words, it is any space not used to store

data records. The amount of overhead depends on several factors including which

nodes store data values (all nodes, or just the leaves), whether the leaves store child

pointers, and whether the tree is a full binary tree.

In a simple pointer-based implementation for the binary tree such as that of

Figure 5.7, every node has two pointers to its children (even when the children are

NULL). This implementation requires total space amounting to n(2P + D) for a

tree of n nodes. Here, P stands for the amount of space required by a pointer, and

D stands for the amount of space required by a data value. The total overhead space

will be 2Pn for the entire tree. Thus, the overhead fraction will be 2P/(2P +D).
The actual value for this expression depends on the relative size of pointers versus

data fields. If we arbitrarily assume that P = D, then a full tree has about two

thirds of its total space taken up in overhead. Worse yet, Theorem 5.2 tells us that

about half of the pointers are “wasted” NULL values that serve only to indicate tree

structure, but which do not provide access to new data.

A common implementation is not to store any actual data in a node, but rather a

pointer to the data record. In this case, each node will typically store three pointers,

all of which are overhead, resulting in an overhead fraction of 3P/(3P +D).

If only leaves store data values, then the fraction of total space devoted to over-

head depends on whether the tree is full. If the tree is not full, then conceivably

there might only be one leaf node at the end of a series of internal nodes. Thus,

the overhead can be an arbitrarily high percentage for non-full binary trees. The

overhead fraction drops as the tree becomes closer to full, being lowest when the

tree is truly full. In this case, about one half of the nodes are internal.

Great savings can be had by eliminating the pointers from leaf nodes in full

binary trees. Again assume the tree stores a pointer to the data field. Because about

half of the nodes are leaves and half internal nodes, and because only internal nodes

Sec. 5.3 Binary Tree Node Implementations 167

now have child pointers, the overhead fraction in this case will be approximately

n

2
(2P)

n

2
(2P) +Dn

=
P

P +D
.

If P = D, the overhead drops to about one half of the total space. However, if only

leaf nodes store useful information, the overhead fraction for this implementation is

actually three quarters of the total space, because half of the “data” space is unused.

If a full binary tree needs to store data only at the leaf nodes, a better imple-

mentation would have the internal nodes store two pointers and no data field while

the leaf nodes store only a pointer to the data field. This implementation requires
n

2
2P+n

2
(p+d) units of space. If P = D, then the overhead is 3P/(3P+D) = 3/4.

It might seem counter-intuitive that the overhead ratio has gone up while the total

amount of space has gone down. The reason is because we have changed our defini-

tion of “data” to refer only to what is stored in the leaf nodes, so while the overhead

fraction is higher, it is from a total storage requirement that is lower.

There is one serious flaw with this analysis. When using separate implemen-

tations for internal and leaf nodes, there must be a way to distinguish between

the node types. When separate node types are implemented via C++ subclasses,

the runtime environment stores information with each object allowing it to deter-

mine, for example, the correct subclass to use when the isLeaf virtual function is

called. Thus, each node requires additional space. Only one bit is truly necessary

to distinguish the two possibilities. In rare applications where space is a critical

resource, implementors can often find a spare bit within the node’s value field in

which to store the node type indicator. An alternative is to use a spare bit within

a node pointer to indicate node type. For example, this is often possible when the

compiler requires that structures and objects start on word boundaries, leaving the

last bit of a pointer value always zero. Thus, this bit can be used to store the node-

type flag and is reset to zero before the pointer is dereferenced. Another alternative

when the leaf value field is smaller than a pointer is to replace the pointer to a leaf

with that leaf’s value. When space is limited, such techniques can make the differ-

ence between success and failure. In any other situation, such “bit packing” tricks

should be avoided because they are difficult to debug and understand at best, and

are often machine dependent at worst.2

2In the early to mid 1980s, I worked on a Geographic Information System that stored spatial data

in quadtrees (see Section 13.3). At the time space was a critical resource, so we used a bit-packing

approach where we stored the nodetype flag as the last bit in the parent node’s pointer. This worked

perfectly on various 32-bit workstations. Unfortunately, in those days IBM PC-compatibles used

16-bit pointers. We never did figure out how to port our code to the 16-bit machine.

168 Chap. 5 Binary Trees

5.3.3 Array Implementation for Complete Binary Trees

The previous section points out that a large fraction of the space in a typical binary

tree node implementation is devoted to structural overhead, not to storing data.

This section presents a simple, compact implementation for complete binary trees.

Recall that complete binary trees have all levels except the bottom filled out com-

pletely, and the bottom level has all of its nodes filled in from left to right. Thus,

a complete binary tree of n nodes has only one possible shape. You might think

that a complete binary tree is such an unusual occurrence that there is no reason

to develop a special implementation for it. However, the complete binary tree has

practical uses, the most important being the heap data structure discussed in Sec-

tion 5.5. Heaps are often used to implement priority queues (Section 5.5) and for

external sorting algorithms (Section 8.5.2).

We begin by assigning numbers to the node positions in the complete binary

tree, level by level, from left to right as shown in Figure 5.12(a). An array can

store the tree’s data values efficiently, placing each data value in the array position

corresponding to that node’s position within the tree. Figure 5.12(b) lists the array

indices for the children, parent, and siblings of each node in Figure 5.12(a). From

Figure 5.12(b), you should see a pattern regarding the positions of a node’s relatives

within the array. Simple formulas can be derived for calculating the array index for

each relative of a node r from r’s index. No explicit pointers are necessary to

reach a node’s left or right child. This means there is no overhead to the array

implementation if the array is selected to be of size n for a tree of n nodes.

The formulae for calculating the array indices of the various relatives of a node

are as follows. The total number of nodes in the tree is n. The index of the node in

question is r, which must fall in the range 0 to n− 1.

• Parent(r) = ⌊(r − 1)/2⌋ if r 6= 0.

• Left child(r) = 2r + 1 if 2r + 1 < n.

• Right child(r) = 2r + 2 if 2r + 2 < n.

• Left sibling(r) = r − 1 if r is even.

• Right sibling(r) = r + 1 if r is odd and r + 1 < n.

5.4 Binary Search Trees

Section 4.4 presented the dictionary ADT, along with dictionary implementations

based on sorted and unsorted lists. When implementing the dictionary with an

unsorted list, inserting a new record into the dictionary can be performed quickly by

putting it at the end of the list. However, searching an unsorted list for a particular

record requires Θ(n) time in the average case. For a large database, this is probably

much too slow. Alternatively, the records can be stored in a sorted list. If the list

is implemented using a linked list, then no speedup to the search operation will

Sec. 5.4 Binary Search Trees 169

5 6

8 9 10 117

(a)

4

0

1

3

2

Position 0 1 2 3 4 5 6 7 8 9 10 11

Parent – 0 0 1 1 2 2 3 3 4 4 5

Left Child 1 3 5 7 9 11 – – – – – –

Right Child 2 4 6 8 10 – – – – – – –

Left Sibling – – 1 – 3 – 5 – 7 – 9 –

Right Sibling – 2 – 4 – 6 – 8 – 10 – –

(b)

Figure 5.12 A complete binary tree and its array implementation. (a) The com-

plete binary tree with twelve nodes. Each node has been labeled with its position

in the tree. (b) The positions for the relatives of each node. A dash indicates that

the relative does not exist.

result from storing the records in sorted order. On the other hand, if we use a sorted

array-based list to implement the dictionary, then binary search can be used to find

a record in only Θ(log n) time. However, insertion will now require Θ(n) time on

average because, once the proper location for the new record in the sorted list has

been found, many records might be shifted to make room for the new record.

Is there some way to organize a collection of records so that inserting records

and searching for records can both be done quickly? This section presents the

binary search tree (BST), which allows an improved solution to this problem.

A BST is a binary tree that conforms to the following condition, known as

the Binary Search Tree Property: All nodes stored in the left subtree of a node

whose key value is K have key values less than K. All nodes stored in the right

subtree of a node whose key value is K have key values greater than or equal to K.

Figure 5.13 shows two BSTs for a collection of values. One consequence of the

Binary Search Tree Property is that if the BST nodes are printed using an inorder

traversal (see Section 5.2), the resulting enumeration will be in sorted order from

lowest to highest.

Figure 5.14 shows a class declaration for the BST that implements the dictio-

nary ADT. The public member functions include those required by the dictionary

170 Chap. 5 Binary Trees

7

2

32

42

40

120

7 42

(a)

37

42

(b)

24

120

42

24

2 32

37

40

Figure 5.13 Two Binary Search Trees for a collection of values. Tree (a) results

if values are inserted in the order 37, 24, 42, 7, 2, 40, 42, 32, 120. Tree (b) results

if the same values are inserted in the order 120, 42, 42, 7, 2, 32, 37, 24, 40.

ADT, along with a constructor and destructor. Recall from the discussion in Sec-

tion 4.4 that there are various ways to deal with keys and comparing records (three

approaches being key/value pairs, a special comparison method, and passing in a

comparator function). Our BST implementation will handle comparison by explic-

itly storing a key separate from the data value at each node of the tree.

To find a record with key value K in a BST, begin at the root. If the root stores

a record with key value K, then the search is over. If not, then we must search

deeper in the tree. What makes the BST efficient during search is that we need

search only one of the node’s two subtrees. If K is less than the root node’s key

value, we search only the left subtree. If K is greater than the root node’s key

value, we search only the right subtree. This process continues until a record with

key value K is found, or we reach a leaf node. If we reach a leaf node without

encountering K, then no record exists in the BST whose key value is K.

Example 5.5 Consider searching for the node with key value 32 in the

tree of Figure 5.13(a). Because 32 is less than the root value of 37, the

search proceeds to the left subtree. Because 32 is greater than 24, we search

in 24’s right subtree. At this point the node containing 32 is found. If

the search value were 35, the same path would be followed to the node

containing 32. Because this node has no children, we know that 35 is not

in the BST.

Notice that in Figure 5.14, public member function find calls private member

function findhelp. Method find takes the search key as an explicit parameter

and its BST as an implicit parameter, and returns the record that matches the key.

Sec. 5.4 Binary Search Trees 171

// Binary Search Tree implementation for the Dictionary ADT
template <typename Key, typename E>
class BST : public Dictionary<Key,E> {
private:

BSTNode<Key,E>* root; // Root of the BST
int nodecount; // Number of nodes in the BST

// Private "helper" functions
void clearhelp(BSTNode<Key, E>*);
BSTNode<Key,E>* inserthelp(BSTNode<Key, E>*,

const Key&, const E&);
BSTNode<Key,E>* deletemin(BSTNode<Key, E>*);
BSTNode<Key,E>* getmin(BSTNode<Key, E>*);
BSTNode<Key,E>* removehelp(BSTNode<Key, E>*, const Key&);
E findhelp(BSTNode<Key, E>*, const Key&) const;
void printhelp(BSTNode<Key, E>*, int) const;

public:
BST() { root = NULL; nodecount = 0; } // Constructor
˜BST() { clearhelp(root); } // Destructor

void clear() // Reinitialize tree
{ clearhelp(root); root = NULL; nodecount = 0; }

// Insert a record into the tree.
// k Key value of the record.
// e The record to insert.
void insert(const Key& k, const E& e) {

root = inserthelp(root, k, e);
nodecount++;

}

// Remove a record from the tree.
// k Key value of record to remove.
// Return: The record removed, or NULL if there is none.
E remove(const Key& k) {

E temp = findhelp(root, k); // First find it
if (temp != NULL) {

root = removehelp(root, k);
nodecount--;

}
return temp;

}

Figure 5.14 The binary search tree implementation.

172 Chap. 5 Binary Trees

// Remove and return the root node from the dictionary.
// Return: The record removed, null if tree is empty.
E removeAny() { // Delete min value

if (root != NULL) {
E temp = root->element();
root = removehelp(root, root->key());
nodecount--;
return temp;

}
else return NULL;

}

// Return Record with key value k, NULL if none exist.
// k: The key value to find. */
// Return some record matching "k".
// Return true if such exists, false otherwise. If
// multiple records match "k", return an arbitrary one.
E find(const Key& k) const { return findhelp(root, k); }

// Return the number of records in the dictionary.
int size() { return nodecount; }

void print() const { // Print the contents of the BST
if (root == NULL) cout << "The BST is empty.\n";
else printhelp(root, 0);

}
};

Figure 5.14 (continued)

However, the find operation is most easily implemented as a recursive function

whose parameters are the root of a subtree and the search key. Member findhelp

has the desired form for this recursive subroutine and is implemented as follows.

template <typename Key, typename E>
E BST<Key, E>::findhelp(BSTNode<Key, E>* root,

const Key& k) const {
if (root == NULL) return NULL; // Empty tree
if (k < root->key())

return findhelp(root->left(), k); // Check left
else if (k > root->key())

return findhelp(root->right(), k); // Check right
else return root->element(); // Found it

}

Once the desired record is found, it is passed through return values up the chain of

recursive calls. If a suitable record is not found, null is returned.

Inserting a record with key value k requires that we first find where that record

would have been if it were in the tree. This takes us to either a leaf node, or to an

Sec. 5.4 Binary Search Trees 173

37

24

2

32

35

42

40 42

120

7

Figure 5.15 An example of BST insertion. A record with value 35 is inserted

into the BST of Figure 5.13(a). The node with value 32 becomes the parent of the

new node containing 35.

internal node with no child in the appropriate direction.3 Call this node R ′. We then

add a new node containing the new record as a child of R ′. Figure 5.15 illustrates

this operation. The value 35 is added as the right child of the node with value 32.

Here is the implementation for inserthelp:

template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::inserthelp(

BSTNode<Key, E>* root, const Key& k, const E& it) {
if (root == NULL) // Empty tree: create node

return new BSTNode<Key, E>(k, it, NULL, NULL);
if (k < root->key())

root->setLeft(inserthelp(root->left(), k, it));
else root->setRight(inserthelp(root->right(), k, it));
return root; // Return tree with node inserted

}

You should pay careful attention to the implementation for inserthelp.

Note that inserthelp returns a pointer to a BSTNode. What is being returned

is a subtree identical to the old subtree, except that it has been modified to contain

the new record being inserted. Each node along a path from the root to the parent

of the new node added to the tree will have its appropriate child pointer assigned

to it. Except for the last node in the path, none of these nodes will actually change

their child’s pointer value. In that sense, many of the assignments seem redundant.

However, the cost of these additional assignments is worth paying to keep the inser-

tion process simple. The alternative is to check if a given assignment is necessary,

which is probably more expensive than the assignment!

The shape of a BST depends on the order in which elements are inserted. A new

element is added to the BST as a new leaf node, potentially increasing the depth of

the tree. Figure 5.13 illustrates two BSTs for a collection of values. It is possible

3This assumes that no node has a key value equal to the one being inserted. If we find a node that

duplicates the key value to be inserted, we have two options. If the application does not allow nodes

with equal keys, then this insertion should be treated as an error (or ignored). If duplicate keys are

allowed, our convention will be to insert the duplicate in the right subtree.

174 Chap. 5 Binary Trees

for the BST containing n nodes to be a chain of nodes with height n. This would

happen if, for example, all elements were inserted in sorted order. In general, it is

preferable for a BST to be as shallow as possible. This keeps the average cost of a

BST operation low.

Removing a node from a BST is a bit trickier than inserting a node, but it is not

complicated if all of the possible cases are considered individually. Before tackling

the general node removal process, let us first discuss how to remove from a given

subtree the node with the smallest key value. This routine will be used later by the

general node removal function. To remove the node with the minimum key value

from a subtree, first find that node by continuously moving down the left link until

there is no further left link to follow. Call this node S. To remove S, simply have

the parent of S change its pointer to point to the right child of S. We know that S

has no left child (because if S did have a left child, S would not be the node with

minimum key value). Thus, changing the pointer as described will maintain a BST,

with S removed. The code for this method, named deletemin, is as follows:

template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::
deletemin(BSTNode<Key, E>* rt) {
if (rt->left() == NULL) // Found min

return rt->right();
else { // Continue left

rt->setLeft(deletemin(rt->left()));
return rt;

}
}

Example 5.6 Figure 5.16 illustrates the deletemin process. Beginning

at the root node with value 10, deletemin follows the left link until there

is no further left link, in this case reaching the node with value 5. The node

with value 10 is changed to point to the right child of the node containing

the minimum value. This is indicated in Figure 5.16 by a dashed line.

A pointer to the node containing the minimum-valued element is stored in pa-

rameter S. The return value of the deletemin method is the subtree of the cur-

rent node with the minimum-valued node in the subtree removed. As with method

inserthelp, each node on the path back to the root has its left child pointer

reassigned to the subtree resulting from its call to the deletemin method.

A useful companion method is getmin which returns a pointer to the node

containing the minimum value in the subtree.

Sec. 5.4 Binary Search Trees 175

9

5 20

5

10

subroot

Figure 5.16 An example of deleting the node with minimum value. In this tree,

the node with minimum value, 5, is the left child of the root. Thus, the root’s

left pointer is changed to point to 5’s right child.

template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::
getmin(BSTNode<Key, E>* rt) {

if (rt->left() == NULL)
return rt;

else return getmin(rt->left());
}

Removing a node with given key value R from the BST requires that we first

find R and then remove it from the tree. So, the first part of the remove operation

is a search to find R. Once R is found, there are several possibilities. If R has no

children, then R’s parent has its pointer set to NULL. If R has one child, then R’s

parent has its pointer set to R’s child (similar to deletemin). The problem comes

if R has two children. One simple approach, though expensive, is to set R’s parent

to point to one of R’s subtrees, and then reinsert the remaining subtree’s nodes one

at a time. A better alternative is to find a value in one of the subtrees that can

replace the value in R.

Thus, the question becomes: Which value can substitute for the one being re-

moved? It cannot be any arbitrary value, because we must preserve the BST prop-

erty without making major changes to the structure of the tree. Which value is

most like the one being removed? The answer is the least key value greater than

(or equal to) the one being removed, or else the greatest key value less than the one

being removed. If either of these values replace the one being removed, then the

BST property is maintained.

Example 5.7 Assume that we wish to remove the value 37 from the BST

of Figure 5.13(a). Instead of removing the root node, we remove the node

with the least value in the right subtree (using the deletemin operation).

This value can then replace the value in the root. In this example we first

remove the node with value 40, because it contains the least value in the

176 Chap. 5 Binary Trees

37 40

24

7 32

42

40 42

1202

Figure 5.17 An example of removing the value 37 from the BST. The node

containing this value has two children. We replace value 37 with the least value

from the node’s right subtree, in this case 40.

right subtree. We then substitute 40 as the new value for the root node.

Figure 5.17 illustrates this process.

When duplicate node values do not appear in the tree, it makes no difference

whether the replacement is the greatest value from the left subtree or the least value

from the right subtree. If duplicates are stored, then we must select the replacement

from the right subtree. To see why, call the greatest value in the left subtree G.

If multiple nodes in the left subtree have value G, selecting G as the replacement

value for the root of the subtree will result in a tree with equal values to the left of

the node now containing G. Precisely this situation occurs if we replace value 120

with the greatest value in the left subtree of Figure 5.13(b). Selecting the least value

from the right subtree does not have a similar problem, because it does not violate

the Binary Search Tree Property if equal values appear in the right subtree.

From the above, we see that if we want to remove the record stored in a node

with two children, then we simply call deletemin on the node’s right subtree

and substitute the record returned for the record being removed. Figure 5.18 shows

an implementation for removehelp.

The cost for findhelp and inserthelp is the depth of the node found or

inserted. The cost for removehelp is the depth of the node being removed, or

in the case when this node has two children, the depth of the node with smallest

value in its right subtree. Thus, in the worst case, the cost for any one of these

operations is the depth of the deepest node in the tree. This is why it is desirable to

keep BSTs balanced, that is, with least possible height. If a binary tree is balanced,

then the height for a tree of n nodes is approximately log n. However, if the tree

is completely unbalanced, for example in the shape of a linked list, then the height

for a tree with n nodes can be as great as n. Thus, a balanced BST will in the

average case have operations costing Θ(log n), while a badly unbalanced BST can

have operations in the worst case costing Θ(n). Consider the situation where we

construct a BST of n nodes by inserting records one at a time. If we are fortunate

to have them arrive in an order that results in a balanced tree (a “random” order is

Sec. 5.4 Binary Search Trees 177

// Remove a node with key value k
// Return: The tree with the node removed
template <typename Key, typename E>
BSTNode<Key, E>* BST<Key, E>::
removehelp(BSTNode<Key, E>* rt, const Key& k) {
if (rt == NULL) return NULL; // k is not in tree
else if (k < rt->key())

rt->setLeft(removehelp(rt->left(), k));
else if (k > rt->key())

rt->setRight(removehelp(rt->right(), k));
else { // Found: remove it

BSTNode<Key, E>* temp = rt;
if (rt->left() == NULL) { // Only a right child

rt = rt->right(); // so point to right
delete temp;

}
else if (rt->right() == NULL) { // Only a left child

rt = rt->left(); // so point to left
delete temp;

}
else { // Both children are non-empty

BSTNode<Key, E>* temp = getmin(rt->right());
rt->setElement(temp->element());
rt->setKey(temp->key());
rt->setRight(deletemin(rt->right()));
delete temp;

}
}
return rt;

}

Figure 5.18 Implementation for the BST removehelp method.

likely to be good enough for this purpose), then each insertion will cost on average

Θ(log n), for a total cost of Θ(n log n). However, if the records are inserted in

order of increasing value, then the resulting tree will be a chain of height n. The

cost of insertion in this case will be
∑

n

i=1
i = Θ(n2).

Traversing a BST costs Θ(n) regardless of the shape of the tree. Each node is

visited exactly once, and each child pointer is followed exactly once.

Below are two example traversals. The first is member clearhelp, which

returns the nodes of the BST to the freelist. Because the children of a node must be

freed before the node itself, this is a postorder traversal.

template <typename Key, typename E>
void BST<Key, E>::
clearhelp(BSTNode<Key, E>* root) {
if (root == NULL) return;
clearhelp(root->left());
clearhelp(root->right());
delete root;

}

178 Chap. 5 Binary Trees

The next example is printhelp, which performs an inorder traversal on the

BST to print the node values in ascending order. Note that printhelp indents

each line to indicate the depth of the corresponding node in the tree. Thus we pass

in the current level of the tree in level, and increment this value each time that

we make a recursive call.

template <typename Key, typename E>
void BST<Key, E>::
printhelp(BSTNode<Key, E>* root, int level) const {
if (root == NULL) return; // Empty tree
printhelp(root->left(), level+1); // Do left subtree
for (int i=0; i<level; i++) // Indent to level

cout << " ";
cout << root->key() << "\n"; // Print node value
printhelp(root->right(), level+1); // Do right subtree

}

While the BST is simple to implement and efficient when the tree is balanced,

the possibility of its being unbalanced is a serious liability. There are techniques

for organizing a BST to guarantee good performance. Two examples are the AVL

tree and the splay tree of Section 13.2. Other search trees are guaranteed to remain

balanced, such as the 2-3 tree of Section 10.4.

5.5 Heaps and Priority Queues

There are many situations, both in real life and in computing applications, where

we wish to choose the next “most important” from a collection of people, tasks,

or objects. For example, doctors in a hospital emergency room often choose to

see next the “most critical” patient rather than the one who arrived first. When

scheduling programs for execution in a multitasking operating system, at any given

moment there might be several programs (usually called jobs) ready to run. The

next job selected is the one with the highest priority. Priority is indicated by a

particular value associated with the job (and might change while the job remains in

the wait list).

When a collection of objects is organized by importance or priority, we call

this a priority queue. A normal queue data structure will not implement a prior-

ity queue efficiently because search for the element with highest priority will take

Θ(n) time. A list, whether sorted or not, will also require Θ(n) time for either in-

sertion or removal. A BST that organizes records by priority could be used, with the

total of n inserts and n remove operations requiring Θ(n log n) time in the average

case. However, there is always the possibility that the BST will become unbal-

anced, leading to bad performance. Instead, we would like to find a data structure

that is guaranteed to have good performance for this special application.

	Preface
	I Preliminaries
	1 Data Structures and Algorithms
	1.1 A Philosophy of Data Structures
	1.1.1 The Need for Data Structures
	1.1.2 Costs and Benefits

	1.2 Abstract Data Types and Data Structures
	1.3 Design Patterns
	1.3.1 Flyweight
	1.3.2 Visitor
	1.3.3 Composite
	1.3.4 Strategy

	1.4 Problems, Algorithms, and Programs
	1.5 Further Reading
	1.6 Exercises

	2 Mathematical Preliminaries
	2.1 Sets and Relations
	2.2 Miscellaneous Notation
	2.3 Logarithms
	2.4 Summations and Recurrences
	2.5 Recursion
	2.6 Mathematical Proof Techniques
	2.6.1 Direct Proof
	2.6.2 Proof by Contradiction
	2.6.3 Proof by Mathematical Induction

	2.7 Estimation
	2.8 Further Reading
	2.9 Exercises

	3 Algorithm Analysis
	3.1 Introduction
	3.2 Best, Worst, and Average Cases
	3.3 A Faster Computer, or a Faster Algorithm?
	3.4 Asymptotic Analysis
	3.4.1 Upper Bounds
	3.4.2 Lower Bounds
	3.4.3 Notation
	3.4.4 Simplifying Rules
	3.4.5 Classifying Functions

	3.5 Calculating the Running Time for a Program
	3.6 Analyzing Problems
	3.7 Common Misunderstandings
	3.8 Multiple Parameters
	3.9 Space Bounds
	3.10 Speeding Up Your Programs
	3.11 Empirical Analysis
	3.12 Further Reading
	3.13 Exercises
	3.14 Projects

	II Fundamental Data Structures
	4 Lists, Stacks, and Queues
	4.1 Lists
	4.1.1 Array-Based List Implementation
	4.1.2 Linked Lists
	4.1.3 Comparison of List Implementations
	4.1.4 Element Implementations
	4.1.5 Doubly Linked Lists

	4.2 Stacks
	4.2.1 Array-Based Stacks
	4.2.2 Linked Stacks
	4.2.3 Comparison of Array-Based and Linked Stacks
	4.2.4 Implementing Recursion

	4.3 Queues
	4.3.1 Array-Based Queues
	4.3.2 Linked Queues
	4.3.3 Comparison of Array-Based and Linked Queues

	4.4 Dictionaries
	4.5 Further Reading
	4.6 Exercises
	4.7 Projects

	5 Binary Trees
	5.1 Definitions and Properties
	5.1.1 The Full Binary Tree Theorem
	5.1.2 A Binary Tree Node ADT

	5.2 Binary Tree Traversals
	5.3 Binary Tree Node Implementations
	5.3.1 Pointer-Based Node Implementations
	5.3.2 Space Requirements
	5.3.3 Array Implementation for Complete Binary Trees

	5.4 Binary Search Trees
	5.5 Heaps and Priority Queues
	5.6 Huffman Coding Trees
	5.6.1 Building Huffman Coding Trees
	5.6.2 Assigning and Using Huffman Codes
	5.6.3 Search in Huffman Trees

	5.7 Further Reading
	5.8 Exercises
	5.9 Projects

	6 Non-Binary Trees
	6.1 General Tree Definitions and Terminology
	6.1.1 An ADT for General Tree Nodes
	6.1.2 General Tree Traversals

	6.2 The Parent Pointer Implementation
	6.3 General Tree Implementations
	6.3.1 List of Children
	6.3.2 The Left-Child/Right-Sibling Implementation
	6.3.3 Dynamic Node Implementations
	6.3.4 Dynamic ``Left-Child/Right-Sibling'' Implementation

	6.4 K-ary Trees
	6.5 Sequential Tree Implementations
	6.6 Further Reading
	6.7 Exercises
	6.8 Projects

	III Sorting and Searching
	7 Internal Sorting
	7.1 Sorting Terminology and Notation
	7.2 Three (n2) Sorting Algorithms
	7.2.1 Insertion Sort
	7.2.2 Bubble Sort
	7.2.3 Selection Sort
	7.2.4 The Cost of Exchange Sorting

	7.3 Shellsort
	7.4 Mergesort
	7.5 Quicksort
	7.6 Heapsort
	7.7 Binsort and Radix Sort
	7.8 An Empirical Comparison of Sorting Algorithms
	7.9 Lower Bounds for Sorting
	7.10 Further Reading
	7.11 Exercises
	7.12 Projects

	8 File Processing and External Sorting
	8.1 Primary versus Secondary Storage
	8.2 Disk Drives
	8.2.1 Disk Drive Architecture
	8.2.2 Disk Access Costs

	8.3 Buffers and Buffer Pools
	8.4 The Programmer's View of Files
	8.5 External Sorting
	8.5.1 Simple Approaches to External Sorting
	8.5.2 Replacement Selection
	8.5.3 Multiway Merging

	8.6 Further Reading
	8.7 Exercises
	8.8 Projects

	9 Searching
	9.1 Searching Unsorted and Sorted Arrays
	9.2 Self-Organizing Lists
	9.3 Bit Vectors for Representing Sets
	9.4 Hashing
	9.4.1 Hash Functions
	9.4.2 Open Hashing
	9.4.3 Closed Hashing
	9.4.4 Analysis of Closed Hashing
	9.4.5 Deletion

	9.5 Further Reading
	9.6 Exercises
	9.7 Projects

	10 Indexing
	10.1 Linear Indexing
	10.2 ISAM
	10.3 Tree-based Indexing
	10.4 2-3 Trees
	10.5 B-Trees
	10.5.1 B+-Trees
	10.5.2 B-Tree Analysis

	10.6 Further Reading
	10.7 Exercises
	10.8 Projects

	IV Advanced Data Structures
	11 Graphs
	11.1 Terminology and Representations
	11.2 Graph Implementations
	11.3 Graph Traversals
	11.3.1 Depth-First Search
	11.3.2 Breadth-First Search
	11.3.3 Topological Sort

	11.4 Shortest-Paths Problems
	11.4.1 Single-Source Shortest Paths

	11.5 Minimum-Cost Spanning Trees
	11.5.1 Prim's Algorithm
	11.5.2 Kruskal's Algorithm

	11.6 Further Reading
	11.7 Exercises
	11.8 Projects

	12 Lists and Arrays Revisited
	12.1 Multilists
	12.2 Matrix Representations
	12.3 Memory Management
	12.3.1 Dynamic Storage Allocation
	12.3.2 Failure Policies and Garbage Collection

	12.4 Further Reading
	12.5 Exercises
	12.6 Projects

	13 Advanced Tree Structures
	13.1 Tries
	13.2 Balanced Trees
	13.2.1 The AVL Tree
	13.2.2 The Splay Tree

	13.3 Spatial Data Structures
	13.3.1 The K-D Tree
	13.3.2 The PR quadtree
	13.3.3 Other Point Data Structures
	13.3.4 Other Spatial Data Structures

	13.4 Further Reading
	13.5 Exercises
	13.6 Projects

	V Theory of Algorithms
	14 Analysis Techniques
	14.1 Summation Techniques
	14.2 Recurrence Relations
	14.2.1 Estimating Upper and Lower Bounds
	14.2.2 Expanding Recurrences
	14.2.3 Divide and Conquer Recurrences
	14.2.4 Average-Case Analysis of Quicksort

	14.3 Amortized Analysis
	14.4 Further Reading
	14.5 Exercises
	14.6 Projects

	15 Lower Bounds
	15.1 Introduction to Lower Bounds Proofs
	15.2 Lower Bounds on Searching Lists
	15.2.1 Searching in Unsorted Lists
	15.2.2 Searching in Sorted Lists

	15.3 Finding the Maximum Value
	15.4 Adversarial Lower Bounds Proofs
	15.5 State Space Lower Bounds Proofs
	15.6 Finding the ith Best Element
	15.7 Optimal Sorting
	15.8 Further Reading
	15.9 Exercises
	15.10 Projects

	16 Patterns of Algorithms
	16.1 Dynamic Programming
	16.1.1 The Knapsack Problem
	16.1.2 All-Pairs Shortest Paths

	16.2 Randomized Algorithms
	16.2.1 Randomized algorithms for finding large values
	16.2.2 Skip Lists

	16.3 Numerical Algorithms
	16.3.1 Exponentiation
	16.3.2 Largest Common Factor
	16.3.3 Matrix Multiplication
	16.3.4 Random Numbers
	16.3.5 The Fast Fourier Transform

	16.4 Further Reading
	16.5 Exercises
	16.6 Projects

	17 Limits to Computation
	17.1 Reductions
	17.2 Hard Problems
	17.2.1 The Theory of NP-Completeness
	17.2.2 NP-Completeness Proofs
	17.2.3 Coping with NP-Complete Problems

	17.3 Impossible Problems
	17.3.1 Uncountability
	17.3.2 The Halting Problem Is Unsolvable

	17.4 Further Reading
	17.5 Exercises
	17.6 Projects

	VI APPENDIX
	A Utility Functions
	Bibliography
	Index

