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Fast Operations

What if we could do search, insert, and
remove in O(log n)?
! Log 1,048,576 = 20
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Binary Search Tree (§9.1)

A binary search tree is a binary tree storing
keys (or key-element pairs) satisfying the
following property:
! Let u, v, and w be three nodes such that u is in the

left subtree of v and w is in the right subtree of v.
We have
key(u) ! key(v) ! key(w)
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Binary Search Tree (§9.1)

Property - given a node with a value X, all the
values of nodes in the left subtree are smaller
than X and all the values of the nodes in the
right subtree are larger than X

X

Values less than X Values greater than X
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Binary Search Tree (§9.1)

External nodes do not store items? (Book says
this)

! Not a good way to look at the tree
" Incredible waste of space

! External nodes store items and children
point to NULL

An inorder traversal of a binary search trees
visits the keys in increasing order
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BST Operations

makeFromEmpty - initialize a new tree

isEmpty - return true if empty, false if
not

search - return pointer to node in which
key is found, otherwise return NULL

findMin - return smallest node value

findMax - return largest node value
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BST Operations

insert - insert a new node into the tree
maintaining BST property. All inserts
are done at a leaf

remove - remove a node from the tree
maintaining BST property.

display - print a tree in an order
traversal
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Array Implementation of a BST

A BST can be implemented with an
array

Given a node i
! parent(i) = (i - 1)/2

" If i = 0, then no parent since root

! leftChild(i) = 2i+1
" If 2i+1 <= N, otherwise no child

! rightChild(i) = 2i+2
" If 2i+2 <= N, otherwise no child
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Array Implementation of a BST

  0    1    2    3    4    5    6    7  

  6    3   11   1    4    7   12

6

3 11

1 4 7 12
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Array Implementation of a BST

In class exercise - show the array for
the following tree

5

6

8

7

  0    1    2    3    4    5    6    7   …   14

  5          6                     7                8
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Linked Implementation of a BST

Array disadvantages

! Wasted space

! Not enough space

Linked implementation

! Similar to linked list -
size can grow and shrink
easily during runtime

class Node {

friend class Tree;

private:

itemtype item

Node* left

Node* right

Node* parent

};

class Tree {

private:

Node* root

// internal functions

public:

// functions for

// interface

};
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Search (§9.1.1)
To search for a key k, we trace a downward path

starting at the root

The next node visited depends on the outcome of the
comparison of k with the key of the current node

If we reach a leaf, the key is not found and we return
null

Example: find(4)
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Search

Recursive implementation of search

Node* search ( Node* nodePtr, itemtype key )

if (nodePtr == NULL)

return NULL

else if ( nodePtr->item == key )

return nodePtr

else if ( nodePtr->item > key )

return search(nodePtr->left, key)

else

return search(nodePtr->right, key)
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Inorder Traversal

Recursive implementation of inorder traversal

void inorder(node* nodePtr)

if ( nodePtr != NULL ) 

inorder (nodePtr->left)

print node

inorder (nodePtr->right)
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Insertion (§9.1.2)

To perform operation
insertItem(k, o), we
search for the
position k would be in
if it were in the tree

All insertions create a
new leaf node

Example: insert 5
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5

Insertion
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Insert 7

Insert 3
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Insertion

In class exercise - create a BST by
inserted the following integers in the
given order

! 6 8 3 5 1 0 7 4 6

83

51

0

7

4
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Deletion

Traverse tree and search for node to
remove

! Five possible situations

" Item not found

" Removing a leaf

" Removing a node with one child - right only

" Removing a node with one child - left only

" Removing a node with two children
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Deletion - Removing a leaf
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Deletion - Removing a node
with children

Otherwise the node has children - find
replacement node

! If the left child exists

" Replace node information with the largest
value smaller than the value to remove

! findMax(leftChild)

! Else there is a right child

" Replace node information with the smallest
value larger than value to remove

! findMin(rightChild)
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Deletion - Removing a node
with children (continued)

Splice out replacement node (call
remove recursively)

Just copy in info of replacement node
over the value to remove (overload = if
necessary)
! Note - this is NOT the best solution if you

have a large data structure. The overhead
of the copy is too great and you should
move the node instead.

Delete replacement node if leaf
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Deletion
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Deletion
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Deletion
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Deletion
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Remove 6
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In class exercise
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Analysis of BST Operations

In class exercise

h = log N
h =N

O(1)O(1)empty

O(log N)O(N)search

O(log N)O(N)findMin

O(log N)O(N)findMax

O(log N)O(N)insert

O(log N)O(N)remove

O(N)O(N)display

O(N log N)O(N2)makeFromEmpty

Average CaseWorst Case
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Analysis of BST Operations

Given a random ordering of insertions
and deletions, the height of the tree will
be quite close to log n

We will learn later how to ensure the
average case running times are also the
worst case running times
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Treesort

Uses a BST to sort records efficiently

! Use makeFromEmpty

" Read in elements and insert in that order into a
BST

! Traverse inorder to read out nodes in
ascending order

Runtime

! Average case - O(N log N)

! Worst case - O(N2)


