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Abstract. Inclusion of domain knowledge in a processof knowledge discovery
in databases is a complex but very important part of successful knowledge
discovery solutions. In red-life data mining development, non-structured
domain knowledge involvement in the data preparation ptese and in the fina
interpretation/evaluation phase tends to daminate. This paper presents an
experiment of dired domain knowledge integration in the dgorithm that will
seach for interesting patterns in the data. In the context of stock market
prediction work, arecent rule induction algorithm, PA3, was adapted to include
domain theories diredly in the interna rule development. Tests performed over
severa Portuguese stocks $how a significant increase in prediction performance
over the same process using the standard version o PA3. We believe that a
similar methodology can be gplied to ather symbolic induction agorithms and
in other working domains to improve the dficiency of prediction (or
clasgfication) in knowledge-intensive data mining tasks.

1 Introduction

In most cases, the availability and the efficient use of Domain Knowledge (DK)
during the development process of a Knowledge Discovery in Databases (KDD)
system is essential for successful knowledge discovery. In fad, DK is needed for
amost any pradicd knowledge discovery task, independently of the domain or of the
data mining techniques used, since, at least, some form of DK must be involved in the
problem definition, in the data preparation and in the results eval uation and utili zation
phases. Sometimes, however, the involvement of DK in the processdoes not result in
al the advantages it could bring. In fad, in some red-life situations where KDD
could be useful, the available formally spedfied DK is restricted to description or
definition of data and ather forms of DK (for example theories about the way domain
variables interad) exist only in informal, sometimes uncertain, non-structured forms.
This kind of limitation of previously existing DK, together with a somewhat scarce
theoreticd work on the topic, usually resultsin no deliberate involvement of existing
DK in the spedfic data mining phase of many red-life KDD processs.

DK involvement in the data mining step of a KDD process always implies a
condtioning of the seach of hypotheses conducted by the data mining algorithm.
This condtioning can operate through an “initialization kas’ (introducing starting
condtions for the search), or through a “seach bias’ (distorting the search space or
the evaluation o hypotheses) [14], [15].



DK can be included in the data mining phase through dred integration (implicit or
explicit) in the data mining algorithm, or through an associated knowledge base. In
the first case, spedfic changes to the are data mining algorithm must be performed,
in order to dredly represent the involved domain knowledge through a biasing of the
seach. In the latter case, a very tight coupling between the domain theory description
in the knowledge base and the bias representation language acceted by the leaner is
need, eventually involving an intermediate knowledge “trandator” [3]. Anyway, both
of these forms of DK integration tend to need software spedficdly adapted for eah
application case, since different kinds of domain knowledge usually involve different
representations, and most data mining algorithms (and commercial data mining
programs) don't al ow the integration any form of DK not contained in the data.

Dired integration of DK in data mining software generally intends to dred and
focus the pattern seach that takes place & that KDD step. This can raise another
potential limitation o this technique: If badly direded, the focused search can miss
some of the potentialy interesting patterns that an unbiased seach could find in the
data [4]. However, in spite of the limitations and paential problems, we believe that,
in some caes, careful DK integration in the data mining step of a KDD processcan
produce significant improvements in the overall efficiency of the process

This paper presents an experiment that integrates two damain theories diredly in a
rule induction data mining agorithm. The domain is dort-term stock market
prediction, and the two theories bias the dgorithm, during rule seach, against a
spedfic dassof rules, and towards another. The theories are tested over five data sets
that correspond to multivariate information based on daily quotes of five of the most
significant stocks in the Portuguese BVLP stock exchange. The base rule induction
algorithm used, PA3 [1], is a recent general-purpose sequential cover algorithm that
combines general-to-spedfic and spedfic-to-general seach to develop ead rule.

2 Domain knowledge

Adopting a restrictive DK definition, we will be interested only in domain theories
that explain or predict future behavior of stocks on the basis of known data. This kind
of domain theory is extremely uncertain in stock market prediction. There ae,
basicdly, three different paositions: Those who believe that the markets are highly
efficient and, as a result, esentially unpredictable, those who advocate “fundamental
analysis’ of the business results of the quoted companies, and those who believe that
“technicd analysis’ (the analysis of historicd stock quotes data, isolated of other
known facts) is enoughto predict the future behavior of those stocks [6].

The “efficient market” hypothesis, at least in its wedkest form, has been
traditionally accepted in some acaemic drcles as basicdly corred, and if that were
redly the cae, any effort to predict future behavior of listed stocks would be futile.
However, besides the firm belief of thase who redly invest in stock markets (most of
the investors and all the speaulators), there is a growing body o published reseach
indicating that at least some markets exhibit imperfedions (which trandate to a
degreeof predictivity) [7], [16], [11].

Classic “fundamental analysis’ has @lid badkground theory but even when
successul in the long term, is not very useful to predict short-term movements of



stock values [7]. A marginal asped related to fundamental analysis that can be linked
to very important fast movements of stock prices is the aanauncement of surprising
fundamental company information (or surprising maaoeconomic information,
relevant for the whole market). However, this kind o fast readjustment of
fundamental expedations will not be explicitly integrated in the analysis conducted in
this paper, since it does not seem relevant for the paper’s objedives and it requires
very complex base data, and very demanding data preparation.

The theory behind present “technicd analysis’ is abundant. Unfortunately it is also
fragmented and many times of dubious quality, most of it correspondng to unpoved,
sometimes untested, hypotheses. Moreover, the fad that technicd analysis theory is
gill not seriously established can hide afundamental problem: Even if technicd
analysis is redisticdly posshle, perhaps it canna be generaized for different
markets, or for different stocks and dff erent time frames of a market.

3 Theproblem and the data

The work we ae involved in aims to predict the future behavior of five stocks listed
in the Portuguese BVL stock exchange, utili zing historicd data and DK.

This paper describes work done on dred domain theory integration in a rule
induction algorithm used for the prediction d the next day behavior of ead stock
(binary prediction of rise or fall). This kind of next-day prediction is not enough to
develop an operational trading strategy, but it is frequently found in the literature [2],
[9], [11], and seems adequate to test the validity of the two domain theories involved.

For this very short-term prediction task, we simplified the base data by omitting
fundamental information (and by not acmunting for dividend payments), and used
only historicd stock quotes, transadion volumes and index values. It shoud be
noticed that this base data has low information content for the prediction task, and
could never result in very high acarracy rates, even with ided data preparation and
data mining steps. This situation is smilar to having very noisy data both for learning
and testing, and tends to present overfitting problems during the data mining process
With this problem in mind, we seleded the domain theories to integrate in the rule-
induction software @aming to reduce overfitting of the training data.

The five companies chosen for prediction are anong those more adively traded in
the BVL stock exchange: BCP, Brisa, Cimpor, EDP and PT. For eat of the 4
companies excluding Brisa, daily data from 3-Nov-1997 to 290ct-1999 were
available. For Brisa, quotation in BVL only started in 25-Nov-1997, and so avail able
data starts in 25-Nov-1997 and also ends in 29-Oct-1999 Each of the resulting 495
records (479 for Brisa) includes the day’'s date, the dosing value of the stock
exchange main index (BVL30), the number of shares traded, and the opening,
maximum, minimum and closing values of the stock.

From ead companies base data we constructed 15 dhily-based “technicd
indicators’ to be used as fedaures to mine. These feaures are functions of the base
data variables and summarize relations extraded from the previous 10 days of base
data. As an example, one of the feaures expresss the relation between the 10-day
and 3-day weighted moving averages of daily “reference values’ (average of
maximum, minimum and closing prices). Some of these features are cdegoricd,



while the others have integer or red values. However, the data mining algorithm
requires discrete values, so we onverted the original values of the feauresto dscrete
integer values ranging from 1 to 5 — the cdegoricd fedures resulting in urordered
sets of these values, and the numericd feaures resulting in ordered sets. As an
example, the described relation between the 10-day and 3-day moving averages
resultsin an ordered-value fedure that is discretized the foll owing way:

If (0.96>(MA(10-day)/MA(3-day))) thenthefeaurevaueisl,;

If (0.99>(MA(10-day)/MA(3-day)) = 0.96) then the feature value is 2;

If (1.01>(MA(10-day)/MA(3-day)) = 0.99) then the feature valueis 3;

If (1.04>(MA(10-day)/MA(3-day)) = 1.01) then the feature value is 4;

If ((MA(10-day)/MA(3-day)) = 1.04) then the feaure value is 5.

The developed feaures were then subjeded to a seledion processto reduce their
number to 10. This limitation on the number of feaures is introduced to help to
reduce overfitting problems due to the scarce number of examples available in
relation to the “descriptive power” of the full set of feaures. To seled the 10 feaures
to retain we gplied (over the learning examples) a cmbination of methods including
(with a heavier weight) Hong's feaure seledion method [8] and also (with reduced
weights) a measure of correlation between the feaure value and the result to predict,
and the ssmple information gain of the feaure.

The final format of ead prepared example cnsists of 10 dedsion feaures with 5
discrete values (classfied as ordered or unordered) and one binary result attribute.
The result attribute indicaes, for eat example, if the described “reference value” of
the stock raises or falls in the next trading day. The total number of examples
available for eat stock is 478 (462 for Brisd). This number is smaller than the
number of days in the origina data mainly because severa of the first days must be
used to construct some of the feaures of the first example.

4 The PA3 ruleinduction algorithm

The rule induction algorithm we used, cdled PA3, is a recent general-purpose

sequential cover algorithm [1]. The main feaures of PA3 include:

« A rule evaluation function that integrates explicit evaluations for rule acuracy,
coverage and simplicity

* A rule generalization step that is run immediately after ead rule is developed in
an initial general-to-spedfic development phase

* A last rule filtering step that alows a doice of the tradeoff level between the
acarracy and the global coverage of the final rule list.

The rule evaluation function is
v=af xcP + xs,

where v is the rule value, a is the rule acaracy over the leaning examples, c is the
rule coverage, sisthe rule smplicity and 8 and x are mnstants that must be chosen
acording to the leaning data charaderistics (8 regulates the relative importance of
rule mverage and rule acarracy and x regulates the importance of rule simplicity).



This evaluation function is used to dred the seach and to choose among
alternative rules during the initial general-to-spedfic rule development and aso, in
the foll owing rule generali zaion step, to evaluate and choose passhble generali zaions
of the rules that result from the initial general-to-spedfic development. In this
generali zation step the evaluation function of the standard PA3 is used with the same
parameter values used in the general-to-spedfic rule development. This way, the
algorithm only replaces a rule previoudy found by a more general version of that
sameruleif the latter is better acording to the same evaluation measure.

PA3 induwes an ordered list of “if...then...” rules. Each rule has the form “if
<complex> then predict <class>", where <complex> is a awnjunct of fedure tests, the
“seledors’. In PA3, eah seledor implies testing a fedure to see if its value is
included in a spedfied range of values. So, ead selector indicates the feaure to be
tested and the (inclusive) upper and lower limits of the range of values it has to be
tested against. The postcondition of a PA3 ruleis asingle Boolean value that spedfies
the dassthat rule predicts for the cases that comply with all the seledors. It should be
noted that, while asingle PA3 rule includes a smple wnjunction of tests, the final
rule set is equivalent to a DNF formula.

PA3'slast step uses asimple rule evaluation metric (different from the one used in
the rule leaning procesy to filter the complete list of the induced rules, retaining only
a reduced number of stronger rules. Since the rules leaned by this algorithm form an
ordered list, this rule filtering has to retain a set of the first contiguous rules (also
maintaining the order of those rules). This filtering processis controlled by a user-
defined parameter that must be set between 0 (to accept al the discovered rules) and
closeto 1 (to acapt only the first, stronger, rules). Globally, this rule filt ering method
alows the user to choose the tradeoff level between a more complete cae-space
coverage and a reduced coverage using orly the stronger rules (and therefore with
greder acairacy).

5 Domain knowledge inclusion in PA3

Our global KDD processall ows the integration and testing of domain theories of the
“technicd analysis’ kind through a very simple process They can be represented by
the features generated from the original data. With thisin mind, the theories that seem
more useful when integrated at the rule induction algorithm level are “meta-theories’
that can be globally applicable to the rules (in fad, combinations of “technicd
indicaors’) creded by the rule induction algorithm from the data fedures. Since, in
our domain, the relevant information present in the base data is almost completely
“drowned” in noise, and overfitting tends to occur, we felt that the “ meta-theories’ to
test should preferably be chosen to reduce overfitting.

One of the two theories we dedded to test biases the leaner against the seledion
of rules belonging to a particular class while the other intends to promote rule
generalization for another classof “marginal” rules. More spedficdly, the first theory
states that a goodrule should not include atest over an ardered-value feaure that only
accets its middle value (3, since the range of posshle values is 1 to 5), since that
kind of “neutral” value for an ordered-value feaure probably does not point strongly
to clea changes in the stock value. To integrate this theory in the PA3 rule induction



algorithm, we dtered the evaluation of the basic (still unexpanded) rules. When,
during the rule induction procedure, a rule has a selector involving an ordered-value
feaure with avalue of 3, the standard evaluation result for that rule is multiplied by a
constant (named mod1) with a positive red value smaller than 1, thus reducing the
rule evaluation result. The second theory states that if a rule includes a test over a
feaure that has ordered values, and a value of 2 or 4 is accepted for that feaure, then
the corresponding “extreme value” (1 or 5 respedively) shoud also be acceted. The
reasoning isthat if a“strong” (high or low) value for atechnicd indicator seemsto be
predictive for the future behavior of a stock, then an even stronger (in the same
diredion) value for the that indicator should, most of the time, also pdnt to the same
prediction. To integrate this theory in the PA3 algorithm, we dtered the evaluation of
the rule expansions. When, during the expansion procedure, a rule has a seledor
(involving an ordered-value feaure) that is expanded from avalue of 2 or 4 to include
(respedively) the extreme values of 1 or 5, the standard evaluation result is increased
through multi pli cation by constant (named mod2) with ared value greaer than 1.

The general ideabehind this use of uncertain DK at the rule induction level is that
if the theories are globally true, then the rules that do not agree with them have a
greder probability of corresponding to statistic fluctuations found in the leaning data,
and not to stable patterns useful for out of sample prediction. This problem is
originated by the noisy data and small | earning set sizes and by the very large domain
space seached. Introducing a small handicap in the evaluations of key rule dasses
ensures that the rules belonging to these dasses that are present in the final rule list
must correspond to patterns in the leaning data with above-average “strength”. Of
course, if the theories are globally true, they should increase the out-of-sample
acarracy of the predictions. If they are globally wrong, the out-of-sample predictions
should present areduced acaracy.

It is clea that increasing the number of leaning examples reduces the alvantages
of integrating this kind of DK to focus the seach, since with a greaer number of
leaning examples, the red patterns in the training data tend to be less obscured by
noise. A marginal point to notice is that this biasing of the search will, of course,
aways reduce acuracy over the leaning data.

6 Tests

Testing the integration of the domain theories over the available examples is not
straightforward, becaise some charaderistics of the domain and of the data limit the
dired use of normal bodstrap or resampling methods.

In faa, the time series we intend to predict are far from deterministic, and their
behavior can be expeded to change over time due to changes in the underlying
domain mechanics. Thisway, a prediction model that proves acairate during a cetain
time span can be expeded to (progressvely or suddenly) loose prediction acairacy in
the future. This means that maintaining the temporal order of the examples is
important if each test example prediction is expeded to represent the red prediction
setup at the time of that example. (As an example, consider the use of training
examples immediately posterior to the test example being predicted: That corresponds
to the use of context information that could not be available if the prediction d that



example was required in a redistic situation, and can be expeded to adjust the
prediction model to the nea-future domain behavior, artificialy increasing the
prediction accuracy).

This way, since the examples are “time stamped” and the domain behavior is
expeded to vary over time, we opted for the standard time-sequenced division of the
examples, instead of a dassic boastrap o resampling method. To ensure unbiased
test results, the available examples were divided into separate leaning/validation and
test sets. We used the first 300 examples (284 for Brisa) from each stock for learning
and parameter seledion and kept apart the last 178 examples from each set for testing.

To determine the best values for mod1 and mod2, the first 200 d the 300 examples
(184 d 284 for Brisa) were used for leaning with different values for modl and
mod?2, and the resulting rule sets were tested on the remaining 100examples from the
leaning sets. The test results were averaged over the five stocks, and the best global
values for mod1 and mod2 were seleded.

Those values were then used to develop rule lists from the complete sets of 300
leaning examples (284 for Brisa), and the prediction acairacy of those rule lists (over
the test sets of 178 examples) was compared with the one adieved by rule lists
obtained using the standard, unbiased, PA3 (modl = mod2 = 1).

PA3 uses 3 internal parameters:

* B and x are used to regulate rule evaluation during the general-to-specific and
spedfic-to-general rule development phases, and must be set considering the
domain charaderistics

* The final rule filtering parameter must be chosen acmrding to the users desired
tradeoff level between prediction predsion and model coverage.

Since our aim with these tests is not to achieve the best possible prediction results,
but to compare the results with and without the integration of the domain theories, we
chose to simplify our test procedure setting, from the start, the B and X parameters to
the “standard” values of 0.8 and 0.01 [1], instead of optimizing them through tests
over the training/validation data. Also to simplify the test procedure, the final rule
filtering parameter was %t to prevent any rule filtering, and a default rule was added
to the end of ead leaned (ordered) rule set. This way, every leaned model is
guaranteed to produce aprediction for every possble test case.

During the initial test phase, to determine the best values for the two theories
parameters, 7 values were tried for the modl1 parameter (0.4, 0.5, 0.6, ...,0.9, 1.0) and
11 values were tried for mod2 (1.0, 1.1, 1.2, ..., 1.9, 2.0). The results for eatr mod1
value were obtained as an average over the mod2 values and vice-versa. Inall, 11 runs
of the induction algorithm (over ead of the 5 examples sts) are averaged to oktain
ead of the acaracy values for modl and 7 runs (also over ead of the 5 examples
sets) are done for ead of the acwracy values for mod2.

This test procedure does not try to ogimize the modl and mod2 parameters for
ead stock. Naturally, each of the tested theories can present a diff erent behavior over
ead stock involved in the study, and better final acairacy values could be expeded if
individual mod1 and mod2 values were used for ead stock. However, considering the
small number of examples available for eat stock, we opted to use acuracy values
averaged over the five sets, in order to oktain more robust values for modl and mod2:
Thisway, the chosen values are those that resulted in the global best results acossthe
5 stocks.



The average acarracy (as tested ower the last 100 learning examples) of the rule
sets leaned over the first 200 (184 for Brisa) examples of ead stock set is own in
percentage in Figure 1 for the tested values of mod1 and mod2.
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Fig. 1. Accuragy (in %) over the last 100 leaning examples (averaged over the 5 stock sets)

As can be seen from the dcharts in Figure 1, for some of the tested modifier values
both theories produce a improvement over the standard PA3 (modl=mod2=1).
However, the lack of regularity of the seacond theory chart contrasts with the “well
behaved” first theory chart. In fad, in this first test, the second theory achieves an
improvement for some of the mod2 values, but several of the mod2 values tested
produce worse results than the basis value of 1.0. However, since these very simple
first tests were based on relatively few examples and only intended to assst in
choasing the values for modl and mod2 to be used in more extensive comparative
tests, neither the stable behavior of the first theory nor the much less gable results for
the second theory can be seem as very relevant.

Among the values tried for mod1l and mod2, the best results were obtained for
modl = 0.7 and for mod2 = 1.7. Those best values for modl and mod2 were then
tested with rule sets developed over the sets of 3001eaning examples (284 for Brisa),
and applied over the five sets of 178testing examples.

In these tests, a more complex procedure was used to try to achieve more stable
results. Due to the method used to choose the “best” values for the two theory
modifiers, and to the non-stationary nature of the time series involved, we wanted to
keep a separation between the training and test sets, based on a strict time frontier: All
the examples before that point are seen as training examples with a known outcome,



and all the examples after that point are regarded as previously unseen test examples.
That would lead to a simple holdout testing method that, due to the reduced number
of available examples and to the small number of individual tests, would not produce
reliable results, and would not all ow a meaningful statistic significance analysis.

To try to circumvent this problem we opted for a test methoddogy that combines
the simple holdout [10] and a modified bodstrap [5]. This test methoddogy uses 100
tests for ead of the five stocks. In each of those tests, a model isleaned on the basis
of abodstrap sample of the training examples (sampling examples from the original
training set, using replacement, until a number of examples equal to the number in the
origina set is attained) and that model is tested over the complete, original, set of
previously unseen 178 test examples. This way, each model is leaned from
approximately 63.2% of the training examples [5], and the models present exadly the
same variability of standard bodstrap models leaned over the training examples (in
fad, they are leaned exadly the same way). The tests, however, are dways
performed over the complete set of “out-of-sample” test examples (the best set of test
examples we have), assuring that (unlike the standard bootstrap [10]) no optimistic
“contamination” of results is possble. The bodstrap extradion of leaning sets of
examples is used only to generate variability, and results in a reduced prediction
acarracy (because some of the training examples are left unused in the leaning of
eat model) but maintains a fair test setting for the cmparative tests of modifier
values we want to conduct.

Table 1 showsthe acuracy results obtained over the five data sets.

mod1=1.0| mod1=0.7 | mod1=1.0 | mod1=0.7

mod2=1.0| mod2=1.0 | mod2=1.7 | mod2=1.7
BCP 55.88 55.81 55.99 56.82
Brisa 52.02 52.83 52.46 53.20
Cimpor 52.66 53.09 52.36 53.53
EDP 51.56 52.26 52.03 52.31
PT 57.19 56.95 57.97 58.15
Average 53.86 54.19 54.16 54.80

Table 1. Percentage acarracy for the neutral and best values of mod1and mod2

Comparing the results of Table 1 (acaracy values close to $4%) and those
indicated in Figure 1 (values close to 58%), a global acaracy deaease is clea. This
deaeaseis mainly due to a very different behavior of the BVL stock exchange during
the period corresponding to the learning examples (high volatility with a strong dobal
raise) and during the period used to generate the test examples (a steady drop in the
quote values). In those onditions, being able to achieve, over the test examples,
global results clealy above the 50% level seems a strong indicaion that valid
prediction patterns were in fad extraded from the training examples (both using the
standard version of PA3 and using the versions with integrated DK). A secondary
reason for the reduced acairacy is the test methoddogy that only uses about 63.2% of
the available training examples to generate the prediction models, but this fador is
partially offset by the increased number of avail able training examples in these tests.



The average results in Table 1 show that both theories, used in isolation, produce
small accuracy improvements and that, used together, they result in a clearly greater
improvement.

The results obtained for each stock show that when the integration of one of the
theories in isolation results in a decreased accuracy (in only 3 out of 10 tests), the
decrease if very small. The two theories combined always result in improved accuracy
(in 5 out of 5 tests). This behavior seems to indicate that the average results can be
regarded as relatively stable.

As previously referred, the prediction of this kind of financial time series would be
impossible if the markets involved were theoretically efficient. That does not seem to
be the case of most markets, and specifically of the market we are studying. However,
even when stock markets are not theoretically efficient, that hypothesis does not seem
to be very far from being true, and the predictability of stock quotes time series is
aways marginal. This way, in our binary prediction setting, a prediction accuracy
close to 50% should be expected and any global percent accuracy improvement based
in better data mining techniques must be marginal. This tends to result in a difficult
setting for the analysis of the statistic significance of any data mining improvements.
This global problem is compounded by the time-based sequential nature of the
problems, by the relatively small number of available examples and by a large
variability effect that can be associated with the noisy data[12].

To conduct a meaningful significance test of the theories integration, we used our
bootstrap-based setup to analyze the number of times the altered algorithms achieved
better, equal or worse results than the non-altered version (with modl = mod2 = 1.0).
The involved test methodology allows us to conduct any desired number of tests with
models that exhibit a bootstrap-like variance and till are tested in a strict holdout
setup, allowing the tightening of the confidence intervals [13].

Table 2 shows the test results for the 100 runs for each of the five stocks that also
produced the accuracy results of Table 1.

mod1=0.7 mod1=1.0 mod1=0.7

mod2=1.0 mod2=1.7 mod2=1.7
B E W|B E W|B E W
BCP 50 6 44|49 5 46|54 8 38
Brisa | 52 5 43|47 9 44|56 1 43
Cimpor | 53 6 41|43 6 51|58 5 37
EDP 51 5 44|51 4 45|49 5 46
PT 47 4 49|52 3 45|54 4 42
Average |50.6 5.2 44.2|48.4 54 46.2|54.2 4.6 41.2

Table 2. Number of better, equal and worse results in relation to the basic, unmodified
algorithm

One of the points that can be noticed in the results shown in Table 2 is the
relatively large number of equal results. Thisis basically due to the fact that, in some
runs, the mined data (that, in these tests, includes a number of repeated examples) is



stable enough to generate exactly the same rule sets, in spite of the introduced search
bias. Another interesting point is that in these results, only 2 of the 10 tests that
compare the isolated theories with the unmodified algorithm produce more worse than
better results (the dlightly worse result of the isolated first theory in the accuracy
results of the BCP stock is now inverted). This (average) worse accuracy result (see
Table 1) is due to a small number of very bad results in some of the 100 accuracy
tests (results that can be considered outliers).

The global results for each theory and for the two theories combined are consistent
with the accuracy results shown in Table 1: In isolation, both theories produce a small
but clear improvement over the unmodified algorithm, and the first theory produces a
greater improvement then the second. When used together, the two theories produce a
considerably greater improvement.

Applying a traditional significance analysis (single-sided paired t tests [13]) to the
results in Table 2, the same general effects are detected: The average results for the
first theory prove to be better than those of the unmodified algorithm version with
95% significance. The average results for the second theory are better than those of
the unmodified algorithm version, but only with 68% significance. The average
results for the two theories combined are better than those of the unmodified
algorithm version with 98% significance. This last result seems to correspond to a
meaningful prediction improvement in the difficult domain involved.

It should be pointed out that the test methodology we used expands the number of
available examples by using simultaneous data from different stocks instead of a
longer time frame of the same stock. Thisis common in stock time series data mining,
but implies that the examples from each stock are not correlated which, of coursg, is
not entirely true.

7 Conclusions

The work described in this paper reinforced our belief that direct use of DK in the
core data mining phase of a KDD process can improve the overal efficiency of some
knowledge discovery processes. In particular, changing the rule evaluation in order to
introduce domain specific deformations in what would otherwise be an unbiased
setting seems a promising way of integrating domain specific knowledge in the data
mining phase of KDD processes that use rule induction algorithms.

As further work, we intend to test the present theories over more extensive stock
market data. We aso intend to evaluate, over the same domain, other globally
applicable theories in the line of those involved in the present tests.
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