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Abstract—Mobile devices are vulnerable to theft and loss due to their small size and the characteristics of their common usage

environment. Since they allow users to work while away from their desk, they are most useful in public locations and while traveling.

Unfortunately, this is also where they are most at risk. Existing schemes for securing data either do not protect the device after it is

stolen or require bothersome reauthentication. Transient Authentication lifts the burden of authentication from the user by use of a

wearable token that constantly attests to the user’s presence. When the user departs, the token and device lose contact and the device

secures itself. We show how to leverage this authentication framework to secure all the memory and storage locations on a device into

which secrets may creep. Our evaluation shows this is done without inconveniencing the user, while imposing a minimal performance

overhead.

Index Terms—Transient authentication, human factors, cryptographic controls, security, mobile computing, privacy.
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1 INTRODUCTION

POWERFUL and affordable mobile devices have brought
users an unprecedented level of convenience and

flexibility. Laptops and PDAs let users work anywhere,
anytime. Unfortunately, physical security is a major
problem for these devices. To be portable, they must be
lightweight and small-sized. Since they are designed for
mobile use, they are often exposed in public places such as
airports, coffee houses, and taxis, where they are vulnerable
to theft or loss.

Along with the value of lost hardware, users must

worry about the exposure of sensitive information. People

store vast amounts of personal data on their mobile devices

and the loss of a device may lead to the exposure of credit

card numbers, passwords, client data, and military secrets

[3], [32].
Mobile devices often protect sensitive data using en-

cryption, but the challenge in device security is not

encrypting data but authenticating the current user [30]. A

device must obtain proof of the user’s identity and

authority before granting access to data. This proof could

take the form of a password, a smart card inserted into a

reader, or biometric data from a fingerprint or iris scanner

[8]. Unfortunately, these forms of authentication are

infrequent and persistent. Should a device subsequently fall

into the wrong hands, an attacker could act as the real user,

subverting encryption for the duration that this authentica-

tion holds.

But, how often must a user authenticate herself? One
might require users to reauthenticate each time the device
performed any operation on sensitive data. This would
quickly render the system unusable and many users would
disable the authentication system out of annoyance [1], [2],
[14]. Another mechanism would require the user to
“unlock” the device once at boot. This would enhance the
user experience but leave data vulnerable if the device were
lost or stolen. These two models highlight an inherent
tension between security and usability. While data should
only be accessible when its authorized user is present, it is
obtrusive to continually ask for proof.

Our new model, Transient Authentication, resolves this
tension. Users wear a small token (e.g., IBM Linux wrist-
watch [22]) that has a short-range wireless link and modest
computational resources. It constantly authenticates to
devices on behalf of the user. The limited radio range
(several meters) serves as a proximity cue, letting a device
take steps to protect its data when the user leaves the
physical area. Since users wear the token, it is far less likely
to be misplaced or stolen than is a laptop or PDA. A
wearable token is also physically bound to a specific user.

Armed with this authentication data from the token,
devices protect data when the user departs by encrypting,
overwriting, and/or flushing it. Cryptographic file systems
secure data in persistent storage, but the unique character-
istics of mobile devices make protecting data in other
memory locations critical as well. Batteries and wireless
network links allow devices to continue running while
traveling and in public places. This is precisely where they
are most vulnerable to loss or theft. While a device is
running, secrets may be present in RAM, the swap
partition, CPU registers, and the various buffers and caches
of peripheral devices.

We show how to leverage this authentication data to
protect all the memory locations where secrets may lie. Data
in permanent storage is encrypted in-place by our crypto-
graphic file system, ZIA [10]. When the user departs, the
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execution of all running processes is frozen and their

resident memory pages are encrypted in-place [11]. We

secure other memory and storage, like the swap partition,

CPU registers, and various buffers and caches of peripheral

devices, by flushing, overwriting, or encrypting data as

appropriate. The user’s token retains all encryption keys so

that the device is unusable while the user is absent.
Some processes can safely continue while the user is

absent, either because they do not handle sensitive data or

because they secure their secrets themselves. Such applica-

tions use our application-aware protection API to access

authentication data and token services. We modified the

Mozilla Web browser to utilize this API, allowing it to

protect secrets such as user passwords, SSL keys [31], [33],

and cookies, without noticeable degradation of runtime

performance.

2 TRANSIENT AUTHENTICATION

2.1 Principles

Transient Authentication is founded on the following four

design principles:

1. Tie Capabilities to Users. The mobile device should
only perform sensitive operations when the user is
present. Thus, all encryption keys must reside solely
on the user’s wearable token, which is in her
possession at all times and is therefore far less likely
to be stolen or misplaced. For performance, creden-
tials may be temporarily cached at the mobile device,
but must be discarded whenever the token is not
present.

2. Do No Harm. Users quickly disable inconvenient
security mechanisms [1], [2]. But, anecdotal evidence
shows that users are willing to infrequently reenter
passwords. Transient Authentication requires user
participation that is no more burdensome. Users will
also quickly disable our system if they notice poor
performance. To ensure adoption, the additional
overhead of key authentication, communication, and
data encryption must not be excessive.

3. Secure and Restore on People Time. When the user
departs, the device must secure itself before an
attacker would have the chance to physically extract
any information. This time window is on the order
of seconds, not milli or microseconds. Conversely,
when a user walks back to use the device, the token
will regain wireless contact while she is still meters
away. This gives the system several seconds to
restore the device’s state.

4. Ensure Explicit Consent. The device must not take
any sensitive action without the user’s consent.
Transient Authentication must ensure that both
1) the user’s device is indeed talking to her token
and 2) her token is not communicating with any
other devices without her knowledge. To do so, users
explicitly bind tokens to devices through an exchange
of public keys that establishes a pairwise trust
relationship. To limit the consequences of token loss,
users authenticate themselves to their token daily.

2.2 Trust and Threat Model

Our threat model focuses on defending against attacks that
require physical proximity or possession—for instance,
exploiting cached passwords or credentials present on the
device. Even with a cryptographic file system, an attacker
can freely examine the contents of the file system if the
system cached the master password since the user last
entered it. Physical access also permits console-based
attacks, which result in root access to the machine.

Our model considers attacks made possible by long-term
physical-possession, such as inspecting the memory of a
running system via hardware probing or operating system
interfaces. We are also concerned with attacks involving the
communication medium between the device and the
wireless token. An adversary might eavesdrop on this
channel and attempt to later impersonate the token. An
even more sophisticated attacker would record token-
device communications and subsequently steal the laptop
with the hope of finding keys to decrypt the recorded
traffic. It is possible to defeat these attacks by leveraging the
large body of existing work [16], [29].

The security of our design is predicated, however, on the
limited, deterministic range of the token’s radio. An
attacker could use repeaters to fool the token and device
into thinking they are still in proximity (a wormhole attack).
Timing information [6], [19] and use of directional antennae
[18] have been suggested as ways to determine token
distance from the device, but no techniques currently exist
that provably defeat wormhole attacks in real-world
situations.

There are several security threats that Transient Authen-
tication does not address. We do not handle trusted users
who maliciously leak sensitive data or network-based
exploits, such as buffer-overflow attacks or other network
security weaknesses. We also cannot deal with denial-of-
service attacks that jam the spectrum used for token-device
communication or forcible theft of the token and device by
an attacker.

2.3 Authentication Architecture

The link between the user’s mobile device and her wearable
token is the heart of our authentication architecture. Fig. 1
gives a high-level overview of this relationship. In addition
to vouching for the user’s presence, this link allows the
token to help the device with key management. Applica-
tions also use the token to encrypt and decrypt small
amounts of data directly.

2.3.1 Token System

The token runs an authentication server process and the
device runs an authentication client. These two processes
communicate via a short-range wireless link (e.g., Bluetooth),
as illustrated in Fig. 1. This communication is protected by a
session key established via the Station-to-Station protocol,
which provides perfect forward security [16].

The token exchanges nonces with the device once per
second to indicate that the user is still present; the nonces
prevent replay attacks [7]. When the authentication client
on the device does not receive an expected nonce, it declares
the user absent and secures the various memory spaces on
the device. When the user returns, the authentication client
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detects the heartbeat signal again, and restores the system
to its original state. Section 4 describes this process.

Since the security of our architecture requires that the
device and token lose contact when the user is far enough
away from her device that it is vulnerable, the radio on the
token must have a narrowly defined range. If this range
were too short, our security mechanisms would be invoked
far too often (e.g., when the user turned around in her desk
chair). Conversely, if the range is too long, a user could be
across the room but still in contact, leaving the device open
to attack.

The connection between the token and the device must
be broken once the user is more than a few meters away.
This imposes an upper-bound on how quickly the system
must secure and restore state. When the user departs, the
device has several seconds in which to secure data before an
attacker could be expected to seize control. Conversely,
when the user returns, contact will be reestablished when
she is a few meters away. It will take several seconds for her
to be at the device ready to resume work. If the system can
restore the device to its original state in that time, the entire
process will be seamless from the user’s perspective.

2.3.2 Key Management

Our authentication framework tells a mobile device when
its user departs so it may secure data via encryption. To
recover data when the user returns, the device must have
access to the appropriate decryption keys. However, these
keys cannot exist in the clear on the device while the user is
gone, or else an attacker could decrypt any data he wishes.
Likewise, the device cannot retrieve each possible key, else
recovery would take too long.

Therefore, the token secures encryption keys on the
mobile device’s behalf. The user creates a key-encrypting-
key (denoted by Kk) that resides solely on the token. All
other encryption keys are stored on the device encrypted
with Kk. The mobile device ships encrypted keys to the
token on demand for decryption.

Synchronously decrypting keys on the token before
every use would add the token-device communication
latency to every secure operation, degrading performance

unacceptably. Furthermore, constant communication be-
tween device and token is wasteful of the wireless link,
reducing battery lifetime. Therefore, the device caches
decrypted keys but discards them when the token departs.

2.3.3 Token Authentication and Binding

It may seem that Transient Authentication merely shifts the
authentication problem from mobile devices to the token.
We argue that wearable tokens have better physical security
than laptops or PDAs, precisely because they are worn on
one’s person. Unfortunately, a user may still lose their
token. We must handle this contingency since the user’s
token holds her key-encrypting-key, which can decrypt all
local encryption keys on her device.

The key-encrypting-key must at least be protected by a
password or PIN, if not by tamper-resistant hardware. But,
how often must the user enter the PIN/password? We
argue that requiring the user authenticate themselves to the
token once per day (by entering the PIN/password) is no
more intrusive to the user than forcing them to unlock their
office door every morning.

Thus, the user’s laptop is only useful to an attacker for a
limited time. Once the reauthentication period expires, the
token will refuse to process any requests. At this point, all
memory and storage spaces on the user’s mobile device are
encrypted with their various keys. Those keys are only on the
device in encrypted form (secured by Kk). The key-encrypt-
ing-key Kk is on the token, which the attacker possesses, but
is itself unreadable without the password or PIN.

But, how does a device know which token it is using, and
vice versa? Consider the scenario where an attacker has a
stolen laptop, but no token. He could identify another user
whose token can access the stolen laptop (the victim’s
coworker, for instance). The attacker could then sit nearby
and communicate with the coworker’s token in order to
decrypt the contents of the stolen laptop. This sort of
tailgating attack would happen without the legitimate user
ever knowing.

Requiring bindings between tokens and devices prevents
this sort of attack. Once a user authenticates to her token,
she also binds her token to any devices she wants to use. A
user may access several devices through her one token and
several tokens may be bound to one laptop. Fig. 2 illustrates
the authentication and binding process.

3 DESIGN OF OPERATING SYSTEM MECHANISMS

When the device loses contact with a user’s token, it must
secure the user’s data. This data appears in a multitude of
locations, such as disks and memories. With varying levels
of difficulty and reward, it is possible to extract information
from these spaces, gaining access to the user’s personal
data. Carefully controlling information that flows into these
spaces, encrypting data, or simply flushing and/or over-
writing memory locations thwarts the attacker.

3.1 Techniques for Securing State

There are many possible ways to secure data, each of which
is appropriate in certain circumstances. Transient Authen-
tication employs three such techniques.
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Fig. 1. Token-Device Communication Architecture. The wearable
token and mobile device communicate via a wireless link. An
authentication server runs on the token, polling the device once per
second. The authentication server also provides access to the key-
encrypting-key, Kk. The device’s authentication client listens for the
token’s poll. All encryption keys used by the mobile device are
themselves secured by the key-encrypting-key, but may be cached in
the clear for performance. The key cache is flushed when contact with
the token is lost.



Some types of data are inherently ephemeral. For
example, the contents of registers and the TLB are quickly
overwritten after context switches by the values used by the
new process. Thus, in certain situations, we rely on the
operating system to overwrite and later restore data for free.

Operating systems rely on cache hierarchies in order to
maintain performance when addressing large amounts of
data. For instance, the kernel uses memory as a cache of
disk blocks. Each piece of data need only be secured once. It
is often preferable to flush cached data to its backing
memory, which the system secures separately. The resulting
economy of mechanism simplifies the construction and
verification of the system.

Transient Authentication also secures some data in-
place. This provides complete transparency to applications,
but at the cost of cryptographic overhead to both encrypt
and later decrypt the data.

There are pros and cons to each of these techniques.
Overwriting would seem fastest, but is not an option when
data contents must be preserved. Flushing may in fact be
slower than encrypting it in-place if the backing store is
much slower (e.g., disks). The overhead of encryption is
unnecessary if the data can be safely overwritten. Using
encryption also necessitates use of cryptographic keys with
all their attendant management complexity and overhead.

3.2 Securing State

The first step in securing a device’s data is identifying the
different locations where information may reside. This is no
easy task, as a user’s data tends to permeate the entire
hardware/software architecture. While some of it is stored
ephemerally, much of it persists for long periods of time.

Consider the receipt of an e-mail on a laptop. A network
interface card receives the e-mail text and stores it
temporarily in a receive buffer. The NIC transfers the e-mail
to RAM using DMA and signals an interrupt. The CPU
handles the interrupt by trapping to the OS, which moves the
data through the TCP stack via several kernel buffers.
During this process, the CPU’s cache contains e-mail data,
as may several chipset components on the motherboard. The

e-mail is eventually passed up to the application layer, where
it is interpreted by a mail client, rendered by the X server,
and passed to the video card, which may do some additional
buffering for performance.

After each of these transfers, unencrypted pieces of the
e-mail may be left in memory buffers and caches. It is
crucial that all of this data be protected when the user is
away from the device. Delineating the abstraction bound-
aries between all of these data locations often is difficult.
The remainder of this section gives an overview of the
different memory and storage spaces one must consider
when securing the data on a mobile device.

3.2.1 Persistent Storage

Users rely on hard disks, flash memory, and other
persistent media to ensure the durability of their data. This
permanence also extends to any secrets that have found
their way onto disk. Merely deleting data is not enough
since well-known techniques exist for retrieving deleted
data from magnetic media [17]. Worse, there is nowhere to
flush it to since permanent storage is often the base of the
caching hierarchy.

In this case, encrypting data in-place is best. Device
access latency is on the order of ms, while cryptographic
operations typically take orders of magnitude less time.
Device access latencies will therefore mask the overhead
required to encrypt or decrypt on the fly during disk I/O.

3.2.2 Virtual Memory

A device’s virtual memory consists of several distinct
address spaces. Each address space contains memory
pages, some of which reside in main memory (in RAM),
some in the swap partition, and some memory mapped to
files in persistent storage. Securing the device’s virtual
memory means ensuring secrets are not exposed via any of
these three spaces.

Without explicit hardware support, encrypting the
contents of physical memory in-place is infeasible, requiring
a trap to the kernel on every access. One could flush physical
memory to disk when the token departs and then overwrite
the RAM. This would add many seconds to the securing
process since hundreds or thousands of megabytes would
need to be written to disk. Instead, the system encrypts
contents of RAM in-place when the token departs. This is
faster than writing to disk since access latencies to RAM are
orders of magnitude smaller than those to disk.

The system also secures memory pages backed by disk
files. Since our system secures the disk with a cryptographic
file system, securing file-backed pages is trivial. The only
unsecured data are the dirty pages and a simple page flush
to disk suffices. The key assumption is that dirty pages
constitute a small fraction of total physical memory pages
and, so, flushing their contents to disk will not significantly
increase the time to secure the mobile device.

The remaining unsecured pages reside in the swap
space. Transient Authentication cannot simply rely on file
system encryption to secure these pages because most
operating systems bypass the overhead of file systems and
perform swap I/O directly on a raw partition. Thus, the
system encrypts pages during swap-out and decrypts them
on demand as they are paged back in. As shown in our
evaluation, cryptographic overhead is masked by the disk
access time.
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Fig. 2. Token-Device Authentication and Binding. Users periodically
authenticate themselves to tokens through use of a PIN. Tokens bind to
devices by negotiating a session key via public-key encryption
techniques. Once a token is bound to a device, it performs key
decryption on its behalf.



3.2.3 CPU and Chipset Registers and Caches

Any operation that reads or writes main memory will leave
traces of that data in the registers and caches of the CPU
and chipset. It is difficult to detect what information is left
there or to access that state directly; however, these memory
locations are commonly erased on every context switch.
When the authentication state changes, the OS scheduler
implicitly flushes and restores registers and the TLB as part
of the context switch.

3.2.4 Peripherals

Many peripheral devices, such as network or video cards,
and USB devices use unsecured buffers for incoming and
outgoing data. As this internal state is not designed to be
modified externally, it may be difficult to access, precluding
us from overwriting or encrypting it in-place. Often, end-to-
end encryption is sufficient to ensure no secrets are ever
exposed in these buffers. For example, use of end-to-end
encryption keeps secrets out of the NIC’s buffers.

3.2.5 Displays

The display is one of the most vulnerable data space on a
mobile device as an attacker can view its contents with no
effort. Cleaning a video card’s buffers requires overwriting
the data, thus blanking the screen. When the user returns,
the display’s window manager “redraws” the screen. As the
data needed to perform the redraw comes from secured
areas of virtual memory, the only additional performance
penalty is rerendering the contents of the screen, a trivial
operation.

4 SECURING MACHINE STATE

This section describes how our token-device authentication
architecture is applied to various memory and storage
spaces in a mobile device. These spaces include the local file
system, virtual memory, registers and caches, peripherals,
and the display. Fig. 3 gives a high-level view of our
implementation.

4.1 Securing File Systems

Cryptographic file systems are not new and existing
systems [4], [5], [9], [34] illustrate the feasibility and value
of encrypting the user’s file system. What is lacking is a

synergy of authentication and encryption. The security of
all these systems is ultimately bounded by the frequency
with which the user enters a password. Once the password
has been successfully entered, the file system is unlocked
until the next authentication timeout. Some systems bound
this vulnerability by forcing periodic reauthentication, but
forcing the user to repeatedly produce a password on
demand leads to annoyance and eventual disabling of
security measures [1], [2], [14].

In response to these authentication problems, we de-
signed ZIAfs (Zero-interaction File System) [10], a crypto-
graphic file system. ZIA provides effective file encryption
by leveraging our Transient Authentication framework,
without adversely impacting performance or usability.

Apart from how ZIAfs handles file keys, its design is
similar to that of most cryptographic file systems. Each on-
disk object is encrypted by a symmetric key. Keys are stored
in the same directory as the files they secure, but are
themselves stored encrypted by the key-encrypting-key Kk.
For example, if a file was secured by a key Ke, then the
keyfile stored on disk with the file contains KkðKeÞ. When
ZIAfs needs to access the file, it ships the keyfile KkðKeÞ to
the token, which performs decryption and returns Ke to the
token. This precludes physical-possession attacks since the
file keys are not present anywhere on the device except in
the form encrypted by Kk.

The roundtrip key transfer from device to token and
back necessarily imposes significant latency. Requiring the
file system to synchronously contact the token on every file
access would result in unacceptable performance. This
constant use of the wireless link would also drain the
precious battery life of both the token and mobile device.
Instead, ZIAfs maintains a local cache of decrypted file keys
on the device. When the device loses contact with the token,
this cache is flushed and must be repopulated on demand
when the user returns. This improves performance while
still guaranteeing file keys are never exposed when the user
is absent.

The granularity of file keys also impacts performance
and usability. Hard drive storage capacities have been
increasing into the hundreds or thousands of gigabytes.
Assigning each file or chunk on disk its own symmetric key
leads to a massive key explosion. The larger the key
granularity, the greater opportunities for key caching and
reuse. But, as each key covers more files the consequences
of key exposure compound. In the extreme, tens or
hundreds of gigabytes of data would need to be rekeyed
every time a key was rotated or compromised.

In light of this trade-off, ZIAfs uses per-directory keys.
Based on the principle of locality-of-reference, this provides
opportunities for caching and reuse. The first-time cost to
acquire the file key is amortized across all subsequent
accesses to files in the same directory. Per-file keys would
have led to far fewer hits in the key cache.

We made one further refinement to this design to handle
file permissions in a fashion analogous to the UNIX {user,
group, world} model. Each directory contains a keyfile
containing two encrypted copies of the directory’s file key
Ke. These are KuðKeÞ and KgðKeÞ, corresponding to the
directory’s owner and group, respectively. World keys
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Fig. 3. Implementation. The authentication server on the token and the
authentication client and video blanking process are user-level applica-
tions. Kernel modules interface with the token (TA module), secure
processes RAM (procenc module), encrypt persistent data (ZIA
module), and secure swap space (swapenc module).



would be implemented similarly in a straightforward
fashion, but their implementation was deferred. This
modifies the traditional UNIX file access model in a similar
fashion as does AFS (the Andrew File System) in that access
control is maintained on a per-directory basis. Anecdotal
evidence shows files in the same directory are overwhel-
mingly all accessed by the same person or same group of
people supporting this decision.

4.2 Physical Memory

We must also secure main memory when the user is absent.
Unlike data on disk, data in main memory cannot be stored
encrypted. To do so would require the OS to interpose on
each access, adding cryptographic overhead and degrading
usability. One option would be to simply flush the contents
of memory to the encrypted disk and overwrite the memory
(much like hibernating a laptop). This would be secure, but
at the cost of disk I/O both to secure and restore the system.
Given common disk bandwidth and latency, swapping
several hundred megabytes of RAM out to disk would add
many seconds to the securing operation. This increases the
window of opportunity for any attacker. Conversely, the
user would likely have to wait for the machine to
“unhibernate” when she returns, violating our principles
of “do no harm” and “secure and restore on people time.”
Instead, Transient Authentication encrypts the contents of
memory in-place. When the system detects loss of contact
with the token, it freezes the execution of all running
processes and encrypts main memory in-place by one
global key, Kmem. Much like file encryption keys, the system
permanently stores this key encrypted by the key-encrypt-
ing-key Kk and it caches the key in the clear while the token
is present. The cached copy is then discarded [26], [27]
when the token departs.

When the user returns, the device will detect the return
of the token’s heartbeat. At this point, it needs to unencrypt
the main memory, so the frozen processes can resume. To
do so, it ships the encrypted key KkðKmemÞ to the token,
which uses the key-encrypting-key to return Kmem to the
device. After unencrypting RAM and restarting the frozen
processes, execution resumes normally.

It is not possible to actually freeze all the processes on the
mobile device when contact with the token is lost. A bare
minimum must keep running to allow the system to later
recognize the token’s return and recover. Namely, the
kernel and the authentication client must remain running
while the user is absent, which precludes encrypting their
physical memory. Note that the kernel’s free page pool and
dirty kernel buffers are cleared or flushed to disk at this
time. This subset of running processes must still take care to
secure any secrets resident in their memory pages since
their RAM will remain in the clear while the user is absent.

4.3 Swap Space

While the machine is running, it keeps the contents of main
memory in the clear. This preserves application perfor-
mance since it does not trigger faults on each memory
access. While most data on disk is secured by the ZIAfs
cryptographic file system, operating systems typically use a
raw disk partition for the swap file to maximize I/O
performance. In order to prevent unencrypted data from

finding its way onto the disk, there are two options—either
use an encrypted file to store swap pages or interpose on
swap I/O to perform whole-page encryption.

The first option is simpler to implement—we can reuse
ZIAfs. This would require the operating system to use a
regular file as the swap space, rather than a raw partition,
which would impose a noticeable performance penalty.
Instead, we added a kernel component that encrypts all
writes to the swap file or partition and decrypts on swap ins
before unlocking the memory page for access.

In the same way the existing TA implementation uses
one global key for securing the whole of main memory, the
kernel uses one global key for the entire swap area. This key
is not generated by the mobile device itself, but rather
fetched from the token upon system initialization. The key
is cached during normal operation for performance reasons.
When the user (and token) departs, the swap encryption
logic need only discard the cached encryption key.

Following the lead of related work [25], the kernel
performs whole-page encryption just before a page is
written to swap and decrypts the entire page just after it
has been paged back in. By locking the pages appropriately,
no encrypted data is ever accessed by a user process.

The kernel and the authentication client must keep
running while the token is absent. Since the device has
discarded the encryption key, swap page encryption/
decryption is impossible. Those critical processes still
running may have pages in the swap, however. There are
three options for handling this situation: 1) Always pin all
pages belonging to critical processes in memory, 2) block on
any swap requests generated while the token is absent, or
3) never encrypt the swap pages of these critical processes.

The third option is preferable for several reasons. It fits
with the design of Transient Authentication, and since it
never encrypts the physical memory pages of critical
processes, there is no reason to encrypt swap pages. It also
ensures correctness of the system. On a system with a small
amount of RAM, one of the critical processes may need to
access pages in the swap file while the token is absent.
Simply blocking on this request will cause deadlock
because the daemon that needs to be listening for the
token’s return is blocked waiting for a key that the token
provides. The first option (pinning all pages belonging to
critical processes in memory) would prevent any informa-
tion leakage to the swap file and allow continued execution
of critical tasks while the token was absent. This may
impose unreasonable constraints on the virtual memory
system, especially for systems with limited RAM (precisely
our target audience of small, mobile devices).

The kernel therefore tracks the subset of processes that
are never frozen and allows their data to pass in and out of
the swap file unencrypted. The process is illustrated in
Fig. 4. Based on the page’s owner process, its contents are
either encrypted before being written or allowed to pass
into the swapfile unmodified. The kernel also uses a flag in
the structure that tracks that state of all pages residing in
swap to indicate the encrypted status of each page.

Only critical processes execute while the token is absent.
The kernel can therefore service page faults without the
encryption key since the only running processes that may
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need to swap in will not require it. The kernel may try to
swap out a page which belongs to a frozen process. Since
this swap-out is done by the swapper (to make room) and
not because of any action of the process who owns the page,
we just reject this swap-out attempt. The system must
ensure the encryption keys are pinned in memory, so an
attacker cannot find them in the swapfile.

4.4 Video

Besides RAM, disk, and swap, data can creep into other
parts of the machine. Examples include video memory and
device buffers in disk controllers, network interfaces, and
other peripherals. We examined one example: video
memory. A determined attacker, thwarted in his attempts
to extract information from the disk, swap, and RAM, might
probe the video framebuffer, which may contain useful
data, like the contents of a spreadsheet window.

At a minimum, Transient Authentication should lock the
keyboard and mouse once the token has departed. This
precludes any console-based attacks and forces an adver-
sary to resort to hardware probing. The hard question was
how best to clear video memory of useful information.

One option would be to directly write to and clear all
memory on the video card. This provides a strong
guarantee that all useful data was erased. Unfortunately,
not all video cards are alike—one would have to handcraft a
solution for each model of card.

Display managers interact with diverse video cards by
writing to a generic framebuffer interface. This corresponds
to the video RAM of the card, mmap’ed into a region of
RAM. Clearing this region of RAM erases all video
information, apart from the video card’s buffers.

We chose to blank the framebuffer memory via the
display manager, rather than write a video card-specific
solution. To avoid modifying the display manager, we use a
small helper application that normally runs invisibly in the
background and blanks the display when the token departs,
overwriting the contents of the framebuffer. Finally, it locks
the keyboard and mouse interfaces. Once the token returns,
the kernel signals it to reverse the process. It does so simply
by restoring the keyboard and mouse events and hiding its
window. This “hide” forces the display server to repaint the
desktop underneath, restoring the original system state.

The display manager may perform extra buffering of its
own. In that case, blanking the display erases the data in the
framebuffer but not that cached buffer. Note, however, that
the display manager is just another application that will be
encrypted in-place when the token is absent. Thus, even if it
maintains a “double buffer,” it will be encrypted in RAM
along with everything else.

5 APPLICATION-AWARE MECHANISMS

Transparently securing all data and all processes on a
mobile device is an effective technique. There are situations,
however, where this blanket protection scheme is overkill.
Processes that rarely or never handle sensitive data must
unnecessarily be stopped. Processes that do handle sensi-
tive information may handle only a small amount and may
be able to identify and secure that data themselves. Open
network connections may not survive the hibernation
process and may need to be restarted each time the user
returns. And, even if a process is marked as “nonsensitive,”
if it communicates with any other process that will be
stopped, then both must be stopped.

In response, we developed an interface that allows
applications to protect their own sensitive information. To
the kernel, an application’s address space has no semantic
meaning. On the other hand, the application knows what
data is stored at which addresses. This allows varying
degrees of security in how the system responds to loss of
authentication. Those applications that deal with no
sensitive information continue running unmodified while
the user is absent. The system halts high-security applica-
tions or those that cannot be modified and encrypts their
address space entirely, as described above. Applications
that fall between these two extremes, those that can identify
the small amounts of sensitive information they possess,
should utilize this interface.

To use Transient Authentication services, applications
link with our library. Applications may need to be
restructured to depend on capabilities, such as keys, which
are stored on the token. Some applications already manage
authentication and access to sensitive resources, but most
revoke access either through explicit user logout or a
timeout expiration. Utilizing our system to provide authen-
tication information results in improved security for such
applications.

The token can also encrypt and decrypt small pieces of
data on behalf of applications. If the token holds an
application’s key, the application ships a small buffer to
the token, which encrypts the buffer and ships it back to the
device. This prevents the cleartext key from ever being
stored on the mobile device. Note that the channel between
the token and device has already been secured via a
pairwise key exchange.

Our design is shown in Fig. 5. Unmodified applications
are secured as described above (transparently frozen and
encrypted in their entirety) when loss of token contact is
detected. Modified applications link with a Transient
Authentication library and communicate with the kernel-
level Transient Authentication components via a user-space
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Fig. 4. Swapfile I/O in Transient Authentication. “Critical” processes remain running while the token is absent. (a) Swap-out. (b) Swap-in.



daemon (called the TA API server). This user-level daemon

allows modified applications to communicate with the

token to retrieve keys, send decryption requests, and

receive decrypted data results.

5.1 Idetifying Secret Data

The most difficult part of protecting an application is

deciding which of its data are secrets. There are no general

rules-of-thumb, as the situation is different depending on

the specifics of the application in question. Once an

application’s secret data has been identified, the application

designer secures this data using either of two mechanisms

provided by the Transient Authentication API.
The first method requires an “application key” from the

token. The token permanently stores this key and the

application caches it when in proximity to the token. When

the token departs, the TA API server notifies the applica-

tion. The application then encrypts its secrets with this key

and erases its local copy of the key. When the token later

returns, the application refetches the key from the token,

decrypts these secrets, and resumes normal execution.
The second method is to always store secret application

data encrypted while in RAM and have the token decrypt it.

When secret data needs to be accessed, the application ships

it to the token. The token holds the encryption key (which

exists nowhere on the mobile device) and then honors

encrypt or decrypt requests and returns the processed data.
The second method provides slightly better security since

the key never exists on the mobile device. However, this

puts device-token communication latency into the critical

path of application execution. The first method is preferable

for applications that access their secret data often.

5.2 API

To use a modified application, the user first installs an

application master key on her token. Master keys are 128-bit

AES keys [13], same as the keys used for transparent

protection of disk and virtual memory. An administrative

authority installs these keys, which must never be exposed

outside the token, much as administrators install initial

accounts today. As discussed below, these keys are

typically used as key-encrypting-keys but can occasionally

be used to process small amounts of data directly, on behalf
of the mobile device.

Once the master key is installed, the Transient Authenti-
cation API is available to the application. Fig. 6 provides an
overview of the API. When a modified application starts, it
must do two things. First, it registers with Transient
Authentication via the API call ta_application_reg().
This registration contains the application name and
username of the user, which allows Transient Authentica-
tion to verify a master key has been installed on the token
for this user/application pair. Second, the application must
install a handler. This is a callback function, invoked when
the token comes in and out of range.

The application can have the token directly encrypt and
decrypt small amounts of data on its behalf by calling
ta_encr_buf() and ta_decr_buf(). This makes sense
when the data items are small (e.g., passwords, credit card
numbers), making it feasible to ship encrypted copies to the
token. When this interface is used, the encryption key is the
master application key itself, which exists only on the token.
To improve performance, the application caches decrypted
copies of this data, but must discard them when notified of
token departure.

Some data, however, cannot efficiently be secured this
way. Passing large amounts of data back and forth over the
wireless link would be wasteful of battery power. Also, the
token is presumed to be a small, low-power device with
considerably less computational power than the mobile
device. Encrypting and decrypting large amounts of data
takes a prohibitive amount of time.

Instead, to protect larger data elements the application
first creates a submaster key. A submaster key covers a large
piece of secret application data (e.g., the text of an e-mail
message). Submaster keys are encrypted by the application
master key for permanent storage. The application stores
them unencrypted only while the token is present. To
ensure submaster keys are never generated without the
involvement of token, they are created as follows. First, the
application chooses a pseudorandom number. It then asks
the token to “decrypt” this number with the master key.
The result is the encrypted submaster key, which is
permanently stored on the mobile device. The unencrypted
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Fig. 5. Design with application-aware protection mechanisms.
Unmodified applications are secured directly by the ZIAfs and VM Crypt
(RAM + swap) modules. Applications modified to use our Transient
Authentication API are linked with a TA library and interface with the
kernel components via the TA API user-space server.

Fig. 6. Application-Aware API. Functions allow registration with the

user-space server, registration of authentication callback functions,

and requests for buffer decryption by the token, using a previously

registered key.



version is cached during normal operation. When the

application is informed of token departure, it erases this

unencrypted key. Upon return of the token, the application

ships the encrypted submaster key to the token, using the

API function for decryption requests, ta_decr_buf(),

thus retrieving the unencrypted key.

5.3 Example Application (Mozilla)

As a proof-of-concept, we modified the Mozilla Web

browser to secure its secrets via this API. The details of

modifications to Mozilla and other applications (such as

PGP and OpenSSH) can be found in our previous work [11].

Modifying a Web browser was the most challenging of the

three, given the large code-base and the many different

types of secrets a browser commonly holds.
For instance, Web browsers may cache user passwords to

Web forms, saving the user from having to type their

Webmail password each time they check their e-mail. Many

Web sites cache credentials by installing a cookie on the

user’s hard drive, allowing the user to reauthenticate

automatically in the future. A browser uses Secure Socket

Layer (SSL) encryption to establish a secure session with

Web servers and often caches Web pages and images locally

for performance. We focused on securing four main

categories of secrets within Mozilla: cached user passwords,

cookies, SSL session keys, and the browser cache.
Mozilla already features a module, the Secret Decoder

Ring (SDR), which can be used to encrypt or decrypt

arbitrary data. Its API requires an explicitly provided key.

The SDR was therefore the ideal location to add code

utilizing our API. The components of our modified Mozilla

are illustrated in Fig. 7. Mozilla’s SDR module secures all of

the user’s cookies, cached user passwords, and the browser

cache, and we added a new facility to protect SSL secrets.

We created two submaster keys: Ksdr and Kssl, both of

which are secured by the application master-key Kmoz.

Since cookies, passwords, and the contents of cache are all

used relatively infrequently, they are stored on a disk

encrypted by Ksdr and decrypted on demand.
SSL session keys, however, are used frequently. There-

fore, the modified Mozilla keeps them cached in the clear

during normal operation. When the token departs, the

session keys are encrypted in-place by Kssl. When the token

returns, Mozilla must send KmozðKsslÞ to the token, which

decrypts the submaster key and returns Kssl to the

application. Mozilla then decrypts all the SSL session keys
and resumes normal operation.

It is true that this porting effort was nontrivial; it took
some time to identify Mozilla’s sensitive state and protect it
properly. This process may not be feasible for many legacy
applications and they can rely on whole-process protection
if need be.

6 EVALUATION

We currently have a working prototype of all software
components comprising Transient Authentication. In fact,
one of the authors used the system to secure his personal
machine for several months with no ill effects. We have
ported the Transient Authentication software to protect
both x86-based devices (such as laptops) and iPAQ
handhelds with ARM processors. The token software has
been successfully ported and tested on both hardware
platforms as well.

To evaluate the system, we installed Transient Authenti-
cation on an IBM ThinkPad X24 notebook with a 1.113 GHz
Intel Pentium III CPU, 256 MB of system RAM and a
30.0 GB IDE disk drive with a 12 ms average seek time. The
laptop ran Linux kernel 2.4.20. The token was a Compaq
iPAQ 3870 handheld with a 206 MHz StrongARM proces-
sor, 64MB of SDRAM, and 32MB of Flash ROM, running
Familiar Linux. Granted, this prototype token is certainly
larger and somewhat more powerful than current wearable
devices, but rapid technological advances make it reason-
able to assume that wearable devices with similar capabil-
ities will soon be available.1 At the time this experiment was
performed, the Bluetooth interface was not reliable. To
come as close as possible to its performance properties, the
token and laptop communicated via 802.11b wireless LAN
cards in ad hoc mode at 1 Mbps.

6.1 File System

The most important metric in the file system evaluation was
the effect on user-visible performance. We compare the
performance of Linux’s ext2fs against two other file
systems: Cryptfs and ZIA. Cryptfs provides file and name
encryption, but uses a single, static key for the entire file
system. Cryptfs is drawn from the FiST distribution [35],
but uses Blowfish [28] rather than Rijndael [13], the
cryptosystem used in ZIA. To provide a fair comparison,
we replaced Blowfish with Rijndael in Cryptfs, improving
its performance. All keys used in the file system were
128 bits long.

We first need to understand the overhead imposed by
ZIA on typical system operation. Our benchmark is similar
to the Andrew Benchmark [20] in structure. The Andrew
Benchmark consists of copying a source tree, traversing the
tree and its contents, and compiling it. We use the
Apache 2.0.43 source tree to minimize the benefit of
caching as compared to the original benchmark. It is
28.2 MB in size; when compiled, the total tree occupies
59.7 MB. We preconfigure the source tree for each trial of
the benchmark since the configuration step does not
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1. The IBM WatchPad wristwatch, for example, currently features a
74 MHz processor, a Bluetooth radio, and runs Linux 2.4.

Fig. 7. Mozilla Modifications. Cookies, cached user passwords, and
the browser cache are secured by submaster key Ksdr, via Mozilla’s
Secret Decoder Ring (SDR) module. SSL session keys are cached in
memory for performance, secured by submaster key Kssl, and flushed
when the token departs. A global, master key, Kmoz, protects the two
submaster keys, Kssl and Ksdr.



involve appreciable I/O in the test file system. For this
benchmark, ZIA imposes less than a 7 percent penalty over
ext2fs. Its performance is statistically indistinguishable
from that of Cryptfs, which uses a single key for all
cryptographic operations. The results are summarized in
Fig. 8.

6.2 Physical Memory

When the user departs, Transient Authentication secures
the data found in physical memory via a three-step process:
1) freeze execution of all running processes (except the
kernel and the token authentication client), 2) encrypt in-
place the physical memory pages of the frozen processes,
and 3) overwrite freed pages and other shared kernel
buffers. When the user subsequently returns, the process
must be reversed, by decrypting RAM pages and restarting
all frozen processes.

To evaluate the overhead of these subtasks, a test
program allocated 200 MB of memory, and filled it with
pseudorandom data (from the Linux device /dev/ran-

dom). This occupied all of physical memory, and in fact
pushed some data into swap. Reading from /dev/random

forced the entire 200 MB to be allocated, rather than just
mapping to a single, zeroed, copy-on-write page.

We then repeatedly brought the token in and out of range
and recorded the time spent performing each of the above
tasks. Table 1 shows the results averaged over 10 runs. In
total, 56 processes were frozen and thawed on each run.

Unsurprisingly, encrypting and decrypting memory
dominates the total execution time. On average, 46,740 pages,
equaling 182.58 MB of data, were encrypted and decrypted
on each run of our test. It took the same amount of time to
secure when the user departs as to restore when she returns
(approximately 7.2 seconds). When the user returns, the
token will enter range of the mobile device when she is still
several meters away. It will take approximately this long for
her to reach the device, sit down, and be ready to work. Thus,
Transient Authentication secures a user’s data without any
user-visible disruption in the common case.

We also compared encrypting RAM in-place to merely
suspending to disk and overwriting RAM when the user
departs. If the suspended image were encrypted on disk,
this would provide comparable security to that of our
solution. We examined three scenarios—overhead just to

write the data to disk (no encryption), encryption before

flush-to-disk, and encryption in-place (our solution). Fig. 9

shows time to secure one page in milliseconds. Encrypting

RAM in-place was nearly twice as fast as suspending to

disk. This is true even if the data is not encrypted, since

RAM write throughput is orders of magnitude faster than

that of disk.

6.3 Swap Space

In evaluating our implementation of secured swap space,

we sought to answer the following questions:

. What is the user-visible effect on system performance?

. What is the source of the overhead imposed by this
implementation?

. Is the implementation correct?

We ran two experiments—one that highlights the over-

head seen by the user and another that further explains the

source of this overhead. In each case, we compare

performance of our implementation to that of an unmodi-

fied system and an alternate swap encryption system—

specifically, loopback device encryption.
The loopback device is commonly used to interpose on

or filter file I/O. Using the losetup utility, the user

initializes a mapping between a loop device and an actual

file or disk partition. Applications then read/write to/from

the loop device as if it were a file, and data passes through

the loop driver before being passed on to the mapped file or

partition. When file I/O data passes through the loop
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Fig. 8. File System: Andrew Benchmark results. ZIA’s performance is

less than 7 percent worse than ext2fs and is indistinguishable from that

of Cryptfs.

TABLE 1
Overhead of Securing Running Processes

Data was collected on 10 runs. On average, 46,740 pages (182.58 MB)
were secured and 1,144 pages (4.47 MB) overwritten. Fifty six
processes were frozen and then thawed.

Fig. 9. Physical Memory: Encryption in-place versus suspending to

disk. Overhead (in �s) required to secure a 4 KB page by one of three

methods: 1) flush to disk in encrypted form, 2) flush to disk unencrypted,

and 3) encrypt in-place.



device, the driver performs any operations on it that it
wishes. In our case, we initialize a mapping between a
loopback device and the swap partition and configure it to
perform 128-bit AES encryption (in CBC mode) on writes,
and equivalent decryption on reads.2

6.3.1 User-Visible Performance

To evaluate user-visible performance, we used a Linux
kernel source compile as the benchmark. Each run started
from a preconfigured, clean source tree, and an empty swap
partition. We compared the kernel compile time for an
unmodified Linux 2.4 kernel, our swap encryption im-
plementation, and a loopback encryption implementation.

The initial test runs resulted in little or no activity in the
swap partition. This was because the working set of data
manipulated by our chosen benchmark fit within the
256 MB of RAM on our test system. We therefore
reconfigured the kernel at boot to use only 128 MB of
RAM so that the compile operation would actually cause a
great deal of swapfile activity.

For each of the three test configurations, five trials were
run. The mean (with error) is shown in Fig. 10. The results
show the mean execution time for our implementation and
loopback encryption to be statistically indistinguishable.
Our implementation imposes only 7 percent time overhead,
as compared to the baseline case of no swap encryption.

6.3.2 Microbenchmark

To explain the source of this overhead, we examined the
total time to encrypt and decrypt one 4 KB page of memory.
We compared the same three systems used in the previous
experiment.

To collect data on our implementation, we instrumented
the kernel module to measure the execution time for swap-
outs and swap-ins. Specifically, we timed from the point
where our modifications started until execution passed back
into unmodified kernel code. In this way, we measured not
just the overhead to perform AES encryption/decryption on

a 4,096 byte page, but also the overhead of calling the
functions in our kernel module, and the overhead intro-
duced by these functions as well. The Linux get_cycles()
macro allowed for precise timing measurements. This macro
reduces (on the x86 architecture) to a read of the RDTSC
register that returns a 32-bit cycle count.

We also instrumented the loop driver in a similar
fashion, to count the number of cycles executed inside the
loopback device. For a user-space comparison, we copied
the encryption/decryption code used by the swap encryp-
tion module and used it in the same fashion, but as a user-
space application. A 4 KB buffer of memory was populated
with random data and then repeatedly encrypted and
decrypted in place.

The get_cycles() macro returned cycle counts at the
start and end of the “noteworthy” sections of code in all
three examples. The mean values are shown in Fig. 11. In all
cases, n was on the order of 10,000 runs.

The results show loopback encryption takes approxi-
mately 80 �s per swap-out or swap-in, while our imple-
mentation takes approximately 120 �s. The overhead of
loopback encryption is extremely low because it blindly
encrypts and decrypts everything with one global key. On
the other hand, Transient Authentication performs addi-
tional work to track which pages belong to which processes
since we do not encrypt the pages of critical processes.

This overhead will be masked by the disk I/O overhead
required to read or write the page to disk. For example, the
drive in our test system featured an Ultra EIDE (ATA/100)
interface, with a seek time of 12ms at 5,400 RPM, and
maximum external transfer rate of 100 Mbits/s. The time
to seek to the correct location on disk is itself several
orders of magnitude longer than the encryption overhead.
Even ignoring seek time, the theoretical lower bound to
transfer 4,096 bytes at 100 Mbits/s is approximately 39 �s,
which is by itself about one-third of our measured
encryption overhead. Furthermore, the previous experi-
ment shows the 50 percent performance premium over
loopback encryption for single-page encryption is “hidden
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Fig. 10. Swap: User-Visible Performance. Mean time, in seconds,
over five trials, to perform a Linux 2.4.24 kernel compile (make
bzImage). “Baseline” refers to no swap encryption whatsoever,
“TransAuth” to our implementation, and “loop-AES” to encryption via
the loopback device. Error bars represent the 95 percent confidence
bound on the population mean, as determined by the standard �pop ¼
�� 2�

ffiffi

n
p formula.

Fig. 11. Swap: Single Page Encryption Benchmark. Mean time, in
microseconds, to both encrypt and decrypt a 4 KB memory page, using
AES encryption in CBC mode, with 128-bit keys. Error bars represent
the 95 percent confidence bound on the population mean, as
determined by the standard �pop ¼ �� 2�

ffiffi

n
p formula.

2. For additional project details, please see http://loop-aes.sourceforge.
net/.



in the noise” of normal system operations since the
performance of Transient Authentication and loopback
encryption are statistically indistinguishable.

The results for user-space encryption are interesting in
that both kernel-located solutions performed better. The
reason is the the user-level process was often preempted to
allow the scheduler to run. Both our implementation and
the loopback implementation, on the other hand, execute
inside the kernel, and therefore would not be as vulnerable
to delays due to process scheduling.

6.3.3 Correctness

While it is easy to find evidence of failure (e.g., finding bits
of plaintext in swap), it is difficult or impossible to
empirically prove the correctness of a design. Nonetheless,
we devised an experiment to examine our effectiveness in
keeping unencrypted data out of the swap file. A helper
application allocated a specified amount of memory and
filled it entirely with a given string.

We used this tool to repeatedly allocate 512 MB of
memory (twice the actual physical memory), forcing most
of the existing RAM contents into swap. We repeatedly ran
two different runs: with swap encryption active and with
no encryption. In both cases, a file of size 64 MB was used as
the backing store (as opposed to the customary raw swap
partition), to facilitate easy post-test inspection. After each
run, we piped the swapfile through the UNIX strings

command, to generate a text file listing of all ASCII strings
found in the file. This strings list was then matched against
a dictionary of approximately 104,000 English words.3 Only
strings of four or more characters were matched to
eliminate spurious matches that arise randomly. We
collected data on 10 runs, and in none of the encrypted
runs did the post-examination ever reveal an English word
in the swapfile. For the unencrypted runs, on the other
hand, the scripts found thousands of words.

6.4 Video

We also measured the overhead needed to secure the video
and console of the device. The test repeatedly blanked the
screen and locked the keyboard and mouse, then reversed
the process. Table 2 shows the measured overhead. The
time to secure the video and console is on the order of tens
of microseconds, an interval that is imperceptible to a
human being. As we need only secure and restore the
system on human time, rather than on computer time, this
overhead is acceptable.

6.5 Application-Aware Mechanisms

Our changes to the Mozilla Web browser affected the way it

manages stored password data and cookies. Mozilla

already secures cached passwords and our modifications

only change how the encryption keys are managed, without

adding any additional encryption or decryption overhead.
Our evaluation of our application-aware API focused,

therefore, on the overhead introduced by encrypting and

decrypting cookies at each access. We loaded three popular

Web pages and measured the overhead of each cookie

encryption and decryption operation. We also measured the

total time required to load the page each run. The cookie

cached was flushed between each trial. Each page was

loaded 10 times.
The mean and standard deviation for both values, across

all ten runs, are shown in Table 3. “Cookie Overhead” is the

total time in seconds required to perform all cookie

encryption and decryption operations caused by one page

load. One can see the overhead imposed to secure site

cookies is dwarfed by the page load times and, therefore,

should be unnoticeable to users.
We also measured the time required to protect and

restore Mozilla when the user leaves and returns. To

measure this, we connected to our department’s secure Web

server, establishing a connection with an SSL key. For each

run, we moved the token out of range and measured the

time needed to secure the SSL key and the Mozilla memory

cache. We then reconnected the token and measured the

time required to restore the memory cache, SSL key, and the

Secret Decoder Ring. Since Mozilla simply flushes the SDR

secrets when the token departs, there is no data to collect.

The results are shown in Table 4.

7 RELATED WORK

Proximity-based hardware tokens are a commonly pro-

posed way to detect the presence of authorized users. For

instance, Landwehr [21] proposes disabling access to the

keyboard and mouse of a system when the user is away, via

a hardware mechanism. His solution is vulnerable to

physical-possession attacks, however, since running mem-

ory state is not encrypted while the user is absent.
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TABLE 2
Video: Time to Secure Screen, Keyboard, and Mouse

All times in microseconds. “Error” is the 95 percent confidence bound on
the population mean.

TABLE 3
Overhead to Secure Mozilla Using
the Application-Aware Framework

TABLE 4
Mozilla Protection and Recovery Overhead

3. This list (english.words) was maintained at Digital Equipment
Corporation (DEC) by Jorge Stolfi and is the product of lists compiled by
Andy Tanenbaum, Barry Brachman, Geoff Kuenning, Henk Smit, and Walt
Buehring.



Rather than use hardware tokens, the user could

authenticate via biometric information [15]. Use of bio-

metrics intrudes on users in two ways. First, the false

negative rate (rejecting a valid user) is often high [24]. For

face recognition, the rate ranges from 10 to 40 percent,

depending on the duration of system training time. Second,

biometric authentication systems necessarily constrain

users physically. For example, to use fingerprint identifica-

tion, the user must keep their finger placed on the reader

while using the system. This burden may encourage users

to find workarounds. An exception is iris scanning

technology. The false negative rate is low, and authentica-

tion is performed unobtrusively, allowing users to work

normally [23]. These systems require three cameras,

however, which is infeasible for use with small, mobile

computers.

Our system puts much stock in the fact that cleartext

keys are never written to anywhere in persistent store.

Thus, since they exist solely in RAM, these keys are

“forgotten” simply by overwriting their addresses. It is

difficult, however, to completely erase previously stored

values from either memory or disk [17]. Crescenzo et al.

[12], propose erasable memory, a system whereby a small

block of provably erasable memory can be leveraged to

simulate a much larger block (consisting of the machine’s

entire main memory). This scheme requires special hard-

ware to succeed, however, and our threat model is not

sufficiently paranoid as to require this. It would certainly

be possible to apply their techniques to Transient Authen-

tication if the situation required this additional guarantee

of key confidentiality.

8 CONCLUSIONS

The small, lightweight nature of mobile devices, combined

with their common usage environments (in public places,

amid many untrusted people) makes them an easy target

for theft. More important than loss of hardware may be the

cost of information exposure. Current system either require

burdensome reauthentication, or leave users’ data exposed

for an unacceptably large time window.

Transient Authentication relieves this tension between

security and usability through use of a wireless, wearable

hardware token. The token and device maintain constant

contact while the user is present. When the user departs, the

device detects this and takes steps to secure the user’s data.

Thus, the user reaps the benefits of constant reauthentication

without the burden of having to explicitly do the work herself.
We showed how this authentication framework can be

leveraged to secure the data present in the myriad memory

and storage locations of mobile devices. Our results showed

a device can be secured and restored in a matter of seconds,

maintaining usability for the user. The overhead imposed to

secure various data spaces was analyzed and found to be

minimal. Additionally, we presented a user-level library

and API that allows applications to be modified to use the

authentication framework directly, to protect application-

specific secrets.
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