TRANSACCOES

PARTE |

(Extraido de “SQL Server Books Online™)

Transactions Architecture

Microsoft® SQL Server™ 2000 maintains the consistency andgrititeof each database
despite errors that occur in the system. Every applicatetnuipdates data in a SQL Server
database does so using transactions. A transaction is a lagitaf work made up of a
series of statements (selects, inserts, updates, oeg)eliétno errors are encountered during
a transaction, all of the modifications in the transactioroimeca permanent part of the
database. If errors are encountered, none of the modificatnsaale to the database.

A transaction goes through several phases:

« Before the transaction starts, the database is in astemisstate.

» The application signals the start of a transaction. This caofe explicitly with the
BEGIN TRANSACTION statement. Alternatively, the applicatcan set options to
run in implicit transaction mode; the first Transact-SQltesteent executed after the
completion of a prior transaction starts a new transaction atitatha No record is
written to the log when the transaction starts; the firsbrobcs written to the log
when the application generates the first log record for amdathfication.

* The application starts modifying data. These modifications aderone table at a
time. As a series of modifications are made, they mayeldhe database in a
temporarily inconsistent intermediate state.

When the application reaches a point where all the modificatians bompleted
successfully and the database is once again consistent, thetg@pleopmmits the
transaction. This makes all the modifications a permanenopthe database.

» If the application encounters some error that prevents it frompleding the
transaction, it undoes, or rolls back, all the data modi@inati This returns the
database to the point of consistency it was at beforeahseaction started.

SQL Server applications can also run in autocommit mode. In autatamode each
individual Transact-SQL statement is committed automatichlityis successful and rolled
back automatically if it generates an error. There is no faredn application running in
autocommit mode to issue statements that specificaltystand a transaction.

All Transact-SQL statements run in a transaction: an exphaitsaction, an implicit
transaction, or an autocommit transaction. All SQL Sersarstactions that include data
modifications either reach a new point of consistency and are ctadnor are rolled back
to the original point of consistency. Transactions are not lefhimtermediate state where
the database is not consistent.

Transactions

A transaction is a sequence of operations performed as a kigglal unit of work. A
logical unit of work must exhibit four properties, called the AGRDomicity, Consistency,
Isolation, and Durability) properties, to qualify as a tratiea:

Atomicity

A transaction must be an atomic unit of work; either allitsf data
modifications are performed, or none of them is performed.

Consistency
When completed, a transaction must leave all data in sistent state. In a
relational database, all rules must be applied to the tiamsac
modifications to maintain all data integrity. All internal @atructures, such
as B-tree indexes or doubly-linked lists, must be correct atnideof the
transaction.

Isolation
Modifications made by concurrent transactions must be isolated fiem t
modifications made by any other concurrent transactions. A tramsadher
sees data in the state it was in before another concumesattion modified
it, or it sees the data after the second transactiondmapleted, but it does
not see an intermediate state. This is referred to adizadility because it
results in the ability to reload the starting data and replareess of
transactions to end up with the data in the same state it wafemthe
original transactions were performed.

Durability
After a transaction has completed, its effects are penignin place in the
system. The modifications persist even in the eventsgstem failure.

Specifying and Enforcing Transactions

SQL programmers are responsible for starting and ending treomsaat points that
enforce the logical consistency of the data. The programmer daisie the
sequence of data modifications that leave the data in a @risssate relative to the
organization's business rules. The programmer then includes thmfiBcation
statements in a single transaction so that Microsoft® SQues&r can enforce the
physical integrity of the transaction.

It is the responsibility of an enterprise database systaoh as SQL Server, to
provide mechanisms ensuring the physical integrity of each t@msaSQL Server
provides:

¢ Locking facilities that preserve transaction isolation.

* Logging facilities that ensure transaction durability. Eventhé server
hardware, operating system, or SQL Server itself fali, Server uses the
transaction logs, upon restart, to automatically roll back any upieteal
transactions to the point of the system failure.

¢ Transaction management features that enforce transactionciyoiind
consistency. After a transaction has started, it must beessftilly
completed, or SQL Server undoes all of the data modificatiadersince
the transaction started.

Controlling Transactions

Applications control transactions mainly by specifying when a aetion starts and ends.
The system must also be able to correctly handle errors thah&te a transaction before it
completes.

Transactions are managed at the connection level. When adfiansis started on a
connection, all Transact-SQL statements executed on that cameck part of the
transaction until the transaction ends.

Transaccgoes pag. 2/12

Starting Transactions

You can start transactions in Microsoft® SQL Server™ as @kpiiutocommit, or
implicit transactions.

Explicit transactions

Explicitly start a transaction by issuing a BEGIN TRANSAON
statement.

Autocommit transactions
This is the default mode for SQL Server. Each individual erSQL

statement is committed when it completes. You do not have to w@euif
statements to control transactions.

Implicit transactions

Set implicit transaction mode on through either an API functionher t
Transact-SQL SET IMPLICIT_TRANSACTIONS ON statemenhe next
statement automatically starts a new transaction. Whentrtnagaction is
completed, the next Transact-SQL statement starts araesattion.

Connection modes are managed at the connection level. If one g¢onnect
changes from one transaction mode to another it has no effetiheon
transaction modes of any other connection.

Ending Transactions

You can end transactions with either a COMMIT or ROLLBAC#tsinent.
COMMIT
If a transaction is successful, commit it. A COMMIT staent guarantees all

of the transaction's modifications are made a permanentfphe database.
A COMMIT also frees resources, such as locks, used byahsaction.

ROLLBACK
If an error occurs in a transaction, or if the user decidesatwel the
transaction, then roll the transaction back. A ROLLBACKestant backs
out all modifications made in the transaction by returning #ia t the state

it was in at the start of the transaction. A ROLLBACKmlrees resources
held by the transaction.

Explicit Transactions

An explicit transaction is one in which you explicitly define both skeat and end of the
transaction. Explicit transactions were also called ustmeteor user-specified transactions
in earlier versions of Microsoft® SQL Server™.

DB-Library applications and Transact-SQL scripts use the BEGRANSACTION,
COMMIT TRANSACTION, COMMIT WORK, ROLLBACK TRANSACTDN, or
ROLLBACK WORK Transact-SQL statements to define exptiginsactions.

BEGIN TRANSACTION
Marks the starting point of an explicit transaction for a connection
COMMIT TRANSACTION or COMMIT WORK

Used to end a transaction successfully if no errors were encedintdll data
modifications made in the transaction become a permanent péne alatabase.
Resources held by the transaction are freed.

Transaccoes pag. 3/12

ROLLBACK TRANSACTION or ROLLBACK WORK

Used to erase a transaction in which errors are encountetethtdimodified by the
transaction is returned to the state it was in at thé gitdine transaction. Resources
held by the transaction are freed.

Autocommit Transactions

Autocommit mode is the default transaction management mode of Mit@oSQL
Server™, Every Transact-SQL statement is committed odrblek when it completes. If a
statement completes successfully, it is committed;ghcounters any error, it is rolled back.
A SQL Server connection operates in autocommit mode whenesatdfault mode has not
been overridden by either explicit or implicit transactions. Aomomit mode is also the
default mode for ADO, OLE DB, ODBC, and DB-Library.

A SQL Server connection operates in autocommit mode until a BHRANSACTION
statement starts an explicit transaction, or implicit tiatisn mode is set on. When the
explicit transaction is committed or rolled back, or when iniffiansaction mode is turned
off, SQL Server returns to autocommit mode.

Implicit Transactions

When a connection is operating in implicit transaction moderddoft® SQL Server™
automatically starts a new transaction after the currensdmion is committed or rolled
back. You do nothing to delineate the start of a transactionpglyucommit or roll back
each transaction. Implicit transaction mode generates mgous chain of transactions.

After implicit transaction mode has been set on for a conne@iQh, Server automatically
starts a transaction when it first executes any of thasensents:

ALTER TABLE DROP INSERT SELECT
CREATE FETCH OPEN TRUNCATE TABLE
DELETE GRANT REVOKE UPDATE

The transaction remains in effect until you issue a COMMITRGLLBACK statement.
After the first transaction is committed or rolled backLSServer automatically starts a
new transaction the next time any of these statements aratestdy the connection. SQL
Server keeps generating a chain of implicit transactions iomglicit transaction mode is
turned off.

Implicit transaction mode is set either using the Trans@tt-SET statement, or through
database API functions and methods.

Advanced Topics

Mismanagement of transactions often leads to contention and rparfoe problems in
systems that have many users. As the number of usersysteansincreases, it becomes
important to have applications that use transactions efficiehtisansaction can hold some
locks, such as those protecting updates, until the transaction endppkcation that allows
users to control when a transaction ends presents an opportunity &ticiaus user to deny
access to data that is being locked. For example, it is @ner bad practice for an
application to interact with a user while the application hamm@saction open unless the
application places a limit on how long it will wait for a usesponse before ending the
transaction.

Microsoft® SQL Server™ also supports nesting transactionssacsion savepoints, and
bound transactions, which offer programmers additional options foingvrgfficient
transactions.

Transaccgoes pag. 4/12

Isolation Levels

When locking is used as the concurrency control mechanism, iessawncurrency
problems. This allows all transactions to run in complete isolatf one another, although
there can be more than one transaction running at any time.

Serializability is the database state achieved by running afssoncurrent transactions
equivalent to the database state that would be achieved Hethef transactions were
executed serially in order.

SQL-92 Isolation Levels

Although serialization is important to transactions to ensurethieatlata in the database is
correct at all times, many transactions do not always reduiirésolation. For example,
several writers are working on different chapters of theeshook. New chapters can be
submitted to the project at any time. However, after a chdyate been edited, a writer
cannot make any changes to the chapter without the editor's apptogalvdy, the editor
can be assured of the accuracy of the book project at any poimeindespite the arrival of
new unedited chapters. The editor can see both previously etitgders and recently
submitted chapters.

The level at which a transaction is prepared to accept incemsidata is termed the

isolation level. The isolation level is the degree to Whooe transaction must be isolated
from other transactions. A lower isolation level increaseswoeccy, but at the expense of
data correctness. Conversely, a higher isolation level enthaeslata is correct, but can

affect concurrency negatively. The isolation level requirg@n application determines the
locking behavior SQL Server uses.

SQL-92 defines the following isolation levels, all of whiek aupported by SQL Server:

¢« Read uncommitted (the lowest level where transactions asgadobnly enough to
ensure that physically corrupt data is not read).

¢ Read committed (SQL Server default level).
* Repeatable read.

e Serializable (the highest level, where transactions are etehplisolated from one
another).

If transactions are run at an isolation level of serializabley concurrent overlapping
transactions are guaranteed to be serializable.

These isolation levels allow different types of behavior.

Isolation level Dirty read 'Nonrepeatable read | Phantom
Read uncommitted Yes Yes Yes
Read committed No Yes Yes
Repeatable read No No Yes
Serializable No No No

Transactions must be run at an isolation level of repeatabte ar higher to prevent lost
updates that can occur when two transactions each retrieve teer@amand then later
update the row based on the originally retrieved values. Ifintbéransactions update rows

Transaccoes pag. 5/12

using a single UPDATE statement and do not base the update oreviugly retrieved
values, lost updates cannot occur at the default isolatiehdévead committed.

Adjusting Transaction Isolation Levels

The isolation property is one of the four ACID properties a logical of work must display to
qualify as a transaction. It is the ability to shield tratieas from the effects of updates performed
by other concurrent transactions. The level of isolationtisadlg customizable for each transaction.

Microsoft® SQL Server™ supports the transaction isolationldedefined in SQL-92. Setting
transaction isolation levels allows programmers to tradeingffeased risk of certain integrity
problems with support for greater concurrent access to data. Ealetion level offers more
isolation than the previous level, but does so by holding meteative locks for longer periods.

The transaction isolation levels are:

* READ UNCOMMITTED
» READ COMMITTED

« REPEATABLE READ

* SERIALIZABLE

Set transaction isolation level

Controls the default transaction locking behavior for all Micit®&&QL Server™ SELECT
statements issued by a connection.
Syntax
SET TRANSACTION ISOLATION LEVEL
{ READ COMMITTED
| READ UNCOMMITTED
| REPEATABLE READ
| SERIALIZABLE
}
Arguments
READ COMMITTED
Specifies that shared locks are held while the data is be@ubto avoidlirty
reads but the data can be changed before the end of the transaesiolting
in nonrepeatable reads phantomdata. This option is the SQL Server
default.
READ UNCOMMITTED
Implements dirty read, or isolation level O locking, whickams that no
shared locks are issued and no exclusive locks are honored. higheption
is set, it is possible to read uncommitted or dirty datlresain the data can
be changed and rows can appear or disappear in the datébosetihe end of
the transaction. This option has the same effect as settib@NR on all
tables in all SELECT statements in a transaction. Thitei¢east restrictive
of the four isolation levels.
REPEATABLE READ
Locks are placed on all data that is used in a query, miiageother users
from updating the data, but new phantom rows can be insertetthéntiata
set by another user and are included in later reads in thetcuanresaction.
Because concurrency is lower than the default isolatiom, lese this option
only when necessary.

Transaccoes pag. 6/12

SERIALIZABLE
Places a range lock on the data set, preventing otherft@arapdating or
inserting rows into the data set until the transaction is campléis is the
most restrictive of the four isolation levels. Because goracy is lower,
use this option only when necessary. This option has the saroeasffe
setting HOLDLOCK on all tables in all SELECT statementa transaction.

Transaccgoes pag. 7/12

TRANSACCOES

PARTE I'|

(The Guru's Guide to Transact-SQL)

Inicie duas instancias &)L Query Analyzer e em cada sessao execute umaiesies indicados a
sequir.

Transaction Isolation Levels

SQL Server supports four transaction isolation levels. As meattiearlier, a transaction's isolation
level controls how it affects, and is affected by, other &retiesns. The trade-off is always one of
data consistency vs. concurrency. Selecting a more regriChi. increases data consistency at the
expense of accessibility. Selecting a less restrictiteifidreases concurrency at the expense of
data consistency. The trick is to balance these opposing st#tese that the needs of your
application are met. Use the SET TRANSACTION ISOLATIONMEL command to set a
transaction's isolation level. Valid TILs include READ UNCOMMED, READ COMMITTED,
REPEATABLE READ, and SERIALIZABLE.

READ UNCOMMITTED

It permits dirty reads (reads of uncommitted changes by other transactions) and nonrepeatable reads
(data that changes between reads during a transaction). To see how READ UNCOMMITTED permits dirty
and nonrepeatable reads, run the following queries simultaneously:

Query 1
select top 5 nome, D.local from departamento as D o rder by nome
begin tran
update departamento set Local = 'UBI'

select top 5 nome, D.local
from departamento as D order by nome

waitfor delay '00:00:05'
Rol | back tran
select top 5 nome, D.local
from departamento as D order by nome

Query 2
Set transaction Isolation level read uncommitted
Select 'Agora esta a vé-los...'

select top 5 nome, D.local from departamento as D
where local = 'UBI' order by nome

if @ @RowCount >0

Begin

waitfor delay '00:00:05'

Select 'Agora néo...'

select top 5 nome, D.local

from departamento as D

where local = 'UBI' order by nome
end

Transaccoes pag. 8/12

Nota: enquanto o primeiro query estd a executar (tem-se 5 segundos) se executarmos o segundo query podemos aceder a dados
alterados pelo primeiro query mas ainda nédo confirmados (committed). Apds esperar 5 segundos tenta-se ler novamente os
mesmos dados. Contudo, como as alteracdes foram descartadas (rolled back), os dados desapareceram, provocando no segundo
query uma leitura que ndo se pode repetir (nonrepeatable read).

Query 1 Query 2
nome local
Camarote Camarate Agora esté a vé-los...
Comercial Lisboa
Informética Covilhda (1 row(s) affected)
Produgao Guarda
nome local
(4 row(s) affected) | e
Camarote UBI
(4 row(s) affected) Comercial UBI
Informética UBI
nome local Produgao UBI
Camarote UBI (4 row(s) affected)
Comercial UBI
Informatica el e
Produgéao UBI Agora néo...
(4 row(s) affected) (1 row(s) affected)
nome local nome local
Camarote Camarate
Comercial Lisboa (0 row(s) affected)
Informética Covilhda
Produgao Guarda
(4 row(s) affected)

READ UNCOMMITTED

READ COMMITTED avoids dirty reads by initiating share locks on accessed data but permits changes to
underlying data during the transaction, possibly resulting in nonrepeatable reads and/or phantom data . To
see how this works, run the following queries simultaneously:

Query 1
Set transaction Isolation level
begin tran
Select 'Agora esta a vé-los...'

read conm tted

select top 5 nome, D.local
from departamento as D
order by nome

waitfor delay '00:00:05'
Select 'Agora néo...'

select top 5 nome, D.local
from departamento as D
order by nome

rollback tran

Query 2
Set transaction Isolation level
update departamento
set Nome = 'Camarata’
where nome = 'Camarote

read conmtted

Nota: 0 nome do departamento foi alterado entre as leituras efectuadas durante o primeiro query — a
nonrepeatable read!

Transaccoes pag. 9/12

Query 1 Query 2

(1 row(s) affected)

Agora esta a vé-los...
(1 row(s) affected)

nome local
Camarote Camarate
Comercial Lisboa
Informatica Covilha
Producao Guarda

(4 row(s) affected)

Agora néo...

(1 row(s) affected)

nome local
Camarata Camarate
Comercial Lisboa
Informatica Covilha
Produgéo Guarda

(4 row(s) affected)

REPEATABLE READ

REPEATABLE READ initiates locks to prevent other users from changing the data a transaction accesses
but doesn't prevent new rows from being inserted, possibly resulting in phantom rows appearing between
reads during the transaction.

Query 1
Set transaction Isolation level
begin tran
Select 'Veja bem...!

repeat abl e read

select top 5 nome, D.local
from departamento as D
order by nome

waitfor delay '00:00:05'
Select 'Veja melhor...'

select top 5 nome, D.local
from departamento as D
order by nome

rol | back tran

Query 2
Set transaction Isolation level
Insert departamento
Values(50, 'YYYYY', 'XXXXX')

repeat abl e read

Query 1 Query 2
Veja bem... (1 row(s) affected)
(1 row(s) affected)
nome local
Camarata Camarate
Comercial Lisboa
Informética Covilhd

Transaccgoes

pag. 10/12

Produgéo Guarda

(4 row(s) affected)

Veja melhor...

(1 row(s) affected)

nome local

Camarata Camarate

Comercial Lisboa

Informatica Covilhd

Produgéo Guarda

YYYYY XXXXX

(5 row(s) affected)

As you can see, a hew row appears between the first and second reads of the departamento table, even
though REPEATABLE READ has been specified. Though REPEATABLE READ prevents changes to data it
has already accessed, it doesn't prevent the addition of new data, thus introducing the possibility of phantom
rows.

SERIALIZABLE

SERIALIZABLE prevents dirty reads and phantom rows by placing a range lock on the data it accesses. It
is the most restrictive of SQL Server's four TILs. It's equivalent to using the HOLDLOCK hint with every table
a transaction references.

Query 1
Set transaction Isolation level serializable
begin tran
Select 'Veja bem...!

select top 5 nome, D.local
from departamento as D
order by nome

waitfor delay '00:00:05'
Select 'Veja melhor...'

select top 5 nome, D.local
from departamento as D
order by nome

rol | back tran

Query 2
Set transaction Isolation level serializabl e
Insert departamento
Values(49, 'ZZZZ77', XXXXX")

Query 1 Query 2
Veja bem... (1 row(s) affected)
(1 row(s) affected)
nome local

Camarata

Camarate
Comercial Lisboa
Informética Covilhda
Produgao Guarda
YYYYY XXXXX
(5 row(s) affected)

Transaccgoes pag. 11/12

Veja melhor...

(1 row(s) affected)

nome local
Camarata Camarate
Comercial Lisboa
Informatica Covilhda
Produgéo Guarda
YYYYY XXXXX

(5 row(s) affected)

In this example, the locks initiated by the SERIALIZABLE isolation level prevent the second query from
running until after the first one finishes. While this provides airtight data consistency, it does so at a cost of
greatly reduced concurrency.

Transaccgoes pag. 12/12

