
2-3 Search Trees

Recall that binary search trees have fast average search and insert comparison costs. However, as the connection

between binary search trees and quicksort revealed, the cost for any given binary search tree depends highly on its

shape, which in turn depends on the order in which the keys are inserted. The more balanced the tree, the fewer

comparisons are needed. When the keys are inserted in order (or highly ordered), a more linear form arises --

requiring a significantly worse  comparisons to search for a given key or insert an additional key-value pair.

When we control the use of the binary search tree, we might (depending on the context) be able to shuffle the keys

before inserting them into the binary search tree to prevent ordered insertion from happening. However, if we are

writing a general binary search tree class to be used by others, we won't have control over the insertion order -- the

client will.

If only we had some way to keep the tree balanced -- no matter what the insertion order might be -- then this

wouldn't be a problem. Fortunately, this is possible! It will, however, require a rethinking of the structure of the

underlying tree.

In a binary search tree, recall every node stores one key and two links -- a link for its left child and another for its

right child. Let us call these 2-nodes.

Now consider nodes that instead each store two keys and three links. Let us call these 3-nodes.

We define a 2-3 tree as a tree comprised of 2-nodes or 3-nodes, that is both perfectly balanced (i.e., the paths

connecting the root and leaves are all the same length) and is in symmetric order by key (in the sense that an in-order

traversal will yield keys in ascending order). An example is shown below:

2-3 Search Trees http://math.oxford.emory.edu/site/cs171/23trees/

1 de 4 21-09-2022, 20:28



The example 2-3 tree above contains two 3-nodes, one containing keys  and the other containing keys .

Looking at the 3-node  above, note how the symmetric order requires its left subtree contain only keys smaller

than its first key ( ), its center subtree contain only keys between its two keys (  and ), and its right tree contains

only keys larger than its second key ( ). This is similarly required of every 3-node in the tree. For 2-nodes, the

symmetric order requires the same behavior as that seen in binary search trees -- left subtrees contain only keys less

than the key stored, right subtrees contain only keys greater than the key stored.

Searching through a 2-3 tree is very similar to searching in a binary tree -- just with more comparisons required as

we navigate through 3-nodes, to decide which path down to pursue. As an example, consider how we might find a

reference to the node containing  in the tree below:

Also like searching in a binary tree, when this process terminates in a null link the key for which we are searching is

not present in the tree (i.e., a "miss"). As an example, consider searching for  in the tree below.

Where things get interesting is when one tries to insert a new key-value pair. Remember, a 2-3 tree must be kept both

in perfect balance and symmetric order by key. How can we maintain this when adding new things to the tree?

What must be done depends a lot on where the insertion needs to happen.

Inserting into a 2-node leaf is trivial -- we simply convert it to a 3-node leaf and add our new key, as the below two

images show.

2-3 Search Trees http://math.oxford.emory.edu/site/cs171/23trees/

2 de 4 21-09-2022, 20:28



Inserting into a 3-node leaf is more complicated. To see how this process works by example, consider the steps to

insert the key  into the tree above.

Step 1:

We first navigate down the tree's branches, searching

for , the key to add.

Step 2:

Now we temporarily convert the 3-node into a 4-node,

putting our new key ( ) into this node (in the correct

order, of course).

Step 3:

Then, we split this 4-node into two 2-nodes, inserting

the middle key into this node's parent.

If this parent is a 2-node, we convert it to a 3-node to

accomplish the insertion.

If instead the parent is a 3-node, we do the same thing

as was just done -- we temporarily convert it to a

4-node, and insert the new key.

Step 4:

As long as we have a 4-node, we continue in this way

splitting the 4-node into two 2-nodes and passing the

middle key to the next parent up the tree.

Here, upon splitting the node  here and passing

the middle key  to the root node, the process stops.

Note how upon completion of the insertion the tree is

still perfectly balanced and still in symmetric order!

However, it is possible for the root node itself to be turned temporarily into a 4-node, in which case there is one

more step. As an example, consider inserting  to the following tree:

2-3 Search Trees http://math.oxford.emory.edu/site/cs171/23trees/

3 de 4 21-09-2022, 20:28



To insert , we first note that , and thus navigate to the

middle leaf. This is the node where  needs to be inserted.

We convert this 3-node temporarily into a 4-node, adding  as the key

between  and  this time.

We split this 4-node into two 2-nodes, passing the middle key  up to

the parent.

Seeing the root is now a 4-node, we split it into three 2-nodes to

complete the insertion.

This increases the height of the tree by one level, but again keeps the

tree perfectly balanced and in symmetric order.

In terms of analysis, note that splitting a 4-node only affects its links and the links of its parent. Given the limit on

the number of links associated with nodes in a 2-3 tree, this means that the splitting process requires only a constant

number of operations, regardless of the size of the tree.

Thus, the cost of insertion will be directly proportional to the height of the tree (i.e., the maximum number of levels

where we need to split 4-nodes).

So we naturally then ask ourselves the question: "What is the height of a 2-3 tree with  nodes?"

It should be no surprise that if the 2-3 tree consists of only 2-nodes (i.e., the worst case), the height of the tree is

. In this situation, things are identical to what we saw in a binary search tree.

In the case where there are only 3-nodes (the best case), the result is similar -- the height is . (Can you

convince yourself of this?)

More often, the result is somewhere in between.

Either way, the height of the tree -- and consequently, the cost of both searching and insertion -- will be .

2-3 Search Trees http://math.oxford.emory.edu/site/cs171/23trees/

4 de 4 21-09-2022, 20:28


