Computação Visual e Multimédia

10504: Mestrado em Engenharia Informática Chap. I — Digital Signal Processing: Basics

What is a signal?

Traditional definition

A signal is a quantity that changes over time and/or in space.

- Sound: *f*(t)
- Image: f(x,y)
- Video: f(x,y,t)

Amplitude

The amplitude of a wave is its maximum disturbance (height) from its undisturbed position.

Wavelength (λ)

Distance between homologous points in the adjacent cycles of a waveform signal.

Frequency (
$$f$$
): $f = v/\lambda$

- Number of waves produced by a source per second.
- v stands for the velocity of the wave.

Period (
$$t$$
): $f = 1/t$

- Time taken by a wave to travel a wavelength, i.e., the duration of a cycle.

Chapter 1: Digital Signal Processing: Basics

Analogical vs. Digital Signals

Analogical signal:

- Continuous in amplitude and in time.
- Examples:
 - Radio sound
 - Velocity of my car
 - TV image broadcasting

Discrete signal:

- Discrete in amplitude and in time.
- Analogical-Digital Conversion (ADC) involves two important operations:
 - Sampling
 - Quantization
- ADC implies loss of information.

http://www.cs.cf.ac.uk/Dave/Multimedia/node149.html

Definition:

- The process of recording the values (samples) of a signal at given points in time.
- For A/D converters, these points in time are equidistant.

Sampling rate:

Number of samples per second.

Nyquist sampling rate:

For lossless digitization, the sampling rate should be at least twice the maximum frequency responses. Indeed many times more the better.

Nyquist's sampling theorem:

In order for a band-limited signal (band B beyond which the signal power is zero) to be reconstructed fully, it must be sampled at a rate $f \ge 2B$. A signal sampled at f = 2B is said to be Nyquist sampled, and is called the Nyquist frequency. No information is lost if a signal is sampled at the Nyquist frequency, and no additional information is gained by sampling faster than this rate.

101,0000 91,0 V001.0

Nyquist's sampling theorem

Continuous function/signal:

$$- f(t)$$

Impulse convoy:

$$s(t) = \sum_{n = -\infty}^{\infty} \delta(t - nt_0)$$

Sampled function/signal:

$$- f_s(t) = f(t)s(t) = f(t)\sum_{n=-\infty}^{\infty} \delta(t - nt_0)$$

Example: playing piano on telephone?

Telephone's sampling rate:

It is 8kHz (8000 samples per second)

Sound's maximum frequency?:

According to Nyquist, it is 8kHz / 2 = 4kHz

Sound:

- Low frequencies: grave sounds
- High frequencies: acute sounds

Playing piano on telephone:

Only grave sounds are heard.

Humans hear frequencies from 20Hz up to 20kHz.

Example: more about aliasing in music...

Sampling rate for music:

 If a piece of music is sampled at 32000 samples per second (sps), any frequency components above 16000 Hz (the Nyquist frequency) will cause aliasing when the music is reproduced by a digital to analog converter (DAC).

Solution:

- A possible solution to this aliasing problem is to choose a higher Nyquist frequency by sampling faster, typically:
 - 44100 sps (CD),
 - 48000 (professional audio), or
 - 96000 (high definition audio).

Aliasing

Temporal aliasing:

- In signal processing and related disciplines, aliasing refers to an effect that causes different signals to become indistinguishable (or aliases of one another) when sampled.
- It also refers to the distortion or artifact that results when the signal reconstructed from samples is different from the original continuous signal.
- Thus, Nyquist theorem can guarantee an anti-aliased reconstruction of the signal.

Spatial aliasing:

This happens in imaging when an image is reproduced by a monitor (or a printer) with lower resolution than the original image resolution.

Aliasing example of the A letter in Times New Roman. Left: aliased image, right: antialiased image.

Quantization

Definition:

- It is the process of constraining something from a relatively large or continuous set of values (such as the real numbers) to a relatively small discrete set (such as the integers).
- The input analog signal is compared to a set of pre-defined signal levels. Each of the levels is represented by a unique binary number, and it is chosen the binary number that corresponds to the level that is closest to the analog signal value.
- Thus, quantization is the process of representing an analog signal from a fixed number of bits.

Quantization levels

Number of levels:

- $L=2^n$, where n is the number of storage bits

Sampling to quantization:

 Each sample value is rounded to the closest quantization level.

Noise

Definition:

Any degradation of a signal.

- Measure noise
- Thermal noise (Johnson noise)
- Audio noise
- Visual noise
- Etc.

Signal-to-noise ratio (SNR)

Definition:

- SNR is a measure that compares the level of a desired signal to the level of background noise.
- It measures the effect of noise in the degradation of the signal.

$$SNR = \frac{P_{signal}}{P_{noise}} = \left(\frac{A_{signal}}{A_{noise}}\right)^{2}$$

$$P_{signal}$$
 – power of signal P_{noise} – power of noise

Noise models

Models:

- Gaussian, Raylegh, Erlang, Exponential, etc.

Typical modeling:

- Degradation function d(x,y) that acts on the signal f(x,y) together with an additive term of noise n(x,y):

$$h(x,y) = d(x,y) \otimes f(x,y) + n(x,y)$$

$$\uparrow$$
convolution

Noise types

White:

Approximately constant.

Pink:

_ I/f

Brown(ian):

- $1/f^2$

Grey:

— 1/f

Chapter 1: Digital Signal Processing: Basics

What is DSP? Digital Signal Processing

Digital

The use of discrete signals to represent data by means of numbers

Signal

 A parameter (electrical quantity or effect) that can be varied in such a way as to convey information

Processing

A series of operations performed according to programmed instructions

Analysing and changing information which is measured as discrete sequences of numbers

DSP Implementation

The DSP pipeline:

To implement DSP we must be able to perform both A/D and D/A conversions.

Example:

 Digital recording and playback of music (signal is sensed by microphones, amplified, converted to digital, processed, and converted back to analog to be played).

Main limitations of DSP

Sampling signals that are analog in nature leads to ...

Alias:

- Sampling analog signals at intervals so that we don't know what happens in between.
- Alias phenomenon: Cannot distinguish between lower and higher frequencies
- Solution: to avoid aliasing, sampling rate must be at least twice the maximum frequency component (`bandwidth') of the signal.

Quantization Error:

- Limited (by the number of bits available) precision in data storage and arithmetic
- Quantization Error: smoothly varying signal represented by "stepped" waveform.

Loss of Information!

Advantages of Digital over Analog Signal Processing

Why still do it?:

- Digital system can be simply reprogrammed for other applications / ported to different hardware / duplicated
 - Reconfiguring analog system means hardware redesign, testing, verification.
- DSP provides better control of accuracy requirements
 - Analog system depends on strict components tolerance, response may drift with temperature
- Digital signals can be easily stored without deterioration
 - Analog signals are not easily transportable and often can't be processed off-line
- More sophisticated signal processing algorithms can be implemented
 - Difficult to perform precise mathematical operations in analog form

DSP Applications: Radar and Sonar

- Radar
 - target detection: position and velocity estimation
- Sonar
 - tracking

DSP Applications: Biomedical Devices

Biomedical Engineering

 analysis of biomedical signals, diagnosis, patient monitoring, preventive health care, artificial organs

Examples

 electrocardiogram (ECG) signal – provides doctor with information about the condition of the patient's heart (electrical activity of heart).

electroencephalogram (EEG) signal – provides Information about the electrical activity of the brain

DSP Applications: Speech

- noise reduction reducing background noise in the sequence produced by a sensing device (microphone)
- speech recognition differentiating between various speech sounds
- synthesis of artificial speech text to speech systems for blind

Master volume

DSP Applications: Music

Web Links Blog Help Donate

= E:\B's Music\RBM - I Am Superman.mp3

00:00:00

- Recording
- Playback
- Manipulation (mixing, special effects)

DSP Applications: Communications

- Telephony: transmission of information in digital form via telephone lines, modem technology, mobile phones
- Encoding and decoding of the information sent over a physical channel (to optimise transmission or to detect or correct errors in transmission)

DSP Applications: Image Processing

- Content based image retrieval: browsing, searching and retrieving images from databases
- image enhancement
- compression reducing the redundancy in the image data to optimise transmission / storage

Summary

What is a signal?

Signal parameters: amplitude, wavelength, frequency, velocity, period

Analog vs. Digital Signals

Sampling

Nyquist's sampling theorem

Aliasing

Quantization

DSP pipeline

Limitations and advantages of DSP

Applications