
Binary Search Trees 1

Binary Search Trees

6

92

41 8

<

>

=

Binary Search Trees 2

Fast Operations

What if we could do search, insert, and
remove in O(log n)?
! Log 1,048,576 = 20

Binary Search Trees 3

Binary Search Tree (§9.1)

A binary search tree is a binary tree storing
keys (or key-element pairs) satisfying the
following property:
! Let u, v, and w be three nodes such that u is in the

left subtree of v and w is in the right subtree of v.
We have
key(u) ! key(v) ! key(w)

6

92

41 8

v

u w

X X X X X X

X

Binary Search Trees 4

Binary Search Tree (§9.1)

Property - given a node with a value X, all the
values of nodes in the left subtree are smaller
than X and all the values of the nodes in the
right subtree are larger than X

X

Values less than X Values greater than X

Binary Search Trees 5

Binary Search Tree (§9.1)

External nodes do not store items? (Book says
this)

! Not a good way to look at the tree
" Incredible waste of space

! External nodes store items and children
point to NULL

An inorder traversal of a binary search trees
visits the keys in increasing order

Binary Search Trees 6

BST Operations

makeFromEmpty - initialize a new tree

isEmpty - return true if empty, false if
not

search - return pointer to node in which
key is found, otherwise return NULL

findMin - return smallest node value

findMax - return largest node value

Binary Search Trees 7

BST Operations

insert - insert a new node into the tree
maintaining BST property. All inserts
are done at a leaf

remove - remove a node from the tree
maintaining BST property.

display - print a tree in an order
traversal

Binary Search Trees 8

Array Implementation of a BST

A BST can be implemented with an
array

Given a node i
! parent(i) = (i - 1)/2

" If i = 0, then no parent since root

! leftChild(i) = 2i+1
" If 2i+1 <= N, otherwise no child

! rightChild(i) = 2i+2
" If 2i+2 <= N, otherwise no child

Binary Search Trees 9

Array Implementation of a BST

 0 1 2 3 4 5 6 7

 6 3 11 1 4 7 12

6

3 11

1 4 7 12

Binary Search Trees 10

Array Implementation of a BST

In class exercise - show the array for
the following tree

5

6

8

7

 0 1 2 3 4 5 6 7 … 14

 5 6 7 8

Binary Search Trees 11

Linked Implementation of a BST

Array disadvantages

! Wasted space

! Not enough space

Linked implementation

! Similar to linked list -
size can grow and shrink
easily during runtime

class Node {

friend class Tree;

private:

itemtype item

Node* left

Node* right

Node* parent

};

class Tree {

private:

Node* root

// internal functions

public:

// functions for

// interface

};
Binary Search Trees 12

Search (§9.1.1)
To search for a key k, we trace a downward path

starting at the root

The next node visited depends on the outcome of the
comparison of k with the key of the current node

If we reach a leaf, the key is not found and we return
null

Example: find(4)
6

92

41 8

<

>

=

Binary Search Trees 13

Search

Recursive implementation of search

Node* search (Node* nodePtr, itemtype key)

if (nodePtr == NULL)

return NULL

else if (nodePtr->item == key)

return nodePtr

else if (nodePtr->item > key)

return search(nodePtr->left, key)

else

return search(nodePtr->right, key)

Binary Search Trees 14

Inorder Traversal

Recursive implementation of inorder traversal

void inorder(node* nodePtr)

if (nodePtr != NULL)

inorder (nodePtr->left)

print node

inorder (nodePtr->right)

Binary Search Trees 15

Insertion (§9.1.2)

To perform operation
insertItem(k, o), we
search for the
position k would be in
if it were in the tree

All insertions create a
new leaf node

Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

X

Binary Search Trees 16

5

Insertion

6

92

41 8

7

5

6

92

41 8

73

Insert 7

Insert 3

Binary Search Trees 17

Insertion

In class exercise - create a BST by
inserted the following integers in the
given order

! 6 8 3 5 1 0 7 4 6

83

51

0

7

4

Binary Search Trees 18

Deletion

Traverse tree and search for node to
remove

! Five possible situations

" Item not found

" Removing a leaf

" Removing a node with one child - right only

" Removing a node with one child - left only

" Removing a node with two children

Binary Search Trees 19

Deletion - Removing a leaf

6

83

51

0

7

4

Remove 4

6

83

51

0

7

4

Binary Search Trees 20

Deletion - Removing a node
with children

Otherwise the node has children - find
replacement node

! If the left child exists

" Replace node information with the largest
value smaller than the value to remove

! findMax(leftChild)

! Else there is a right child

" Replace node information with the smallest
value larger than value to remove

! findMin(rightChild)

Binary Search Trees 21

Deletion - Removing a node
with children (continued)

Splice out replacement node (call
remove recursively)

Just copy in info of replacement node
over the value to remove (overload = if
necessary)
! Note - this is NOT the best solution if you

have a large data structure. The overhead
of the copy is too great and you should
move the node instead.

Delete replacement node if leaf

Binary Search Trees 22

Deletion

6

83

51

0

7

4

Remove 8

6

73

51

0

7

4

6

73

51

0

7

4

Binary Search Trees 23

Deletion

6

83

51

0

9

4

Remove 8

6

93

51

0

9

4

6

93

51

0

9

4

Binary Search Trees 24

Deletion
6

83

51

0

9

4

Remove 6

5

83

51

0

9

4

5

83

41

0

9

4

5

83

41

0

9

4

Binary Search Trees 25

Deletion

6

83

1

0

9

Remove 6

3

81

0

0

9

3

81

0 9

In class exercise

Binary Search Trees 26

Analysis of BST Operations

In class exercise

h = log N
h =N

O(1)O(1)empty

O(log N)O(N)search

O(log N)O(N)findMin

O(log N)O(N)findMax

O(log N)O(N)insert

O(log N)O(N)remove

O(N)O(N)display

O(N log N)O(N2)makeFromEmpty

Average CaseWorst Case

Binary Search Trees 27

Analysis of BST Operations

Given a random ordering of insertions
and deletions, the height of the tree will
be quite close to log n

We will learn later how to ensure the
average case running times are also the
worst case running times

Binary Search Trees 28

Treesort

Uses a BST to sort records efficiently

! Use makeFromEmpty

" Read in elements and insert in that order into a
BST

! Traverse inorder to read out nodes in
ascending order

Runtime

! Average case - O(N log N)

! Worst case - O(N2)

