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Abstract. Most of the existing data mining approaches to time series prediction 

use data preparation techniques involving an embed of the most recent values of 

the time series, following the traditional linear auto-regressive methodologies. 

However, in many time series prediction tasks the alternative approach that uses 

derivative features constructed from the raw data with the help of domain 

theories can produce significant prediction improvements. This is particularly 

noticeable when the available data includes multivariate information but the 

aim is still the prediction of one particular time series, a situation that occurs 

frequently in financial time series prediction. This paper presents a method of 

feature construction based on domain knowledge that uses multivariate time 

series information and improves the accuracy of next-day stock quotes 

prediction, when compared with the traditional embed of historical values 

extracted from the original data.

1  Introduction

Recently, several data mining techniques have been applied with success to time 

series prediction based on samples of historical data [1], [5], [20]. Most of these 

approaches use supervised machine learning techniques and a data preparation stage 

that produces a set of examples in a two-dimension, tabular, “standard form” [28]. 

Several approaches can be used to prepare this kind of tabular representation from the 

time series raw data. Choosing the most appropriate set of features for the time series 

problem in hand can have a significant impact on the overall accuracy of the 

prediction models. This is the main problem addressed in this paper, for the particular 

case of financial time series prediction. 

1.1  Traditional Temporal Embed

The simplest and most common procedure of transforming the original time series 

data to produce a set of examples in tabular form is to use the last known values of the 

time series as features describing each example, and using the next value of the time 

series as the target value of the example. This auto-regressive data preparation 



technique is usually called “time-delay embedding” [22], “tapped delay line” or 

“delay space embedding” [17].

To illustrate the basic temporal embedding, let us consider an univariate time series
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), using some supervised data mining process. Assuming that the 

next value of the time series depends at most on the k previous values, traditional time 
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where x
t+1 

is the value of the target (dependent) variable.

This kind of data preparation forms the basis of the classical autoregressive time 

series prediction methods like AR [29] or ARMA [6], and is theoretically justified by 

the Takens theorem [24]. This theorem states that, with some restrictions, a number of 

(2⋅N)+1 past values is enough to reconstruct the model of a noiseless system with N 

dimensions. In the case of the described X(t) time series, assuming absence of noise, 

and considering the series to be generated by a N-dimensional system, the features x
t
, 

x
t-1

, x
t-2

, …, x
t-(2N) 

would be enough for the extraction of the system model and for the 

prediction of the following values of the time series.

1.2  Limitations of the Temporal Embed

It should be remarked that many real-life systems suffer complex interactions with 

other systems and, even if they have an intrinsic linear behavior, tend to generate time 

series that present severe problems to comply with the Takens theorem restrictions. In 

particular, this theorem does not seem to apply to most financial time series and, 

particularly, to stock exchange time series.

In effect, the stock exchange time series are generated by extremely complex 

systems that involve the interaction of thousands or millions of independent agents 

(the investors) each capable of changing its behavior over short time frames according 

to a virtually limitless number of possible individual “states”, resulting in a system 

with a number of dimensions that, in practical terms, must be considered infinite [14]. 

This fact implies that the number of historical values needed to construct each 

example in a way conforming to the Takens theorem conditions would be unrealistic 

(the necessary data would not be available and would be unmanageable by the 

machine learning algorithms). Moreover, the system global behavior is not static over 

time (for instance, the number and individual characteristics of the intervening agents 

are not constant). This non-stationary behavior of the system means that “old” time 

series data is not truly representative of the current system (in fact, it was generated 

by a related but different system that no longer exists) and using them blindly to 

generate predictions for the current system can be misleading.  



These characteristics of stock exchange time series result in the almost unanimous 

admittance that base data consisting solely of historical values of the time series being 

predicted do not contain enough information to explain more than a fraction of the 

variance in the time series. In fact, the Efficient Markets Theory [8], now somewhat 

discredited ([1], [11], [15]) but still accepted as basically correct by many economists, 

states that those data do not contain any information useful for the prediction of the 

future behavior of the system.  

The problems that impair the applicability of Takens Theorem to very complex 

dynamic systems do not seem to be reduced by the use of multivariate information as 

basis data for time series modeling.

As an example, the original data we use in our experiments includes 7 values for 

each day and each stock. In effect, this corresponds to 7 time series that are available 

to be used as basic data for time series model construction. In this context, using all 

the 7 time series with an embed dimension of, say, 25 (obviously insufficient to 

include enough information to describe the system), would result in 175 features 

describing each example. Even if those features were discretized to adopt a maximum 

of 5 different values, that would create a “representation space” with the capacity of 

distinguishing 175

5 

different cases. This kind of input dimension is obviously too 

large considering the number of training and testing examples available (10 years of 

daily data correspond to around 2400 records), and would result in a very sparsely 

populated space that would severely limit the efficiency of most machine learning 

algorithms [3], [23]. This problem is reinforced by the fact that due to the system 

complexity and the lack of sufficient information on the base data the system behaves 

as if each variable (dependent and independent) includes a strong noise component. 

Thus, since all the information present in the base data only explains a small 

proportion of the system variance and the information present in our 175 variables 

will explain an even smaller proportion of that variance, we can expect each of those 

variables to have a very small individual relevance to the desired prediction. 

1.3  Alternatives to the Temporal Embed

In situations where heavy overfitting problems can be expected due to the sparsely 

populated representation space and when noisy data are associated with a large 

number of possible input variables with low individual value to knowledge extraction, 

it is frequently possible to obtain better results by combining several of the original 

variables [12], [16], [19]. The aim of developing such feature combinations is the 

creation of a reduced set of “derivative” variables having a greater discriminative 

power for the modeling task being considered.     

One of the possible approaches to the development of a reduced set of derivative 

variables that contain most of the useful information present in the original data is the 

use of an automated method that searches for some combination of the original 

variables. The most used of such methods is “Principal Component Analysis” [4]. 

This method develops orthogonal linear combinations of the original variables and 

ranks them on the basis of their ability to “explain” the target variable variance. The 

main problem with this approach is that the original variables are replaced by the 

most significant linear combinations and so, the data mining algorithms will no longer 

be able to search for non-linear combinations of the original variables. This approach 



is therefore particularly appropriate for “data reduction” when only linear prediction 

methods will be used, and on problems related to systems known at start to be 

basically linear (clearly not the case of stock exchange time series [14], [31]).

Another approach to feature construction consists in the “manual” development of 

a reduced set of derivative variables using domain knowledge. This approach is 

especially efficient in domains where there is an available (but incomplete, thus not 

allowing a deterministic prediction) body of domain theory relating the data to the 

system mechanics and behavior. In stock exchange prediction there is no sure domain 

knowledge and, considering only historical stock exchange information as base data, 

the available domain theories (related to “technical analysis” of stocks [7], [18]) are 

particularly uncertain [10]. However, the large number of known technical analysis 

indicators,
1 

seems a good starting point to build derivative features. In effect, the 

highly uncertain applicability of these indicators to individual stocks, markets, and 

time frames, limits them as final global theories, but does not prevent their usefulness 

to construct input features for machine learning algorithms, since most of these 

algorithms are able of filtering out the features that prove to be least useful over the 

training data, and to adopt only the features that better fit the data.           

2  Data Pre-processing in Financial Time Series Prediction

A review of the published works on financial time series prediction shows that, in 

spite of the limitations mentioned in Section 1.2, most works use either the basic 

version of temporal embed or very limited transformations of this technique.  

As examples of the use of direct temporal embed, we can mention the use of a 

direct univariate embed of dimension two to predict particularly strong daily stock 

exchange quotes variations [20], or the use of a multivariate basic embed of daily 

stock quotes information as input data to a genetic algorithm used to conduct a direct 

search for trading criteria in [30]. 

As examples of basic transformations of temporal embed we can refer the approach 

used by [13], who employs the difference of the logarithms of the last values of 

several time series to predict the stock quotes of several Japanese companies, or the 

work of [15] where logarithmic transformations of the differences of the last two and 

three known values of exchange rate times series are used to predict the variation 

direction of those time series.

Interesting examples of more ambitious adaptations of the basic temporal embed 

can be found in two entries of the important time series prediction competition carried 

out in Santa Fe in 1992 [25]: Mozer tests several transformations involving different 

weights for the embedded values, in an univariate context related to the prediction of 

exchange rates between the US dollar and the Swiss franc [17] and, for the prediction 

of the same time series, Zang and Hutchinson try a univariate embed using non-

consecutive past values for different prediction time frames [31]. 

Although not so frequent, it is also possible to find some published works using 

more sophisticated variables derived from the base data. An early effort involving this 

approach can be found in [26], where a neural network with 61 inputs is used for the 

1 
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prediction of the next day value of the US dollar / German mark exchange rate. Forty 

five of the 61 variables used in this work correspond to an embed of known values of 

the times series that is being modeled, while the other 16 variables are developed 

from multivariate data that the authors believe to include relevant information for the 

prediction of the time series. Another work, involving more sophisticated derivative 

variables and more complete multivariate base data is described in [27]. In this work, 

the objective is again the prediction of the US dollar / German mark exchange rate, 

and the authors use 69 input variables for the neural network that produces the 

predictions, but none of those variables are the result of a direct embed of the time 

series being predicted. In fact, 12 of the 69 variables are “built” based on past values 

of the time series, using typical “technical analysis” transformations, and the other 57 

variables reflect multivariate fundamental information exterior to the time series 

being predicted (using data associated to exchange rates between other currencies, 

interest rates, etc.). Obviously, in those two works, the large number of variables 

“feed” to the machine learning algorithms will tend to produce overfitting problems 

and, in effect, both works include as main objectives the presentation of new 

techniques to reduce overfitting problems in neural network algorithms.

3  A System for Stock Quotes Prediction 

When the goal is the short term (up to a week) prediction of stock quotes, the 

relevance of fundamental information (both micro or macro-economic) tends to be 

small. In effect, even if this kind of information proves useful to predict a part of the 

long term variability of the stocks, the proportion of that ability with direct reflection 

on the variance of the next few days would be very small [11], [18]. Thus, it seems 

reasonable to believe that most of the short term variability of stock values is due to 

fluctuations related to the behavior of the investors, which technical analysis claims 

that can be inferred from past variations of the stock quotes and volumes. However, if 

an approach based on derived variables built with the help of domain knowledge from 

past values of stock exchange time series is to be tried, there are still important 

problems to address. These problems are related to the uncertain nature of the existing 

technical analysis “indicators”, and to the vast number of existing indicators (the 

direct use of a large number of derivative variables of this kind could led to 

overfitting problems similar to those related to the use of a large direct embed [10]). 

An approach based on derived variables would benefit from a practical way of 

representing domain knowledge (in the form of technical analysis indicators) and also 

from an efficient way of generating variables from that representation. Also, given the 

large quantity of possible derived “technical variables” it may be advantageous to 

perform some kind of automatic filtering of the less relevant features (in line with 

what would be needed if a large embed of the time series of interest was used as 

input).    

To try to circumvent the problems associated with this approach, we have 

developed an integrated prediction system that includes a knowledge representation 

language that allows the direct description of most technical analysis indicators using 

pre-defined language elements, and generates automatically, from the raw data, the 



features described by the user. The generated features are then automatically 

discretized (in our implementation, the original values of the features are discretized 

into five integer values, ranging from 1 to 5). The designed prediction system could 

use any machine learning algorithm with efficient behavior over noisy data. We chose 

to test this framework with a lazy learning k-nearest neighbor algorithm [5], and with 

a regression version of the PA3 rule induction algorithm [2]. The lazy learning 

algorithm uses a distance metric that involves a ranking of feature importance, while 

the rule induction algorithm does not need such ranking, but due to the domain 

characteristics mentioned before, also gains from a reduction of the number of 

features. As such, our system includes a feature ranking and selection step. The 

complete system architecture is shown in Figure 1. 

Fig. 1.  The complete time-series prediction system

The domain knowledge representation language allows a domain expert to define 

technical analysis indicators using a simple but flexible representation. As examples, 

consider the following instructions of this language: 

  percent(clo(i),clo(i+1));    i=0..3

  ratio(moa(vol;3;0),moa(vol;15;0))

The first of these instructions describes 4 features, each corresponding to the 

percent variation between the last four daily closing values of a stock and the 

respective previous closing value. The second instruction describes a single feature 

corresponding to the ratio between the moving average of the last 3 daily trading 

volumes of the stock and the moving average of the last 15 daily trading volumes
2

.

The features defined with the language are then automatically generated from the 

raw data and appended with the respective target value for each generated example, to 

form a set of examples in the tabular “normal form”. 

The resulting features can have very different discrete or continuous values. 

Discrete features can have ordered integer values (for instance, consider a feature that 

counts the number of times the closing value is higher than the opening value during 
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The third parameter in the moa constructor specifies the number of days between the last 

value used in the moving average and the present reference example. This way, the 

expression ratio(moa(vol;3;0),moa(vol;3;1)) relates two 3-day moving averages of the 

volumes (the first using the last 3 values and the second using the first 3 of the last 4 values).
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the last 20 trading days), but can also have non-ordered values (e.g. a feature that 

represents the weekday of the last trading session). Continuous features can also have 

different ranges of values (consider, for example, a feature representing the difference 

between the closing and opening value of the last trading day, which can have 

negative or positive values, and a feature that represents the percent variation between 

the minimum and maximum values of the last trading day, that can only have positive 

values). Given these different characteristics of the features, in order to simplify the 

work of the data mining algorithms (many symbolic machine learning algorithms 

require discretized data), a feature discretization module is run before the set of 

examples is “feed” to the data mining algorithms. The feature discretization module 

we implemented consists of discretizes each feature into 5 values using a traditional 

approach [9] that is known to behave well over noisy data. This discretization 

technique works individually over each feature. It starts by analyzing the examples of 

the training set and divides the range of values of each feature into five intervals with 

the same number of values in each interval. Then it attributes a discrete value (an 

integer value ranging from 1 to 5) to the feature instances associated to each of those 

value intervals, using the same values to classify the feature over the training and 

testing sets of examples. This simple “non-supervised” (it does not look to the class 

values of the examples to decide the discretization intervals for each feature) 

approach to feature discretization produced robust results over our data, and we did 

not notice any significant accuracy differences with algorithms able to work with both 

the discretized and the non-discretized original feature values. 

After the data preprocessing, our prediction system starts the core data mining step 

with a feature ranking and selection module. The ranking of each feature is useful for 

instance-based machine learning algorithms that integrate distance metrics that weight 

differently the features. The feature selection procedure aims to reduce the overfitting 

problems related to the difficult domain characteristics already described. In effect, 

some algorithms that use representation languages with larger descriptive power are 

able to fit almost perfectly the hypersurface defined by the training data (which is the 

case of our rule induction PA algorithm). These methods would have a tendency to 

find existing but non-meaningful statistic fluctuations on the training data if given 

enough irrelevant features.    

To prevent this kind of overfitting, our feature ranking and filtering module 

combines the feature evaluations given by two very simple statistical relevance 

measures (the information gain and the Pearson’s r correlation between each feature 

and the target values) that look to each feature individually, and by a more powerful 

feature relevance metric that evaluates the features in the context of the other features 

[12]. These measures are combined by direct averaging of the three independent 

feature rankings obtained from each measure, thus establishing the overall feature 

ranking. To select a number of features to be used by the machine learning 

algorithms, we simply retain the highest ranking features up to a certain number
3

. 

The lazy learning k-nearest neighbor algorithm we implemented and integrated 

within our prediction system is inspired in Bontempi’s work [5]. It uses an orthogonal 

“Manhattan” distance metric that weights differently the features (which must be 

ranked by relevance before being used by the algorithm) and a kernel function that 

3 
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gives (linearly) greater weights to the training examples found to be nearest to the test 

example being predicted. After several tests over stock exchange time series, we 

opted to use a fixed neighborhood of 150 cases. This considerable number of 

neighbors seems to result in a good balance between bias and variance and has an 

important effect in the reduction of overfitting problems typically associated to the 

very noisy examples sets expected in stock exchange time series prediction. 

The rule induction algorithm we also tried in our prediction system is a regression 

variant of a general-propose sequential-cover algorithm called PA3, which handles 

two-class problems. This algorithm was developed to be efficient over noisy data, and 

performed well when compared with other rule induction algorithms over several 

noisy data sets (including stock exchange time series prediction) [2].  

PA3 main features include a rule evaluation function that integrates an explicit 

account for rule accuracy, coverage and simplicity, and a rule generalization step that 

is performed immediately after each rule is developed in an initial general-to-specific 

development phase.

PA3 induces an ordered list of “if…then…” rules. Each rule has the form “if 

<complex> then predict <class>”, where <complex> is a conjunct of feature tests, the 

“selectors”. In PA3, each selector implies testing a feature to see if its value is 

included in a specified range of values. Thus, each selector indicates the feature to be 

tested and the upper and lower limits of the range of values it has to be tested against. 

The postcondition of a PA3 rule is a single Boolean value that specifies the class that 

the rule predicts for the cases that satisfy the selectors. To produce a regression 

(numeric) prediction instead of a class prediction, we used the very simple approach 

of assigning as postcondition of each rule the mean value of the training examples 

covered by the rule.

Those two algorithms where chosen to be integrated in our prediction system not 

only because they tend to be efficient over the noisy stock exchange time series data, 

but also because they use totally different algorithmic approaches. This is an 

important issue since we wanted to test the validity of our different data pre-

processing methods. In effect, it is conceivable that some data preparation approaches 

lead to examples sets better suited for specific machine learning algorithms, but less 

efficient when used by others. 

4  Experimental Testing

The main goal of this paper is to show that the use of domain knowledge to generate 

derivative features from the raw data leads to better predictive accuracy results than 

the traditional embed approach, within financial time series prediction problems. To 

test this hypothesis, we have carried out a set of three comparative experiments.    

In our experiments we have used time series data concerning five of the more 

actively traded companies listed in the Portuguese BVLP stock exchange: “BCP”, 

“Brisa”, “Cimpor”, “EDP” and “PT”. The base data consists of 855 daily records for 

each of the five listed companies (from 25 November 1997 to 11 May 2001). Each of 

those daily records includes 7 base variables: The date of the day, the closing value 



for the BVLP30 stock index, and, for the involved stock, the volume of traded stocks 

and the opening, maximum, minimum and closing values of the stock. 

Regarding the methodology used to compare the different alternatives considered 

in this work we have used the following strategy. The available data for each 

company was split in four sections. The first 50 records were kept aside for the 

construction of the first processed example (thus allowing the use of embed 

dimensions of up to 50). The following 400 records were used to generate 400 

training examples according to the three strategies that will be compared in this paper. 

The following 400 records were used to construct 400 testing examples. The last 5 

basis records were kept aside to allow predictions up to 5 days ahead. 

With respect to the method used to obtain predictions for the 400 test cases we 

have used the following strategy. Initially all learning algorithms were given access to 

the first 400 examples. With this set of examples a prediction is made for the first test 

case. After this prediction is obtained, this test example is added to the set of training 

cases leading to a new training set, now with 401 examples. This iterative train+test 

process continues until a prediction is obtained for all 400 test examples. This means 

that for instance the prediction for the last test example is obtained with a model that 

was learned using 799 training cases (the original 400 training examples, plus the first 

399 test examples).   

Given the goal of our comparative experiments, we have used a prediction horizon 

of one single day. Regarding the target variable we have used as the times series to 

predict we have chosen an average of the following day quotes of each stock. This 

average consists of the mean of the opening, maximum, minimum and closing values 

of the involved stock during the following day. We called this average the “reference 

value” of the stock. More precisely, we predict the percent change between the last 

known reference value and the following day reference value,
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The reason for the use of this “reference value” (instead of using, for example, the 

closing value of each day) is related to the nearly stochastic nature of these time 

series. In effect, this kind of time series behaves as if it had an important component 

of added white noise. Thus, every single observation of the time series is affected by a 

random amount of noise, which tends to “drown” the relatively small variations of the 

stock values attributable to the system “real” behavior ([8], [10]). The use of this 

reference value results in two main advantages when compared with the use of a 

single daily point value of the stock quotes (for instance the closing value). The first, 

and most important, is the reduction in the proportion of the variance that results from 

(unpredictable) random noise with relation to the variance resulting from the 

(hopefully predictable) fundamental subjacent system behavior. The second 

advantage is related to the usefulness of the predicted values for trading. To illustrate 

this latter advantage, let us suppose that we predict a 1% raise in the reference value 

for the next day. Based on that prediction, we could place a sell order with a 

(minimum) sell value equal to the predicted reference value. In this situation, we can 



attain the sell value during the next day even if the predicted raise for the reference 

value falls short, since, in a typical day (one with variability in the stock value) the 

maximum value for the day must be higher than the reference value. This situation 

occurs if we base any (buy or sell) operation on the predicted reference value, since 

this value can be considered an average for the next day and, as such, the typical 

variability of the stock value “around” that average increases the probability of 

attaining the defined operation value, even if the prediction does not fully correspond 

to the actual reference value of that day.  

We have used our prediction system to generate and compare several alternative 

ways of generating sets of examples for each of the 5 stocks considered in this paper. 

More specifically, we tested three data preprocessing approaches. In the first approach 

we have used a direct embed of the time series we are predicting. Namely, we 

developed 25 features that represent the percent variations between the last 25 

consecutive pairs of values of the reference values time series (this implies using 

information associated to the last known 26 values of each reference values time 

series). The second approach compared in our study uses a similar direct embed 

strategy but now considering several of the time series available for each stock. In this 

alternative we have also used 25 features, which include the 5 last known percent 

changes of the reference values time series, and the 4 last known percent changes of 

the volume, opening, maximum, minimum and closing values time series
4

. Finally, in 

the third alternative data preprocessing approach, we developed 25 features based on 

domain knowledge. This knowledge was used both to generate and to select the final 

set of features. Since there are literally hundreds of technical indicators applicable to 

our base data
5

, the development of this type of features requires some restricting 

choices. We have used a process to choose the final set of features where some of 

them were fixed from the start, while others went through an automatic feature 

selection process. Among the former we included the first 4 terms of the simple 

embed used in the first data preprocessing approach. Regarding the automatic 

selection of the other features, we used the knowledge representation language to 

describe and generate a set of features that seemed relevant, and then used a feature 

ranking process
6 

to discard those with lowest evaluations. In order to increase the 

statistical significance of this selection process we have used the combined 2000 

training examples (400 examples × 5 stocks). 

It is interesting to observe which were the features that resulted from the process 

described above. It was rather surprising to find out that most of the retained features 

where not the “full” technical analysis indicators but “constructive elements” of those 

indicators. An example is the retention of simple ratios of moving averages, instead of 

4 

The expressive power of our domain knowledge representation language allows very simple 

representations of these two first sets of features. The first is represented by the single 

expression percent(ref(i),ref(i+1)) with i=0..24. The second is represented by 6 very similar 

expressions, one for each of the 6 base data time series involved.

5 

Many of them involving a choice of parameters and thus greatly increasing the number of 

possible variants.
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This process is similar to the one used in the data mining component of our system described 

in Section 3.



more complex variants of the Moving Average Convergence Divergence (MACD) 

indicator that where also considered as candidate features. 

The final set of 25 chosen features can be grouped in the following families of 

features: 

• One feature based on the date time series, stating the weekday of the example.

• Six features based on the reference values time series, four of them embeds of 

the differences, the other two relating moving averages of different lengths.

• Three features based on direct embeds of differences of the BVL30 time series.

• Two features based on the differential changes of the reference values and 

BVL30 time series, during two different time frames.

• Three features based on the volume of trade time series, one of them an embed 

of the differences, the other two relating moving averages of different lengths. 

• Five features based on different relations of the opening, maximum, minimum, 

closing and reference values of the last known day.

• Five features also based on relations of the opening, maximum, minimum, 

closing and reference values, but using moving averages of different lengths.

Overall, among the 25 developed features, the oldest historical values used are 

reference values up to 20 days old and traded volumes up to 15 days old.

In order to evaluate the prediction performance of the three alternative ways of pre-

processing the raw stock data, we used two very common measures [10], chosen for 

their relevance for trading criteria development. The first is the percent accuracy of 

the binary (rise or fall) predictions for the next day, defined as,
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The second evaluation measure we have used is the average value of the return on 

the test examples, taken as positive when the prediction sign is correct and as negative 

when it is wrong
7

. We called this measure the Average Return on the Predicted 

Examples (ARPE), which can be defined as,
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Notice that the target values of each example are the percent changes between the last known 

reference value and the reference value of the next day.



 Ref
i 
is the reference value of test case i.

Tables 1 and 2 show the accuracy and ARPE results obtained in our experiments 

using the Lazy3 and PA6 algorithms over the three described data sets. 

These tables also include the results obtained with two traditional benchmarks: The 

Naïve Prediction of Returns (NPR) and the buy-and-hold strategy
8

. The NPR merely 

predicts that the next change of value for the time series will be the same as the last 

known change of value. The results for this benchmark are presented in Table 1 as the 

percent accuracy of always predicting that Ref(t+1)-Ref(t) will have the same value as 

Ref(t)-Ref(t-1) and, as such, are directly comparable with the other values in Table 1. 

The results for the buy-and-hold benchmark are show in Table 2 as the average gain 

of the buy-and-hold strategy
9 

over the 400 trading days involved in our tests, so that 

they are directly comparable with the other ARPE measure values presented.

Lazy3 algorithm PA6 algorithm

NRP

Data Set 1 Data Set 2 Data Set 3 Data Set 1 Data Set 2 Data Set 3

BCP 57.50 62.75 69.00 56.50 56.50 62.75 65.50

Brisa 54.75 62.00 66.50 57.75 63.25 63.75 56.75

Cimpor 59.75 63.00 69.25 56.00 57.00 64.50 58.50

EDP 58.50 65.75 72.25 58.00 67.75 72.50 59.00

PT 57.50 61.75 68.50 57.50 63.50 67.75 57.50

Average 57.60 63.05 69.10 57.15 61.60 66.25 59.45

Table 1. Percent accuracy over the test examples

Lazy3 algorithm PA6 algorithm Buy-and-

holdData Set 1 Data Set 2 Data Set 3 Data Set 1 Data Set 2 Data Set 3

BCP 0.134 0.253 0.286 0.193 0.215 0.215 0.002

Brisa 0.176 0.286 0.394 0.228 0.312 0.333 0.099

Cimpor 0.266 0.404 0.498 0.192 0.386 0.447 0.141

EDP 0.263 0.515 0.578 0.302 0.531 0.591 0.010

PT 0.494 0.762 1.045 0.482 0.922 1.007 0.113

Average 0.267 0.444 0.560 0.279 0.473 0.519 0.073

Table 2. Average Return on the Predicted Examples (ARPE)

The results shown on these tables seem to validate our hypothesis concerning the 

use of domain knowledge to generate the training examples. In effect, considering the 

results over the 5 stocks, we can observe that the models obtained with data set 3 

consistently achieve better accuracy results than the others, independently of the 

algorithm used to obtain the model. When comparing the results obtained with data 

sets 1 and 2, we also observe worse results with the simple embed (with a single 

exception in the BCP stock using the PA6 algorithm). If we consider the ARPE 

8 

An extended discussion of these benchmarks can be found in [10] and [21].

9 

This strategy consists of buying at the price of the last known training case, Ref
50+400

, and 

selling at the price of the last known test case value Ref
50+400+400

.



evaluation measure the conclusions are similar. An interesting point to notice is the 

fact that all the algorithm / data sets combinations produce positive results (accuracy 

results greater than 50% and ARPE results greater than 0%).

Analyzing the benchmark results in isolation, we notice that the NPR accuracy 

results are considerably above the 50% average values that could be expected. This is 

due to the high auto-correlation (at lag 1) of the five time series in analysis (which 

also helps to explain the prediction ability of data set 1, as used in our system)
10

. 

Comparing our results with those achieved by the benchmarks, we notice that all the 

algorithm / data sets combinations achieve considerably better ARPE values than the 

buy-and-hold benchmark. On the other hand, the NPR accuracy results are globally 

higher than the results of the simple embed used in data set 1, although they are worse 

than the results of data set 2 and, particularly, of data set 3.

In order to assert the statistical significance of results of these experiments, we 

have carried out one-sided paired t tests over the 400 test examples of each stock, 

using the accuracy results previously obtained. The accuracy differences between 

models obtained with data set 1 and data set 3 were observed to be highly significant. 

In effect, with the Lazy 3 algorithm all the differences are statistically significant with 

a 99.5% confidence level, except for BCP where the level was 97.5%. Regarding the 

PA6 algorithm, the improvements obtained with data set 3 are somewhat less marked, 

but still significant with 99.5% confidence for Cimpor, EDP, and PT, with 97.5% 

confidence for BCP, and with 95% for Brisa. 

5  Conclusions

This paper described an approach to financial time series prediction whose main 

distinctive feature is the use of domain knowledge to generate the training cases that 

form the basis of model construction. With this purpose we have developed a domain 

knowledge representation language that allows the time series expert to easily express 

his knowledge. The description obtained with the help of this language is then used by 

our prediction system to generate a training sample from the raw time series data.

We have compared this knowledge intensive approach with the traditional method 

of embedding the last time series values. With this purpose we have carried out a 

series of comparative experiments using time series data from five actively traded 

Portuguese companies. The results of our experiments with theses stocks provide 

strong empirical evidence that a data preprocessing approach based on a direct embed 

of the time series has large limitations, and that the use of features constructed from 

the available raw data with the help of domain knowledge is advantageous.

Regarding futures developments of this research, we intend to extend the 

experimental evaluation to prediction horizons larger than the next day, as well as 

further refine the important feature selection phase.

10 

An analysis of those time series showed no significant auto-correlation at other lags, limiting 

the potential effectiveness of more powerful prediction techniques based in auto-correlation.
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