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Abstract. Inclusion of domain knowledge in a process of knowledge discovery
in databases is a complex but very important part of successful knowledge
discovery solutions. In real-li fe data mining development, non-structured
domain knowledge involvement in the data preparation phase and in the final
interpretation/evaluation phase tends to dominate. This paper presents an
experiment of direct domain knowledge integration in the algorithm that will
search for interesting patterns in the data. In the context of stock market
prediction work, a recent rule induction algorithm, PA3, was adapted to include
domain theories directly in the internal rule development. Tests performed over
several Portuguese stocks show a significant increase in prediction performance
over the same process using the standard version of PA3. We believe that a
similar methodology can be applied to other symbolic induction algorithms and
in other working domains to improve the eff iciency of prediction (or
classification) in knowledge-intensive data mining tasks.

1 Introduction

In most cases, the availabil ity and the efficient use of Domain Knowledge (DK)
during the development process of a Knowledge Discovery in Databases (KDD)
system is essential for successful knowledge discovery. In fact, DK is needed for
almost any practical knowledge discovery task, independently of the domain or of the
data mining techniques used, since, at least, some form of DK must be involved in the
problem definition, in the data preparation and in the results evaluation and utili zation
phases. Sometimes, however, the involvement of DK in the process does not result in
all the advantages it could bring. In fact, in some real-life situations where KDD
could be useful, the available formally specified DK is restricted to description or
definition of data and other forms of DK (for example theories about the way domain
variables interact) exist only in informal, sometimes uncertain, non-structured forms.
This kind of limitation of previously existing DK, together with a somewhat scarce
theoretical work on the topic, usually results in no deliberate involvement of existing
DK in the specific data mining phase of many real-life KDD processes.

DK involvement in the data mining step of a KDD process always implies a
conditioning of the search of hypotheses conducted by the data mining algorithm.
This conditioning can operate through an “ initialization bias” (introducing starting
conditions for the search), or through a “search bias” (distorting the search space, or
the evaluation of hypotheses) [14], [15].



DK can be included in the data mining phase through direct integration (implicit or
explicit) in the data mining algorithm, or through an associated knowledge base. In
the first case, specific changes to the core data mining algorithm must be performed,
in order to directly represent the involved domain knowledge through a biasing of the
search. In the latter case, a very tight coupling between the domain theory description
in the knowledge base and the bias representation language accepted by the learner is
need, eventually involving an intermediate knowledge “ translator” [3]. Anyway, both
of these forms of DK integration tend to need software specifically adapted for each
application case, since different kinds of domain knowledge usually involve different
representations, and most data mining algorithms (and commercial data mining
programs) don’ t allow the integration any form of DK not contained in the data.

Direct integration of DK in data mining software generally intends to direct and
focus the pattern search that takes place at that KDD step. This can raise another
potential limitation of this technique: If badly directed, the focused search can miss
some of the potentially interesting patterns that an unbiased search could find in the
data [4]. However, in spite of the limitations and potential problems, we believe that,
in some cases, careful DK integration in the data mining step of a KDD process can
produce significant improvements in the overall efficiency of the process.

This paper presents an experiment that integrates two domain theories directly in a
rule induction data mining algorithm. The domain is short-term stock market
prediction, and the two theories bias the algorithm, during rule search, against a
specific class of rules, and towards another. The theories are tested over five data sets
that correspond to multivariate information based on daily quotes of five of the most
significant stocks in the Portuguese BVLP stock exchange. The base rule induction
algorithm used, PA3 [1], is a recent general-purpose sequential cover algorithm that
combines general-to-specific and specific-to-general search to develop each rule.

2 Domain knowledge

Adopting a restrictive DK definition, we will be interested only in domain theories
that explain or predict future behavior of stocks on the basis of known data. This kind
of domain theory is extremely uncertain in stock market prediction. There are,
basically, three different positions: Those who believe that the markets are highly
efficient and, as a result, essentially unpredictable, those who advocate “ fundamental
analysis” of the business results of the quoted companies, and those who believe that
“ technical analysis” (the analysis of historical stock quotes data, isolated of other
known facts) is enough to predict the future behavior of those stocks [6].

The “eff icient market” hypothesis, at least in its weakest form, has been
traditionally accepted in some academic circles as basically correct, and if that were
really the case, any effort to predict future behavior of listed stocks would be futile.
However, besides the firm belief of those who really invest in stock markets (most of
the investors and all the speculators), there is a growing body of published research
indicating that at least some markets exhibit imperfections (which translate to a
degree of predictivity) [7], [16], [11].

Classic “fundamental analysis” has solid background theory but even when
successful in the long term, is not very useful to predict short-term movements of



stock values [7]. A marginal aspect related to fundamental analysis that can be linked
to very important fast movements of stock prices is the announcement of surprising
fundamental company information (or surprising macroeconomic information,
relevant for the whole market). However, this kind of fast readjustment of
fundamental expectations will not be explicitly integrated in the analysis conducted in
this paper, since it does not seem relevant for the paper’s objectives and it requires
very complex base data, and very demanding data preparation.

The theory behind present “ technical analysis” is abundant. Unfortunately it is also
fragmented and many times of dubious quality, most of it corresponding to unproved,
sometimes untested, hypotheses. Moreover, the fact that technical analysis theory is
still not seriously established can hide a fundamental problem: Even if technical
analysis is realistically possible, perhaps it cannot be generalized for different
markets, or for different stocks and different time frames of a market.

3 The problem and the data

The work we are involved in aims to predict the future behavior of five stocks listed
in the Portuguese BVL stock exchange, utili zing historical data and DK.

This paper describes work done on direct domain theory integration in a rule
induction algorithm used for the prediction of the next day behavior of each stock
(binary prediction of rise or fall ). This kind of next-day prediction is not enough to
develop an operational trading strategy, but it is frequently found in the literature [2],
[9], [11], and seems adequate to test the validity of the two domain theories involved.

For this very short-term prediction task, we simplified the base data by omitting
fundamental information (and by not accounting for dividend payments), and used
only historical stock quotes, transaction volumes and index values. It should be
noticed that this base data has low information content for the prediction task, and
could never result in very high accuracy rates, even with ideal data preparation and
data mining steps. This situation is similar to having very noisy data both for learning
and testing, and tends to present overfitting problems during the data mining process.
With this problem in mind, we selected the domain theories to integrate in the rule-
induction software aiming to reduce overfitting of the training data.

The five companies chosen for prediction are among those more actively traded in
the BVL stock exchange: BCP, Brisa, Cimpor, EDP and PT. For each of the 4
companies excluding Brisa, daily data from 3-Nov-1997 to 29-Oct-1999 were
available. For Brisa, quotation in BVL only started in 25-Nov-1997, and so available
data starts in 25-Nov-1997 and also ends in 29-Oct-1999. Each of the resulting 495
records (479 for Brisa) includes the day’s date, the closing value of the stock
exchange main index (BVL30), the number of shares traded, and the opening,
maximum, minimum and closing values of the stock.

From each companies’ base data we constructed 15 daily-based “ technical
indicators” to be used as features to mine. These features are functions of the base
data variables and summarize relations extracted from the previous 10 days of base
data. As an example, one of the features expresses the relation between the 10-day
and 3-day weighted moving averages of daily “ reference values” (average of
maximum, minimum and closing prices). Some of these features are categorical,



while the others have integer or real values. However, the data mining algorithm
requires discrete values, so we converted the original values of the features to discrete
integer values ranging from 1 to 5 − the categorical features resulting in unordered
sets of these values, and the numerical features resulting in ordered sets. As an
example, the described relation between the 10-day and 3-day moving averages
results in an ordered-value feature that is discretized the following way:

If  (0.96 > (MA(10-day)/MA(3-day)))  then the feature value is 1;
If  (0.99 > (MA(10-day)/MA(3-day)) ≥ 0.96) then the feature value is 2;
If  (1.01 > (MA(10-day)/MA(3-day)) ≥ 0.99) then the feature value is 3;
If  (1.04 > (MA(10-day)/MA(3-day)) ≥ 1.01) then the feature value is 4;
If  ((MA(10-day)/MA(3-day)) ≥ 1.04) then the feature value is 5.

The developed features were then subjected to a selection process to reduce their
number to 10. This limitation on the number of features is introduced to help to
reduce overfitting problems due to the scarce number of examples available in
relation to the “descriptive power” of the full set of features. To select the 10 features
to retain we applied (over the learning examples) a combination of methods including
(with a heavier weight) Hong’s feature selection method [8] and also (with reduced
weights) a measure of correlation between the feature value and the result to predict,
and the simple information gain of the feature.

The final format of each prepared example consists of 10 decision features with 5
discrete values (classified as ordered or unordered) and one binary result attribute.
The result attribute indicates, for each example, if the described “reference value” of
the stock raises or falls in the next trading day. The total number of examples
available for each stock is 478 (462 for Brisa). This number is smaller than the
number of days in the original data mainly because several of the first days must be
used to construct some of the features of the first example.

4 The PA3 rule induction algorithm

The rule induction algorithm we used, called PA3, is a recent general-purpose
sequential cover algorithm [1]. The main features of PA3 include:
• A rule evaluation function that integrates explicit evaluations for rule accuracy,

coverage and simplicity
• A rule generalization step that is run immediately after each rule is developed in

an initial general-to-specific development phase
• A last rule filtering step that allows a choice of the tradeoff level between the

accuracy and the global coverage of the final rule list.

The rule evaluation function is

,1 scav χββ +×= −

where v is the rule value, a is the rule accuracy over the learning examples, c is the
rule coverage, s is the rule simplicity and β and χ are constants that must be chosen
according to the learning data characteristics (β regulates the relative importance of
rule coverage and rule accuracy and χ regulates the importance of rule simplicity).



This evaluation function is used to direct the search and to choose among
alternative rules during the initial general-to-specific rule development and also, in
the following rule generalization step, to evaluate and choose possible generalizations
of the rules that result from the initial general-to-specific development. In this
generalization step the evaluation function of the standard PA3 is used with the same
parameter values used in the general-to-specific rule development. This way, the
algorithm only replaces a rule previously found by a more general version of that
same rule if the latter is better according to the same evaluation measure.

PA3 induces an ordered list of “ if…then…” rules. Each rule has the form “ if
<complex> then predict <class>” , where <complex> is a conjunct of feature tests, the
“selectors” . In PA3, each selector implies testing a feature to see if its value is
included in a specified range of values. So, each selector indicates the feature to be
tested and the (inclusive) upper and lower limits of the range of values it has to be
tested against. The postcondition of a PA3 rule is a single Boolean value that specifies
the class that rule predicts for the cases that comply with all the selectors. It should be
noted that, while a single PA3 rule includes a simple conjunction of tests, the final
rule set is equivalent to a DNF formula.

PA3’s last step uses a simple rule evaluation metric (different from the one used in
the rule learning process) to filter the complete list of the induced rules, retaining only
a reduced number of stronger rules. Since the rules learned by this algorithm form an
ordered list, this rule filtering has to retain a set of the first contiguous rules (also
maintaining the order of those rules). This filtering process is controlled by a user-
defined parameter that must be set between 0 (to accept all the discovered rules) and
close to 1 (to accept only the first, stronger, rules). Globally, this rule filtering method
allows the user to choose the tradeoff level between a more complete case-space
coverage and a reduced coverage using only the stronger rules (and therefore with
greater accuracy).

5 Domain knowledge inclusion in PA3

Our global KDD process allows the integration and testing of domain theories of the
“technical analysis” kind through a very simple process: They can be represented by
the features generated from the original data. With this in mind, the theories that seem
more useful when integrated at the rule induction algorithm level are “meta-theories”
that can be globally applicable to the rules (in fact, combinations of “ technical
indicators” ) created by the rule induction algorithm from the data features. Since, in
our domain, the relevant information present in the base data is almost completely
“drowned” in noise, and overfitting tends to occur, we felt that the “meta-theories” to
test should preferably be chosen to reduce overfitting.

One of the two theories we decided to test biases the learner against the selection
of rules belonging to a particular class, while the other intends to promote rule
generalization for another class of “marginal” rules. More specifically, the first theory
states that a good rule should not include a test over an ordered-value feature that only
accepts its middle value (3, since the range of possible values is 1 to 5), since that
kind of “neutral” value for an ordered-value feature probably does not point strongly
to clear changes in the stock value. To integrate this theory in the PA3 rule induction



algorithm, we altered the evaluation of the basic (still unexpanded) rules: When,
during the rule induction procedure, a rule has a selector involving an ordered-value
feature with a value of 3, the standard evaluation result for that rule is multiplied by a
constant (named mod1) with a positive real value smaller than 1, thus reducing the
rule evaluation result. The second theory states that if a rule includes a test over a
feature that has ordered values, and a value of 2 or 4 is accepted for that feature, then
the corresponding “extreme value” (1 or 5 respectively) should also be accepted. The
reasoning is that if a “strong” (high or low) value for a technical indicator seems to be
predictive for the future behavior of a stock, then an even stronger (in the same
direction) value for the that indicator should, most of the time, also point to the same
prediction. To integrate this theory in the PA3 algorithm, we altered the evaluation of
the rule expansions: When, during the expansion procedure, a rule has a selector
(involving an ordered-value feature) that is expanded from a value of 2 or 4 to include
(respectively) the extreme values of 1 or 5, the standard evaluation result is increased
through multiplication by constant (named mod2) with a real value greater than 1.

The general idea behind this use of uncertain DK at the rule induction level is that
if the theories are globally true, then the rules that do not agree with them have a
greater probabilit y of corresponding to statistic fluctuations found in the learning data,
and not to stable patterns useful for out of sample prediction. This problem is
originated by the noisy data and small l earning set sizes and by the very large domain
space searched. Introducing a small handicap in the evaluations of key rule classes
ensures that the rules belonging to these classes that are present in the final rule list
must correspond to patterns in the learning data with above-average “strength” . Of
course, if the theories are globally true, they should increase the out-of-sample
accuracy of the predictions. If they are globally wrong, the out-of-sample predictions
should present a reduced accuracy.

It is clear that increasing the number of learning examples reduces the advantages
of integrating this kind of DK to focus the search, since, with a greater number of
learning examples, the real patterns in the training data tend to be less obscured by
noise. A marginal point to notice is that this biasing of the search will , of course,
always reduce accuracy over the learning data.

6 Tests

Testing the integration of the domain theories over the available examples is not
straightforward, because some characteristics of the domain and of the data limit the
direct use of normal bootstrap or resampling methods.

In fact, the time series we intend to predict are far from deterministic, and their
behavior can be expected to change over time due to changes in the underlying
domain mechanics. This way, a prediction model that proves accurate during a certain
time span can be expected to (progressively or suddenly) loose prediction accuracy in
the future. This means that maintaining the temporal order of the examples is
important if each test example prediction is expected to represent the real prediction
setup at the time of that example. (As an example, consider the use of training
examples immediately posterior to the test example being predicted: That corresponds
to the use of context information that could not be available if the prediction of that



example was required in a realistic situation, and can be expected to adjust the
prediction model to the near-future domain behavior, artificially increasing the
prediction accuracy).

This way, since the examples are “time stamped” and the domain behavior is
expected to vary over time, we opted for the standard time-sequenced division of the
examples, instead of a classic bootstrap or resampling method. To ensure unbiased
test results, the available examples were divided into separate learning/validation and
test sets. We used the first 300 examples (284 for Brisa) from each stock for learning
and parameter selection and kept apart the last 178 examples from each set for testing.

To determine the best values for mod1 and mod2, the first 200 of the 300 examples
(184 of 284 for Brisa) were used for learning with different values for mod1 and
mod2, and the resulting rule sets were tested on the remaining 100 examples from the
learning sets. The test results were averaged over the five stocks, and the best global
values for mod1 and mod2 were selected.

Those values were then used to develop rule lists from the complete sets of 300
learning examples (284 for Brisa), and the prediction accuracy of those rule lists (over
the test sets of 178 examples) was compared with the one achieved by rule lists
obtained using the standard, unbiased, PA3 (mod1 = mod2 = 1).

PA3 uses 3 internal parameters:
• β and χ are used to regulate rule evaluation during the general-to-specific and

specific-to-general rule development phases, and must be set considering the
domain characteristics

• The final rule filtering parameter must be chosen according to the users desired
tradeoff level between prediction precision and model coverage.

Since our aim with these tests is not to achieve the best possible prediction results,
but to compare the results with and without the integration of the domain theories, we
chose to simplify our test procedure setting, from the start, the β and χ parameters to
the “standard” values of 0.8 and 0.01 [1], instead of optimizing them through tests
over the training/validation data. Also to simplify the test procedure, the final rule
filtering parameter was set to prevent any rule filtering, and a default rule was added
to the end of each learned (ordered) rule set. This way, every learned model is
guaranteed to produce a prediction for every possible test case.

During the initial test phase, to determine the best values for the two theories
parameters, 7 values were tried for the mod1 parameter (0.4, 0.5, 0.6, …,0.9, 1.0) and
11 values were tried for mod2 (1.0, 1.1, 1.2, …, 1.9, 2.0). The results for each mod1
value were obtained as an average over the mod2 values and vice-versa. In all, 11 runs
of the induction algorithm (over each of the 5 examples sets) are averaged to obtain
each of the accuracy values for mod1 and 7 runs (also over each of the 5 examples
sets) are done for each of the accuracy values for mod2.

This test procedure does not try to optimize the mod1 and mod2 parameters for
each stock. Naturally, each of the tested theories can present a different behavior over
each stock involved in the study, and better final accuracy values could be expected if
individual mod1 and mod2 values were used for each stock. However, considering the
small number of examples available for each stock, we opted to use accuracy values
averaged over the five sets, in order to obtain more robust values for mod1 and mod2:
This way, the chosen values are those that resulted in the global best results across the
5 stocks.



The average accuracy (as tested over the last 100 learning examples) of the rule
sets learned over the first 200 (184 for Brisa) examples of each stock set is shown in
percentage in Figure 1 for the tested values of mod1 and mod2.

Fig. 1. Accuracy (in %) over the last 100 learning examples (averaged over the 5 stock sets)

As can be seen from the charts in Figure 1, for some of the tested modifier values
both theories produce an improvement over the standard PA3 (mod1=mod2=1).
However, the lack of regularity of the second theory chart contrasts with the “well
behaved” first theory chart. In fact, in this first test, the second theory achieves an
improvement for some of the mod2 values, but several of the mod2 values tested
produce worse results than the basis value of 1.0. However, since these very simple
first tests were based on relatively few examples and only intended to assist in
choosing the values for mod1 and mod2 to be used in more extensive comparative
tests, neither the stable behavior of the first theory nor the much less stable results for
the second theory can be seem as very relevant.

Among the values tried for mod1 and mod2, the best results were obtained for
mod1 = 0.7 and for mod2 = 1.7. Those best values for mod1 and mod2 were then
tested with rule sets developed over the sets of 300 learning examples (284 for Brisa),
and applied over the five sets of 178 testing examples.

In these tests, a more complex procedure was used to try to achieve more stable
results. Due to the method used to choose the “best” values for the two theory
modifiers, and to the non-stationary nature of the time series involved, we wanted to
keep a separation between the training and test sets, based on a strict time frontier: All
the examples before that point are seen as training examples with a known outcome,
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and all the examples after that point are regarded as previously unseen test examples.
That would lead to a simple holdout testing method that, due to the reduced number
of available examples and to the small number of individual tests, would not produce
reliable results, and would not allow a meaningful statistic significance analysis.

To try to circumvent this problem we opted for a test methodology that combines
the simple holdout [10] and a modified bootstrap [5]. This test methodology uses 100
tests for each of the five stocks. In each of those tests, a model is learned on the basis
of a bootstrap sample of the training examples (sampling examples from the original
training set, using replacement, until a number of examples equal to the number in the
original set is attained) and that model is tested over the complete, original, set of
previously unseen 178 test examples. This way, each model is learned from
approximately 63.2% of the training examples [5], and the models present exactly the
same variabili ty of standard bootstrap models learned over the training examples (in
fact, they are learned exactly the same way). The tests, however, are always
performed over the complete set of “out-of-sample” test examples (the best set of test
examples we have), assuring that (unlike the standard bootstrap [10]) no optimistic
“contamination” of results is possible. The bootstrap extraction of learning sets of
examples is used only to generate variabili ty, and results in a reduced prediction
accuracy (because some of the training examples are left unused in the learning of
each model) but maintains a fair test setting for the comparative tests of modifier
values we want to conduct.

Table 1 shows the accuracy results obtained over the five data sets.

Table 1. Percentage accuracy for the neutral and best values of mod1 and mod2

Comparing the results of Table 1 (accuracy values close to 54%) and those
indicated in Figure 1 (values close to 56%), a global accuracy decrease is clear. This
decrease is mainly due to a very different behavior of the BVL stock exchange during
the period corresponding to the learning examples (high volatility with a strong global
raise) and during the period used to generate the test examples (a steady drop in the
quote values). In those conditions, being able to achieve, over the test examples,
global results clearly above the 50% level seems a strong indication that valid
prediction patterns were in fact extracted from the training examples (both using the
standard version of PA3 and using the versions with integrated DK). A secondary
reason for the reduced accuracy is the test methodology that only uses about 63.2% of
the available training examples to generate the prediction models, but this factor is
partially offset by the increased number of available training examples in these tests.

mod1=1.0 
mod2=1.0

mod1=0.7 
mod2=1.0

mod1=1.0 
mod2=1.7

mod1=0.7 
mod2=1.7

BCP 55.88 55.81 55.99 56.82

Brisa 52.02 52.83 52.46 53.20

Cimpor 52.66 53.09 52.36 53.53

EDP 51.56 52.26 52.03 52.31

PT 57.19 56.95 57.97 58.15

Average 53.86 54.19 54.16 54.80



The average results in Table 1 show that both theories, used in isolation, produce
small accuracy improvements and that, used together, they result in a clearly greater
improvement.

The results obtained for each stock show that when the integration of one of the
theories in isolation results in a decreased accuracy (in only 3 out of 10 tests), the
decrease if very small. The two theories combined always result in improved accuracy
(in 5 out of 5 tests). This behavior seems to indicate that the average results can be
regarded as relatively stable.

As previously referred, the prediction of this kind of financial time series would be
impossible if the markets involved were theoretically efficient. That does not seem to
be the case of most markets, and specifically of the market we are studying. However,
even when stock markets are not theoretically efficient, that hypothesis does not seem
to be very far from being true, and the predictability of stock quotes time series is
always marginal. This way, in our binary prediction setting, a prediction accuracy
close to 50% should be expected and any global percent accuracy improvement based
in better data mining techniques must be marginal. This tends to result in a difficult
setting for the analysis of the statistic significance of any data mining improvements.
This global problem is compounded by the time-based sequential nature of the
problems, by the relatively small number of available examples and by a large
variability effect that can be associated with the noisy data [12].

To conduct a meaningful significance test of the theories integration, we used our
bootstrap-based setup to analyze the number of times the altered algorithms achieved
better, equal or worse results than the non-altered version (with mod1 = mod2 = 1.0).
The involved test methodology allows us to conduct any desired number of tests with
models that exhibit a bootstrap-like variance and still are tested in a strict holdout
setup, allowing the tightening of the confidence intervals [13].

Table 2 shows the test results for the 100 runs for each of the five stocks that also
produced the accuracy results of Table 1.

Table 2. Number of better, equal and worse results in relation to the basic, unmodified
algorithm

One of the points that can be noticed in the results shown in Table 2 is the
relatively large number of equal results. This is basically due to the fact that, in some
runs, the mined data (that, in these tests, includes a number of repeated examples) is

    mod1=0.7     mod1=1.0     mod1=0.7

    mod2=1.0     mod2=1.7     mod2=1.7

B E W B E W B E W

BCP 50 6 44 49 5 46 54 8 38

Brisa 52 5 43 47 9 44 56 1 43

Cimpor 53 6 41 43 6 51 58 5 37

EDP 51 5 44 51 4 45 49 5 46

PT 47 4 49 52 3 45 54 4 42

Average 50.6 5.2 44.2 48.4 5.4 46.2 54.2 4.6 41.2



stable enough to generate exactly the same rule sets, in spite of the introduced search
bias. Another interesting point is that in these results, only 2 of the 10 tests that
compare the isolated theories with the unmodified algorithm produce more worse than
better results (the slightly worse result of the isolated first theory in the accuracy
results of the BCP stock is now inverted). This (average) worse accuracy result (see
Table 1) is due to a small number of very bad results in some of the 100 accuracy
tests (results that can be considered outliers).

The global results for each theory and for the two theories combined are consistent
with the accuracy results shown in Table 1: In isolation, both theories produce a small
but clear improvement over the unmodified algorithm, and the first theory produces a
greater improvement then the second. When used together, the two theories produce a
considerably greater improvement.

Applying a traditional significance analysis (single-sided paired t tests [13]) to the
results in Table 2, the same general effects are detected: The average results for the
first theory prove to be better than those of the unmodified algorithm version with
95% significance. The average results for the second theory are better than those of
the unmodified algorithm version, but only with 68% significance. The average
results for the two theories combined are better than those of the unmodified
algorithm version with 98% significance. This last result seems to correspond to a
meaningful prediction improvement in the difficult domain involved.

 It should be pointed out that the test methodology we used expands the number of
available examples by using simultaneous data from different stocks instead of a
longer time frame of the same stock. This is common in stock time series data mining,
but implies that the examples from each stock are not correlated which, of course, is
not entirely true.

7 Conclusions

The work described in this paper reinforced our belief that direct use of DK in the
core data mining phase of a KDD process can improve the overall efficiency of some
knowledge discovery processes. In particular, changing the rule evaluation in order to
introduce domain specific deformations in what would otherwise be an unbiased
setting seems a promising way of integrating domain specific knowledge in the data
mining phase of KDD processes that use rule induction algorithms.

As further work, we intend to test the present theories over more extensive stock
market data. We also intend to evaluate, over the same domain, other globally
applicable theories in the line of those involved in the present tests.
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