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Foreword

This thesis describes the research work performed in the scope of the 4-year doctoral research

programme and presents its conclusions and contributions. The research activities, in the initial

period of the doctoral programme, were carried in the enterprise environment of Nokia Siemens

Networks Portugal, through a collaboration agreement between the company and University of

Beira Interior. In the latter period of the doctoral programme, the research activities were

performed in the Multimedia Signal Processing – Covilhã Group of Instituto de Telecomunicações,

at University of Beira Interior. The research work was supervised by Prof. Dr. Mário Freire, from

University of Beira Interior, and co-supervised by Prof. Dr. Paulo Monteiro, at Nokia Siemens

Networks Portugal. In the first period of the doctoral programme, this work was financially

supported in equal parts by the Portuguese Fundação para a Ciência e a Tecnologia and by Nokia

Siemens Networks Portugal, through the tripartite grant contract SFRH/BDE/15643/2006. In the

second period, this work was financially supported by the Portuguese Fundação para a Ciência

e a Tecnologia through the grant contract SFRH/BD/60654/2009. The research activities were

also partially funded by the project TRAMANET: Traffic and Trust Management in Peer-to-Peer

Networks with contracts PTDC/EIA/73072/2006 and FCOMP-01-0124-FEDER-007253.

The research work developed in enterprise environment was integrated in the activities of the

research group of Siemens Networks company, which was created after the separation of the

Information and Communications business division of the multinational company Siemens, in

the period that preceded the establishment of the join-venture between the Networks business

group of Nokia and the Information and Communications business division of Siemens. After the

creation of Nokia Siemens Networks Portugal, the research group was included in the Research,

Technology and Platforms business unit of the company. The group was constituted by resear-

chers with different backgrounds, such as electrotechnical engineering, physics, or computer

science, and developed research work in different topics within the field of telecommunication

networks.

Conducting the doctoral research in an enterprise environment brings advantages and also a

few disadvantages. Being part of a research group in a large multinational company encourages

a more practical and pragmatic research approach, applied to concrete problems and oriented

by the market needs and the client demands. This reality helps to reduce the gap that fre-

quently exists between academia and industry. Furthermore, this research context facilitates

the cooperation in activities and projects on different topics. Although, this sometimes made

more difficult to be focused on the doctoral work and its objectives, it also helped me to ac-

quire more flexibility and to become a more complete researcher. The cooperation in parallel

activities gave me the possibility of working in different topics and with other researchers,
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which resulted in one invention report related with the doctoral work and one international

patent and three invention reports on other topics. Additionally, the creation of Nokia Siemens

Networks Portugal motivated some progressive modifications in the structure and organization

of the company, which refocused the main research field of the research group on the next ge-

neration optical networks. During this period, I also cooperated as research and development

engineer in the Operations and Business Software business unit, integrating the Content Team

of the software for telecommunication network management NSN Service Quality Manager.

In the latter period of the doctoral programme, the research work was developed in the labo-

ratory of the Multimedia Signal Processing – Covilhã Group of Instituto de Telecomunicações, at

University of Beira Interior. The activities of the group are included in the field of network and

multimedia computing and address different topics such as networking, security, media proces-

sing, peer-to-peer networks, or cloud computing. Although the integration of a research group

in academia does not offer such a direct connection to the industry as the one made possible

in an enterprise environment, it gave me the possibility, in the latter period of the doctoral

programme, of developing further and materializing the ideas initiated during the work in the

enterprise environment. In a higher stage of maturity, those ideas were more easily published

in international journals and gave origin to additional research topics.

The research work developed during the doctoral programme and described in this thesis is

the consequence of the activities performed in enterprise and academia environments and,

therefore, benefited from the conjunction of the advantages of both research contexts. The

sense of applicability and pragmatism of the industry and the more research focused approach

of academia are reflected in this thesis and in the work it presents.
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Resumo

A capacidade de classificar tráfego com base na aplicação ou protocolo que o gerou é essen-

cial para uma gestão eficaz das redes informáticas. Apesar das aplicações de Internet terem

sido normalmente baseadas no paradigma cliente-servidor, gerando tráfego com características

bem definidas e facilmente previsíveis, o aparecimento da computação Peer-to-Peer (P2P) con-

duziu a um aumento da capacidade da rede nos pontos extremos, facilitando a partilha direta

de conteúdos entre utilizadores e alterando o comportamento do tráfego nas redes de fornece-

dores de serviços de Internet e de organizações. Nesse contexto, a capacidade de identificar

a natureza do tráfego tem-se tornado cada vez mais importante. Contudo, os métodos iniciais

de classificação de tráfego, baseados na associação de números de portos dos protocolos da

camada de transporte a aplicações ou protocolos específicos, perderam a sua eficácia assim

que diversas aplicações de Internet adotaram a utilização de números de portos aleatórios ou

portos utilizados por outras aplicações. A alternativa natural foi procurar, dentro dos paco-

tes, conjuntos de dados que pudessem ser utilizados como uma assinatura para o tráfego da

aplicação alvo. Apesar disso, esta abordagem, normalmente designada por inspeção profunda

de pacotes, é exigente do ponto de vista dos recursos computacionais, comprometendo a sua

utilização para análise de tráfego em tempo real em redes de alto débito. Para além desta

limitação, algumas aplicações começaram a cifrar o tráfego impedindo a inspeção profunda de

pacotes. De forma a ultrapassar estas limitações, os investigadores têm vindo a propor novas

abordagens para a classificação de tráfego, por vezes chamadas de classificação no escuro, que

são baseadas no comportamento do tráfego e não utilizam informação do payload dos pacotes.

Apesar de terem habitualmente uma precisão menor, na generalidade dos casos, estas aborda-

gens permitem obter um bom compromisso entre eficácia e custo computacional, sendo ainda

imunes à utilização de técnicas de cifragem. Contudo, as tentativas de desenvolver métodos

comportamentais mais eficazes têm conduzido a um aumento da sua complexidade.

Esta tese é focada na identificação de tráfego P2P, tendo como objetivo propor uma nova abor-

dagem para a classificação capaz de identificar em tempo real tráfego gerado por aplicações

P2P, sem recurso ao payload dos pacotes. O trabalho de investigação aqui descrito, após uma

revisão da literatura, iniciou-se com o estudo das características do tráfego na fonte de diver-

sas aplicações P2P e não P2P, motivado pelo facto de uma das diferenças entre os paradigmas

cliente-servidor e P2P ser o papel duplo desempenhado pelos nós dos sistemas P2P. Ao invés de

capturar dados experimentais num ponto de agregação da rede, o tráfego de cada nó individual,

correndo uma única aplicação ou um conjunto pré-definido de aplicações, foi capturado junto

à sua ligação à rede. Desta forma, foi possível assegurar que o tráfego analisado foi gerado

pelas aplicações estudadas e que as suas características não foram afetadas pela agregação de

diferentes tipos de tráfego. O estudo incluiu a análise estatística das seguintes propriedades
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do tráfego: o número de bytes por unidade de tempo, o tempo entre chegada de pacotes, e o

comprimento do pacote.

A observação do tráfego na fonte mostrou que os comprimentos dos pacotes apresentam carac-

terísticas distintas conforme sejam gerados por aplicações P2P ou não P2P. O tráfego de apli-

cações não P2P resulta, habitualmente, de conexões com um comportamento estável, sendo

normalmente constituído por pacotes pequenos e grandes utilizados para enviar pedidos e con-

firmações e para receber conteúdos, respetivamente. Nestes casos, tanto os pacotes pequenos

como os grandes apresentam habitualmente comprimentos muito homogéneos. O tráfego P2P,

pelo contrário, é extremamente heterogéneo em termos de comprimentos dos pacotes, uma vez

que resulta da agregação de conexões concorrentes para diversos pares. Para além disso, os

mecanismos distribuídos de procura e as respostas aos pedidos de outros pares geram um grande

número de pacotes pequenos com diversos comprimentos. Assim, foi desenvolvido um estudo

mais aprofundado focado exclusivamente nas características dos comprimentos dos pacotes e

incluindo um leque de aplicações alargado. A entropia foi utilizada para medir a heterogenei-

dade dos comprimentos dos pacotes e os resultados obtidos mostraram ser possível distinguir

os dois tipos de tráfego. De forma a melhorar os resultados, a entropia também foi calcu-

lada utilizando gamas de 200 bytes. Todos os comprimentos incluídos na mesma gama foram

usados no cálculo da entropia como tratando-se de comprimentos idênticos. Utilizando esta

abordagem, foi possível propor um novo classificador comportamental capaz de identificar nós

que estejam a correr aplicações P2P, sem que seja necessário utilizar informações do payload

dos pacotes. De forma a tornar o método aplicável em análises em tempo real, a entropia é

calculada recorrendo a uma janela deslizante com um tamanho constante de N pacotes.

Apesar do método de classificação proposto ter a capacidade de identificar nós correndo apli-

cações P2P através da análise da heterogeneidade dos comprimentos dos pacotes do tráfego

agregado de cada nó, não consegue ainda assim classificar fluxos individuais como tendo sido

gerados por aplicações P2P ou não P2P. Na verdade, a heterogeneidade dos comprimentos dos

pacotes observada no tráfego de cada nó individual que esteja a correr aplicações P2P para par-

tilha de ficheiros ou para media streaming resulta sobretudo da agregação de várias conexões

com propriedades distintas, utilizadas para partilhar conteúdos com outros pares. Desta forma,

a heterogeneidade em fluxos individuais é menor, mesmo no tráfego P2P. Contudo, no caso do

tráfego de aplicações P2P para Voice over Internet Protocol (VoIP), a heterogeneidade dos com-

primentos dos pacotes resulta da utilização de codecs de voz com bit rate variável, sendo a

heterogeneidade, por essa razão, observável nos fluxos individuais utilizados para transportar

os dados referentes a sessões VoIP.

Dessa forma, foi recolhido tráfego experimental gerado por aplicações P2P para VoIP utilizando

diferentes codecs de voz com bit rate variável e constante e utilizado para estudar os com-

primentos dos pacotes gerados por sessões VoIP. Os resultados da análise mostraram que os
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comprimentos dos pacotes são dependentes do codec de voz utilizado na sessão. Assim, a he-

terogeneidade dos comprimentos dos pacotes de cada sessão foi medida utilizando a entropia,

calculada com recurso a uma janela deslizante com um tamanho constante de 500 pacotes.

Para cada codec de voz considerado no estudo, foram compilados os intervalos de comprimen-

tos dos pacotes e entropia observados durante a análise de tráfego, tendo sido proposto um

classificador, baseado nesses intervalos, capaz de identificar tráfego VoIP recorrendo a uma

única propriedade do tráfego. O classificador faz uso de um conjunto de assinaturas compor-

tamentais associadas a cada codec de voz, constituídas por um intervalo de comprimentos de

pacotes e um intervalo da entropia dos comprimentos dos pacotes. Para além de reconhecer

tráfego VoIP no escuro, o classificador consegue ainda identificar o codec de voz utilizado na

respetiva sessão VoIP.

Após a proposta do classificador de tráfego P2P VoIP, o trabalho de investigação focou-se no

tráfego gerado por aplicações P2P para partilha de ficheiros ou para media streaming. Ao

contrário do VoIP, o tráfego gerado por um único nó de rede a correr uma aplicação deste tipo

resulta de várias conexões paralelas para diversos pares. Por essa razão, nesta tese, o tráfego

P2P para partilha de ficheiros ou para media streaming é designado por tráfego P2P um para

vários. A entropia dos comprimentos dos pacotes de fluxos individuais destas aplicações não é

suficientemente diferençável da entropia obtida para fluxos individuais de aplicações não P2P.

Assim, foram estudadas separadamente diversas dimensões do tráfego, incluindo pacotes de

entrada, de saída, e de saída e entrada em conjunto, e também pacotes cujo comprimento é

menor ou igual a 100 bytes, maior que 100 bytes e menor ou igual a 900 bytes, ou maior que 900

bytes. A média da entropia dos comprimentos dos pacotes em cada uma destas dimensões foi

calculada para cada fluxo das aplicações analisadas, utilizando uma janela deslizante com um

tamanho constante de 100 pacotes. Para além disso, foi ainda calculada a média da entropia dos

tempos entre chegada de pacotes e dos pares endereço/porto remotos com os quais cada par

endereço/porto local comunica. Com base nos resultados obtidos, foi proposto um classificador

de tráfego que não recorre ao payload dos pacotes. Durante a avaliação do desempenho, o

classificador demonstrou ser capaz de identificar tráfego P2P com uma precisão de 95%.

Palavras-chave

Classificador Comportamental, Classificação de Tráfego, Classificação no Escuro, Codecs de Voz,

Comportamento do Tráfego de Redes, Comprimentos de Pacotes, Entropia, Inspeção de Tráfego,

Media Streaming, Monitorização e Análise de Tráfego, Partilha de Ficheiros, Peer-to-Peer (P2P),
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Tráfego Multimédia, Voice over Internet Protocol (VoIP).
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Resumo Alargado

Introdução

Este capítulo resume, de forma alargada e em Língua Portuguesa, o trabalho de investigação

descrito na tese de doutoramento intitulada “Classification of Peer-to-Peer Traffic by Exploring

the Heterogeneity of Traffic Features Through Entropy”. A parte inicial deste capítulo des-

creve o enquadramento da tese, define o problema abordado e os objetivos do doutoramento,

apresenta o argumento da tese, e descreve as suas principais contribuições. De seguida, é

abordado o tópico de investigação sobre a classificação de tráfego em redes informáticas e são

apresentados com maior detalhe os trabalhos de investigação e as principais contribuições da

tese. O capítulo termina com a discussão breve das principais conclusões e a apresentação de

algumas linhas de investigação futura.

Enquadramento da Tese

A classificação de tráfego tem-se tornado num recurso importante na gestão das redes infor-

máticas. A capacidade de identificar a aplicação ou o protocolo que gera o tráfego é essencial

para grande parte das tarefas relacionadas com a administração de redes informáticas, tais

como a gestão eficaz do tráfego, a definição de políticas de qualidade de serviço e de medidas

de segurança, ou a correta configuração de redes informáticas [1]. Os métodos iniciais para

classificação de tráfego eram baseados na associação de números de portos dos protocolos da

camada de transporte a protocolos de aplicação específicos, como por exemplo, os portos 80 e

21 habitualmente usados, respetivamente, pelos protocolos Hypertext Transfer Portocol (HTTP)

e File Transfer Protocol (FTP). Estes métodos são facilmente implementados em sistemas de

monitorização de tráfego e a sua eficácia era grande quando o tráfego de rede mantinha um

comportamento previsível e as aplicações utilizavam portos bem definidos.

Até ao final do século passado, as aplicações de Internet baseavam-se sobretudo no paradigma

cliente-servidor, tendo, cada nó de rede, bem definida a função única de cliente ou de servi-

dor. Neste contexto, os clientes faziam pedidos aos servidores e estes forneciam-lhes serviços

ou conteúdos. Desta forma, a carga de tráfego nas ligações de Internet era geralmente assi-

métrica, apresentando um fluxo de tráfego superior do servidor para o cliente. Contudo, o

aparecimento do paradigma de computação Peer-to-Peer (P2P) aumentou capacidade da rede

nos pontos extremos, oferecendo aos nós a possibilidade de partilharem conteúdos e serviços

diretamente entre eles, desempenhando, assim, um papel duplo de cliente e servidor. Como
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consequência, o tráfego nos pontos extremos aumentou substancialmente ao mesmo tempo

que a assimetria da carga de tráfego foi reduzida. A largura de banda usada na distribuição de

conteúdos e normalmente suportada por servidores dedicados, passou a ser partilhada por for-

necedores de serviços de Internet e redes locais de organizações [2]. Além disso, a partilha de

conteúdos diretamente entre utilizadores, facilitada pelo paradigma P2P, proporcionou também

o aumento da propagação de vírus, cavalos de tróia, e outras ameaças [3]. Também a privaci-

dade, o anonimato, e a confidencialidade são aspetos sensíveis que podem ser ameaçados pela

natureza distribuída das aplicações P2P [4].

Assim, os fornecedores de serviços de Internet e os administradores de redes de organizações

passaram a limitar, ou mesmo bloquear, o tráfego gerado por aplicações P2P, por forma a evi-

tarem ou a controlarem os efeitos destas aplicações nas suas redes. De maneira a evitarem a

identificação do seu tráfego, as aplicações P2P começaram a usar números de portos aleatórios.

Mais tarde, quando os mecanismos de classificação de tráfego passaram a recorrer à inspeção

profunda de pacotes para melhorarem a sua precisão [5], várias aplicações P2P começaram a

cifrar o payload dos seus pacotes, inviabilizando assim a sua inspeção. Para além disso, os mé-

todos de classificação de tráfego baseados na inspeção profunda dos pacotes são habitualmente

considerados mais exigentes em termos computacionais. Tipicamente, estes métodos procuram

a identificação, no conteúdo de cada pacote, de assinaturas de bytes associadas a cada aplica-

ção alvo. Uma vez que a lista de assinaturas é por vezes longa, a inspeção profunda de pacotes

em tempo real em redes de alto débito poderá ser difícil. A inspeção do payload dos pacotes

do tráfego poderá ainda levantar questões legais de violação de privacidade [6].

Em alternativa à classificação de tráfego baseada nos números de portos e na inspeção pro-

funda de pacotes, diversos estudos têm vindo a propor novos métodos que recorrem à análise

das características comportamentais do tráfego, sendo por vezes chamados de métodos de clas-

sificação no escuro [7]. A maioria dos métodos comportamentais baseia-se na análise estatística

de características do tráfego ou na utilização de heurísticas que possam modelar o comporta-

mento de aplicações ou protocolos [8]. Uma vez que não recorrem à identificação, no payload

dos pacotes, de assinaturas específicas de cada aplicação, a eficácia destes métodos é geral-

mente menor quando comparada com a eficácia dos métodos baseados na inspeção profunda de

pacotes, sendo, no entanto, imune à cifragem de pacotes. Apesar de, normalmente, a classi-

ficação no escuro ser computacionalmente menos exigente, a tentativa de melhorar a eficácia

dos métodos baseados no comportamento do tráfego tem vindo a aumentar a complexidade das

soluções propostas em diversos estudos. Cascarano et al. [9] compararam o custo computacio-

nal de um classificador comportamental baseado em Support Vector Machines (SVMs) e de um

classificador baseado na inspeção profunda de pacotes, concluindo que ambos os classificado-

res têm custos computacionais semelhantes. Para além das diferenças na eficácia, o facto de

os métodos comportamentais não se basearem em assinaturas específicas para cada aplicação,
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mas sim nas propriedades genéricas de cada classe de tráfego, permite-lhes classificar tráfego

da classe alvo gerado por aplicações ou protocolos emergentes ou desconhecidos.

O âmbito desta tese está limitado às áreas da monitorização e análise de tráfego e das redes

P2P. O trabalho de investigação aqui descrito foca-se nos desafios para a gestão de tráfego

levantados pelo tráfego de aplicações P2P e nas diferentes abordagens para classificação de

tráfego. O desenvolvimento de métodos de classificação que não sejam afetados pela cifragem

do tráfego e que sejam capazes de processar o tráfego em tempo real é motivado pelas limita-

ções das abordagens baseadas na inspeção profunda de pacotes e pela busca por métodos de

classificação que não façam uso do payload dos pacotes. Os métodos de classificação propostos

nesta tese são baseados na análise da heterogeneidade de características do tráfego, sobretudo

do comprimento dos pacotes.

Descrição do Problema e Objetivos da Investigação

O problema abordado nesta tese de doutoramento é o da classificação de tráfego em tempo

real, sem recurso à informação contida no payload dos pacotes. Motivados pelas limitações dos

métodos baseados nos números de portos [10] ou na inspeção profunda de pacotes [11], diversos

estudos têm proposto novos métodos de classificação baseados no comportamento do tráfego.

Contudo a generalidade desses métodos apresenta também diversas limitações, normalmente

relacionadas com a incapacidade de serem aplicados na monitorização em tempo real [12], com

o facto de serem focados num número reduzido de aplicações [13] ou de exigirem uma fase de

aprendizagem [14], ou com a utilização de algoritmos complexos e a análise de um número

elevado de características do tráfego [15].

Neste contexto, o objetivo principal desta tese consiste na proposta de um novo método de clas-

sificação de tráfego capaz de classificar tráfego gerado por aplicações P2P, sem estar limitado

a aplicações ou protocolos específicos. O método proposto deverá ser capaz de classificar o

tráfego sem recurso ao payload dos pacotes, de forma a que possa ser utilizado para classificar

tráfego cifrado. O classificador deverá ainda ser capaz de classificar o tráfego em tempo real,

sendo capaz de produzir resultados durante a duração dos fluxos. Para além disso, deverá ser

utilizado um número de características do tráfego reduzido, sendo evitados métodos comple-

xos cujas exigências computacionais cresçam exponencialmente com a quantidade de tráfego

analisada.

O trabalho de investigação necessário para cumprir o objetivo da tese foi estruturado nos se-

guintes objetivos intermédios:

1. De forma a conhecer os métodos e abordagens existentes, deverá ser feita uma revisão
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do estado da arte no tópico da classificação de tráfego, sendo analisadas as vantagens e

limitações de cada abordagem. Deverão ainda ser estudados os desafios criados pelas apli-

cações P2P na gestão de tráfego e as maiores dificuldades que os métodos de classificação

enfrentam na identificação deste tipo de tráfego.

2. Como base para a identificação de propriedades comportamentais que pudessem ser uti-

lizadas na classificação de tráfego, é objetivo desta tese estudar o tráfego de diferentes

aplicações P2P e não P2P capturado diretamente na fonte, imediatamente após o nó que

o gerou. Desta forma, é possível garantir que as propriedades observadas no tráfego são

consequência da respetiva aplicação e não da agregação do tráfego de várias fontes.

3. A partir do estudo do objetivo anterior, pretende-se identificar propriedades do tráfego

que permitam propor um método comportamental de classificação de tráfego capaz de

distinguir o tráfego de nós de rede que estejam a correr aplicações P2P, sem recurso ao

payload dos pacotes.

4. O tráfego de um nó de rede pode resultar da agregação do tráfego de diversas aplicações

que correm no nó, sendo também, por essa razão, objetivo desta tese classificar fluxos

individuais de tráfego P2P. Uma vez que, ao contrário do que acontece com as aplicações

P2P para media streaming ou para partilha de ficheiros, cada aplicação P2P para Voice

over Internet Protocol (VoIP) gera apenas um fluxo de tráfego, o método proposto para

classificação de fluxos deverá considerar ambos os casos.

Argumento da Tese

Esta tese propõe uma nova abordagem para a classificação de tráfego P2P. O argumento apre-

sentado nesta tese é o seguinte:

A natureza distribuída do paradigma P2P influencia propriedades do tráfego, como os compri-

mentos dos pacotes, aumentando a sua heterogeneidade. O nível de heterogeneidade dessas

propriedades pode ser medido usando a entropia e aplicado na caracterização do tráfego P2P.

A análise da entropia dessas propriedades do tráfego pode ser utilizada na classificação em

tempo real de tráfego P2P, sem recurso ao payload dos pacotes.

De forma a sustentar este argumento, foi utilizada a seguinte abordagem.

São estudados o problema e a área de investigação e analisadas as vantagens e limitações das

diferentes abordagens para classificação de tráfego.

As propriedades do tráfego de aplicações P2P e não P2P, capturado na fonte, são analisadas,

com especial atenção para o número de bytes por unidade de tempo, o tempo entre chegada de
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pacotes, e o comprimento dos pacotes. Este estudo permite identificar características distintas

nos dois tipos de tráfego, para serem utilizadas na classificação de tráfego.

São recolhidas amostras de tráfego mais longas e mais variadas e a entropia é usada para medir

a heterogeneidade identificada nos comprimentos dos pacotes. De forma a calcular a entropia

em tempo real, é utilizada uma janela deslizante contendo um número constante de pacotes.

O cálculo da entropia com recurso à janela deslizante é utilizada em todos os classificadores

propostos nesta tese.

De forma a mostrar a viabilidade da utilização da heterogeneidade dos comprimentos dos paco-

tes, medida através da entropia, para distinguir tráfego P2P e não P2P, é proposto um classifi-

cador para classificar o tráfego de cada nó de rede como contendo ou não tráfego gerado por

aplicações P2P. O classificador proposto usa quatro regras baseadas na entropia dos comprimen-

tos dos pacotes sob três perspetivas distintas.

Após a apresentação deste classificador, é abordada a classificação individual dos fluxos. Pri-

meiro, são estudados os comprimentos dos pacotes de amostras de tráfego VoIP gerado com

diversos codecs de voz e aplicações e é analisada a sua entropia. Os valores de entropia obser-

vados são usados para criar assinaturas comportamentais de cada codec, aplicadas num novo

classificador para tráfego VoIP. Depois, é analisada a entropia dos comprimentos dos pacotes

segundo diferentes perspetivas baseadas em intervalos de comprimentos, juntamente com a

entropia dos tempos entre chegada de pacotes e dos pares endereço/porto remotos. Os resulta-

dos da média da entropia desde a primeira iteração da janela, para cada perspectiva analisada,

são usados na definição de regras de um novo classificador para a classificação individual de

fluxos gerados por aplicações P2P.

Principais Contribuições

A primeira contribuição desta tese é a análise das abordagens e métodos existentes para clas-

sificação de tráfego e das suas vantagens e limitações, assim como a revisão abrangente da

literatura no tópico da classificação de tráfego P2P. Este estudo está descrito com detalhe

no capítulo 2, que consiste num artigo aceite para publicação na revista ACM Computing Sur-

veys [16].

A segunda contribuição desta tese é o estudo das características do tráfego capturado na fonte

e gerado por diversas aplicações multimédia P2P e não P2P, tendo sido analisadas propriedades

como o número de bytes por unidade de tempo, o tempo entre chegada de pacotes, ou o

comprimento do pacote. A análise do tráfego na fonte permitiu identificar propriedades no

tráfego que resultassem da aplicação e não da agregação do tráfego de diversas fontes. O
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estudo desenvolvido está descrito no capítulo 3, que consiste num artigo publicado na revista

ACM Transactions on Multimedia Computing Communications and Applications [17].

A terceira contribuição desta tese é a observação e o estudo da heterogeneidade dos compri-

mentos dos pacotes no tráfego gerado por aplicações P2P e não P2P, a apresentação de um

método aplicável em tempo real que permita quantificar essa heterogeneidade utilizando a

entropia, e a proposta de um novo classificador baseado nos nós de rede. O método proposto

recorre a uma janela deslizante com um tamanho fixo de N pacotes, permitindo assim que o

cálculo da entropia seja efetuado imediatamente a partir do N-ésimo pacote analisado. A ver-

são inicial deste estudo foi publicada nas atas duma conferência internacional [18], tendo as

principais conclusões sido também descritas num capítulo de um livro [19]. A análise de tráfego

foi melhorada de forma a incluir um conjunto alargado de aplicações e um novo classificador

capaz de classificar o tráfego de nós de rede que corram aplicações P2P foi apresentado. O mé-

todo de classificação proposto não utiliza informação do payload dos pacotes, sendo baseado

na entropia dos seus comprimentos. De forma a poder operar em tempo real, o classificador usa

o mecanismo de janela deslizante descrito anteriormente. O estudo da heterogeneidade dos

comprimentos dos pacotes e o classificador proposto estão descritos com detalhe no capítulo 4,

que consiste num artigo aceite para publicação na revista The Computer Journal [20].

A quarta contribuição desta tese é o estudo dos comprimentos dos pacotes do tráfego gerado

por sessões VoIP utilizando diferentes aplicações P2P e codecs de voz e a apresentação de um

classificador de tráfego VoIP capaz de identificar o codec de voz utilizado em casa sessão. A

análise de tráfego experimental de cada codec e aplicação permitiu identificar intervalos de

comprimentos dos pacotes e correspondente entropia. Estes intervalos foram depois utilizados

para formar diversas assinaturas comportamentais que integraram um classificador de tráfego

apresentado, capaz de classificar tráfego de sessões VoIP e de identificar o codec de voz utili-

zado na sessão. O estudo e o classificador são descritos no capítulo 5, que consiste na versão

revista de um artigo submetido para publicação numa revista internacional [21].

A quinta e última contribuição desta tese é a proposta de um classificador de tráfego capaz de

identificar os fluxos individuais do tráfego gerado por aplicações P2P um para vários. O clas-

sificador é baseado, sobretudo, na entropia dos comprimentos dos pacotes, fazendo também

uso da análise da entropia dos tempos entre chegada de pacotes e dos pares endereço/porto

remotos com que cada par endereço/porto local comunica. O cálculo da entropia foi feito re-

correndo a uma janela deslizante, permitindo assim a sua utilização em tempo real. Em cada

iteração da janela, foi calculada a média da entropia desde a primeira iteração. Os resultados

da média da entropia obtidos na análise de tráfego foram utilizados na definição de um conjunto

de regras utilizado pelo classificador para identificar fluxos P2P. Este trabalho é descrito com

maior detalhe no capítulo 6, que consiste num artigo submetido para publicação numa revista

internacional [22].
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Classificação de Tráfego em Redes Informáticas

O trabalho de investigação apresentado nesta tese inclui o estudo das abordagens existentes

para classificação de tráfego, dos seus pontos fortes e limitações, e dos contextos em que a

utilização de cada uma delas oferecerá maiores vantagens. Esse estudo detalhado está descrito

no capítulo 2, juntamente com uma introdução a diversos conceitos base na monitorização de

tráfego, como são a captura correta de tráfego, os diferentes níveis de observação dos dados

recolhidos na rede, ou a redução do tráfego recolhido por via da análise de amostras. Após a

introdução à área de estudo, o capítulo apresenta uma revisão abrangente da literatura sobre

o tópico da classificação de tráfego, com especial incidência nas publicações que se focam na

classificação do tráfego gerado por aplicações P2P.

O método inicial para classificação de tráfego consistia na associação de números de portos

dos protocolos da camada de transporte a aplicações ou protocolos de aplicação específicos,

como por exemplo, os portos 80 ou 21 associados com os protocolos HTTP ou FTP. Apesar

da classificação do tráfego baseada nos números dos portos ser facilmente implementada em

sistemas de monitorização de tráfego, a sua eficácia ficou bastante reduzida quando um grande

número de aplicações, especialmente as que pretendem disfarçar o seu tráfego, passaram a

utilizar números de portos aleatórios. Os estudos publicados onde eram utilizados os números de

portos para a classificação de tráfego tinham como objetivo, essencialmente, a análise da carga

de tráfego P2P nas redes de computadores [10, 23]. A maioria destes trabalhos foi publicada

numa altura em que a utilização de números de portos aleatórios por parte das aplicações não

era, ainda, comum. A tabela II do capítulo 2 apresenta os portos que eram, habitualmente,

utilizados por algumas aplicações P2P.

A classificação de tráfego baseada na inspeção profunda de pacotes consiste, normalmente, na

utilização de uma lista de assinaturas formadas por strings de dados específicas habitualmente

encontradas no payload dos pacotes de determinadas aplicações ou protocolos [5, 24]. Em

cada pacote processado, o classificador verifica se o conteúdo do pacote corresponde a uma

das regras. No caso dessa correspondência se verificar, o pacote é classificado como tendo sido

gerado pela aplicação associada à regra. Este processo é, habitualmente, exigente do ponto

de vista dos recursos computacionais. Uma vez que estes métodos se baseiam no payload dos

pacotes, a sua utilização fica limitada nos casos em que o tráfego é cifrado. Com o objetivo de

identificarem tráfego cifrado, alguns investigadores exploraram, também, a aleatoriedade dos

bytes no payload dos pacotes introduzida pela cifragem [13, 25].

Com o objetivo de evitarem as limitações dos métodos baseados na inspeção profunda de paco-

tes, vários estudos têm vindo a propor novos classificadores baseados no comportamento do trá-

fego. Este tipo de abordagem, por vezes chamada de classificação de tráfego no escuro [7, 26],
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baseia-se na utilização de características genéricas do tráfego e no recurso a diferentes méto-

dos para as processar: heurísticas [27], relações entre pares [7], assinaturas estatísticas [28],

algoritmos de aprendizagem automática [29], ou a identificação de serviços [30]. A tabela V

do capítulo 2 resume os artigos publicados que propõem novos métodos comportamentais para

classificação de tráfego, assim como os resultados da avaliação do desempenho efetuada pelos

seus autores.

Alguns autores propuseram, também, métodos ativos que simulam o comportamento normal da

aplicação alvo da classificação [31], tomando a iniciativa de estabelecer ligações com outros

pares que corram a mesma aplicação, e identificando assim o tráfego alvo. A combinação de

diferentes abordagens foi também proposta por alguns estudos na literatura [13].

Análise do Tráfego na Fonte

Uma das fases iniciais do trabalho de investigação descrito nesta tese consistiu no estudo das

características do tráfego de aplicações P2P e não P2P. Os resultados desse estudo, descrito

no capítulo 3, permitiram identificar diferenças nas propriedades do tráfego dos dois tipos de

aplicação que seriam depois exploradas de forma a construir classificadores de tráfego P2P. Em

vez de usar tráfego capturado num ponto de agregação, o trabalho desenvolvido baseou-se na

análise do tráfego capturado na sua fonte, junto ao ponto onde foi gerado. Desta forma, é

possível garantir que as propriedades observadas resultam da aplicação sob estudo e não da

agregação de diferentes fontes de tráfego.

O trabalho iniciou-se com um estudo breve do trabalho desenvolvido por outros autores na

área da simulação e modelação de tráfego de rede. Algumas das propriedades do tráfego

de aplicações da Internet em pontos de agregação da rede, descritas em alguns trabalhos da

literatura, são apresentadas na subsecção 2.1 do capítulo 3. A partir dessa descrição, são

também apresentadas, na subsecção 2.2 do capítulo 3, as propriedades do tráfego VoIP, vídeo,

e dados, conforme foram descritas em estudos disponíveis na literatura.

A análise do tráfego experimental baseou-se nas amostras apresentadas na tabela VI do capí-

tulo 3. As propriedades do número de bytes por unidade de tempo, do tempo entre chegada

de pacotes, e do comprimento do pacote foram estudadas e diferentes distribuições conheci-

das foram utilizadas para modelar os dados experimentais. Os valores empíricos do número de

bytes por unidade de tempo foram modelados pela distribuição de Weibull ou pela distribuição

Normal, enquanto que no caso do tempo entre chegada de pacotes, os dados empíricos foram

modelados, na generalidade, pela distribuição de Weibull.
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Os resultados mais interessantes para o objetivo desta tese, foram, no entanto, os obtidos para

o comprimento dos pacotes. A maioria dos valores observados no tráfego de aplicações não P2P

formavam uma distribuição bimodal ou trimodal, tendo os comprimentos dos pacotes apenas

dois ou três valores diferentes. Os valores empíricos dos comprimentos dos pacotes gerados

por aplicações P2P, por sua vez, foram modelados, sobretudo, pela distribuição de Weibull, já

que apresentavam diversos valores distintos. Esta observação foi o ponto de partida para as

atividades de investigação que se seguiram. As distribuições usadas para modelar cada tipo de

tráfego são resumidas na tabela VII do capítulo 3.

Heterogeneidade dos Comprimentos dos Pacotes do Tráfego P2P

A análise de tráfego seguinte focou-se exclusivamente no comprimento dos pacotes, de forma

a explorar os indícios observados no estudo anterior. O tráfego experimental capturado e anali-

sado foi aumentado e o conjunto de aplicações consideradas na análise foi alargado, conforme

apresentado na subsecção 3.1 do capítulo 4.

Os resultados da análise dos pacotes mostraram que os seus comprimentos eram bastante mais

variados no tráfego gerado por aplicações P2P. Essa heterogeneidade resulta da agregação de

múltiplos fluxos que cada par estabelece com outros pares para a partilha de conteúdos. No

caso das aplicações P2P para VoIP, a maior variedade de comprimentos de pacotes deve-se aos

codecs de bit rate variável usados por aplicações como o Skype ou o Google Talk na maior parte

das situações. Por forma a medir essa heterogeneidade e a transformá-la numa quantidade

utilizável num classificador de tráfego, foi usado o conceito de entropia definido por Shannon

na teoria da informação [32]. A entropia, habitualmente denotada por H(x), foi calculada

usando a expressão (1), onde n representa o número de valores de x para os quais a estatística

é calculada, e p(xi) é a probabilidade da ocorrência específica do valor de xi:

H(x) = −
n
∑

i=1

p(xi) ln p(xi). (1)

Para qualquer número finito n ∈ N, o valor máximo de H(x) é dado por

H(x) = ln n. (2)

Uma vez que a entropia tem que ser calculada para um número finito de valores, por forma

a obter o seu valor em tempo real, foi utilizada uma janela deslizante, contendo um número

constante de comprimentos de pacotes. Cada comprimento de pacote analisado é colocado na

janela deslizante até esta estar cheia. Assim que a janela é preenchida pela primeira vez, o
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valor da entropia é calculado para os comprimentos dos pacotes que estão incluídos na janela.

Quando um novo comprimento de pacote é processado, o valor que está há mais tempo na

janela sai e entra o comprimento de pacote mais recente. Desta forma, a janela mantém

o seu tamanho constante, criando um movimento virtual sobre os comprimentos dos pacotes

analisados. Em cada iteração da janela, um novo valor de entropia é calculado, possibilitando

assim a análise da heterogeneidade dos comprimentos dos pacotes em tempo real.

Contudo, calcular repetidamente o valor da entropia em cada iteração da janela, implica o

cálculo das probabilidades de todos os valores, o que pode tornar-se numa tarefa computaci-

onalmente exigente. Por forma a tornar o processo de cálculo menos exigente, a entropia é

calculada apenas na momento em que a janela é preenchida pela primeira vez. A partir daí,

o peso na entropia do comprimento do pacote que sai da janela é atualizado no valor da en-

tropia, assim como o peso do comprimento do pacote que entra na janela. A atualização do

peso de um comprimento c na iteração i da janela foi calculado usando a expressão (3), sendo o

cálculo da entropia na mesma iteração automatizado usando a expressão (4), onde cs e ce são,

respetivamente, os comprimentos dos pacotes que saem e entram na janela:

U(c) = pi−1(c) ln pi−1(c)− pi(c) ln pi(c), (3)

Hi(x) = Hi−1(x) + U(cs) + U(ce). (4)

O tamanho da janela deslizante tem influência nos valores máximos obtidos, que crescem

quando o tamanho da janela aumenta. No entanto, para tamanhos superiores a 100 pacotes,

a entropia aumenta apenas ligeiramente quando o tamanho da janela aumenta. O efeito mais

interessante do aumento do tamanho da janela é a maior estabilidade do valor da entropia,

como é exemplificado pela figura 4 do capítulo 4. Assim, é necessário em cada análise escolher

um tamanho que ofereça o melhor compromisso entre a estabilidade do valor da entropia e o

tempo necessário para encher a janela e obter o primeiro valor de entropia.

Os valores obtidos para a entropia dos comprimentos dos pacotes são bastante distintos para

tráfego P2P e não P2P, tal como é demonstrado na tabela 1 do capítulo 4. As aplicações P2P

geram o tráfego com maior entropia dos comprimentos dos pacotes, apresentando as aplicações

P2P para media streaming ou para partilha de ficheiros comprimentos de pacotes também vari-

ados mas com menor entropia. As aplicações não P2P geram pacotes com comprimentos muito

homogéneos, apresentando por isso um nível baixo de entropia. Para maximizar as diferenças

entre os dois tipos de tráfego, foi também analisada a entropia excluindo os pacotes contendo

apenas mensagens de acknowledgement. Estes pacotes não resultam da natureza da aplicação,

mas sim do protocolo da camada de transporte Transmission Control Protocol (TCP). Uma vez

que todos estes pacotes têm comprimentos semelhantes e são utilizados pelos dois tipos de

aplicações, considerá-los na análise aproxima mais as características dos pacotes, ao invés de
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as diferenciar. Este estudo de tráfego e o método proposto de análise da entropia em tempo

real são as bases dos classificadores propostos a seguir.

Classificação do Tráfego de Nós de Rede Correndo Aplicações P2P

Os padrões de heterogeneidade do comprimento dos pacotes identificados durante a análise do

tráfego experimental resultam, sobretudo, da agregação de diferentes fluxos de tráfego. Assim,

é possível desenvolver um classificador de tráfego P2P que se baseie nos valores de entropia

observados para os diferentes tipos de aplicação. A maior dificuldade dessa abordagem seria o

facto de o mesmo utilizador, normalmente, correr mais que uma aplicação ao mesmo tempo.

Por essa razão, o efeito que a agregação do tráfego de diferentes aplicações tem no resultado

final da entropia para um nó de rede foi estudado no âmbito deste trabalho.

A preocupação inicial seria verificar se a agregação do tráfego de aplicações P2P e não P2P

correndo no mesmo nó de rede resultaria ainda assim num valor de entropia elevado, ou se a

presença do tráfego não P2P baixaria consideravelmente a entropia, não permitindo detetar

a presença do tráfego P2P. Foram, por isso, analisadas amostras de tráfego de utilizadores

correndo, paralelamente, aplicações P2P e não P2P, sendo visível que, apesar da presença de

tráfego não P2P, o valor da entropia mantém-se ainda assim elevado, conforme se mostra na

figura 5 do capítulo 4.

Seria ainda necessário verificar se a agregação do tráfego de várias aplicações não P2P resultaria

num valor de entropia elevado, podendo, assim, dar a ideia incorreta de que se trataria de trá-

fego P2P. Portanto, foram capturadas amostras de tráfego de utilizadores correndo um grande

número de aplicações multimédia não P2P. Para extremar a análise e tentar obter valores de

entropia mais elevados, o número de aplicações utilizadas em paralelo por cada utilizador foi

exagerado para além do espectável para um utilizador normal, podendo incluir, por exemplo,

streaming de um grande número de conteúdos vídeo e áudio em paralelo juntamente com ou-

tras aplicações não P2P. Apesar de, na maior parte dos casos, a entropia ser baixa, houve alguns

exemplos para os quais a entropia subiu para valores semelhantes aos observados para tráfego

P2P. Para distinguir estes casos, foi analisada a entropia apenas para tráfego de saída, e também

utilizando intervalos de 200 bytes para o cálculo das probabilidades. Todos os valores incluídos

num desses intervalos eram usados no cálculo da entropia como se se tratasse do mesmo valor.

Desta forma, foi possível distinguir a presença e a ausência de tráfego P2P no tráfego agregado

de um nó de rede, mesmo quando um número exagerado de aplicações não P2P eram utilizadas

em paralelo. A tabela 2 do capítulo 4 resume os resultados obtidos.

Utilizando os resultados obtidos, foi proposto um classificador capaz de classificar o tráfego de
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nós de rede que corram aplicações P2P. O classificador utiliza apenas quatro regras baseadas

na entropia dos comprimentos dos pacotes no tráfego geral, no tráfego de saída, e no tráfego

de saída usando intervalos de 200 bytes. Durante a avaliação do desempenho, a taxa de falsos

positivos variou entre 0.00% e 10.42%, enquanto que a taxa de falsos negativos variou entre

7.69% e 12.50%.

Classificação de Fluxos Individuais de Tráfego P2P

A heterogeneidade dos comprimentos dos pacotes explorada no classificador apresentado anteri-

ormente resulta, sobretudo, da agregação dos vários fluxos de tráfego gerados pelas aplicações

P2P. Contudo, cada sessão de uma aplicação P2P para VoIP gera um fluxo de tráfego cuja hete-

rogeneidade do comprimento dos pacotes depende do codec de voz utilizado. Aplicações como

o Skype ou o Google Talk usam, na maioria dos casos, codecs de bit rate variável, gerando paco-

tes com comprimentos extremamente heterogéneos. No entanto, podem também ser utilizados

codecs de bit rate constante, gerando assim pacotes com comprimentos muito semelhantes. Já

no caso das aplicações P2P para media streaming ou para partilha de ficheiros, a entropia dos

comprimentos dos pacotes para cada fluxo individual poderá não ser suficiente para distinguir,

de forma clara, o tráfego P2P e não P2P. Como a heterogeneidade dos comprimentos dos pa-

cotes tem causas distintas nos casos do tráfego de aplicações P2P para VoIP e aplicações P2P

para media streaming ou para partilha de ficheiros, os dois casos foram abordados de formas

diferentes.

Classificação do Tráfego de Sessões VoIP com Base nas Propriedades do Codec

Com o objetivo de estudar os comprimentos dos pacotes gerados por aplicações P2P para VoIP,

foram capturadas amostras de tráfego de diversas sessões VoIP utilizando várias aplicações e

codecs de voz, com bit rate variável e constante, conforme apresentado na tabela 1 do ca-

pítulo 5. A heterogeneidade dos comprimentos dos pacotes foi medida usando o método, já

descrito, baseado na entropia, tendo sido compilados, para cada codec de voz, os intervalos em

que os valores observados para os comprimentos dos pacotes e a respetiva entropia estavam

contidos. Esses intervalos foram utilizados para formar uma lista de assinaturas comportamen-

tais, apresentadas na tabela 2 do capítulo 5 e incluídas num classificador de tráfego de sessões

VoIP.

O classificador proposto analisa os comprimentos dos pacotes por fluxo e calcula a sua entropia.

Para cada fluxo, é utilizada uma janela deslizante independente. Como as sessões VoIP mantêm

características semelhantes nos dois sentidos do tráfego, os pacotes de entrada e de saída são
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analisados separadamente para despistar casos de outros tipos de tráfego que apresentassem

características semelhantes a uma das assinaturas apenas num dos sentidos. Os valores obtidos

são comparados com as assinaturas na lista e, caso os valores estejam contidos nos intervalos

de uma das assinaturas, o fluxo é classificado como sendo uma sessão VoIP em que o codec

associado à assinatura foi utilizado. Como a entropia é calculada com recurso a uma janela

deslizante, o método proposto pode ser utilizado na classificação de tráfego em tempo real,

apresentando, assim, resultados desde o início do fluxo até ao seu final. Também o facto do

classificador apresentado ser baseado apenas nos comprimentos dos pacotes e na sua entropia

evita a utilização de informação do payload dos pacotes. Por essa razão, o método proposto

pode ser usado na classificação de tráfego cifrado.

O desempenho do classificador foi avaliado num ambiente laboratorial, juntamente com tráfego

de outros tipos de aplicações de maneira a testar a robustez da classificação. Desta forma, foi

também possível ter a certeza da verdadeira natureza do tráfego, sem a necessidade de con-

fiar na eficácia dum classificador alternativo que funcionasse como base de comparação. Uma

vez que o tráfego VoIP, em termos de número de fluxos, está em inferioridade no conjunto do

tráfego de todas as aplicações do ambiente de teste, foram utilizadas como métricas a sensi-

bilidade (sensitivity) e a especificidade (specificity), definidas e explicadas na subsecção 4.6

do capítulo 2. Durante a avaliação do desempenho do classificador proposto, a sensibilidade

variou entre 70.00% e 100.00%, enquanto que a especificidade variou entre 84.85% e 100.00%,

conforme as amostras de tráfego e o grupo de assinaturas usados. Os resultados detalhados são

apresentados na tabela 3 do capítulo 5. Para além da eficácia da classificação, foram também

avaliados os recursos computacionais utilizados pelo classificador e a forma como estes evoluem

quando a quantidade de tráfego analisada aumenta. Os resultados obtidos permitiram verificar

que a percentagem do tempo de processamento requerido pelo classificador aumenta linear-

mente com o número de pacotes analisados, enquanto que a memória utilizada na classificação

aumenta linearmente com o número de fluxos processados.

Classificação do Tráfego de Aplicações P2P de Um Para Vários

No caso do tráfego gerado por aplicações P2P para media streaming ou para partilha de fichei-

ros, a diferença, entre tráfego P2P e não P2P, nos valores da entropia para cada fluxo é menos

evidente. Assim, a análise da entropia de forma idêntica à usada na classificação de tráfego P2P

VoIP é insuficiente para classificação de fluxos individuais das aplicações P2P um para vários.

Por essa razão, os comprimentos dos pacotes em tráfego experimental das aplicações descritas

na subsecção 3.1 do capítulo 6 foram analisados separadamente sob diferentes perspetivas:

pacotes cujo comprimento é menor ou igual a 100 bytes, maior que 100 bytes e menor ou igual

a 900 bytes, e maior que 900 bytes. Esta análise foi feita de forma independente para todo o
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tráfego, para tráfego apenas de saída, ou para tráfego apenas de entrada. Foram ainda estu-

dadas, como características adicionais, a entropia dos tempos entre chegada de pacotes e dos

pares endereço/porto remotos com os quais cada par local comunica.

Os valores de entropia identificados no estudo do tráfego foram utilizados na definição dum

conjunto de regras incluído num classificador de tráfego capaz de classificar os fluxos indivi-

duais gerados por aplicações P2P. O novo classificador proposto utiliza uma janela deslizante

independente para cada uma das perspetivas, conforme é mostrado na figura 11 do capítulo 6.

O método de análise usado, por calcular a entropia com recurso a uma janela deslizante, pode

ser aplicado à classificação em tempo real. Uma vez que não é usada informação do payload

dos pacotes, o tráfego cifrado é igualmente identificado pelo classificador apresentado.

O classificador foi avaliado num ambiente laboratorial de teste, semelhante ao utilizado para

avaliar o classificador de tráfego VoIP, tendo sido utilizadas as métricas exatidão (accuracy), pre-

cisão (precision), e revocação (recall), definidas e explicadas na subsecção 4.6 do capítulo 2.

Os resultados obtidos na avaliação do desempenho variaram entre 95.68% e 96.49% para a exa-

tidão, entre 97.52% e 98.94% para a precisão, e entre 92.90% e 94.50% para a revocação. As

tabelas 3 e 4 do capítulo 6 apresentam, com maior detalhe, os resultados obtidos. A análise dos

recursos computacionais utilizados pelo classificador mostra que o tempo de processador utili-

zado pelo classificador cresce linearmente com o números de pacotes processados, enquanto

a memória usada aumenta linearmente com o número de pares endereço/porto analisados,

conforme é ilustrado pela figura 12 do capítulo 6.

Principais Conclusões

Esta tese é focada na classificação de tráfego gerado por aplicações P2P, descrevendo o trabalho

de investigação desenvolvido com o propósito de propor um novo método de classificação capaz

de classificar tráfego P2P em tempo real e sem recurso ao payload dos pacotes. Os métodos

atuais apresentam limitações, sendo, por essa razão, objetivo desta tese que o classificador

proposto superasse algumas dessas limitações, como a complexidade do método ou o número

de características do tráfego utilizadas na classificação.

Assim, durante o trabalho de investigação desenvolvido no âmbito desta tese de doutoramento,

foram estudados os problemas e desafios criados pelas aplicações P2P, do ponto de vista da ges-

tão das redes de informação e do seu tráfego. Esses desafios têm motivado o desenvolvimento

de novos métodos de classificação de tráfego utilizando diferentes abordagens. Os métodos

baseados na inspeção profunda de pacotes têm normalmente uma maior eficácia, sendo, no

entanto, mais exigentes em termos computacionais e afetados pela cifragem do payload dos
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pacotes. Por outro lado, os métodos baseados no comportamento do tráfego, apesar de apre-

sentarem, geralmente, uma menor eficácia, oferecem um bom compromisso entre eficácia e

custo computacional, sendo ainda imunes à cifragem do tráfego. O estudo detalhado das di-

ferentes abordagens e a análise abrangente da literatura no tópico da classificação de tráfego

P2P foram apresentados e discutidos nesta tese.

O trabalho de investigação apresentado nesta tese inclui a análise do tráfego capturado na

fonte, gerado por várias aplicações P2P e não P2P. Diversas características do tráfego foram

analisadas e modeladas utilizando distribuições conhecidas. A natureza distribuída das apli-

cações P2P revelou-se em algumas das características analisadas, sendo as diferenças para as

aplicações cliente-servidor especialmente visíveis no comprimento dos pacotes gerados pelos

dois tipos de aplicações. Este estudo foi a base para a maioria das contribuições desta tese,

tendo influenciado o trabalho de investigação que se seguiu.

Seguindo as conclusões retiradas do trabalho anterior, o estudo do tráfego focou-se na hetero-

geneidade revelada pelos comprimentos dos pacotes das aplicações P2P. O tráfego capturado

foi analisado separadamente para cada nó de rede e a heterogeneidade dos pacotes foi medida

recorrendo à entropia. Utilizando um método baseado numa janela deslizante contendo um

número constante de pacotes, foi possível implementar o cálculo da entropia em tempo real.

Os resultados obtidos mostraram que a entropia do comprimento dos pacotes é bastante mais

elevada no tráfego de aplicações P2P. Assim, com base nos padrões observados, foi proposto

um classificador de tráfego capaz de identificar o tráfego de nós de rede que corram aplica-

ções P2P. O método de classificação apresentado funciona em tempo real e não utiliza qualquer

informação do payload dos pacotes.

A classificação de fluxos individuais de tráfego P2P foi abordada separadamente para tráfego de

aplicações P2P para VoIP e de aplicações P2P para media streaming ou para partilha de ficheiros.

Uma vez que os comprimentos dos pacotes gerados por sessões VoIP dependem do codec de

voz utilizado, foi capturado tráfego experimental gerado por diversas sessões VoIP onde foram

utilizados aplicações e codecs de voz distintos. Para cada codec analisado, foram compilados

os intervalos onde os comprimentos dos pacotes e a respetiva entropia estavam contidos. Esses

intervalos foram utilizados para formar assinaturas comportamentais para cada codec de voz,

que foram depois integradas num classificador de tráfego capaz de classificar tráfego gerado por

sessões VoIP e de identificar o codec de voz utilizado na sessão. O método proposto baseia-se

apenas na análise dos comprimentos dos pacotes, não necessitando de recorrer à informação do

payload dos pacotes. De forma a ser aplicado em tempo real, o classificador utiliza o esquema

de janela deslizante já descrito anteriormente.

No caso das aplicações P2P para media streaming ou para partilha de ficheiros, a heteroge-

neidade resulta sobretudo da agregação de diferentes fluxos, sendo as diferenças na entropia
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menos óbvias quando se analisa individualmente cada fluxo. Assim, a análise da heterogenei-

dade dos pacotes com recurso à entropia foi feita separadamente para pacotes de entrada e de

saída e também para os pacotes com comprimento pertencente a cada um de três intervalos

diferentes de comprimentos de pacotes: menores ou iguais a 100 bytes, de 101 a 900 bytes, e

maiores que 900 bytes. Para além disso, de forma a melhorar os resultados, foi ainda analisada

a heterogeneidade dos tempos entre chegada de pacotes e dos pares endereço/porto remotos

com que cada par endereço/porto analisado comunica, através do cálculo da entropia para es-

tas características do tráfego. Os resultados obtidos foram utilizados para criar regras utilizadas

por um método apresentado para a classificação de fluxos individuais de tráfego P2P. De forma

a operar em tempo real, o classificador proposto faz uso de uma janela deslizante para cada ca-

racterística do tráfego analisada. Uma vez que utiliza apenas características comportamentais

do tráfego, o método proposto não recorre ao payload dos pacotes.

As diferentes análises de tráfego desenvolvidas ao longo do trabalho de investigação descrito

nesta tese demonstram que a natureza distribuída do paradigma P2P se reflete nas caracterís-

ticas do tráfego, cujo comportamento se revela mais caótico e menos previsível. Estas propri-

edades são especialmente visíveis nos comprimentos dos pacotes gerados por estas aplicações,

apresentando uma maior heterogeneidade quando comparados com os comprimentos dos pa-

cotes gerados por aplicações cliente-servidor. A contribuição desta tese para explorar essa

heterogeneidade com recurso à entropia é a base das restantes contribuições aqui apresenta-

das. As diferenças na entropia, sobretudo, dos comprimentos dos pacotes, mas também dos

tempos entre chegada de pacotes e dos pares endereço/porto remotos permitiram distinguir

entre o tráfego P2P e não P2P. Recorrendo a uma janela deslizante contendo um número cons-

tante de pacotes, foi possível automatizar o cálculo da entropia em tempo real e utilizá-lo na

classificação de tráfego.

O objetivo principal desta tese foi cumprido através da apresentação de três classificadores de

tráfego baseados na análise da heterogeneidade de características do tráfego com recurso à

entropia e na sua análise através da utilização de uma janela deslizante. Em conjunto, os três

classificadores permitiram a classificação de tráfego de nós de rede correndo aplicações P2P

e de fluxos individuais do tráfego gerado por aplicações P2P para VoIP e aplicações P2P para

media streaming ou para partilha de ficheiros. Os métodos propostos minimizaram o número

de características do tráfego necessárias, recorrendo sobretudo ao comprimento dos pacotes

e, num dos casos, também aos tempos entre chegada de pacotes e aos pares endereço/porto

remotos. Não necessitando de informação do payload dos pacotes, os classificadores propostos

podem então ser utilizados para a classificação de tráfego cifrado. O facto dos classificadores

propostos classificarem tráfego P2P genérico, sem se focarem numa aplicação ou protocolo

específico, permite-lhes identificar tráfego de protocolos P2P desconhecidos ou emergentes.
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Direções Para Trabalho Futuro

Uma das linhas de investigação que poderá ser desenvolvida no futuro será a cooperação entre

métodos de classificação baseados na inspeção profunda dos pacotes e a abordagem aqui apre-

sentada, baseada na análise da heterogeneidade de características do tráfego com recurso à

entropia. Um classificador baseado na entropia de características do tráfego podia ser usado

nos casos em que a inspeção profunda dos pacotes não obtivesse qualquer resultado, quer fosse

por via da cifragem do payload dos pacotes ou devido à inexistência duma assinatura para a

aplicação. Poderia, também, ser utilizado para confirmar a classificação devolvida pelo módulo

de inspeção profunda de pacotes nos casos em que fosse comum aplicações P2P disfarçarem o

seu tráfego de forma a ser classificado como tráfego de outra aplicação, ou em casos como,

por exemplo, o da aplicação Gnutella que usa o protocolo HTTP, sendo por vezes o seu tráfego

incorretamente classificado apenas como tráfego Hypertext Transfer Protocol (HTTP) ou Web.

Por forma a implementar uma abordagem de cooperação que seguisse esta descrição, seria

necessário desenvolver um estudo sobre os tipos de tráfego que são geralmente classificados

de forma incorreta pelos métodos que usam a inspeção profunda de pacotes e sobre quais os

ganhos que seriam obtidos em termos de eficácia. Ainda assim, este esquema de cooperação

não permitiria obter um ganho na eficiência.

Uma das principais razões para os métodos baseados na inspeção profunda de pacotes serem

computacionalmente exigentes é o facto de, para um número considerável de assinaturas,

terem que verificar se as strings de dados que formam cada assinatura são identificadas no pay-

load dos pacotes. A utilização, como primeiro classificador, de um método baseado na entropia

poderia permitir, dependendo do resultado de entropia obtido, verificar apenas uma parte das

assinaturas. Para isso, seria necessário desenvolver um estudo sobre os níveis de entropia obser-

vados para diversas características do tráfego de diferentes tipos de aplicações. Desta forma,

a lista de assinaturas do classificador baseado na inspeção profunda de pacotes poderia ser di-

vidida em partes menores às quais seria atribuído um determinado nível de entropia. Apenas a

parte das assinaturas correspondente ao nível de entropia devolvido pelo primeiro classificador

seria verificada pela inspeção profunda de pacotes. Os ganhos de eficiência alcançados com

este esquema de cooperação deveriam ser avaliados, de forma a serem retiradas conclusões.

A análise da entropia de características específicas do tráfego poderá também ser usada na clas-

sificação de tráfego com base apenas no nível de entropia, ao invés de classificá-lo com base

na aplicação que o gerou. Uma abordagem de classificação deste tipo ajudaria a caracterizar o

tráfego, podendo ser vista como um fator adicional utilizado na sua caracterização. Potencial-

mente, uma classificação baseada apenas na observação da entropia poderá ser usada como um

fator a considerar, por exemplo, na definição de políticas de gestão de tráfego ou de esquemas
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de encaminhamento. Apesar dos benefícios desta abordagem não serem à partida garantidos,

seria interessante estudar a informação que poderia ser extraída do tráfego através deste tipo

de análise e de que forma essa informação poderia ser aplicada em diferentes domínios da

administração de redes de informação.
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Abstract

The ability to classify the traffic, based on the application or protocol that generated it, is

essential for the effective management of computer networks. Although Internet applications

were generally based on the client-server paradigm, generating traffic whose properties were

well defined and easily predictable, the advent of peer-to-peer (P2P) computing brought the

power to the edges, facilitating the direct exchange of contents between hosts and modify-

ing the behavior of the traffic load in the networks of Internet Service Providers (ISPs) and

organizations. In that context, the ability to identify the nature of the traffic became increas-

ingly important. Nonetheless, the early traffic classification methods, based on the association

of port numbers of transport-level protocols to applications or protocols, became ineffective

when many Internet applications started to use random port numbers or ports normally used by

other applications. The natural alternative was to look deep into the contents of the packets

to search for data strings that could be used as a signature of the traffic of a target application.

However, this approach, usually called Deep Packet Inspection (DPI), requires more computa-

tional resources which may make it difficult to be used for real-time monitoring in high-speed

networks. Moreover, several applications have started to encrypt their traffic preventing the

use of DPI. In order to overcome these limitations, researchers are proposing new classification

approaches, sometimes called classification in the dark, which are based on the traffic behav-

ior and do not rely on the payload data. Although their accuracy is generally lower, in most

cases, they offer a good compromise between effectiveness and computational cost and are

not affected by encryption techniques. Nevertheless, the search for more accurate behavioral

methods is also leading to an increase in their complexity.

This thesis is focused on the identification of P2P traffic and aims to propose a classification ap-

proach capable of identifying traffic generated by P2P applications in real-time, without relying

on the payload data. Since one of the differences between client-server and P2P paradigms is

the dual role played by P2P hosts, the research work described herein, after a literature review,

started with the study of the properties of the traffic from several P2P and non-P2P applications

at its source. Instead of collecting the experimental data in an aggregation point, the traffic

from each individual host, running a single application or a predefined set of applications, was

captured immediately after its network connection. By doing so, it was possible to assure that

the analyzed traffic was generated by the studied applications and that its properties were

not affected by the aggregation of different types of traffic. The study included the statistical

analysis of the following traffic features: the byte count per time unit, the inter-arrival time,

and the packet length.

The observation of the source traffic showed that the lengths of the packets generated by P2P
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and non-P2P applications present distinct patterns. The traffic from non-P2P applications usu-

ally results from connections with a stable behavior, mostly formed by small and large packets,

used to send requests and acknowledgments and to receive contents, respectively. In these

cases, both small and large packets generally present very homogeneous lengths. On the con-

trary, the P2P traffic is very heterogeneous in terms of packet lengths, as it results from the

aggregation of several concurrent connections to different peers. Moreover, the distributed

search mechanisms and the replies to requests from other peers also generate a large number

of small packets with multiple lengths. Hence, a deeper study focused solely on packet length

properties was performed and the set of analyzed applications was extended. The entropy

was used to measure the heterogeneity of the packet lengths and the results showed it was

possible to differentiate both kinds of traffic. To improve the results in specific cases, the en-

tropy of the packet lengths was also computed using slots of 200 bytes, which means that all

the packet lengths within the same slot are used in the entropy computation as being similar

lengths. Based on this approach, it was possible to propose a new behavioral classifier capable

of identifying hosts running P2P applications, without using payload data. In order to make the

method suitable for real-time analysis, the entropy is computed using a sliding window with a

constant size of N packets.

Although the proposed classification method was able to identify hosts running P2P applications

by analyzing the heterogeneity of the packet lengths in the aggregated traffic of each host,

it could not classify individual flows as being generated by P2P or non-P2P applications. In

fact, the heterogeneity of the packet lengths observed in the traffic of each single host running

P2P file-sharing or P2P media streaming applications resulted, mostly, from the aggregation of

several connections with different properties, used to share contents with other peers. For this

reason, the heterogeneity of individual flows is lower, even for P2P traffic. Nonetheless, in the

case of P2P Voice over Internet Protocol (VoIP) traffic, the heterogeneity of the packet lengths

results from the use of Variable Bit Rate (VBR) speech codecs and, thus, the heterogeneity is

observable in the individual flow used to carry each VoIP session.

Therefore, experimental traffic generated by P2P VoIP applications using several VBR and Con-

stant Bit Rate (CBR) speech codecs was collected and used to study the lengths of the packets

generated by VoIP sessions. The results of the analysis showed that the packet lengths depend

on the speech codec used in each the session. Hence, the heterogeneity of the packet lengths

from each VoIP session was measured using entropy, which was computed using a sliding win-

dow with a constant size of 500 packets. For each speech codec considered in the study, the

intervals of packet lengths and entropy observed during the traffic analysis were compiled and,

based on those intervals, a traffic classifier capable of identifying VoIP traffic using a single

traffic feature was proposed. The classifier uses a set of behavioral signatures associated with

each speech codec, formed by an interval of packet lengths and an interval of the entropy of
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the packet lengths. Besides of being able to recognize VoIP traffic in the dark, the classifier is

also capable of identifying the speech codec used in that VoIP session.

After proposing the P2P VoIP traffic classifier, the research work focused on the traffic from

P2P file-sharing and P2P media streaming applications. Unlike VoIP, the traffic generated by

a single host running one of these applications results from many parallel connections with

several peers. Hence, in this thesis, P2P file-sharing and P2P media streaming traffic is also

designated by one-to-many P2P traffic. The entropy of the packet lengths of individual flows

from these applications is not sufficiently distinct from the entropy obtained from non-P2P

individual flows. Therefore, several dimensions of the traffic were separately studied, including

incoming, outgoing, or incoming and outgoing packets together, and also packets whose payload

length is smaller or equal to 100 bytes, greater than 100 bytes and smaller or equal to 900 bytes,

or greater than 900 bytes. The mean of the entropy of the packet lengths for each of these

dimensions was computed for each flow of the analyzed applications, using a sliding window

with a constant size of 100 packets. Additionally, the mean of the entropy of the inter-arrival

times and of the remote host/port pairs to which a local host/port pair communicates was also

computed. Based on the obtained results, a traffic classifier that does not rely on payload data

was proposed. In the performance evaluation, the classifier was able to identify P2P traffic with

an accuracy greater than 95%.

Keywords

Behavioral Classifier, Classification in the Dark, Entropy, File-sharing, Media Streaming, Multime-
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Chapter 1

Introduction

This thesis addresses the subject of classification of peer-to-peer (P2P) traffic, proposing be-

havioral classification methods based on the heterogeneity of traffic features. The focus and

scope of the thesis are further described in this chapter, together with the problem definition

and objectives, the thesis statement, the main contributions, and the thesis organization.

1 Thesis Focus and Scope

Traffic classification has always been an important task in computer network administration.

The capability to identify the application or protocol that generated each traffic flow is crucial

not only for the effective traffic management and correct design of computer networks, but

also to assure the Quality of Service (QoS) required by applications with distinct priority levels

or to implement security measures for different applications [1, 2]. The early methods used to

identify the traffic nature were simply based on the association of an application or protocol to

a well-known port number used by the Transmission Control Protocol (TCP) or the User Datagram

Protocol (UDP) to transmit data. The association of, e.g., Hypertext Transfer Protocol (HTTP)

or File Transfer Protocol (FTP) traffic width ports 80 or 21, respectively, is illustrative of the

traditional use of port numbers to identify the application protocols that generated specific

traffic flows.

By the end of the last century, Internet applications were mainly based on the client-server

paradigm, in which the client and server roles played by each host in a connection were clearly

defined and separated. Servers provided services and contents to clients who request them,

generating an asymmetric amount of data in upstream (from client to server) and downstream

(from server to client). In this scenario, where Internet applications traffic resulted from con-

nections with conventional and easily predictable properties and using well-known port num-

bers, and the traffic load in computer networks followed well-studied models, the accurate

classification of traffic was a fairly simple task relying on port numbers. However, more re-

cently, the emergence of the P2P paradigm pushed the power to the network edges by offering

the users the possibility of sharing contents among themselves, acting concurrently as clients

and servers. Although P2P is only a computing paradigm, it raises challenges distinct from

the ones associated with other network architectures. Instead of using bandwidth only to re-
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ceive contents and services, P2P hosts share among them the cost of the bandwidth needed

to provide the contents, which, in the client-server paradigm, was supported solely by the

dedicated servers. As a consequence, not only the traffic in the networks of Internet Service

Providers (ISPs) and organizations increased considerably, as the characteristics of the traffic

load also changed. Besides having to support the traffic grow, ISP networks, which were pre-

pared to offer larger bandwidth rates in downstream, also have to deal with a traffic increase in

upstream that makes the traffic load in both directions less asymmetrical. Therefore, this shift

of the power to the network edges is increasing the costs supported by networks of ISPs and

organizations [3]. Furthermore, the ability to facilitate the sharing of data directly between

hosts has also raised several security issues that may cause impact in companies and home

users [4–6]. The consequences of virus, worms, and other threats are magnified by the multiple

direct connections between hosts, easily provided by P2P applications. Privacy, anonymity, and

confidentiality are also sensitive issues that may be threaten by an incautious use of P2P appli-

cations [7]. Although these problems are not a direct consequence of the P2P paradigm, the

possibility it offers of directly sharing contents between users, together with the encryption

and obfuscation techniques used by many P2P applications, make it more difficult to identify

potential threats in P2P traffic.

Motivated by the problems raised mainly by P2P applications, ISPs and network administra-

tors started to limit or block the traffic generated by those applications. However, the ability

to identify the application that generated the traffic was heavily compromised by the adop-

tion of random port numbers or even the use of well-known port numbers that are associated

with other protocols whose traffic is, generally, less constrained by monitoring devices, e.g,

port 80 [8]. In order to improve their accuracy, classification mechanisms implemented Deep

Packet Inspection (DPI) methods, which resort to the data carried within the packets, in the

payload field of the transport level protocols [9]. Typically, DPI classifiers use a repository of

payload strings associated with the target applications or protocols and try to match each of

the signatures with the payload data in each processed packet. Although they have usually a

good accuracy, classification mechanisms based on payload signatures have also several limita-

tions and their effectiveness is decreasing in specific contexts. Since they have to check every

signature of the target applications in each processed packet, DPI methods generally require

more computation resources and, thus, are more difficult to be used in real-time. Moreover,

due to the increase of the number of protocols and Internet applications and their complex-

ity, the number of signatures that have to be checked is growing. The deep inspection of the

packet contents may also raise privacy concerns [10]. Additionally, many P2P applications are

starting to encrypt the payload data, which prevents the verification of data signatures in the

packet payload [11]. Nevertheless, instead of using data signatures, some authors analyzed the

randomness of the payload bytes, introduced by encryption techniques, to identify encrypted

traffic [12].
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In order to avoid the limitations of DPI, many researchers have started to propose traffic classi-

fication methods that do not rely on payload data, sometimes called classification in the dark

methods [13, 14]. Most of them are based on statistical measures or heuristics that use differ-

ent traffic features to model the common behavior of applications and protocols [15, 16]. Some

behavioral classifiers for P2P traffic use generic properties of this kind of traffic, enabling their

application to the classification of P2P traffic from unknown protocols [17]. Moreover, these

methods keep their effectiveness in the classification of encrypted traffic as they do not need

to use payload data. Nevertheless, since behavioral classifiers only explore the generic behavior

of the traffic and do not rely on any specific payload signatures, their accuracy is generally lower

when compared to DPI methods. Moreover, in most cases, they can only identify the protocol

instead of the specific application, e.g., they may be able to recognize traffic generated by a

BitTorrent client, but usually they cannot identify the specific application client. In order to

improve the classification accuracy, researchers have been proposing new methods resorting to

several machine learning algorithms and using different traffic features [18–20]. Nonetheless,

although the fact that in the dark approaches generally require less computational resources is

usually a motivation for their development, the search for more accurate behavioral classifica-

tion methods is also increasing their complexity. In fact, Cascarano et al. [21] compared the

computational requirements of a behavioral classifier based on Support Vector Machines (SVMs)

and of a DPI classifier and they concluded that both classifiers have similar computational costs.

The scope of this thesis is limited to the fields of traffic monitoring and analysis and P2P net-

working. The research work presented herein is focused on the study of the challenges in traffic

classification raised by P2P traffic and on the different approaches for traffic classification. The

limitations of DPI-based methods and the search for new classification approaches that do not

resort to payload data motivated the development of traffic classification methods that are not

affected by payload encryption and are suitable for real-time operation. The methods proposed

in this thesis are based on the analysis of the heterogeneity of traffic features, especially the

packet length.

2 Problem Definition and Research Objectives

The problem addressed in this thesis is the classification of P2P traffic in real-time, without

using data from the payload of the transport-level protocols. Motivated by the impact of P2P

traffic in computer networks, the first studies on P2P traffic classification aimed to characterize

the traffic load in networks generated by P2P applications, for which they resorted to the trans-

port-level port numbers [22, 23]. At the beginning of this doctoral programme, however, the

uselessness of port numbers as a classification approach was already a reality and, therefore,

most published studies addressing the classification of P2P traffic used DPI methods [24–26].
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Since the DPI limitations were starting to become a problem, with a few P2P applications adopt-

ing encryption techniques, several authors had already started to propose behavioral classifiers

as a solution to avoid the computational resources required by DPI and to identify generic P2P

traffic without being limited to the known protocols [17].

Many of the behavioral methods proposed in the literature are limited to offline use as they

either need to process the entire flows [27, 28] or have to analyze the flows more than once

to make a classification [29]. Moreover, most studies process several traffic features, which are

used by the classification method as discriminators to distinguish different categories of traf-

fic [15, 30]. In many cases, the proposed methods only address a very specific application pro-

tocol [12, 27] or are tested with traffic from a small set of applications [17, 31]. Furthermore,

the search to improve the accuracy of behavioral traffic classification has led to an increase of

the complexity of the proposed classifiers. Several studies have been proposing different com-

plex methods ranging from statistical study [11, 32] to host interaction analysis [13, 33] and

machine learning algorithms [34, 35]. Some of them require a training phase for specific target

applications so that the classifier can previously learn the characteristics of the traffic [36, 37].

Being designed for specific protocols or applications, such classifiers cannot identify unknown

protocols from a target class, e.g., P2P.

The main objective of this thesis is to present a new classification method for P2P traffic,

without being limited to any specific P2P protocol. The proposed method should not use data

from the payload of the transport-level protocols, so that it can be used to classify traffic

from applications that include payload encryption techniques. Moreover, the new classifier

should be suitable for classifying the traffic in real-time, being able to produce results during

the lifetime of the flows and without having to analyze them more than once. Additionally,

the proposed classification method should use a minimal number of traffic features and avoid

complex methods whose computational requirements may grow exponentially with the increase

of the amount of processed data.

The following intermediate objectives were defined so as to divide and organize the research

work required to accomplish the main objective of this thesis:

1. In order to understand the classification solutions, one of the objectives of this thesis is

to study the different traffic classification approaches, their advantages and limitations,

and the contexts where the use of each of them may achieve the best performance.

The classification methods proposed in the literature and the related works are analyzed

so as to learn about the traffic classification topic and to know the state of the art.

Furthermore, the problems and challenges for network management raised by the traffic

generated by P2P applications and its differences to other communication paradigms are

also studied.
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2. The second intermediate objective is the analysis of different features of traffic samples

generated by P2P and client-server applications, which is required for the study of the

differences between the traffic of both classes of applications. Given the dual role of

the P2P hosts, the experimental traffic is captured at its source, instead of at a network

aggregation point.

3. Since P2P hosts act more actively in the network when compared to the ones using typical

client-server applications, one of the intermediate objectives is to propose a new method

that is able to identify hosts running P2P applications. To be consistent with the main

objective, the method should be suitable for real-time analysis and not use payload data.

4. The traffic from a host can be generated by a combination of P2P and non-P2P appli-

cations. Hence, to accomplish the main goal, it is necessary to present a new method

capable of classifying individual flows. Nonetheless, a host running a P2P Voice over Inter-

net Protocol (VoIP) session establishes a flow to another peer, while a host running a P2P

media streaming or P2P file-sharing application establishes several flows to other peers.

Therefore, the last intermediate objective includes a classification mechanism capable of

identifying P2P VoIP flows and P2P media streaming and P2P file-sharing flows.

The applicability of the classification of P2P traffic in network management is not limited to

traffic blocking or shaping and may be useful for other techniques for the efficient traffic man-

agement as, e.g., content caching [3, 38]. Nonetheless, the problem addressed by this thesis

is the classification of P2P traffic and, therefore, the actions taken upon the identification of

this kind of traffic and the decisions on what is the most advantageous approach to manage its

presence in different network scenarios fall out of the scope of this research work.

3 Thesis Statement

This thesis proposes a new approach for the classification of P2P traffic based on behavioral

properties of the traffic. Specifically, the thesis statement is:

The distributed nature of the P2P paradigm influences basic properties of the traffic, like the

packet lengths, causing the increase of their heterogeneity. The level of heterogeneity of

these properties can be measured through entropy and applied on the characterization of the

traffic from P2P applications. The entropy analysis of such traffic features may be used for the

purpose of P2P traffic classification in real-time, without using data from the packet payload.

To support this thesis statement, the following research approach was adopted.

The problem and research field are studied and the literature on traffic classification is re-
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viewed. The main advantages and limitations of each classification approach are analyzed, as

well as the solutions proposed by other researchers.

The biggest difference between P2P and client-server architectures is the dual-role played

by P2P hosts. Hence, the properties of experimental traffic from both types of applications,

collected at its source, are analyzed so as to study how that difference is reflected in network

data. Capturing the traffic immediately after the machine that is generating it guarantees that

the observed properties result from the applications running in the host and are not affected

by the aggregation of several traffic sources. The study included the analysis of several traffic

characteristics, focusing on the byte count per time unit, the inter-arrival time, and the packet

length.

The observations made in the previous traffic analysis enabled the identification of patterns

that are distinct in both types of traffic. Those patterns are related with the heterogeneity

of the traffic features, especially the packet length, which is mostly caused by the distributed

nature of P2P applications. Larger and more varied traffic traces are captured and the entropy

is used to measure the level of heterogeneity of the packet lengths from each host. Since the

entropy has to be computed for a fixed number of values, a sliding window with a constant

size of N packets is implemented to allow the real-time analysis of the traffic. The entropy

computation based on the sliding window is used in all the classifiers proposed in this thesis.

In order to demonstrate the feasibility of using the heterogeneity of the packet lengths, mea-

sured through entropy, to distinguish P2P and non-P2P traffic, a host-based classifier is pro-

posed. The classifier uses only four rules, based on the entropy of three different perspectives

of the packet lengths, to classify traffic from hosts running P2P applications.

The host-based classifier identifies the traffic from hosts running P2P applications. To classify

the individual flows, two separate cases are considered: traffic from P2P VoIP applications and

from P2P media streaming or P2P file-sharing applications. In the case of P2P VoIP traffic,

the observed heterogeneity results from the speech codec used in the session and, thus, is

visible in each flow generated by a VoIP session. In P2P media streaming or P2P file-sharing

traffic, however, the heterogeneity is caused by the aggregation of multiple flows used to share

contents among peers. Therefore, each of this two types of applications is addressed separately.

To implement a P2P VoIP classifier, the entropy of the packet lengths from traffic traces of

several VoIP sessions using different Constant Bit Rate (CBR) and Variable Bit Rate (VBR) speech

codecs and applications is analyzed and compiled in intervals. These intervals are used to

create behavioral signatures to which the classifier resorts to classify the traffic from each

codec.
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The analysis of the traffic from P2P media streaming or P2P file-sharing applications is made by

capturing traffic traces from several P2P and non-P2P applications and computing the entropy

of the packet lengths in different intervals of lengths, and separately for incoming and outgoing

packets. Additionally, the entropy of the inter-arrival times and of the remote host/port pairs

is also analyzed. The results of the analysis are used to define rules on which a new classifier

for P2P and non-P2P flows is based.

4 Main Contributions

This section briefly describes the main scientific contributions resulting from the research work

presented in this thesis.

The first contribution of this thesis is a detailed description of the existing approaches for traffic

classification in computer networks and a comprehensive analysis and review of the literature

on P2P traffic classification. This study is described in chapter 2, which consists of an article

accepted for publication in ACM Computing Surveys [39].

The second contribution of this thesis is the study of traffic from several P2P and non-P2P

applications, which was captured at its source, immediately after a host machine running a

single or a predefined set of applications. The analysis of the traffic aimed to understand

the characteristics of the traffic that are inherent to the application and do not result from the

aggregation of traffic from several applications and hosts. Several traffic features, including the

byte count per time unit, the inter-arrival time, and the packet length, were analyzed in this

study and fitted with a few well-known distributions. This study is described in chapter 3, which

consists of an article published in ACM Transactions on Multimedia Computing Communications

and Applications [40].

The third contribution of this thesis consists of the observation and analysis of the heterogeneity

of the packet lengths in the traffic from P2P and non-P2P applications, the presentation of a

real-time method to quantify that heterogeneity by resorting to entropy, and the proposition

of a new host-based classifier. The method herein proposed and used in the analysis is based

on a sliding window with a constant size of N packets, which makes it possible to compute the

entropy in real-time for every packet immediately after the N-th packet. This analysis used

traffic from hosts running a single P2P or non-P2P application and presented the differences

in the heterogeneity of the lengths of the packets generated by several applications and their

effect in the entropy value. An earlier version of this study was presented in an article published

in the Proceedings of the 27th IEEE International Performance Computing and Communications

Conference (IPCCC 2008) [41] and additional findings were also described in a chapter of the

7



Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

Handbook of Peer-to-Peer Networking [42]. The traffic analysis was improved and extended to

include a larger set of applications and a new traffic classifier capable of identifying the traffic

from hosts running P2P applications was proposed. The proposed method does not use payload

data, it is based on the entropy of the packet lengths generated by a host, and it uses the

same sliding window approach that was previously described to allow the real-time analysis.

The extended version of the analysis of the packet lengths from traffic generated by P2P and

non-P2P applications and the proposed host-based classifier are described in chapter 4, which

consists of an article accepted for publication in The Computer Journal [43].

The fourth contribution of this thesis is the analysis of the traffic from VoIP sessions using differ-

ent applications and speech codecs, with emphasis on the packet lengths and its dependence

on the speech codec used in the session, and the presentation of a VoIP traffic classifier capable

of identifying the speech codec used in each session. The packet lengths in the experimental

data were analyzed and their heterogeneity was measured using entropy. The compilations of

the ranges of packet lengths and entropy were used to propose a new traffic classifier that is

able to classify the VoIP flows and identify the speech codec used in the session. The classifica-

tion method is exclusively based on the packet lengths and on the corresponding entropy and,

therefore, does not use payload data. Since the entropy is computed using a sliding window

with a limited and constant size and the evaluation of the computational resources used by

the classifier showed that the resource consumption grows linearly with the amount of data

analyzed, the method can be used for real-time operation. The study of the VoIP session traffic

and the proposed classifier are described in chapter 5, which consists of the revised version of

an article submitted for publication in an international journal [44].

The fifth and last contribution of this thesis is the proposal of a new classification method that

classifies the individual P2P and non-P2P flows without using any payload data. The proposed

method is based on the analysis of the heterogeneity not only of the packet lengths, but also

of the inter-arrival times and of the remote host/port pairs to which each local host/port pair

communicates. Furthermore, the heterogeneity of traffic features was analyzed for all the

packets in each flow, and also separately for incoming and outgoing packets, and for packets

from three ranges of lengths. The entropy was used to measure the heterogeneity of the traffic

features in each of the considered perspectives, by resorting to a sliding window. In each

iteration of the window, the mean of the entropy since the first iteration was computed and

analyzed. The results of the mean of the entropy obtained in the traffic analysis were used to

define a set of rules used by the classifier to identify the P2P flows. The study of the traffic

and the proposed method are described in chapter 6, which consists of an article submitted for

publication in an international journal [45].
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5 Thesis Organization

This thesis is organized in seven main chapters. With the exception of the first and seventh

chapters, which are devoted to the introduction and conclusions and future work, each of the

main chapters is formed by an article published in or submitted to an international journal.

Since each article includes its own list of references, the references used in the Introduction

chapter are listed at the end of chapter 1, so as to keep the consistency with the remaining

chapters. For the same reason, the long form of an acronym is repeated in its first occurrence

in each chapter. Roman numeration is used for the tables from chapters 2 and 3 included in the

list of tables, as this is the numeration used in the layout of the corresponding articles. The

subjects and organization of the main chapters of this thesis can be summarized as follows.

Chapter 1 describes the context of this thesis, explaining the scope and focus of the research

work and presenting the problem addressed by the thesis and the objectives to be accom-

plished, as well as the thesis statement and the adopted approach for solving the problem. A

summary of the main contributions of this thesis is also included, followed by the description

of the organization and structure of the thesis.

Chapter 2 introduces the topic of classification of P2P traffic, presenting the motivation and a

brief background for traffic measurements and network monitoring, and focusing on the differ-

ent approaches for traffic classification. The chapter analyzes the advantages and limitations

of each approach and reviews the literature on traffic classification, giving a special attention

to the studies focused on P2P traffic.

Chapter 3 first provides a theoretical analysis of the published work on the statistical character-

ization and modeling of different types of traffic generated by a personal computer. The second

part of the chapter is focused on the study of experimental traffic captured at its source. The

description of the capturing scenarios and of the collected experimental data is provided, fol-

lowed by the explanation of the fitting distributions used in the chapter and examples of the

results obtained for different traffic features using several types of applications. After that,

the summary of the analysis and a discussion of results and distribution parameters is provided.

Chapter 4 focus on the characteristics of the packet length feature and its differences in traffic

from P2P and non-P2P applications. The experimental data and the applications used in the

study are presented, followed by the description of the heterogeneity of the packet lengths

observed in P2P and non-P2P traffic and of the strategy used to quantify the heterogeneity by

resorting to entropy. The results obtained for the different applications are presented along

with the discussion of the main observations. After that, the chapter proposes a classifier to

identify the hosts running P2P applications.
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Chapter 5 follows the work described in the previous chapters, focusing on individual flows from

VoIP sessions. The analysis of the traffic from VoIP sessions using different codecs is presented,

including the description of the experimental data, the explanation of the use of entropy to ex-

press heterogeneity, and the analysis of the packet length heterogeneity. After that, a classifier

capable of classifying the traffic from VoIP sessions and identifying the speech codec was pro-

posed, followed by the performance evaluation. The chapter includes a supplemental section

containing additional information to extend the explanation of specific details of the study.

Chapter 6 provides a study of traffic from P2P media streaming and P2P file-sharing applica-

tions, describing the experimental datasets and the applications used in the analysis, the use

of entropy to measure the heterogeneity not only of the packet lengths, but also of additional

traffic features, the level of observation of the analysis, and the properties observed during

the traffic features analysis. Afterwards, the chapter proposes a new classifier to classify P2P

traffic flows based on the analysis described in its previous sections, followed by the perfor-

mance evaluation. Further details and explanations are provided in a supplemental section

that finishes the chapter.

Chapter 7 presents the most important conclusions and contributions of this thesis and discusses

directions for future research work.
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lenges, making it necessary to devise effective solutions for managing network traffic. Since the traditional
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1. INTRODUCTION
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contents between Internet users. The once passive user has gained a new and very
active role in the Internet, acting simultaneously as client and server. These impor-
tant changes in the services running over the Internet and in the behavior of the end-
hosts modified the traditional properties of network traffic, which is evolving towards a
more balanced bandwidth usage in both directions. Additionally, most of these applica-
tions present a greedy profile, consuming as much bandwidth as they can, which may
end up interfering with priority policies. Azzouna and Guillemin [2003], for example,
found that 49% of the traffic in an Asymmetric Digital Subscriber Line (ADSL) link
was caused by P2P applications, while Gerber et al. [2003] and Sen and Wang [2004]
observed the growth and prevalence of this kind of traffic. In 2007, ipoque conducted
a world wide study about the Internet traffic [Schulze and Mochalski 2007] and the
results showed that P2P file-sharing applications were producing more traffic than all
the other applications together, being responsible for 49% to 83%, on average, of all
Internet traffic, and reaching peaks of over 95%. Another study by ipoque [Schulze
and Mochalski 2009], in 2008 and 2009, concluded that, although the total amount of
traffic generated by P2P file-sharing has increased, its percentage has decreased to an
average value of between 42.51% and 69.95%. This fact may be due to an increase of
the traffic generated by video streaming and file hosting web services, like YouTube,
Tudou, or RapidShare. Yet, there have been several discussions regarding the adoption
of P2P solutions by some of the these services, namely YouTube and Tudou, in order
to accelerate their downloading rates and reduce the transmission cost. In fact, the
web-based CNN live channel service relies now on the P2P paradigm due to a plug-in
each user has to install.

In spite of the share of global traffic of each Internet application, P2P systems mo-
tivate particular attention from the perspective of network management for the dual
role their peers play. For a certain amount of data downloaded by a peer, a portion of
data is also uploaded by the same peer. Instead of being concentrated in a dedicated
server, the distribution cost of the service is thus shared by the users. While this fact
is advantageous for content providers, it implies that a host receiving a service will
produce additional traffic in its Internet Service Provider (ISP) network or Local Area
Network (LAN) as it is also providing the service to a different peer. Moreover, hosts
in P2P networks usually receive and provide contents from and to several peers at the
same time. Hence, P2P applications are likely to produce a much larger number of con-
nections than typical client-server applications. In addition, mechanisms to search con-
tents in remote peers also cause an increment of the communications between hosts.
These facts make P2P traffic management more challenging than traffic from client-
server applications, which is usually formed by a single or a few connections. Besides
of the increase of the bandwidth consumption, the amount of traffic generated by P2P
applications in both directions is more balanced, as opposed to the greater weight in
downstream of the traditional client-server traffic. This difference poses an important
issue in terms of traffic management, as most networks (or Internet connections) were
devised to offer lower bandwidth in upstream. Managing the network and implement-
ing specific policies for P2P traffic does not necessarily means it should be blocked or
heavily throttled. Nevertheless, there are techniques that can help to efficiently man-
age this traffic if one is able to classify it, as content caching [Karagiannis et al. 2005b;
Xu et al. 2008].

Although the traffic management issues are of particular concern mainly for ISPs
and network administrators [Karagiannis et al. 2005b; Freire et al. 2009], there are
other problems, mostly related to security risks and vulnerabilities [Zhou et al. 2005;
Seedorf 2006; Li et al. 2007; Johnson et al. 2008; 2009; Chopra et al. 2009], that are
magnified by the distributed nature of P2P systems and by the role of their peers,
and that may affect companies and home users. While reducing the overlay distances
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between end hosts for the exchange of contents, the P2P paradigm also amplifies the
effects of virus and other threats by facilitating their dissemination. Ensuring privacy,
anonymity or confidentiality is also more difficult in these networks and constitutes
a real concern, not only for home users, but also for companies [Lawton 2004]. These
problems do not result directly from the P2P communication paradigm, but they are a
consequence of the proximity between peers and of the simplicity of content sharing in
P2P systems. This fact, together with the multiple connections created by P2P appli-
cations and the encryption and obfuscation techniques used by most of them, make it
more difficult to identify threats in the traffic.

In this context, traffic classification based on the application protocol appears as
a crucial tool to manage the data within the networks, to fairly share the available
bandwidth, to assure the Quality of Service (QoS), to implement billing mechanisms
or to deploy security measures. However, identifying the application that generated
the traffic is nowadays a difficult task and may have several associated issues (e.g.,
random port number or payload encryption) as described by Kind et al. [2008]. The
traditional and most obvious method to classify network traffic was to associate the
transport port numbers to well-known application protocols. However, this approach
became ineffective as soon as a significant number of applications started to use ran-
dom port numbers, or port numbers used by other well-known protocols. Karagiannis
et al. [2004a] identified P2P applications running on port 80 and estimated that 30%
to 70% of the overall P2P traffic is generated by applications using random port num-
bers. Likewise, the results by Madhukar and Williamson [2006] show that the same
percentage of Internet traffic cannot be correctly identified by port based methods.
More recently, Basher et al. [2008] concluded that 90% of the P2P traffic may be using
random ports.

Therefore, in the last years, the classification of Internet Protocol (IP) traffic has
been a very active research field, with many contributions based on distinct ap-
proaches. When port-based mechanisms lost their effectiveness, the solution was to
employ Deep Packet Inspection (DPI) techniques, which were frequently used by Net-
work Intrusion Detection Systems (NIDSs) for security purposes, to identify the traffic
using signatures in the contents of the packets. However, this approach also has a few
important drawbacks, mainly related with the computational resources required to in-
spect traffic in high-speed networks, with the impossibility to accomplish their purpose
when the payload is encrypted and with privacy issues. The alternative was to design
different statistical or behavioral (based on heuristics) methods, which resort to the
packet header and flow-level data to segregate the traffic into different classes.

The main contribution of this article is to survey the existing studies, methods, tech-
niques and applications on the topic of traffic classification. Although several concepts
and techniques may also apply to other fields of traffic monitoring, herein they will be
analyzed from the perspective of traffic classification. Most of the classification meth-
ods may be applied to the classification of the traffic from different types of applica-
tions. Nonetheless, since P2P systems are on the basis of a large number of research
contributions, a special attention will be given to the studies addressing the subject of
P2P traffic classification.

In order to facilitate the understanding of the survey, it is included an introduction
to the subject of network measurement from the perspective of traffic monitoring (and,
more specifically, classification), which explains a few important concepts and tech-
niques. The existing approaches for traffic classification are also carefully described
in the survey, explaining their way of functioning, in which situations they are more
valuable and what are their limitations. Foremost, this article provides an extended
review of the literature, presenting the available methods and their performance, and
organizing them based on the type of analysis they perform.
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The remainder of the article is structured as follows. Section 2 describes the related
work. Section 3 gives an explanation of important concepts and techniques for traffic
measuring, while section 4 describes the distinct approaches for traffic classification
together with their main advantages and weaknesses. An analysis of the published
literature is presented in section 5, followed by the Conclusions section.

2. RELATED WORK
The topic of traffic classification has aroused considerable interest in recent scien-
tific contributions, with several studies addressing the challenges raised by new ap-
plication protocols and proposing novel techniques and solutions for its classification.
Nonetheless, there are still few papers surveying the existing works on the field, as
well as analyzing distinct methods and approaches.

The Internet Measurement Research Group (IMRG) of the Internet Research Task
Force (IRTF) sponsored a workshop on Application Classification and Identification.
The report of this workshop [Strayer et al. 2008] described a number of important
topics, highlighting the challenges inherent to the task of traffic classification and its
main motivations and summarized the contribution of each paper.

Madhukar and Williamson [2006] compared the efficiency of three distinct tech-
niques for the identification of P2P traffic: port numbers, payload signatures, and
transport-layer heuristics. In order to provide a longitudinal study of the performance
of each technique, they collected traffic traces during two years and used them as
sample data to evaluate each method. Kim et al. [2007; 2008] also performed a com-
parative study between three different approaches to traffic classification: port-based,
behavioral, and statistical. The evaluation was based on available applications and re-
search tools and techniques: CoralReef [Moore et al. 2001], BLINC [Karagiannis et al.
2005a], and Machine Learning (ML). The authors tested the solutions using seven
distinct traffic traces from two backbone and two edge links from United States of
America, Japan, and Korea. In [Li et al. 2009], four different classification methods
were also compared in terms of efficiency and effectiveness: well known port numbers,
DPI, Naı̈ve Bayes and the C4.5 decision tree method. In order to evaluate the perfor-
mance of the mechanisms from both temporal and spatial perspectives, the authors
used traffic traces collected over several years on two different sites.

A survey on traffic classification solutions relying on ML was provided in [Nguyen
and Armitage 2008b]. Although the study was especially focused on the identification
of application-level protocols through the use of ML techniques, the authors also in-
cluded a description of the difficulties imposed by many recent Internet applications
and the main reasons for developing new methods for the classification of the traffic
generated by those applications. Cascarano et al. [2010b] compared the performance
of three different traffic classifiers for peer-to-peer television (P2PTV) applications: a
DPI mechanism, a method based on single-class Support Vector Machines (SVMs), and
a method based on multi-class SVMs. They evaluated three P2PTV applications and
used traffic traces collected at the border gateway of a LAN of a university campus.

The most closest work to the study presented herein was the one by Callado et al.
[2009]. After introducing the subject of traffic analysis, the authors described the state-
of-the-art of flow-based traffic analysis, pointing out several flow properties of Internet
traffic. They also described many research works on the traffic classification field and
provided a theoretical comparison of the results obtained by four distinct studies.

This survey distinguishes itself from the previous works for its wide and comprehen-
sive analysis, and for giving special attention to the identification of P2P traffic and
its challenges. Moreover, as traffic classification is a very active research topic many
works described herein are subsequent to [Callado et al. 2009]. Unlike most studies,
this survey starts by introducing the subject of traffic measurement from the perspec-
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tive of traffic classification, so that basic concepts, important for the correct reading
of the remainder of the paper, can be well understood. Besides describing the exist-
ing approaches for traffic classification and identifying its main advantages and weak
points, this survey provides a broad review of the literature. Furthermore, it analyzes,
compares and gives a structured view of studies, approaches, techniques and available
applications for the classification of P2P network data.

3. MEASURING FOR NETWORK MONITORING
Solid research studies on the characteristics and behavior of computer networks, as
well as the development of effective mechanisms for the traffic management and the
design of better and more efficient networks, require strong and accurate traffic anal-
yses and collections. Over the last few decades, many authors addressed the subject of
network (and, more specifically, Internet) traffic measurements, highlighting its cru-
cial role for understanding the behavior of computer networks, e.g., [Jain and Routhier
1986; Claffy and McCreary 1999; Cáceres et al. 2000; Williamson 2001; McGregor
2002; Paxson 2004].

However, measuring network traffic is far from being a simple problem. Corrobo-
rating this idea, Paxson [2004] describes a few challenges one has to deal with when
performing such task, as well as some interesting strategies for a sound Internet mea-
surement. McGregor [2002] also discusses several technical issues, while proposing
guidelines for quality measurements.

Likewise, also in the context of traffic classification, and in spite of playing an es-
sential role in a solid work, network measurements can be a source of technical chal-
lenges [Arlitt and Williamson 2007]. In the next subsections, the topic of traffic mea-
surement is explored from the point of view of traffic classification, considering impor-
tant concepts, techniques, and approaches. Nevertheless, for a deeper discussion on the
subject of network measurement, we refer to the book by Crovella and Krishnamurthy
[2006], as well as to the references cited in this section.

3.1. Traffic Measurements
At this point, it is useful to distinguish between different approaches for network traf-
fic measurement or monitoring. Based on a few specific characteristics, Williamson
[2001] classifies the research tools for network study into the following categories:
hardware or software; protocol level; LAN or Wide Area Network (WAN); on-line (or
real-time) or off-line; and passive or active. The discussion of each of these categories
may be appropriate or not, depending on the purpose of each monitoring study or tool.
However, in most studies [Claffy and McCreary 1999; Paxson 2004; Duffield 2004;
Bartlett et al. 2007b], authors differentiate, mainly, between active and passive mea-
surements. Herein, these aspects will be briefly discussed from the perspective of traf-
fic classification.

3.1.1. Hardware and Software based Solutions. Practitioners and researchers working in
the field of traffic classification are more interested in analyzing the IP packets or
the Ethernet frames. Hence, it is not significant if the traffic measurements are made
using hardware or software based tools.

Nonetheless, dedicated hardware solutions tend to present a better processing per-
formance, which is useful for real-time analyses. A few companies, like ipoque [2011],
Endace [2011], Napatech [2011], or WildPackets [2011], provide hardware systems for
traffic monitoring or high-speed network interfaces with dedicated buffers for traffic
capturing, like the Data Acquisition and Generation (DAG) cards. In terms of traffic
classification, a few authors also resort to hardware devices, like Field Programmable
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Gate Arrays (FPGAs) or Ternary Content Addressable Memory (TCAM), to improve
the computational performance of DPI mechanisms [Yu 2006; Mu et al. 2007].

3.1.2. Protocol Level. It is possible to measure the traffic at different, and even mul-
tiple, protocol levels. However, since traffic classification is mostly used for Internet
traffic, measurements for that purpose are usually made at the Ethernet or IP levels.

3.1.3. LAN and WAN. For the purpose of traffic classification, measurements can be
conducted, with no lost of information or research knowledge, in LANs instead of
WANs, which typically are not so easy to get access to.

3.1.4. On-line and Off-line Analyses. Although, in terms of the traffic measurement, on-
line and off-line approaches do not differ significantly, the latter is more used whenever
a real-time analysis is not necessary, since such task would require higher computa-
tional power to be accomplished in high-speed links. Moreover, the usage of off-line
trace files is crucial for research and validation purposes, as it allows one to run differ-
ent analyses through the same data and compare the obtained results.

Nevertheless, on-line measurements are obviously imperative for, e.g., NIDSs, fire-
walls, or other devices responsible for traffic management, which need to take imme-
diate actions (e.g., drop or forward packets) on the network traffic. However, in these
cases, the use of on-line measurements may impact the performance of high-speed
networks.

3.1.5. Active and Passive Measurements. The active approach resorts to the injection of
actual packets into the network, in order to observe the behavior of the network, hosts
or applications. This kind of measurements is mainly used for monitoring the perfor-
mance of the network or to identify weak points in the system, being especially suitable
for the evaluation of QoS levels. ping and traceroute are simple examples of tools that
implement active measurements.

Since active methods rely on the use of artificial traffic, they allow one to easily con-
trol the simulation of the scenarios that he or she wants to analyze or to test, like the
traffic class, nature, frequency, etc. However, such traffic will not directly reflect the be-
havior nor the influence of the application and of the human behavior. Moreover, these
methods will increase the traffic load in the network, which may affect not only the
available bandwidth, but also the performance of routers, switches, or other network
equipment. In the case of large networks, administrators can face scalability problems
when using active measurement techniques.

Passive measurement techniques do not produce any additional traffic. Instead of
injecting packets into the network, a passive monitor simply looks at the traffic and
collects data that can be used to infer on the behavior of hosts, applications, network
performance or even on the user influence in the generated traffic. It does not send
additional data to the network being monitored, modify any contents, interfere in the
packets route (unless it has also other functions, as firewall, gateway, etc.), or increase
the traffic load. Furthermore, an important advantage of this kind of approach is that
the final data reflects the properties of the real traffic. Passive measurements are,
therefore, particularly useful for traffic management, retrieving important knowledge
about the behavior of the traffic.

Nevertheless, passive measurements may produce large amounts of data, which may
require ambitious computational resources not only to store and handle that data, but
also to process it and generate useful conclusions. For the same reason, its analysis
in real-time may be a demanding task. In some contexts and for some purposes, the
usage of real traffic may also raise a few legal issues [Ohm et al. 2007].
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3.2. Per Packet and Per Flow Analysis
Measurements made for the purpose of Internet traffic analysis are mainly focused
on IP packets or Ethernet frames. The traffic under analysis is usually captured and
stored on a packet-by-packet manner, as the most obvious method to accomplish the
task of capturing traffic is to simply catch each individually data unit traveling in
the network. Some of the existent tools for network management include means to
display, process, statistically analyze, or even make decisions on each packet individ-
ually. This per packet approach is especially interesting for applications like NIDSs
(e.g., Snort [2010] or Bro [2010]), which need to process and decide upon each packet.
Also, sniffers or protocol analyzers especially designed for off-line analysis, like Wire-
shark [2010] or Ettercap [2010], usually inspect each packet deeply, gathering infor-
mation from all the layers of the protocol stack.

Although packets are individual data units when traveling through the network, a
relation exists between many of them [Jain and Routhier 1986]. Usually, they are gen-
erated by the same request or application, they contain acknowledgement messages
from reliability mechanisms (like it happens with Transmission Control Protocol (TCP)
traffic), or they are simply carrying an amount of data that is too large to fit in a sin-
gle Ethernet frame. Therefore, the relation between the packets comprises a relatively
hidden knowledge about the network and the traffic behavior, which can be assessed
by analyzing the traffic in terms of data flows.

A flow is, most of the times, defined as a set of packets that share a common key:
source and destination IP addresses and transport port numbers [Claffy and McCreary
1999; Duffield 2004; Duffield et al. 2005; IETF 2008]. It is considered active while the
time interval between each packet belonging to the flow is lower than a certain thresh-
old. The timeout value may depend on the purpose of the analysis. Although a few
studies propose distinct timeouts, Claffy et al. [1995] explored different values and
identified 64 seconds as a good compromise between the size of the flow and the effort
to initialize and terminate the flows. Furthermore, a flow may also be defined as uni-
directional or bidirectional, depending on whether one wants to consider the packets
traveling between two address-port pairs in each direction as two independent flows, or
the packets in both directions as a single flow [Apisdorf et al. 1996; Claffy et al. 1995].
Because of the usual asymmetry of the traffic exchanged between two addresses in
typical client-server connections and also due to the asymmetric routes in the core In-
ternet, unidirectional flows are mostly used in studies on network performance and
bandwidth management, for which it is useful to measure the differences in the traffic
in both directions [Claffy et al. 1995]. On the other hand, bidirectional flows are a nat-
ural option to represent TCP sessions and, for the purpose of traffic classification, they
are a more logical approach to follow, as the traffic exchanged between two address-
port pairs, in both directions, belongs to the same traffic class and was generated by
the same application. Nonetheless, Smith et al. [2001] were able to successfully use
unidirectional packet headers traces to analyze TCP transactions.

In order to analyze the traffic from a flow perspective, a monitoring tool can still
capture the packets individually, but it has to organize them in a table of flows, based
on the source and destination information (address and port). Several tools, e.g., Coral-
Reef [Moore et al. 2001], were developed to perform flow-based analyses of traffic from
network adapters or from off-line packet traces. However, it is possible to receive the
flow information directly from routers or other network elements, e.g., using a flow
export protocol, like Cisco NetFlow [2010] or the Internet Protocol Flow Information
eXport (IPFIX) [IETF 2008], a standard for exporting flow data currently under devel-
opment. NetFlow data can be read and analyzed by a few existent applications, like
Flow-tools [Romig et al. 2000] or FlowScan [Plonka 2000].
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3.3. Collecting Traffic Data
The access to the network data for traffic measuring, as mentioned in a few stud-
ies [Duffield 2004; McGregor 2002], may be performed by copying the transmission
signal (e.g., through the use of a splitter) and analyzing it on a dedicated network mon-
itor, by using a router or a switch to copy all the traffic to an output interface, or by
directly tapping a shared link. Nevertheless, there are also a few global infrastructures
for the active measuring of Internet, that collect data from world wide links [Murray
and Claffy 2001]. The datasets containing traffic from computer networks should be
carefully handled in order to protect the privacy of the users, as well as other sensitive
data. Several considerations and good practices regarding this subject are discussed in
[Allman and Paxson 2007].

As seen in previous subsections, the passive data collection can be made by polling
routers to obtain flows data, or by packet capturing. While in the former approach,
data is usually acquired through the use of protocols like IPFIX, in the latter, the
trace files are collected using commercial or public domain network traffic capturing
software, like tcpdump [2011] and its Windows version, WinDump [2011], or even other
available tools developed with basis on the libpcap [tcpdump 2011] or WinPcap [2011]
libraries.

Although the most natural means is to capture the complete packet, such technique
generates large trace files, which would require larger storage capacity and processing
power to handle the traffic in high-speed links. Moreover, the increasing integration
of measurement techniques into routers, switches and other network elements that do
not possess a high processing power [Duffield 2004; Jurga and Hulbój 2007] motivates
the development of solutions that can reduce the amount of data collected, as described
in the next subsection.

3.4. Trace Reduction
The most common approaches for trace reduction resort to packet filtering or to the
minimization of the data that is kept for future analysis [Duffield 2004; Arlitt and
Williamson 2007]. It is possible, depending on the specific goals of each study, to moni-
tor exclusively the packets from a given application. However, such selection is usually
made using the transport layer port numbers, which is consensually considered a naive
approach. Alternatively, one may select only the packets that establish or finalize a
connection or a request, or use any other selection criterion that may be more coherent
with the objective of a particular analysis and decrease the number of packets to be
captured.

The amount of data stored can be reduced by saving a summary of each application
protocol-specific request; by capturing a limited portion of the packet or even only the
headers of the first layers of the TCP/IP protocol stack; or by keeping information of a
flow instead of storing each packet that belongs to it.

A particular case of packet filtering is the use of packet sampling methods [Amer and
Cassel 1989], whose objective is to randomly (or pseudo-randomly) choose a small set
of the packets observed in the measuring point. It is intended that the set of packets
obtained be as much representative as possible of the traffic one plans to measure.
There are different packet sampling techniques which may be more useful in distinct
cases, depending on factors like the goal of the study, the network state, the traffic
characteristics or the resources constrains. Jurga and Hulbój [2007] elaborated on the
existent methods for packet sampling and their application in network measurements.
Duffield [2004] addressed the subject of Internet traffic sampling as well, providing a
long and sound structured discussion of several important topics on passive traffic
measurement.
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Table I. Side-by-side comparison of the approaches for traffic classification.

Approaches Characteristics Advantages Weaknesses

Port number
matching

— associates port numbers
with applications

— low computational
requirements

— easy to implement

— lack of classification
performance due to
random port numbers

Deep packet
inspection

— relies on payload data — high classification
performance

— may not work for
encrypted traffic

— requires high processing
resources

— can only be used for
known applications

Classification
in the dark

— uses only packet header
and flow level
information

— usually lighter than DPI
— applicable for encrypted

traffic
— can identify unknown

applications from target
classes

— usually has lower
classification
performance when
compared to DPI

Active
crawlers

— based on modified
instances of the target
applications

— identifies accurately
users of the target
applications

— identifies only the traffic
exchanged with the
crawler

— injects additional traffic
in the network

4. TRAFFIC ANALYSIS AND CLASSIFICATION APPROACHES
In the early times of the Internet, traffic classification was a straightforward task that
was easily accomplished by matching the port numbers of the transport protocols with
the application protocols. However, since many Internet applications, especially the
ones based on the P2P architecture, evolved to use random port numbers or ports as-
signed to well known protocols (e.g., Hypertext Transfer Protocol (HTTP)), identifica-
tion strategies agnostic to the port numbers became more common. The most natural
approach is to look inside the packets and see what type of data they carry and which
application protocol was used. Regardless of that, several statistical or behavior-based
methods that do not inspect the contents of the packets have been developed more re-
cently. Table I provides a simple side-by-side overview of the main characteristics of
each classification approach. For a better understanding of the remaining of the pa-
per, a discussion on the different types of techniques for traffic classification, the way
they operate, their advantages and their drawbacks is provided in the following sub-
sections. Furthermore, two additional subsections were included to address the topic
of ground truth verification and describe the most common metrics for the evaluation
of the performance of a classification mechanism.

4.1. Traffic Classification Based on Port Numbers
The classification of network traffic based on the User Datagram Protocol (UDP) or
TCP port numbers is a simple approach built upon the assumption that each appli-
cation protocol uses always the same specific transport layer port. This method was
mostly useful in the identification of well known protocols like, e.g, HTTP or Sim-
ple Mail Transfer Protocol (SMTP), which use the port numbers 80 and 25, respec-
tively. However, many Internet applications easily bypass this identification strategy
by simply using random or unknown port numbers, disguising their traffic using port
numbers generally used by other well known protocols (e.g., port 80) that are usually
allowed by firewalls. Thereby, port numbers as a classification mechanism are consid-
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alert udp $HOME_NET any -> $EXTERNAL_NET any (msg:" LocalRule:P2P eDonkey UDP
outbound - Status Request "; flow:to_server; content :"|E3 96|"; depth :2;
classtype:policy -violation; sid :1000019; rev :1;)

Fig. 1. Example of a SNORT rule to detect a payload signature for the traffic generated by eDonkey with
obfuscation, proposed in [Freire et al. 2009].

ered obsolete [Karagiannis et al. 2004b; Moore and Papagiannaki 2005; Madhukar and
Williamson 2006].

4.2. Traffic Classification Based on Deep Packet Inspection
DPI methods, usually the most accurate, are based on the inspection of the packets
payload. They rely on a database of previously known signatures that are associated
to application protocols, and search each packet for strings that match any of the sig-
natures. This approach is used not only in the classification of network traffic, but
also in the identification of threats, malicious data and other anomalies. Because of
their effectiveness, classification systems based on DPI are especially significant for
accounting solutions, charging mechanisms, or other purposes for which the accuracy
is crucial. Fig. 1 shows an example of a SNORT rule for the detection of a data signa-
ture in the traffic from eDonkey with obfuscation mechanisms enabled.

However, deeply inspecting each packet can be a demanding task in terms of compu-
tation power and may be unfeasible in high-speed networks. Therefore, some mech-
anisms search only a part of each packet or only a few packets of each flow as a
compromise between efficiency and accuracy. Besides of the performance issues, the
inspection of contents of the packet may also raise legal issues related with privacy
protection [Ohm et al. 2007].

Nevertheless, the main drawback of DPI techniques is their inability to be used
when the traffic is encrypted. Since, in these cases, the contents of the packets are in-
accessible (encrypted), DPI-based mechanisms are restricted to specific packets of the
connection (e.g., when the session is established) or to the cases when UDP and TCP
connections are used concurrently and only the TCP sessions are encrypted. Packets
with no payload, which may be malicious, cannot be classified as well. DPI methods
are also sensitive to modifications in the protocol or to evolution of the application ver-
sion: any changes in the signatures known by the classifier will most certainly prevent
it from identifying the application. Moreover, DPI methods that rely on signatures for
specific applications, can only identify traffic generated by those applications.

4.3. Traffic Classification in the Dark
The inspection of the contents of IP packets, as discussed in the previous subsection, is
not always a valid option for the identification of application-level protocols. Therefore,
new methods that do not resort to the deep inspection of the packets have been devel-
oped. The strategy of this kind of approach, sometimes called in the dark [Karagiannis
et al. 2005a; Turkett et al. 2008], is to classify the traffic using behavioral or statistical
patterns, based on flow-level data or generic properties of the packets [Moore et al.
2005], like addresses, ports, packet size, etc.

The main advantage of classification in the dark is the ability to identify a protocol
without the need to examine the contents of the packet. As a consequence, mechanisms
based on this approach cannot aspire to the same accuracy level of DPI methods. Their
results should be understood as a strong suspicion regarding the probable application
protocol. Nevertheless, recent studies have achieved high success rates in the classi-
fication of Internet traffic. Additionally, classification in the dark can more easily be
applied to unknown applications since many methods based on this approach classify
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the traffic in classes of applications (e.g., web traffic, email, video streaming, P2P, etc.)
instead of specific applications.

The existent mechanisms use distinct techniques to correlate the traffic properties
and conclude on the application protocol, such as statistical measures, sets of heuris-
tics, or machine learning algorithms. The following subsections introduce each of these
approaches.

4.3.1. Statistical Mechanisms. Statistical methods usually rely on flow and packet level
properties of the traffic, like flow duration and size, inter-arrival times, IP addresses,
TCP and UDP port numbers, TCP flags, packet size, etc. These properties are used,
individually or combined, to calculate statistical values, from simple measures as av-
erage or variance, to more complex ones like the probability density function. In some
studies [Crotti et al. 2006], statistical models of the traffic from a certain application
are created. Generally, such approach requires a learning phase to build a reference
model that can be used to classify unknown traffic.

4.3.2. Heuristics Based Methods. Many behavioral mechanisms for traffic classification
are based on a predefined set of heuristics. Although a large part of them are common
to the majority of the research works, distinct combinations or sets are proposed in
several studies. Typical heuristics include the network diameter, the presence of nodes
acting both as client and server, the number of hosts a user communicates with, the
source-destination IP pairs that use both TCP and UDP, the number of distinct ad-
dresses and ports a user is connected to, etc. Generally, the set of heuristics is checked
sequentially, and, depending on the result, the packet (or flow) is classified as belong-
ing, or not, to a certain application-level protocol.

4.3.3. Machine Learning Techniques. A large part of the studies propose classification
mechanisms based on different supervised or unsupervised ML techniques, such as
Bayesian estimators or networks [Moore and Zuev 2005; Auld et al. 2007], cluster-
ing [McGregor et al. 2004], decision trees [Branch et al. 2009], etc. They assemble a set
of traffic characteristics which they correlate using of probabilistic functions, associat-
ing each packet or flow to a certain class.

4.4. Traffic Classification Using Active Crawlers
The majority of the solutions in the literature are passive, as they do not interfere with
the data within the network neither they generate any additional traffic. Nevertheless,
some authors have also developed active mechanisms that crawl the network to collect
data used to classify the traffic [Saroiu et al. 2003]. A few of them implemented fake or
modified instances of the target applications whose main purpose is to identify hosts
running the original applications [Ohzahata et al. 2005].

This kind of approach is generally used for very specific purposes, such as the
identification of users running a certain application. Some authors resorted to active
crawlers to collect statistics on the number of hosts running the target application and
on the properties of the connections to peers (available bandwidth, latency, etc.) [Saroiu
et al. 2003].

4.5. Ground Truth Verification
The use of pre-collected traffic from computer networks is of critical importance for
the creation and testing of new methods for traffic classification in respect to the
application-level protocols. Nonetheless, without the ability to assess its ground truth
application information, the use of traffic data is of limited value [Sperotto et al. 2009].

The majority of the packet traces publicly available are limited to the headers due
to privacy concerns, making it difficult to obtain the associated ground truth regard-
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ing the application. For that reason, in most studies on traffic classification, the re-
searchers collect their own traffic traces to test the accuracy of their solutions. Such
approach makes the comparison of different methodologies inconsistent as the perfor-
mance of each of them was evaluated in different conditions [Salgarelli et al. 2007].
The use of methods to accurately verify and label the ground truth information of
packet traces before making the headers publicly available, would solve the problem
while still keeping the private data.

In many studies, the ground truth verification is obtained by using an alternative
method as reference baseline, e.g., port number matching or DPI [Karagiannis et al.
2005a]. However, such approach will depend on the accuracy of the classifiers used as
baseline. Port number matching, e.g., is now considered an ineffective option, while
DPI may be unsuitable for encrypted traffic. In fact, when a novel mechanism for traf-
fic classification is proposed, under the pretext that the existent solutions are not com-
pletely effective, it is nonsensical to test the accuracy of the new method by using an
existing one as the baseline for performance comparison.

Alternatively, hand-classification may be used to verify the ground truth information
of the traces [Moore and Zuev 2005]. However, the process can be slow and tiresome.
Moreover, it is also possible to create traffic collections from a small network of comput-
ers, running a predefined set of applications in a controlled environment. Nonetheless,
the obtained traces may not exhibit properties that reflect the human behavior.

Given the increasing concern regarding this topic, a few authors have, more recently,
addressed the subject of ground truth verification of application traffic. Canini et al.
[2009] presented GTVS, a framework to improve and simplify the process of associ-
ating traffic data with application-level protocols. It makes use of the packet payload
inspection and of multiple heuristic rules to infer the ground truth information and it
provides a graphical interface to facilitate manual verification of traffic traces. Gringoli
et al. [2009] proposed GT, a toolset to assess the ground truth of application traffic. Its
architecture differs from GTVS mainly in the fact that it includes the existence of a
daemon, which is supposed to run in each client and return the information of the
process that originated each network connection. Although this approach may signif-
icantly increase the accuracy of the verification, the deployment of the client daemon
may be difficult in most contexts, or even near impossible in large networks. A sim-
ilar approach was followed by Szabó et al. [2008], who also described a client-based
solution. In this case, the authors suggested the implementation of a client driver that
inserts a byte mark in each outgoing packet whose size is not yet the size of the Maxi-
mum Transmission Unit (MTU), so that it can avoid the IP packet fragmentation.

All these approaches have their merits and weaknesses, but none is perfect, though.
Relying on an alternative classifier to work as baseline reference enables the ground
truth identification in every trace, independently of the size of the network. However, if
the reference classifier uses DPI, the payload data in the traces must not be encrypted
nor removed. Moreover, the evaluation of the performance of the new classification
method will always depend on the accuracy of the reference classifier, which may also
loose effectiveness when applications evolve and change the properties of their com-
munications (at payload level or even behavioral level). If the results show a certain
misclassification rate (even if it is very low), it is impossible to be sure if the error was
induced by the new method or by the reference classifier. Of course, this also depends
on how challenging the target application is to be classified and on the composition of
the traces that are being analyzed. The GTVS solution proposed by Canini et al. [2009]
is also a strong tool that can significantly improve the task of ground truth identifica-
tion. Nonetheless, it is based on a combination of different methods to identify the
traffic, including DPI, and thus may have similar limitations. On the other hand, al-
though the manual verification of the traffic could allow a better accuracy, it is only
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feasible for small datasets. The same happens with the approaches that save informa-
tion during traffic capturing about the process that generated the packets, as the ones
from Gringoli et al. [2009] and Szabó et al. [2008]. This information is very valuable
for traffic classification and can help to achieve high accuracy on the ground truth.
Unfortunately, the deployment of the client daemons or drivers in all the computers of
a large network is also difficult to accomplish. The use of testbeds with smaller net-
works, in which it is possible to control the applications being used, also allows high
accuracy on the ground truth identification. However, it may not be representative of
the traffic in large scale networks. The method used to assess the ground truth is ex-
tremely important to the quality of the evaluation results. Therefore, one should be
aware of the capabilities and limitations of each method when evaluating a classifier.

4.6. Performance Evaluation Metrics
The evaluation of classification methods is made by comparing the results of the clas-
sification with the ground truth information of the traces. Each individual case is
considered a True Positive (TP), True Negative (TN), False Positive (FP), or False
Negative (FN) case depending on whether it was correctly classified as belonging to,
correctly classified as not belonging to, incorrectly classified as belonging to, or incor-
rectly classified as not belonging to a certain class.

The analysis of TPs, TNs, FPs, and FNs can be made in terms of packets, flows, or
bytes. The evaluation of classification methods based on packets usually presents lower
performance as many packets are similar independently of the application that gener-
ate them. For example, a TCP SYN packet, used to initiate a connection, is similar for
any application. Moreover, many classifiers, especially the ones based on classification
in the dark, are not design to classify individual packets. The evaluation in terms of
flows and bytes may also present different performance levels. In many traces, depend-
ing also on the type of traffic they contain, a small number of flows may carry almost
all the bytes. The rest of the flows contain only a few small packets. In these cases, if
a method correctly classifies only the larger flows, the result of the performance will
be very positive in terms of bytes and very negative in terms of flows. On the contrary,
if the larger flows are misclassified and the all the small flows are correctly classified,
the performance will be positive in terms of flows and negative in terms of bytes.

The performance of the classifiers can be measured, in terms of TPs, TNs, FPs, and
FNs, using different metrics [Makhoul et al. 1999; Olson and Delen 2008]. There is a
great number of metrics for classification evaluation and, although some are equiva-
lent, most of them measure different aspects of the classification. When using metrics
to evaluate a traffic classification mechanism, it is important to understand what is
measured by each of them. In the following paragraphs, we briefly explain the most
common metrics in traffic classification studies.

The accuracy of a classifier is usually evaluated by measuring its capability to cor-
rectly identify positive and negative cases. Hence, accuracy is defined as the ratio of
correct positive and negative classifications to all the positive and negative cases in
the experimental data:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

However, accuracy is insufficient to evaluate a classifier when using imbalanced
datasets with a greater number of positive or negative cases in the dataset, as it gives
more importance to the most popular class in the dataset. In such case, if a classifier
privileges the class with more cases in the dataset, it will always achieve a good accu-
racy. For example, in an extreme case, a completely useless classifier that classifies as
positive every case in the dataset will achieve a high accuracy in a dataset containing,
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e.g., 90% of positive cases. Therefore, it is necessary to use more than one measure,
each of them evaluating different aspects of the results.

Two of those metrics, precision and recall, are used together to evaluate classification
methods and are defined as follows [Nguyen and Armitage 2008b]:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
. (3)

Some authors also used the term accuracy to refer to precision [Callado et al. 2010]
or to recall [Hu et al. 2008]. These metrics are used to evaluate the capability of the
classifier to correctly identify the positive cases. Precision, also referred as positive pre-
dictive value, evaluates how correct the cases identified as positive by the classifier are,
whereas recall, also referred as hit rate or true positive rate, expresses the percentage
of positive cases included in the dataset that were correctly identified by the classifier.

Nonetheless, precision and recall also have limitations in specific contexts as they
do not value rarity [Weiss 2004; Stefanowski and Wilk 2009]. Both metrics do not con-
sider the amount of negative cases correctly identified by a classifier. This means that
if a classifier C1 returns, e.g., 10 false positives out of 10 negatives and a classifier C2
returns an equal number of false negatives and of true positives and 10 false positives
out of 1000 negatives, both classifiers will have the same precision and recall. How-
ever, C2 may be considered to have better performance as it failed to correctly identify
only 1% of the negative cases, while C1 was not able to identify any negative case. Fur-
thermore, the precision obtained for a dataset containing an extremely low share of
positive cases may be affected by the high prevalence of negative cases. In fact, in such
context, a very small percentage of the negative cases misclassified as positive cases
may be sufficient to overcome the number of true positives identified by the classifier,
due to the shortage of positive cases in the dataset.

In these situations, it may be advantageous to consider metrics that separately eval-
uate the classification of positive and of negative cases. Therefore, recall can be used
together with a another metric, specificity, which is defined as follows [Wang 2008]:

Specificity =
TN

FP + TN
. (4)

When used together with specificity, recall is usually called sensitivity [Raahemi et al.
2008b]. Sensitivity measures the ratio of correctly classified positive cases to the total
of positive cases, whereas specificity evaluates the negative cases that were correctly
classified. In the context of traffic classification, sensitivity and specificity are especially
useful to evaluate classifiers that are focused on a specific class that accounts for a
minority of the traffic in a dataset, e.g., a classifier designed to identify video streaming
or Voice over Internet Protocol (VoIP) traffic.

Moreover, Karagiannis et al. [2005a] defined a different metric similar to recall,
which they called completeness, and used it together with precision, which they called
accuracy. To the best of our knowledge, the two metrics were also used by Callado et
al. [2009; 2010] and Szabó et al. [2007]. Completeness measures the ratio of classified
positive cases, correctly or incorrectly, to the total number of positive cases and is
defined as follows:

Completeness =
TP + FP

TP + FN
. (5)

The metrics used to evaluate a classifier should be chosen depending on the context
and purpose of each classifier. Although some authors have used different names for
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Table II. Well known port numbers used by several P2P protocols.

Protocols TCP Ports UDP Ports

AIM - messages 5190 5190
AIM - video 1024–5000 1024–5000

ARES Galaxy 32285 32285
BitTorrent 6881–6999
Blubster 41170–41350 41170–41350

Direct Connect 411, 412, 1025–32000 1025–32000

eDonkey 2323, 3306, 4242, 4500, 4501,
4661–4674, 4677, 4678, 4711, 4712, 7778 4665, 4672

FastTrack 1214, 1215, 1331, 1337, 1683, 4329
Gnutella 6346, 6347 6346, 6347
GoBoogy 5335 5335
HotLine 5500–5503

ICQ 5190
iMesh 80, 443, 1863, 4329
IRC 6665–6669

Kazaa 1214 1214
MP2P 10240–20480, 22321, 41170 41170
MSN 1863

MSN - file transfer 6891–6900
MSN - voice 6901 6901

Napster 5555, 6666, 6677, 6688, 6699–6701, 6257
PeerEnabler 3531 3531

Qnext 5235–5237 5235–5237
ROMnet 6574

Scour Exchange 8311
ShareShare 6399 6388, 6733, 6777

Soribada 7675–7677, 22322 7674, 22321
SoulSeek 2234, 5534 2234, 5534
WASTE 1337 1337
WinMX 6699 6257

XMPP / Jabber 5222, 5269 5222, 5269
Yahoo - messages 5050

Yahoo - video 5100
Yahoo - Voice 5000–5001 5000–5010

similar metrics, in the next section, we will use the terms accuracy, precision, recall,
sensitivity, specificity, and completeness as described above, so as to keep the article
coherent.

5. DISCUSSION OF THE STATE OF THE ART ON TRAFFIC CLASSIFICATION
In the literature on traffic classification, several mechanisms and applications are pro-
posed for the identification of application-level protocols. The following subsections
provide a theoretical study of the most relevant works in this field of study. Traf-
fic classification methods are, in many cases, suitable for the identification of traffic
from different types of applications. Nonetheless, since most of the applications whose
traffic is difficult to identify by conventional means use P2P platforms, many of the
studies discussed herein are oriented for the detection and classification of P2P traffic.
Although the approaches used by most of the studies described in this section are, in
many cases, also used for the detection of traffic anomalies, virus, and other software
threats [Lakhina et al. 2005; Ranjan et al. 2007; Soewito et al. 2009], this section will
be focused only on the studies addressing the subject of traffic classification.

5.1. Port-Based Classification
As described in section 4.1, the early strategies for traffic classification were based on
the identification of port numbers. The Internet Assigned Numbers Authority (IANA)
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keeps an updated list of the well known or registered port numbers, which is available
in the web [IANA 2011]. Nevertheless, there are also port numbers or ranges that are
traditionally used by some P2P systems. Table II presents a list of the port numbers
commonly used by well known P2P applications.

A few studies have used this approach to identify application protocols. In [Sen and
Wang 2004] and in [Krishnamurthy and Wang 2002], the authors analyzed P2P traf-
fic collected at the border routers of a large ISP. In order to distinguish the flows from
Gnutella, FastTrack and Direct Connect, they used the TCP port numbers. Saroiu et al.
[2002a] collected traffic from the University of Washington and, using port numbers,
identified and analyzed the data from four content delivery systems, HTTP web traffic,
Akamai network, KaZaA and Gnutella. Leibowitz et al. [2002] monitored traffic from
an ISP network and analyzed FastTrack based traffic, which includes KaZaA, Mor-
pheus and Grokster data, filtered through the use of port numbers. Gerber et al. [2003]
resorted to port numbers, as well, to identify traffic from several P2P systems. They
collected traffic from an ISP backbone and from a university network, and analyzed its
properties.

There are also tools for traffic analysis that provide information about the
application-level protocol based on port numbers, like the CoralReef suite [Moore et al.
2001] or the Wireshark [2010] packet analyzer. A few studies have used the application
port tables from CoralReef to identify the network traffic [Fraleigh et al. 2003].

5.2. Deep Packet Inspection Classification
The lack of effectiveness of the methods based on port numbers motivated the in-
crease of the studies that analyze the traffic using payload inspection. Sen et al. [2004]
proposed payload signatures for Gnutella, eDonkey, Direct Connect, BitTorrent, and
KaZaA, and implemented them using the Gigascope monitor. They tested the solution
using traffic collected on an access network to a major backbone and on a T3 (45 Mbps)
link connecting a Virtual Private Network (VPN) to the Internet. The authors esti-
mated that the false positives rate was approximately 0%, while the false negatives
rate was between 0.00% and 4.97% for the analyzed protocols, with the exception of
BitTorrent for which it was 9.90%. However, they considered that the flows that use
well known port numbers of P2P applications are, in fact, P2P traffic. Based on that
assumption, each flow that used one of those ports and was not classified as P2P traffic
was identified as a false negative case.

Moore and Papagiannaki [2005] presented a flow-based methodology that resorts to
the deep inspection of the payloads. It uses a set of distinct methods that search for
known signatures within the full payload of each packet. The methods are checked
sequentially until one of them matches a certain application. In the tests performed
by the authors, which relied on manual verification, the proposed set of methods was
able to accurately identify approximately 99.99% of the traffic, which corresponds to
the recall rate.

In [Karagiannis et al. 2004b], the authors used payload signatures to identify traf-
fic of several P2P applications, namely, eDonkey2000, FastTrack, BitTorrent, WinMX,
Gnutella, MP2P, Soulseek, and Direct Connect. They used their approach to analyze a
few traffic traces captured from links of two backbones, and conclude on the evolution
of the percentage of P2P traffic in the Internet.

Spognardi et al. [2005] collected and analyzed traffic from OpenNap, WPN and Fast-
Track P2P protocols in order to identify payload signatures. The signatures were codi-
fied in form rules for the Snort NIDS and used to monitor network traffic.

In [Choi and Choi 2006], the use of port numbers is proposed as a real-time method
to identify the traffic. Afterwards, the traffic is also inspected off-line using DPI tech-
niques. The authors presented a methodology to check if the packets match a data
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pattern that is based on an edit distance algorithm. Bin et al. [2007] proposed a so-
lution that uses payload signatures to identify P2P flows as well. Each successfully
identified packet is added to a table with an hash identifier, which is calculated from
the source and destination IP addresses and from the transport port numbers. This
way, the authors only examine the contents of the packets that belong to flows that
were not classified yet.

The detection of chat related traffic was studied in [Dewes et al. 2003]. The authors
analyzed several chat protocols and identified payload signatures. The tests show that
the methodology presented, which was validated using manual verification, failed to
detect less than 8.3% of all chat connections (recall of 91.7%) and, from the ones de-
tected, 93.13% were correctly classified (precision).

Generally, one the major drawbacks of DPI methods is their weight in terms of com-
putation power. Hence, a few studies have tried to develop DPI mechanisms that are
light and scalable. Risso et al. [2008] presented a taxonomy of the possible DPI ap-
proaches and performed a comparison of the performance and accuracy between a
lightweight and a completely stateful traffic classification methods. They concluded
that, although the lightweight methods are not so accurate, they are still effective
enough for the purpose of traffic classification while being able to perform much faster
than the stateful approaches. Guo and Qiu [2008] proposed a signature-based method
to identify P2P flows in high-speed networks using packet sampling and they tested
it with BitTorrent-related traffic. They evaluated the relation between its performance
and the sampling probability, achieving different false positive and negative rates, de-
pending on the value of the sampling probability, from 0.00% to 11% and from 0.33%
to 10.5%, respectively. In [Cascarano et al. 2009], the authors evaluated the computa-
tional cost of a DPI mechanism by comparing it with a statistical one. Although the
comparison has been made between only two specific methods, it shows that, depend-
ing on the composition of the traces, the DPI mechanism can be as much computation-
ally heavy as the statistical classifier; or it can go as high as five times the complexity
of the statistical approach. In her PhD thesis, Yu [2006] developed high speed packet
processing algorithms, proposing the use of hardware support to perform the deep in-
spection of packets. Smith et al. [2008] used auxiliary variables and optimizations to
implement a mechanism for deflating explosive Deterministic Finite Automata (DFA).
Using their solution, the authors were able to optimize the process of signature match-
ing, achieving promising results for File Transfer Protocol (FTP), SMTP, and HTTP
traffic. Kumar et al. [2006] introduced a new representation for regular expressions,
called the Delayed input DFA (D2FA), which significantly reduces the space require-
ments of a DFA. The results of their tests showed that they were able to reduce mem-
ory space requirements by more than 95%. In [Cascarano et al. 2010a], the authors
presented two optimizations of a DPI classifier that reduce the data checked by the
pattern matching engine. The improvements are achieved at the cost of a controlled
reduction of the accuracy, which, unlike the case of intrusion detection, is acceptable
in traffic classification.

The encryption of the payload is usually a problem for the DPI techniques. How-
ever, a few studies used the payload examination to identify P2P encrypted traffic.
In [Carvalho et al. 2009b], the authors identified, manually, several payload signa-
tures of BitTorrent encrypted traffic and provided a set of Snort rules to match the
patterns observed. They tested the rules with traffic from a university network. The
same authors have used a similar approach to identify signatures for encrypted eDon-
key traffic [Freire et al. 2009] and P2P TV traffic [Carvalho et al. 2009a].

Most DPI mechanisms are based on signature matching. Nevertheless, a few meth-
ods use the payload data in a different perspective. Dhamankar and King [2007] used
entropy to explore the randomness of the data within the encrypted payloads of Skype
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traffic, resorting to clustering methods and congregating several heuristics. More stud-
ies have also addressed the subject of Skype traffic identification. Ehlert and Petgang
[2006] described a detailed analysis of the Skype protocol and presented a signature to
detect its traffic that is based on payload and transport-level data.

Some authors have been developing studies on the automatic identification of pay-
load signatures. Most of those studies are focused on the identification of worms, virus,
and other traffic anomalies [Singh et al. 2004; Yegneswaran et al. 2005; Cavallaro et al.
2008]. However, a few authors have proposed similar approaches for traffic classifi-
cation. Haffner et al. [2005] used three ML algorithms and, with two of them, they
were able to construct signatures, with precision between 99% and 100% and recall
between 86.6% and 99.9%, by resorting to the examination of a small amount of data
at the beginning of the communication. The study was performed for traffic from FTP,
SMTP, Post Office Protocol (POP), Internet Message Access Protocol (IMAP), HTTP,
Hypertext Transfer Protocol Secure (HTTPS), and Secure Shell (SSH). Finamore et al.
[2009] presented KISS, a classifier that automatically extracts signatures from a UDP
stream by using a stochastic test that allows the identification of the application proto-
col syntax, while ignoring the synchronization and semantic rules. The signatures can
be seen as statistical fingerprints in the payload data. The authors tested the mech-
anism, verifying it manually, using traffic traces from an italian ISP. KISS correctly
identified more than 98.1% of the samples in the worst case, reaching an average re-
call of 99.6% and an average false positives rate of 0.34%. In [Mantia et al. 2010], they
extended the previous method to support also the classification of TCP traffic, with
an average recall of 97.62%. In [Park et al. 2008], it is also presented a solution for
the automated creation of signatures, the LASER algorithm. The authors tested the
approach for LimeWire, BitTorrent, and Fileguri, using data collected in a campus net-
work and manually verified. They achieved an accuracy rate of 97.39%, with a false
negatives rate of between 0.39% and 10.40% and with 0% of false positives.

5.3. Classification In The Dark
Recently, several studies have proposed classification strategies that rely on behavioral
and statistical patterns, which can be further categorized as follows.

5.3.1. Heuristics. Several studies propose heuristics as a means to identify P2P traffic.
Constantinou and Mavrommatis [2006] proposed a classifier that uses three heuristics:
the number of hosts that act both as server and client in a specific port exceeds a given
threshold; the estimated network diameter is at least as great as 2; and the number
of hosts that are present in the first and last levels of the network exceeds a given
threshold. The method was tested using data traces from NLANR [2010] and compared
with port-based classification. Depending on the threshold values, the results vary
between 8.5% and 12.7% of false negatives (detected with port-based and not detected
with heuristics) and between 7.6% and 42.4% of additional positives (not detected with
port-based and detected with heuristics). In [Perényi et al. 2006], the authors described
a method based on a set of six heuristics to identify P2P traffic: simultaneous usage
of TCP and UDP; the existence of several consecutive connections between two hosts;
well known P2P port numbers; multiple flows with the same flow identities; an IP
using the same transport port more than 5 times in the measurement period; and the
flow size larger than 1MB or its duration longer than 10 minutes. The validation of
the approach was made using a small labeled traffic trace and it achieved a recall
of 99.14% and of 97.19% for P2P and non-P2P traffic, respectively, with 0.3% of false
positives and 0.8% of false negatives. John and Tafvelin [2008] also proposed a set of
heuristics to classify Internet traffic, which are a redefined combination of the ones
suggested in [Karagiannis et al. 2004c; Perényi et al. 2006]: the concurrent use of TCP
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and UDP; the well known P2P port numbers; the port numbers that are used very
often; the relation between the number of IP addresses and the number of transport
ports; and the flows carrying more than 1 MB or lasting more than 10 minutes. Besides
the heuristics, the authors also described a set of rules to reduce the number of false
positive cases. They used the mechanism to classify traces collected at a university
link, leaving only 2% of the traffic unclassified (recall of 98%).

5.3.2. Social Behavior. Karagiannis et al. [2005a] presented BLINC, a mechanism for
flow classification that does not rely on the payload data or transport port numbers to
identify the application protocol. BLINC analyzes traffic at three levels (social, func-
tional, and application) exploiting properties of each node, like the relation with the
remaining hosts, the role in the connection (server or client), the transport layer infor-
mation, or the average packet size. The mechanism was tested using traffic collected
at numerous academic, research and residential complexes, within a university cam-
pus and it was evaluated by comparing it with a DPI based method. BLINC was able
to classify between 80% and 90% of the flows, corresponding to the completeness rate,
with a precision ranging from 90% to 95%. Iliofotou et al. [2007] introduced a different
perspective for the traffic analysis that is focused on the network-wide interactions
of hosts. They model the social behavior of hosts by organizing and correlating the
information in graphs, which they call Traffic Dispersion Graphs (TDGs), where the
edges represent different interactions. In [Iliofotou et al. 2008; Iliofotou et al. 2009],
they used TDGs to create a framework, Graption (Graph-based classification), to clas-
sify the traffic based on the application protocol. The mechanism was tested using two
traces from a Tier-1 ISP and one trace from the Abilene (Internet2) network and a DPI-
based method as baseline. The results showed that the solution was able to classify the
traffic with a recall of between 94% and 95% and a precision of between 95% and 96%.

5.3.3. Statistical or Behavioral Signatures. A mechanism for flow classification based on
the definition of statistical signatures or fingerprints for different traffic classes was
proposed by Crotti et al. [2006; 2007]. The fingerprints are created using traffic pre-
classified with any effective mechanism and then used to classify network traffic. Dusi
et al. [2008; 2009] also used statistical fingerprints to identify encrypted tunnels. The
method was evaluated, using data collected on controlled sessions and reaching a recall
of between 82.45% and 100.00%. Bartlett et al. [2007a] identified three basic behav-
ioral signatures from P2P file sharing: failed connections, the ratio of incoming and
outgoing connections, and the use of unprivileged ports. They evaluated the mecha-
nism by classifying BitTorrent and Gnutella traffic, captured from a commercial ISP
and from academic institutions. In order to access the ground truth for BitTorrent data,
the authors identified all the flows that used the default port number of BitTorrent
tracker and manually verified that the destination was a real tracker. All the traffic
identified by these means was confirmed to be P2P traffic. Additionally, they considered
all flows using non-privilege ports that are not well-known ports as likely non-P2P.
For the Gnutella data, the authors considered as P2P all the flows that contact with
Gnutella ultra-peers, which they identified by connecting repeatedly to the Gnutella
network and keeping a record of the ultra-peers list. These approaches were used to
verify the classification of P2P hosts and of likely non-P2P hosts. Besides of this strate-
gies, to verify the classification of the remaining flows, the authors identified the flows
using default BitTorrent ports (6969, 6881-6888) and the default Gnutella port (6346).
The results show that BitTorrent hosts were detected with a recall ranging from 83%
to 92%, while Gnutella hosts achieved a recall from 57% to 97%, and the false positives
rate was between 2% and 25%. In [Freire et al. 2008a; 2008b], a mechanism to identify
VoIP calls hidden in Web traffic was proposed. The authors analyzed several proper-
ties of the network data to distinguish between VoIP and legitimate Web traffic and
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selected the following parameters: Web request size; Web response size; inter-arrival
time between requests; number of requests per page; and page retrieval time. In or-
der to measure the goodness of fit, they used the Chi-square and Kolmogorov-Smirnov
tests. The evaluation was made using Skype and Google Talk VoIP data, previously
collected in both ISP and university links on a controlled way. The method achieved
similar results for both protocols, being able to identify around 90% (recall rate) of the
VoIP calls with a false positives rate of 2%, and 100% (recall rate) of VoIP calls hidden
in Web traffic with a false positives rate of 5%. In [Gomes et al. 2008], the authors an-
alyzed several edge user traces of P2P and non-P2P applications and tried to identify
a behavioral pattern of the P2P traffic. They concluded that the packet sizes of P2P
traffic presented a high heterogeneity when compared to the packet sizes of the non-
P2P traffic. They used entropy to represent the heterogeneity degree and calculated its
value for a sliding window containing a fixed number of packets. P2P traffic, especially
the one related with VoIP services, returned high entropy values, while for the reg-
ular client-server traffic the entropy value was consistently smaller. Lin et al. [2009]
proposed the use of the packet size distribution and port association as a pattern to
distinguish application protocols. They used traces collected in a controlled environ-
ment to evaluate the method, which achieved a recall of between 74% and 100% and
false positives and negatives rates ranging from 0% to 9% and from 0% to 18%, re-
spectively. Palmieri and Fiore [2009] presented a new approach for the classification of
Internet traffic that relies on Recurrence Quantification Analysis (RQA). They studied
non-linear properties of specific IP flow types so that they could determine the recur-
rence phenomena and hidden non-stationary transition patterns related to each type
of traffic. For the different traffic classes considered in the study (HTTP, eDonkey2000,
Domain Name System (DNS), SMTP, POP, and SSH), the authors obtained average
recall rates ranging from 45.8% to 89.4%, when compared to DPI. The tests were per-
formed with three distinct traces captured in a university network.

5.3.4. Machine Learning Algorithms. The supervised and unsupervised ML methods are
widely used in studies on the classification of network traffic. In the following para-
graphs, the different research works based on ML are organized depending on the
techniques employed.

Naı̈ve Bayes and Neural Networks. A Naı̈ve Bayes estimator was employed
in [Moore and Zuev 2005; Zuev and Moore 2005] to distinguish the traffic based on
the application-level protocol and they used hand-classified data to train the classi-
fier. The input discriminators for this study were formed by several properties of the
flows. The method was tested with traffic data from a research campus, previously
hand-classified and collected twelve months later than the data used for the training
process (which proves the temporal stability of this approach), and achieved a precision
of between 13.46% and 99.27% and a recall of between 93.73% and 96.29%. Schmidt
and Soysal [2006] proposed a mechanism for the detection of P2P traffic resorting to a
Bayesian network, built using the following flow characteristics: IP packet size distri-
bution; packets per flow distribution; octets per flow distribution; flow time distribu-
tion; and well-known port numbers. They evaluated the performance of the classifier
using traffic from an academic network and compared the results against a signature-
based method. The results showed false negatives and positives rates ranging from
16% to 26% and from 22% to 28%, respectively. Auld et al. [2007] also described a
classifier based on a Bayesian neural network, trained using data previously classified
using DPI. A set of traffic properties and statistics was used as input for the classi-
fication process. The method proved to have an accuracy of between 95% and 99%,
for data manually verified and collected eight months after the data used to train the
classification mechanism.
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Clustering. McGregor et al. [2004] proposed a clustering-based methodology that
extracts a range of flow properties and uses the Expectation-Maximization (EM) algo-
rithm to cluster the flow into different classes. A preliminary validation of the approach
showed promising results. A framework for traffic classification, based also on the EM
algorithm and trained using several flow characteristics, was described in [Zander
et al. 2005a; 2005b]. The method was tested using traffic traces from NLANR [2010]
and the results showed moderate effectiveness. Nguyen and Armitage [2006; 2008a]
proposed a solution based on the EM algorithm and on a Naı̈ve Bayes classifier. In
order to test and classify the method, they used traffic from a gaming server and from
a university link and obtained its ground truth using the port numbers. The results
showed an average accuracy above 98.3%. Bernaille et al. [2006a; 2006b] presented a
method for traffic classification that is based on the first five packets of a TCP con-
nection, excluding the control packets (the ones marked with the flags SYN, ACK,
etc.). They experimented three clustering techniques to explore the relations between
the initial packets and identify clusters related with distinct application protocols: k-
means, Gaussian Mixture Model (GMM), and spectral clustering. The mechanism was
trained using an one-hour trace collected at the edge of a university network and it
was tested with a similar trace captured six months later, by comparing it with a DPI-
based classifier. The results presented a recall of between 36.0% and 100.0% and a
false positives rate from 0.0% to 3.6%. In [Bernaille and Teixeira 2007], the authors
extended the same approach, using GMM to identify traffic encrypted (or tunneled)
in Secure Sockets Layer (SSL) connections. The evaluation, performed using manu-
ally generated traffic traces, showed a recall ranging from 81.20% to 100.00% and a
false positives rate of between 0.00% and 2.30%. Erman et al. [2006a] also described
a preliminary work on the effectiveness of clustering algorithms for traffic classifica-
tion. They employed the k-means and the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithms and used several properties to discriminate the
flows, like the total number of packets, the mean packet size, the mean payload size,
the number of bytes transfered, and the mean inter-arrival time. The approach was
tested using a publicly available trace without the payload data and a trace collected
by the authors at a university link, showing a recall ranging from 86.6% to 93.5%.
The ground truth verification was made using port numbers and DPI. In [Erman et al.
2006b], they proposed an unsupervised ML solution, the EM algorithm, for the traffic
classification. They analyzed the performance of the method using traffic traces col-
lected at a university link and compared the results with a supervised ML technique,
a Naı̈ve Bayes classifier. The evaluation showed that the EM algorithm achieved pre-
cision and recall rates between 80% and 100%. The same authors [Erman et al. 2007a]
proposed also a semi-supervised learning method for traffic discrimination, based on
several flow-related statistics, that allows the classifiers to be designed from training
data formed by a few labeled and many unlabeled flows. Although the mechanism is
not limited to any specific clustering algorithm, after the previous studies, they de-
cided to use the k-means. They tested the mechanism using data whose ground truth
was verified using DPI, heuristics and manual verification, and achieved a recall of
between 80% and 90%. The same approach was also used in [Erman et al. 2007b] to
distinguish between Web and P2P traffic, with an accuracy of between 80% and 95%,
precision of between 71.42% and 97.84%, and recall of between 62.10% and 97.32%.

Decision Trees. A method for traffic classification based on decision trees was pro-
posed in [Early et al. 2003]. The trees were constructed by employing the C5.0 algo-
rithm and using the information about the TCP flags used in each connection, as the
authors believe to be enough to capture the flow behavior. The authors used HTTP,
FTP, Telnet, SMTP, and SSH traffic to test and evaluate the mechanism, which proved
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to have a recall of between 82% and 100%. Cao et al. [2008] described an approach
for the identification of application protocols in real-time, at both host and flow levels,
using Classification And Regression Tree (CART). Through an off-line analysis, they
extracted metrics to characterize the traffic and used decision trees to identify the
traffic in an on-line manner. The authors focused their experiments on traffic from Bit-
Torrent, HTTP, SMTP, and FTP, collected in a home link and also in an enterprise net-
work. In order to assess the ground truth, the authors created the traces of BitTorrent
actively, in a controlled manner, at a home environment. The HTTP, SMTP, and FTP
traffic was captured in an enterprise network and filtered using the port numbers. In
the tests the authors performed, the method classified the traffic with a false positives
rate of between 0.05% and 12.7%, and a false negatives rate of between 0% and 17.9%.
Raahemi et al. [2008b] applied Concept-adapting Very Fast Decision Tree (CVFDT) to
identify P2P traffic, using a set of network level attributes of the packets. They used
labeled data sets to evaluate the performance of the mechanism, achieving an accu-
racy of between 79.50% and 98.65%, a specificity of between 82.96% and 95.89%, and a
specificity of between 67.96% and 99.72%. In [Angevine and Zincir-Heywood 2008] the
C4.5 and the AdaBoost algorithms were used to classify UDP and TCP Skype flows.
The authors used the mechanism to analyze labeled traffic traces from a university
network with a recall between 94% and 99% and a false positives rate between 1% and
26%. A decision tree based classifier, Random Forests, was used in [Wang et al. 2008]
to identify traffic from multiple P2P protocols. The method was tested with manually
labeled datasets, captured at residential and academic networks and achieved an ac-
curacy rate ranging from 89.38% to 99.98%, a precision from 32.69% to 100.00%, and a
false positives rate from 0.00% to 12.61%. Branch et al. [2009] also employed the C4.5
algorithm using different conjunctions of flow features from packet lengths, statistics
of large packets and inter-arrival times. Using traffic from a university network, the
method was able to classify the traffic with a precision of 99% and a recall of 98%.

Markov Chains and Models. Wright et al. [2006] focused specifically on the behav-
ior of encrypted traffic. Using a classifier based on hidden Markov models and also
on the k-nearest neighbor algorithm, they proved that it is possible to identify the
application-level protocol: in aggregate traffic without demultiplexing or reassembling
the TCP connections; in aggregate traffic by demultiplexing the flows and analyzing
them individually; and in aggregate traffic without demultiplexing the flows or recog-
nizing which packets in the aggregate traffic belong to which flows (as when the traffic
is encrypted at the network layer). The evaluation was performed using traffic from
SMTP, HTTP, HTTPS, FTP, SSH, Telnet, and AOL Instant Messenger (AIM) and the
ground truth information was verified using port numbers, presenting a recall ranging
from 57.70% to 96.70% and a false positives rate of between 0.62% and 8.37%. Dainotti
et al. [2008] have also proposed a classification mechanism based on hidden Markov
models, whose classification process is based on packet sizes and inter packet times.
The authors applied the model to real traffic traces, verified manually and using DPI,
of two multi-player games, HTTP, SMTP, eDonkey, PPlive P2P TV, and MSN Messen-
ger, reaching a recall of between 90.23% and 100.00%. Xusheng and Zhiming [2009]
used Markov chains to model the sequences of control packets a certain application
exchanges with a remote host and based the decision rule on the Neyman-Pearson test
and on the likelihood criterion.

Support Vector Machines. The behavioral-based classification was accomplished
in [Gonzá1ez-Castaño et al. 2006] by employing SVMs. The solution proposed was
evaluated using datasets that were labeled based on the port numbers and on a few
simple heuristics, reaching an accuracy of between 78.7% and 90.2%. In [Turkett et al.
2008], the authors extracted several flow features and used FTP, SSH, Telnet, SMTP,
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HTTP, and POP related traffic to train a SVM mechanism, which performed well in
the tests they conducted. Este et al. [2008] proposed three pattern recognition solutions
based on SVMs, GMM, and C4.5 to identify the presence of the unknown classes and
they used the size of the first packets as input feature. The tests performed with the
three methods presented an accuracy of between 92.53% and 98.83%, confirmed using
DPI and manual verification. In [Este et al. 2009], the authors described carefully the
approach based on SVMs and used it to classify three sets of traffic. The results of the
test showed a recall ranging from 69.6% to 100.0%. Valenti et al. [2009] described a
new approach to identify the traffic from P2P-TV applications resorting to the number
of packets exchanged between the peers during short time intervals and uses SVMs
to train the mechanism. The authors captured traffic in a large testbed and used it
to test the method, which was able to correctly classify between 91.3% and 99.6% the
data (recall rate), with only between 0.3% and 8.7% of false positives. An approach
relying on SVMs was also proposed in [Sena and Belzarena 2009]. The authors used
the size of the first N packets of each flow as a feature for traffic classification and they
trained the mechanism using data previously classified through DPI. They tested the
method using traffic from the network of an uruguayan ISP and achieved an accuracy
ranging from 30% to 100%.

Other Studies Relying on Machine Learning Techniques. In [Liu et al. 2007], the
authors used the ratio between the amount of download and upload traffic, in each
minute, as an identification pattern for each application and proposed a supervised
ML algorithm to identify each distinct class. They tested the method with traffic from
a few P2P applications, namely Maze, BitTorrent, PPlive, eDonkey, and thunder, which
they collected on a testbed. The results showed an accuracy rate of between 78.5% and
99.8%, depending on the protocol. Raahemi et al. [2008a] employed Fuzzy Predictive
Adaptive Resonance Theory (ART), or Fuzzy ARTMAP, to identify P2P traffic. They
used only data from the IP headers to build the Fuzzy ARTMAP neural networks. The
experimental tests, using labeled datasets, showed that the classifier is able to perform
with an accuracy ranging from 78% to 92%, a sensitivity from 68% to 90%, and a speci-
ficity from 85% to 96%. Huang et al. [2008] used a set of discriminators from which
they identified patterns by resorting to a ML technique. In this work, the authors
experimented a few techniques, concluding that Bayesian network, Partial Decision
Tree (PART), and C4.5 are the ones that performed better. The evaluation was made
using traces collected at a university link, whose ground truth was accessed using pay-
load signatures. The method showed a recall of between 90.87% and 95.11%, depend-
ing of the ML technique used. Hu et al. [2008; 2009] proposed a novel method for the
classification of P2P traffic that aims to build behavioral profiles for each application,
by using association rule mining. They choose five flow tuples, extract flow statistics,
and correlate them using the Apriori algorithm. The approach, which was tested for
BitTorrent and PPLive using on-campus traces, verified manually and through DPI,
presented a recall ranging from 90.0% to 98.0% and a false positives rate between
0.2% and 5.0%. In [Williams et al. 2006], the authors compared five ML algorithms
for traffic flow classification. They argued that it is useful to analyze the algorithms in
terms of computational efficiency rather than classification accuracy as, even though
the accuracy between distinct algorithms may be similar, the computational efficiency
can be considerably different. Based on their results, the authors concluded that C4.5
algorithm was able to classify the flows faster then the remaining algorithms. A simi-
lar conclusion was reached in [Soysal and Schmidt 2007], in which three solutions for
P2P flows detection, based on ML, were compared.

5.3.5. Service Identification. Baldi et al. [2009] described a new approach for traffic clas-
sification that relies on the identification of the service that generates the traffic. They
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defined service as a triple formed by IP address of the server, transport port at the
server, and transport protocol. The authors say that the method can be seen as a com-
plement to reduce the computation and memory requirements of the existing solutions.
Nevertheless, in the tests performed on the Internet link of a university campus, the
mechanism was able to successfully classify 81% of the packets and 93% of the data
(recall rate).

5.4. Classification Based on Active Mechanisms
Although active methods are especially suitable for network performance studies, they
can also be used on traffic detection mechanisms. The Napster and the Gnutella sys-
tems were analyzed in [Saroiu et al. 2002b; 2003] with the purpose of characterizing
the population of end-user hosts. The authors of the study created a crawler for each of
the systems that gathered information regarding different properties, like bottleneck
bandwidths, IP-level latencies, etc. As the goal of the study was to characterize both
systems, the results presented are not focused on the classification accuracy but in the
properties of the traffic.

Ohzahata et al. [2005] have also proposed an active approach to identify pure P2P
traffic and applied their methodology to the Winny P2P file-sharing system. They de-
veloped a crawler to collect information of the IP addresses and transport ports of the
hosts connected to the system and they used it to identify further peers. The study
provides results regarding the number of peers identified by the mechanism, but its
accuracy was not evaluated.

5.5. Classification Through the Combination of Approaches
A few studies propose solutions that combine different kinds of approaches for the
classification of network traffic. Karagiannis et al. [2004c] proposed a cross-validation
mechanism which uses port numbers, payload signatures, and behavioral patterns to
identify traffic from eDonkey, Fasttrack, BitTorrent, Gnutella, MP2P, Direct Connect
and Ares. Besides presenting payload signatures for the said applications, the authors
propose a non payload based method that uses two heuristics. The first heuristic iden-
tifies source-destination IP pairs that use both TCP and UDP. The second one says
that, when the number of distinct IP addresses connected to a destination IP is equal
to the number of distinct ports used for the connections, the flows are likely to be re-
lated to P2P applications. Their behavioral mechanism identified more than 90% of
the total P2P bytes and 99% of the P2P flows, which corresponds to the recall rate.
The false positives rate, which was calculated by comparing the results of the payload
mechanism with the results of the behavioral method, is of approximately 8% to 12%
of the total estimate of P2P traffic. Nevertheless, the authors argue that part of the
false positives are, in fact, true positives that were not identified by the payload based
mechanism.

Dedinski et al. [2005] presented an architecture for the detection and control of P2P
traffic. It makes use of active crawlers to collect information about the peers of a spe-
cific application and, this way, understand the topology of the correspondent overlay
network. Alongside, the network-level properties of the traffic are also analyzed, ei-
ther per-packet or inter-packet, and used as a behavioral pattern, which the authors
identify using wavelet analysis techniques. They performed a preliminary test of the
architecture using only eDonkey and FTP traffic.

In [Nogueira et al. 2007; Couto et al. 2008; Nogueira et al. 2009], a framework to
identify Internet applications using a neural networks-based method was proposed,
relying on a previous identification obtained through any alternative technique. The
authors also described a module to classify the traffic using payload signatures that
was employed in the training of the neural network. They tested the method for traffic
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from BitTorrent, eMule, Gnutella and HTTP, collected individually for each applica-
tion, achieving a recall between 90% and 99%.

Bonfiglio et al. [2007] proposed a Naı̈ve Bayes classifier based on two traffic charac-
teristics, the message size and the average inter packets gap. They also implemented a
classifier based on the packet payload that uses the Chi-Square test to identify Skype
traffic by exploiting the randomness induced by the encryption of the payload. The
authors tested their approach using traffic from an ISP and from a campus and com-
pared its accuracy against a signatures based method, reaching a false positives rate
between 0.00% and 2.40% and a false negatives rate between 2.96% and 29.98%.

A mathematical framework for unsupervised protocol inference was described in [Ma
et al. 2006]. The authors introduced three methods for identifying different aspects of
the communication of a certain protocol: product distributions of byte offsets; Markov
models of byte transitions; and common substring graphs of message strings. They
evaluated the mechanism using traces collected at different buildings of the university
campus and verified manually. Depending on each traffic class in the different traces,
the precision was between 68.81% and 100.0% for product distributions, between 0.0%
and 100.0% for Markov models, and between 76.87% and 99.99% for common substring
graphs. The recall was between 81.82% and 100.0%, 0.0% and 100.0%, and 48.76%
and 100.0%, for product distributions, Markov models, and common substring graphs,
respectively.

Szabó et al. [2007] presented an architecture that can be extended with modules for
distinct traffic classification approaches. They analyzed the performance of the solu-
tion using traffic captured in the network of five mobile operators in Europe and Asia.
The effectiveness of the classification was also evaluated using hand-classified data
and traces captured in a controlled environment.

Adami et al. [2009] proposed a new algorithm to identify, in real-time, the hosts in a
network that are using Skype clients, that relies in payload signatures and statistical
analysis. The algorithm is able to recognize the different types of Skype communica-
tion: direct calls, calls using a relay node, call to phone service, and file transfer. It was
tested on-line and off-line, using traffic from a university LAN and from a small LAN
connected to an ADSL link and its performance was compared with the performance
of five other classifiers. The traces used in [Bonfiglio et al. 2007] were also tested. The
results showed a percentage of false positives between 0% and 0.01%, and of false neg-
atives between 0.06% and 0.64%, in terms of bytes and flows and for both TCP and
UDP traffic. The exception was the false negatives rate for TCP flows, whose value
was 27.46%.

Callado et al. [2010] collected five distinct datasets, captured in different contexts.
The first one was formed by traces from individual applications captured in client
computers, which where assembled in a single dataset. By creating the traces manu-
ally, the authors could be sure of the applications that generated the traffic. The other
datasets were captured in a laboratory network, in an academic backbone, and in the
core router of a commercial link (only one direction). The fifth dataset was formed my
the traffic in only one direction of the trace from the academic backbone. The ground
truth of this four datasets was obtained using DPI. The authors then used six ML algo-
rithms implemented in Weka [Hall et al. 2009] to classify the traffic in the five datasets:
J48 (C4.5 decision trees), PART, NBTree (decision trees with Naı̈ve Bayes classifiers
on the leaves), Bayesian networks with simple estimator, Bayesian networks with ker-
nel estimator and SVMs. They concluded that none of the classifiers performed better
in all the datasets (which correspond to different contexts) and thus they presented
a method to combine different classifiers. In order to choose the result of the com-
bination, they proposed five algorithms: random selection, maximum likelihood com-
bination, Dempster-Shafer combination, and enhanced Dempster-Shafer combination.
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Although it was tested mostly with ML algorithms, the method is independent of the
classifiers one may want to combine. In fact, they have also used BLINC [Karagian-
nis et al. 2005a] and DPI in some of the combinations. The results of the evaluation
showed that the precision varies from 60% to 99% and the completeness varies from
90% to 100%, depending on the dataset used. Nevertheless, the lower accuracy values
were obtained for the datasets that contained only one direction of the flows.

5.6. Applications for Traffic Classification
Besides the research studies proposing solutions for traffic classification and the com-
mercial tools, there are also a few available and ready to use applications, which are
described in the following paragraphs.

L7-filter [2010] is a classification tool for Linux Netfilter subsystem that uses the
application layer data to identify the packets. It is widely used in many studies, be-
ing, most of the times, the comparison baseline for the performance evaluation of new
methods. Another DPI-based tool is l7-netpdlclassifier [2010], which is based on the
NetBee [2010] library and uses a signature database [NetPDL 2010] written using the
NetPDL language [Risso and Baldi 2006]. ipoque has also made available an open-
source version of their DPI tool, which they called OpenDPI [2010].

Antoniades et al. [2006] developed Appmon [2010], a tool for the application-level
classification of network traffic. It is based on two MAPI [2010] function libraries and
it relies on port numbers and data signatures to identify the protocols.

Dainotti et al. [2009] presented TIE [2010], a novel community-oriented software for
traffic classification. It uses the libpcap library and it supports distinct definitions of
sessions and classes, as well as it allows the implementation of additional classification
plugins. In its initial state, TIE is available with only two classification plugins: port
numbers (based on CoralReef ) and payload signatures (based on L7-filter).

A classification tool based on clustering mechanisms, called NetADHICT [2010],
is proposed in [Inoue et al. 2007]. It decomposes the traffic without the use of any
application-specific knowledge and it uses an AJAX-based web interface that allows
one to see the high-level structure of network traffic.

Although CoralReef, Snort, and Wireshark are not especially intended to classify the
traffic regarding the application protocol, they do provide simple mechanisms for such
purpose. The CoralReef suite gives the user the ability to identify the application-level
protocol based on the port numbers; Snort, by default, contains several rules to identify
signatures in the contents of the packets of several protocols; while Wireshark is also
able to recognize payload patterns in non-encrypted traffic.

5.7. Summary and Challenges
Tables III, IV and V summarize the textual analysis included in the previous subsec-
tions. Furthermore, the chronological ordering of the tables allows one to observe the
evolution of the approaches used for the traffic classification and of the protocols each
study addressed. In the tables, the Protocols columns are related with the protocols
considered by each study. The performance metrics included in these tables were cho-
sen as they were the most used ones in the research works described along this survey.

The studies proposing DPI-based solutions are listed in Table III, along with the in-
dication of which were used by their authors to identify encrypted or obfuscated traffic.
For the sake of simplicity, the studies that evaluated or compared the performance of
existing methods were not included in the table.

Since VoIP traffic raises special concerns for network administrators, a few recent
studies have been presenting mechanisms for its detection. Table IV provides a sum-
marized analysis of the approaches they used and their performance.
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Table III. Studies based on DPI, and their capability to be applied to encrypted traffic.
Studies Protocols Encryption

Dewes et al. [2003] Chat protocols Does not apply
Sen et al. [2004] Gnutella, eDonkey, Direct Connect, BitTorrent, KaZaA Does not apply

Karagiannis et al. [2004b] eDonkey2000, FastTrack, BitTorrent, WinMX,
Gnutella, MP2P, Soulseek, Direct Connect Does not apply

Moore and
Papagiannaki [2005] multiple protocols Does not apply

Spognardi et al. [2005] OpenNap, WPN, FastTrack Does not apply
Haffner et al. [2005] FTP, SMTP, POP, IMAP, HTTP, HTTPS, SSH Apply
Choi and Choi [2006] multiple protocols Does not apply

Ehlert and Petgang [2006] Skype Apply
Bin et al. [2007] P2P Does not apply

Dhamankar and King
[2007] multiple protocols Apply

Guo and Qiu [2008] BitTorrent Does not apply
Smith et al. [2008] FTP, SMTP, HTTP Does not apply
Park et al. [2008] LimeWire, BitTorrent, Fileguri Apply

Carvalho et al. [2009a] P2P TV Apply
Carvalho et al. [2009b] BitTorrent Apply

Freire et al. [2009] eDonkey Apply
Finamore et al. [2009] multiple protocols Apply
Mantia et al. [2010] multiple protocols Apply

Cascarano et al. [2010a] multiple protocols Does not apply

Table IV. Studies addressing the subject of VoIP traffic identification and an overview of their performance, in terms
of precision (P), recall (R), false positives (FP), or false negatives (FN).

Studies Approach Protocols Performance (%)

Bonfiglio et al. [2007] Naı̈ve Bayes and
Chi-Square test Skype FP: 0.00–2.40; FN: 2.96–29.98

Angevine and
Zincir-Heywood [2008] C4.5 and AdaBoost Skype R: 94–99; FP: 1–26

Freire et al. [2008a;
2008b]

behavioral
signatures

Skype and
Google Talk R: 90–100; FP: 2–5

Branch et al. [2009] C4.5 Skype P: 99; R: 98

Adami et al. [2009] DPI and statistical
analysis Skype FP: 0–0.01; FN: 0.06–27.46

Table V describes the characteristics and performance of most of the studies ana-
lyzed in this survey that present methods for classification in the dark. For the sake of
simplicity, only the studies that proposed a new method and evaluated its performance
were included. The Baseline column indicates how the ground truth information of the
traffic used in the evaluation was assessed, or what method was used as a reference
to calculate the accuracy value. Most of the terms used in this column are easily un-
derstandable. The expression manual refers to traces manually verified or classified,
controlled traces refers to manually or actively generated traces, and testbed refers
to traces captured in previously prepared testbeds. This table is not meant to be a
comparison between the methods, as the evaluations were made by the authors under
different conditions and using distinct metrics [Salgarelli et al. 2007]. Its only purpose
is to provide an overview of the behavioral methods presented in the literature.

Likewise, Table VI provides a side-by-side comparison of the different approaches
followed by several studies in the literature. In order to keep the table short, we added
only a maximum of four studies for each type of method and gave priority to the most
recent ones. The evaluation results were included to give an easy perception of the
performance of each method. Additionally, another column was added to describe the
ability of the method to be applied to traffic with encrypted transport-level payloads.
Although the studies based on port numbers did not addressed the encryption issue, we
considered them suitable for encrypted traffic since the TCP and UDP port numbers
are usually not encrypted.
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Table V. Summary of the studies presenting new methods for traffic classification in the dark and an overview
of their performance, in terms of accuracy (A), precision (P), recall (R), sensitivity (Sens), specificity (Spec),
completeness (C), false positives (FP), or false negatives (FN).

Studies Approach Protocols Performance (%) Baseline

Early et al. [2003] C5.0 HTTP, FTP, Telnet,
SMTP, SSH R: 82–100 ports

Karagiannis et al.
[2004c] DPI and heuristics

eDonkey, Fasttrack,
BitTorrent, Ares,
Gnutella, MP2P,
Direct Connect

R: 90–99; FP: 8–12 DPI

Karagiannis et al.
[2005a] social behavior multiple protocols P: 95–99; C: 80–90 DPI

Moore and Zuev
[2005] Naı̈ve Bayes multiple protocols P: 13.46–99.27; R: 93.73–96.29 manual

Constantinou and
Mavrommatis [2006] heuristics P2P FP: 7.6–42.4; FN: 8.5–12.7 ports

Wright et al. [2006]
hidden Markov

models and
k-nearest neighbor

SMTP, HTTP,
HTTPS, FTP, SSH,

Telnet, AIM
R: 57.70–96.70; FP: 0.62–8.37 ports

Schmidt and Soysal
[2006] Naı̈ve Bayes P2P FP: 22–28; FN: 16–26 DPI

Gonzá1ez-Castaño
et al. [2006] SVMs multiple protocols A: 78.7–90.2 ports and

heuristics

Perényi et al. [2006] heuristics P2P R: 97.19–99.14; FP: 0.3; FN: 0.8 small
labeled trace

Ma et al. [2006]

product dists,
Markov models,
and substring

graphs

multiple protocols P: 0.0–100.0; R: 0.0–100.0 manual

Bernaille et al.
[2006a; 2006b]

k-means, GMM,
and spectral
clustering

multiple protocols R: 36.0–100.0; FP: 0.0–3.6 DPI

Erman et. al [2006a;
2006b; 2007a; 2007b]

k-means and
DBSCAN multiple protocols A: 80–95; P: 71.42–100.00; R: 62.10–100.00 ports and

DPI
Nguyen and

Armitage [2006;
2008a]

EM and Naı̈ve
Bayes multiple protocols P: 98.3–99.7; R: 96.0–98.9 ports

Bernaille and
Teixeira [2007] GMM multiple protocols R: 81.20–100.00; FP: 0.00-2.30 controlled

traces

Auld et al. [2007] Bayesian neural
networks multiple protocols A: 95–99 manual

Liu et al. [2007] supervised
learning algorithm

Maze, BitTorrent,
PPlive, eDonkey,

thunder
A: 78.5–99.8 testbed

Bartlett et al. [2007a] behavioral
signatures P2P file sharing R: 57–97; FP: 2–25 ports and

manual
Nogueira et al. [2007;

2009]
DPI and neural

networks
BitTorrent, eMule,
Gnutella, HTTP R: 90–99 individual

traces

John and Tafvelin
[2008] heuristics multiple protocols R: 98

comparison
other

methods

Wang et al. [2008] Random Forests multiple protocols A: 89.38–99.98; P: 32.69–100.00; FP: 0.00–12.61 labeled
traces

Cao et al. [2008] CART BitTorrent, HTTP,
SMTP, FTP FP: 0.05–12.7; FN: 0–17.9

ports and
controlled

traces

Dainotti et al. [2008] hidden Markov
models

gaming, HTTP,
SMTP, eDonkey,

PPlive, MSN
R: 90.23–100.00 DPI and

manual

Raahemi et al.
[2008b] CVFDT P2P A: 79.50–98.65; Sens: 82.96–95.89; Spec: 67.96–99.72 labeled

traces
Raahemi et al.

[2008a]
Fuzzy ARTMAP
neural networks P2P A: 78–92; Sens: 68–90; Spec: 85–96 labeled

traces

Huang et al. [2008] Bayesian network,
PART, and C4.5 multiple protocols R: 90.87–95.11 DPI

Este et al. [2008;
2009]

SVMs, GMM, and
C4.5 multiple protocols A: 92.53–98.83; R: 69.6–100.0 DPI and

manual
Iliofotou et al. [2008;

2009] social behavior P2P P: 95–96; R: 94–95 DPI

Dusi et al. [2008;
2009]

behavioral
signatures encrypted tunnels R: 82.45–100.00 testbed

Hu et al. [2008; 2009] behavioral
signatures

BitTorrent and
PPLive R: 90.0–98.0; FP: 0.2–5.0 DPI and

manual

Lin et al. [2009] behavioral
signatures multiple protocols R: 74–100; FP: 0–9; FN: 0–18 testbed

Valenti et al. [2009] SVMs P2P-TV R: 91.3–99.6; FP: 0.3–8.7 testbed
Sena and Belzarena

[2009] SVMs multiple protocols A: 30–100 DPI

Palmieri and Fiore
[2009]

behavioral
signatures

HTTP, SMTP,
DNS, POP, SSH,

eDonkey
R: 45.8–89.4 DPI

Baldi et al. [2009] service-based multiple protocols R: 81–93 client probe

Callado et al. [2010] combination of
methods multiple protocols P: 60–99; C: 90–100

DPI and
controled

traces
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Table VI. Overview of studies for traffic classification that follow different approaches, including their ability to be
applied to encrypted traffic and their performance, in terms of accuracy (A), precision (P), recall (R), sensitivity
(Sens), specificity (Spec), completeness (C), false positives (FP), or false negatives (FN).

Appr. Methods Studies Performance (%) Encryption

Saroiu et al. [2002a] – Apply
Gerber et al. [2003] – Apply

Fraleigh et al. [2003] – ApplyPo
rt

ba
se

d port numbers
identification

Sen and Wang [2004] – Apply

Sen et al. [2004] FP: 0; FN: 0.00–9.90 Does not apply
Moore and Papagiannaki [2005] R: 99.99 Does not apply

Guo and Qiu [2008] FP: 0.00–11; FN: 0.33–0.5 Does not applypayload strings

Cascarano et al. [2010a] – Does not apply
Haffner et al. [2005] P: 99.0–100; R: 86.6–99.9 Apply

Park et al. [2008] A: 97.39; FP: 0.39–10.40; FN: 0 Apply
Finamore et al. [2009] R: 99.6; FP: 0.34 Apply

automated
signature
extraction Mantia et al. [2010] R: 97.62 Apply

heuristics based on
payload bytes Ehlert and Petgang [2006] – Apply

payload
randomness Dhamankar and King [2007] – Apply

D
P

I

string matched
using DFA Smith et al. [2008] – Does not apply

Constantinou and
Mavrommatis [2006] FP: 7.6–42.4; FN: 8.5–12.7 Apply

Perényi et al. [2006] R: 97.19–99.14; FP: 0.3; FN: 0.8 Applyheuristics

John and Tafvelin [2008] R: 98 Apply
Karagiannis et al. [2005a] P: 95–99; C: 80–90 Applysocial behavior Iliofotou et al. [2008; 2009] P: 95–96; R: 94–95 Apply
Freire et al. [2008a; 2008b] R: 90–100; FP: 2–5 Apply

Dusi et al. [2008; 2009] R: 82.45–100.00 Apply
Lin et al. [2009] R: 74–100; FP: 0–9; FN: 0–18 Apply

statistical or
behavioral
signatures Palmieri and Fiore [2009] R: 45.8–89.4 Apply

Moore and Zuev [2005] P: 13.46–99.27; R: 93.73–96.29 Apply
Schmidt and Soysal [2006] FP: 22–28; FN: 16–26 ApplyNaı̈ve Bayes and

neural networks Auld et al. [2007] A: 95–99 Apply

clustering

Bernaille et al. [2006a; 2006b] R: 36.0–100.0; FP: 0.0–3.6 Apply
Erman et. al [2006a; 2006b;

2007a; 2007b] A: 80–95; P: 71.42–100.00; R: 62.10–100.00 Apply

Nguyen and Armitage [2006;
2008a] P: 98.3–99.7; R: 96.0–98.9 Apply

Bernaille and Teixeira [2007] R: 81.20–100.00; FP: 0.00–2.30 Apply
Early et al. [2003] R: 82–100 Apply
Cao et al. [2008] FP: 0.05–12.7; FN: 0–17.9 Apply

Angevine and
Zincir-Heywood [2008] R: 94–99; FP: 1–26 Applydecision trees

Branch et al. [2009] P: 99; R: 98 Apply
Markov chains

and models
Wright et al. [2006] R: 57.70–96.70; FP: 0.62–8.37 Apply

Dainotti et al. [2008] R: 90.23–100.00 Apply
Gonzá1ez-Castaño et al. [2006] A: 78.7–90.2 Apply

Este et al. [2008; 2009] A: 92.53–98.83; R: 69.6–100.0 Apply
Valenti et al. [2009] R: 91.3–99.6; FP: 0.3–8.7 ApplySVMs

Sena and Belzarena [2009] A: 30–100 Apply
Liu et al. [2007] A: 78.5–99.8 Apply

Raahemi et al. [2008a] A: 78–92; Sens: 68–90; Spec: 85–96 Apply
Huang et al. [2008] R: 90.87–95.11 Apply

other ML-based
methods

Hu et al. [2008; 2009] R: 90.0–98.0; FP: 0.2–5.0 Apply

C
la

ss
ifi

ca
ti

on
In

T
he

D
ar

k

service
identification Baldi et al. [2009] R: 81–93 Apply

Saroiu et al. [2002b; 2003] – Apply

A
ct

iv
e

M
ec

ha
ni

sm
s

Active crawlers
Ohzahata et al. [2005] – Apply

DPI and heuristics Karagiannis et al. [2004c] R: 90–99; FP: 8–12 Apply
product dists,

Markov models,
and substring

graphs

Ma et al. [2006] P: 0.0–100.0; R: 0.0–100.0 Does not apply

DPI, heuristics,
and ports Szabó et al. [2007] – Does not apply

Naı̈ve Bayes and
payload

randomness
Bonfiglio et al. [2007] FP: 0.00–2.40; FN: 2.96–29.9 Apply

DPI and neural
networks Nogueira et al. [2007; 2009] R: 90–99 Apply

DPI and statistical
analysis Adami et al. [2009] FP: 0.00–0.01; FN: 0.06–27.46 Apply

C
om

bi
na

ti
on

of
A

pp
ro

ac
he

s

combination of
methods Callado et al. [2010] P: 60–99; R: 90–100 Apply
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The literature review presented in this section shows a clear trend towards the use
of classification in the dark methods. The majority of the articles published in the last
few years proposed alternatives to DPI that can be used for encrypted or obfuscated
traffic and can operate in real-time in high-speed networks. This tendency is driven by
the growth of the networks throughput and need to have means to identify the nature
of the traffic, and also by the increasingly common payload encryption.

The early methods for traffic classification in the dark were mostly based on be-
havior modeling, either by resorting to heuristics or by implementing more complex
mechanisms. More recently, however, most studies are proposing classifiers based on
statistical signatures or in multiple ML algorithms. Although the number of proposals
based on ML is growing significantly, they seem to have reached a point were most
of them use similar ML algorithms to process different features of the traffic and all
of them present high accuracy. Hence, it is difficult to be sure if such proposals are
evolving the state-of-the-art in traffic classification. Some of the recent articles are
still proposing methods implemented to work off-line only, as they need to have access
to the entire flows. Moreover, the methods for classification in the dark are growing
in complexity, compromising one of their main motivations. In fact, Cascarano et al.
[2009] compared the performance of a DPI classifier and an SVM-based method and
concluded that they have similar computation cost. On the other hand, some recent
studies are also proposing DPI methods that are able to classify encrypted traffic (see
table III).

Therefore, more effort should be put on strategies to evaluate the true performance
of the classifiers. This is not a simple task and it raises many challenges, as described
in section 4.5. However, it is crucial, not to compare classifiers, but to have an accurate
perception if the current proposals are really effective and how they can be improved.
To the best of our knowledge, only three articles have addressed the subject of ground
truth verification and proposed solutions [Szabó et al. 2008; Gringoli et al. 2009; Canini
et al. 2009]. Moreover, a correct performance evaluation depends also on the datasets
used for the validation. The classification challenges raised by several applications
should be carefully analyzed and perhaps datasets of the traffic from many of them
can be made available to be used in research studies.

Furthermore, there are several available tools, ready to use, for traffic classification
using DPI; however, there are almost no applications implementing traffic characteri-
zation in the dark methods and that can be easily installed and experimented, on-line
and off-line. Although this is not a clear research goal, it would be interesting to be
able to effortlessly use some of the proposed methods in real-time experimental net-
work environments and see how they could adapt to real scenarios.

6. CONCLUSIONS
The evolution of the services and applications running on the Internet has caused im-
portant changes in the properties of the traffic. Besides the increase of bandwidth con-
sumption, other challenges have been raised for network managers. In order guaran-
tee, the correct operation of networks, efficient mechanisms for traffic classification are
required. Since port-based methods have lost their utility when the protocols started to
use random port numbers, many studies proposed alternative mechanisms to classify
traffic, either by deeply inspecting the traffic or using behavioral information.

This paper presents a survey on traffic classification that describes carefully the
existing approaches. An extensive analysis of the literature was provided, pointing
out the achievements and strengths of each study and its main goals. For the sake of
understanding, it was also included an introduction to the subject of traffic measuring
for the purpose of network monitoring.
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The analysis of the literature bespeaks a clear interest of researchers, in the last
years, in the traffic classification subject, motivated by the challenges created by new
services and protocols, especially the ones based on P2P architecture. Furthermore,
the evolution of the studies on this topic shows an increasing concern about the en-
cryption of the traffic and its consequences for traffic management. The search for
more accurate behavioral methods and DPI mechanisms capable of processing traffic
in high-speed networks, together with the capability to classify encrypted traffic, seem
to be strong trends for the future.
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DAINOTTI, A., DE DONATO, W., PESCAPÈ, A., AND ROSSI, P. S. 2008. Classification of network traffic
via packet-level hidden markov models. In Proceedings of the IEEE Global Telecommunications Conf.
(GLOBECOM 2008) (New Orleans, LA, USA, Nov./Dec.). IEEE, 1–5.
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systems acting as network nodes are becoming more and more efficient every day, affecting all un-
derlying communications. Terminal computers working both as server and client through Peer-to-Peer
(P2P) applications are shifting the client server paradigm towards a less asymmetric network. The sys-
tem is almost contents based, demanding more resources and real-time operation. Thus, new studies
conducted over recent traffic traces and containing novel traffic classes and applications are required
to understand the true behavior of the network of the networks. Although some traffic studies have
been made in the past, only a few were based on the traffic generated by an independent source, while
most of them focused their efforts to network aggregation points.

During the study reflected herein, we collected and analyzed traces containing traffic from various
classes, and tried to fit several known distributions to the experimental distribution, for different
metrics of the network traffic. The autocorrelation structure of the process of the bit count per time unit
was also subject of analysis because, as stressed in Beran et al. [1995] for video traffic, the correlation
embedded in real traffic may be determinant when the need to simulate accurate network conditions
arises. Positive correlation influences the way traffic arrives to network devices, impacting resource
usage directly. Based on the study results, we present some conclusions that can drive the process of
network behavior modeling, simulation and prediction.

The need to generate normal residential and enterprise traffic of a Local Area Network (LAN), for use
in a Quality of Service (QoS) assessment project was the first incentive for the work presented herein.
Since sometimes the authors faced the situation where the residential LAN was being used by only a
single user, responsible for all the network traffic, they had to think of a way to generate traffic at the
source level, accurately and in a computationally efficient manner. It is rather difficult to find articles
talking about source traffic modeling and simulation based on statistical analysis. Some of them are
more interested in how to generate aggregated traffic, defining the sources in respect to that; others
define source traffic from a user behavioral point of view that can become complex to use in simulations
demanding medium quality source traffic simulation; and most of them do not take into account (nor
differentiate) the several types of traffic (namely P2P, Voice over Internet Protocol (VoIP), or others)
that come out of a machine, mainly because some of these types are relatively recent. Furthermore,
finding all the approaches taken in the past (or at least the most important ones) requires often going
through a lot of references and compiling (sometimes diverging) theories.

This article is structured as follows. Section 2 contains a brief overview about traffic modeling and
analysis in the past. It summarizes some of the parameters that define source level traffic, when
observed in the light of the theories presented in that section. In Section 3, the experimental setup
that allowed us to collect the traffic traces is described along with the statistical analysis performed
afterwards. The results are then discussed in Section 4, making the analogy to what is said in the
literature every time it is possible. The article ends after the main conclusions and future work plans,
which are detailed in Section 5.

2. TRAFFIC MODELING AND ANALYSIS IN THE PAST

In this section we try to give a brief overview of what was done till now concerning traffic analysis. We
commence by exploring papers regarding the subject of self-similarity and traffic analysis and evolve
to the ones describing generation of data, VoIP and Video over IP traffic.

2.1 Network Aggregation Points

First, we introduce some notions that will be used further on in this section. Most of them are taken
from Leland et al. [1994].
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2.1.1 Long-Range Dependence, the Hurst Parameter and Heavy Tailed Distributions. Let X = {X(t),
t ǫ N} be covariance stationary stochastic process with mean μ, variance σ 2 and AutoCorrelation Func-
tion (ACF) r(k) (kǫN). Consider also the aggregated processes X(m) = {X(m)(i), i ǫ N}, where X(m)(i) is
defined by

X(m)(i) = m−1
(

X(i.m) + · · · + X((i + 1).m)
)

, for each m = 2, 3 . . .. (1)

X is said to be exactly second-order self-similar, with Hurst parameter 0 < H < 1, if the law described
by (2) holds for any mǫ N, where d

= denotes equality in distribution. X is asymptotically second-order

self-similar if the same condition holds for large m only:

Xd
=m1−H X(m). (2)

It is commonly accepted that long-range dependence is the slow power-law decrease of the ACF of
a wide sense stationary process (Expression (3)), which happens for 0.5 < H < 1. The category of X

may also be decided recurring to the autocorrelation structure, in which case X is said to be exactly or
asymptotically second-order self-similar depending on wether r(k) and r(m)(k) agree for any mǫ N, or for
large k and large m only.

r(k) ≈ k2H−2L(t), where lim
t→∞

L(a.t)

L(t)
= 1, ∀a ǫ N+. (3)

Another definition of great importance in terms of network traffic simulation and analysis is the
definition of heavy-tailed distributions. A process X = {X(x), x ǫ R} is heavy-tailed if its distribution
function is given by an expression equivalent to

P(X > x) = (x/β)−α, where α, β ǫ R+. (4)

It can be proven [Willinger et al. 1997] that the aggregation of infinite ON-OFF renewal processes

ruled by a mathematical law from (4) results in a self-similar process with the Hurst parameter given
by H = (3 − α)/2, where 1 < α < 2. Some of the theories about the self-similar nature of aggregated
traffic draw precisely on the possibility of having heavy-tail distributions governing the way the flows
of information are generated/transmitted by the individual (remote) data sources.

2.1.2 Self-Similarity in Aggregated Network Traffic. Leland et al. [1994] analyzed several Ethernet
LAN traffic traces collected over 4 years, by applying a range of methods for determining self-similarity
and the Hurst parameter, so as to build a solid foundation for the claim that the packet/byte count
in such network scenario is self-similar. In Willinger et al. [1997], this phenomenon is explained by
observing source-destination pairs. The authors mathematically prove that a superposition of many
ON/OFF sources exhibiting the Noah effect (heavy-tailed distributions of ON and OFF periods) results
in traffic exhibiting the Joseph effect (self-similarity). Next, they extract source-destination pairs from
aggregated traffic to assess whether they can be modeled as such ON/OFF sources. It turns out that
they can, with the α parameter of ON periods ranging over the interval ]1, 2[, and that of OFF periods
assuming values from the lower part of that range. The study provides a plausible explanation for the
self-similarity of Ethernet LAN traffic.

As for Wide Area Network (WAN)–related traffic, it is said (e.g., in Paxson and Floyd [1995]) that
some of its aspects exhibit the properties of asymptotically second order self-similar processes. When
trying to explain self-similarity in WAN traffic, scientists [Paxson and Floyd 1995; Willinger et al.
1998] resorted to immigration death process or M/G/∞ queueing model made by Cox [1984]. In this
model, M describes the distribution of session arrivals whereas G describes the distribution for the
session duration/length. If session arrivals can be modeled by a Poisson process and their duration by
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a heavy-tailed distribution, where the increase of packets during a session is a stationary and ergodic
process (weaker condition than that of having the packets arriving at a constant rate), the resulting
process is asymptotically self-similar. Willinger et al. [1998] claim that the assumption about Poisson
process can be replaced by that of the session interarrival times being independent and identically

distributed. WAN traffic sessions comply with these conditions. The authors study the File Transfer
Protocol (FTP), Telnet, and World Wide Web (WWW) related traffic coming to the conclusion that FTP
and Telnet arrivals can be described by nonhomogenous Poisson processes, whereas duration of FTP
and WWW sessions has a heavy tailed distribution, which ultimately leads to the self-similarity of
WAN traffic.

The phenomenon of long-range dependence was first observed in packet byte count. However, the
studies of empirical traces that ensued showed that both interarrival times and packet sizes that
characterize aggregated traffic appear to be long-range dependent also. Cao et al. [2002] studied the
distribution of the packet sizes and of the interarrival times of the aggregated traffic as well and found
that the marginal distribution of the interarrival times was matching Weibull distribution best, tend-
ing to exponential as the number of connections increases. Minimum average number of connections
in a trace was 5.9. This is interesting to mention because it coincides with the results we obtained
for various traffic classes when observing traffic generated by a single source. Feldmann et al. [1998]
show that, when observed over small time scales, the traffic cannot be described by self-similar models
accurately. On such aggregation scales, the influence of protocols and of the network itself becomes
visible and determinant, conflicting with the higher level influences (user behavior, distribution of files
on the Web, etc.). This network influence exhibits itself through multifractal scaling, but it does not
affect self-similarity at bigger time scales.

2.2 Voice over IP, Video, and Data

2.2.1 Modeling Voice over IP Traffic. VoIP is a wide spread and still growing service. Models of
VoIP traffic are needed to help us to determine the correct measures (packet scheduling, bandwidth
reservation etc.) to meet given QoS requirements, such as available bandwidth and time delay.

Duration of calls and call interarrival times are usually described by the exponential distribution,
according to a study taken over from the Public Switched Telephone Network (PSTN) [Freeman 2004].
However, findings of an extensive analysis of duration of phone calls performed in Bolotin [1994] do
not agree with this approach. The author analyzed over half a million phone calls and determined
that the exponential distribution underestimates the frequency of short phone calls, as well as phone
calls whose duration is smaller than the mean of the distribution, concluding that the empirically
obtained distribution has a longer tail than the exponential distribution. The author shows that a
single subscriber holding time for a call can be approximated well with a lognormal distribution and
that, for a group of subscribers, a distribution resulting from the combination of three distributions
(two lognormal and a uniform distribution) should be used. Packet generation during one call depends
on the codec being used and on whether silence detection is deployed. In order to save bandwidth,
voice activity detectors are used to separate periods during which a person is talking (spurts), from
the periods when she or he is silent (gaps). Gaps correspond to listening periods and pauses in speech
during which no packets are sent. Initially, both spurts and gaps were modelled using exponential
distribution. However, Jiang and Schulzrinne [2000] compare the empirically obtained distributions
to the exponential ones and determine that the fit is actually not very good, even when hangover time
is used. (Hangover time is used to prevent small gaps; that is, if a gap between two spurts is smaller
than the given hangover time, the spurts are merged into one).

In Casilari et al. [2002], the processes describing the duration of spurts and gaps (separated using
a threshold distance between two consecutive packets) of a 10-hour videoconference are analysed. The
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Table I. Packet Size and Interarrival for Various VoIP Codecs
Codec Sampling Rate Time between beginnings Payload size Raw packet size

(in Kbit/s) of two packets (in msec) (in bytes) (in bytes)

G.711 64 20 160 200
G.729 8 20 20 60

G.723.1 5.3 ∼45.46 30 70
G.723.1 6.3 ∼38.46 30 70

Table II. Distributions and Parameters for VoIP Modeling
Distribution Mean (in seconds)

Call duration Exponential / Lognormal 180–210 (busy hour business environment)
Call interval Exponential 4-10

Hangover = 20ms Hangover = 140ms

Spurt Lognormal 0.326 0.903
Gap Lognormal 0.442 1.216

authors compare the empirical distributions of the aforementioned processes to various standard dis-
tributions (Weibull, Gamma, lognormal, Pareto, and exponential) and come to the conclusion that the
best fit for both gap and spurt distribution is the lognormal distribution. In Seger [2003], using Gamma
distribution for talk spurts and Weibull distribution for gaps is suggested but not substantiated in any
way.

Modeling a phone call requires first deciding on its length (exponential or log-normal distribution).
After that, if voice activity detection is used, durations of spurts and gaps must be determined using
for example, lognormal distribution. The spurt time is then filled with packets arriving at a constant
rate, their size and interarrival time depending on the codec and number of samples per packet. To
reduce the inefficiency caused by header overhead, a VoIP packet carries normally between 30 and
160 samples [Seger 2003], depending on time and size constraints. Table I contains the information of
4 different encodings, which may be used to simulate VoIP traffic in a packet-by-packet manner. The
values concern CISCO specific encapsulation methods, as discriminated in Cisco Document Server
[2002]. As it may be concluded from careful observation of the table, the raw packet size reflects the
concatenation of the payload with a 40-bytes Internet header.

Table II summarizes distributions and parameters for modeling VoIP calls. It also presents the in-
formation for modeling in-call spurts and gaps, for different hangover values [Jiang and Schulzrinne
2000]. Take into consideration that the call interarrival time process depends heavily on the environ-
ment in which the analysis was made [Cisco Document Server 2002]. The exponential distribution is
listed in the table because it is the simplest and most widely used model.

2.2.2 Modeling Video Traffic. Video coding and transmission can result in Constant Bit Rate (CBR)
or Variable Bit Rate (VBR) traffic. CBR coders code all video frames with approximately the same
number of bits, which results in some frames being coded at a higher quality than the others while
VBR coders code frames with different bit rate achieving the same quality as when using CBR coders
but occupying smaller bandwidth [Rose and Frater 1993]. Video traffic consists of three types of data
(video, voice, and system data), but most of the models are limited to modeling the video part of the
data [Heyman et al. 1992; Reininger et al. 1994; Heyman 1997; Krunz and Makowski 1998; Ansari
et al. 2002], namely the size of each video frame in bits or Asynchronous Transfer Mode (ATM) cells,
with the video frame being the bit representation of a picture. As the number of frames per second is
predefined (25, 30) by the codec itself, one can say that what is indirectly being modeled is the bit rate.
It is also possible to find some approaches [Rose 1995a] where a group of pictures is being modeled,
instead of one picture at a time.
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Table III. Parameters Obtained from the Analysis to the
Star Wars Movie Trace.

Type of frame γ η β μ0 μ1

I-frame 4.0605 10.4233 0.4662 0 ∼160000
P-frame 1.6605 12.0277 0.3404 0 ∼100000
B-frame 1.6431 14.0724 0.3040 0 ∼35000

In order to completely capture the effects that video traffic has on a given network, both marginal
distribution and ACF of the video trace must be modeled, because models that rely on marginal dis-
tribution exclusively underestimate queueing effects such as cell loss and delay. The importance of
autocorrelation in video traffic modeling was further backed up by the findings made in Beran et al.
[1995], where the authors performed the statistical analysis of a range of video sequences to prove,
in the end, that video traffic exhibits long range dependent properties with Hurst parameter varying
from 0.6 to 1. The simplest methods for modeling video traces are based on histogram procedures,
where the histogram of a real trace is created prior to being used to generate a synthetic trace. Such
an approach captures only the distribution of the frame sizes, completely neglecting any requirements
related with the correlation between frames.

In order to include the ACF into the model, many different approaches were developed and proposed,
which can be roughly divided in Markov chain based models [Maglaris et al. 1988; Sen et al. 1989;
Rose 1995a; Hughes et al. 1993], models based on the autoregressive processes [Heyman et al. 1992;
Ramamurthy and Sengupta 1992; Dawood and Ghanbari 1999], Transform Expand Sample (TES)
models [Reininger et al. 1994; Melamed et al. 1994], M/G/∞ based model [Krunz and Makowski 1998]
and models based on self-similar processes [Garrett and Willinger 1994; Liu et al. 1999; Ansari et al.
2002; Huang et al. 1995].

We chose to concentrate on a relatively simple model proposed in Ansari et al. [2002] and Liu et al.
[1999]. The authors propose to model an MPEG video trace with three Fractional AutoRegressive Inte-
grated Moving Average (FARIMA) processes (one for each type of MPEG frame) in order to capture self-
similarity of a video trace. The mentioned three types of frames are as follows: Intracoded(I)-frames,
Predictively coded(P)-frames and Bidirectionally coded(B)-frames [Rose 1995b]. As the Group Of Pic-
tures (GOP) consists usually of 12 frames ordered in the sequence IBBPBBPBBPBB, the only thing one
has to assure when generating Video traffic is that the 3 FARIMA processes are alternated to follow
that pattern and that the marginal distribution of the frame sizes follows the correct one. According to
the same study, the Beta distribution is the one that best describes the said aspect. A simulated self-
similar series {Xk}k≥0 (usually following a Gaussian distribution), may then be reshaped into a variable
{Yk}k≥0 following the Beta distribution, recurring to Yk = F−1

β (FG(Xk)), where FG(x) and F−1
β (x) denote

the cumulative probability function of the normal distribution and the inverse cumulative probability
function of the Beta distribution, respectively (this result may be generalised to any other distribution).
The reproduction of a PAL MPEG video requires the generation of 25 frames-per-second.

Ansari et al. [2002] extracted the necessary parameters from a number of different video sequences.
For the sake of curiosity, it was decided to include the values for the celebrated and widely used Star
Wars sequence in the form of a table (Table III). For other parameters we refer the reader to Ansari
et al. [2002]. Notice that the values for μ1, listed in the last column of the table, were read directly
from the corresponding charts in Ansari et al. [2002] and may present small accuracy problems.

The described procedure is suitable for modeling video frame sizes in bits. Transposing such model
to the Ethernet frame level requires following the approach from Liu and Babiarz [2007], where 30
frames are generated (instead of 25) and every frame is divided into packets of 1356 bytes of size (for
holding 7 188-byte MPEG Transport Stream packets + 40byte IP header). The packets are sent into
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Table IV. Distributions and Parameters for ON and OFF
Periods for Modeling WWW Related Traffic

Model Distribution Parameters

ON times Pareto xmin = 1000 bytes, θ = 1.06
Inactive OFF times Pareto xmin = 1 s, θ = 1.5
Active OFF times Weibull α = 1.46, β = 0.382

Table V. Distributions for Modeling Various Aspects of FTP Related Traffic
Model Distribution

Session interarrival times Exponential
Connection size Lognormal

Burst size Lognormal (distribution body) + Pareto (distribution tail)
Connection interarrival times 0-2.5s exponential; 2.5-4s uniform; 4-180 lognormal

the network at the end of every 33.3 ms interval, excepting for the first time a packet is generated, in
which case the frame is sent at a random moment of time in a 33.3ms interval.

2.2.3 Modeling WWW and FTP Traffic. Barford and Crovella [1998] developed a tool that mimics
the behaviour of a set of users accessing a web server. As a part of their model, they created a user
equivalent model of an ON/OFF process. The ON part of the process corresponds to the periods of time
a user spends downloading a file, whereas the OFF period of time corresponds to the time between the
two downloads. The OFF periods are further divided into active and inactive OFF periods [Crovella
and Bestavros 1995], depending on whether they are due to small processing delays inherent to the
browsing procedure, or to human interpretation/random assess periods. Table IV summarizes the dis-
tributions suggested for three identified subcases. In this table, xmin and θ are the location and shape
parameters of the Pareto distribution, whereas α and β are the scale and shape parameters of the
Weibull distribution.

In Ishac [2001], where FTP related traffic is analyzed, the conclusion that FTP sessions can be de-
scribed as Poisson process is drawn. During one session there are one or more connections (a connection
corresponds to user browsing a directory or downloading a file). Most of the data transferred during
one FTP connection is clumped into bursts (connections following one after another shortly), which
is a phenomenon that finds an explanation in the users themselves, as they commonly choose more
than one file to download at once. Transfer rate during one connection varies due to the Transmission
Control Protocol (TCP) congestion avoidance algorithm - before sending a new packet, server must
wait for acknowledgement of reception. The distributions describing different aspects of FTP traffic
are summarized in Table V.

3. SOURCE TRAFFIC ANALYSIS AND MODELING

The initial phase of our study consisted of collecting data samples. For that purpose, traffic from several
different classes was captured in several network environments, representing various contexts and
scenarios of typical usage of the Internet by a home or enterprise user. With the objective of building a
model for each traffic class, we considered three processes that describe a trace of data: the byte count
per time unit, the interarrival times and the packet sizes. These processes were then statistically
analyzed. Section 3.1 explains how the data was collected, providing a detailed description of each
considered scenario. Each traffic trace is described in Section 3.2, while Section 3.3 focuses on their
analysis and on the fitting procedure.
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Fig. 1. Logical placement of the traffic sniffer, during the data collecting procedure for the first (a), second (b), third (c), and (d)
fourth scenarios.

3.1 Experimental Setup

Since the main goal of this study was to analyze source traffic, the traces were collected directly on
an end-user machine. We used a sniffer to capture the traffic into a TCPDUMP [2008] format file.
Additionally, the traces were divided into incoming and outgoing traffic, generating two more files,
producing a total number of three trace files for each scenario. For the sake of simplicity, IN and OUT
will be used to refer to the INcoming and OUTgoing subset of data, respectively, and the main data
file will be referred to as MIX. All the traces were collected in one of four different network scenarios,
described in the following four sections.

3.1.1 First Scenario: A Single Machine Connected Directly to the Internet. The first scenario con-
sisted of a desktop computer, running Windows XP Operating System (OS), with an Intel Pentium 4
processor running at 1.7GHz and 512MB of Random Access Memory (RAM). The computer uses an
Ethernet board performing at 100Mbit/s, connected to a commercial 2Mbit/s Internet connection. This
first scenario and the logical placement of the packet sniffer are depicted in Figure 1(a).

3.1.2 Second Scenario: Small Network Connected to the Internet through a Gateway. In the second
scenario, a small network formed by two laptops connected to a router was built. The first computer
was running Windows XP OS and the second one was running a Linux OS distribution. The router was
connected to a commercial 2Mbit/s Internet link through a desktop computer running Windows XP and
working as an Internet gateway. Figure 1(b) complements the explanation given for this scenario.
The main difference between the present and the previous scenarios lies in the way the comput-

ers are connected to the Internet. While, in the first scenario, the computer was directly connected to
the Internet, using a public IP address in its communications, in the second one, it suffers the effects
of Network Address Translation (NAT) mechanisms and shares the Internet access with another ac-
tive computer. The traces were captured in the laptop running Windows XP, with a Intel Core 2 Duo
1.80GHz processor and 1024MB of RAM, using an Ethernet board performing at 100Mbit/s to connect
to the network.

3.1.3 Third Scenario: Small Network Connected to the Internet through a Router. In the third sce-
nario, two laptops were connected to a switch, which was connected to a commercial 2Mbit/s Internet
connection via a router, as depicted in Figure 1(c). Both computers were running Windows XP OS. Such
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combination is rather common in countries where the Internet connection is being distributed using
Digital Subscriber Lines (DSL) or cable, where a single access connection is often shared between res-
idents of an apartment or set of apartments, using routers and switches. The traces were captured on
a laptop with an Intel Centrino 1.73GHz processor and 1024MB of RAM, connected to the network
through an Ethernet board performing at 100Mbit/s.

3.1.4 Fourth Scenario: Final Branch of a Big Local Network. In the fourth scenario, the final
branch of a large local area network was observed. The traces collected are those exchanged between a
computer and the closest switch of a complex tree structure that, ultimately, connects to the Internet
via a 1Gbit/s Internet connection. The computer used was a desktop system with an Intel Pentium 4
2.80GHz processor and 512MB of RAM. It was connected to the local network using an Ethernet board
at 1Gbit/s. Figure 1(d) schematizes the described scenario.

3.2 Description of the Traces

To enable a granular analysis of all the traffic types that we could think of at the time the traces
were made, we used different telematic applications during the collecting period and categorised the
traces according to the software that generated them, and to the scenario where they were collected, as
depicted by Table VI. Characteristics such as the size of the trace and the number of captured packets
can also be found in the same table.

The emphasis was put on relatively new types of traffic (e.g., P2P, streaming, VoIP). The reasons
behind this were given in the introduction section of this document and are mostly related to the
popularity the respective applications gathered among residential (and even corporate) users. It should
be mentioned that all the broadcast traffic was filtered out from the trace captured in the last scenario.
This was done to avoid having the analysis biased by unwanted messages generated by (too many)
other computers in the network.

3.3 Fitting Distributions and Studying Autocorrelation

Processes describing packet sizes, interarrival times and byte count of each of the data files listed in
Table VI were constructed and automatically processed using a custom-made JAVA script that puts
together the cumulative probability function for each of them and adjusts the parameters of several
theoretical distributions, as described in the following section. The preselection of the model that best
fits the empirical results is made by comparing the discrepancy Dk

max between each of the theoretical
cumulative distributions Fk

t (x) and the empirical one Fe(x), where Dk
max = maxxiǫ	 |Fk

t (xi) − Fe(xi)| and
	 is the set of incidences of the studied sequence of values (consider observing the three first charts
of Figure 4 for a graphical representation of this metric). The one presenting the smallest value for
that particular metric is momentarily labeled the most suitable one. The decision is then supported
by human discernment, so as to filter out cases where even the best among all the choices does not
fit the data in a satisfactory manner. Notice that the metric defined (Dk

max) is the same used in the
Kolmogorov-Smirnov goodness of fit test.

Since the autocorrelation structure of the bit count per time unit may be of critical importance
for the analysis of queueing effects in network aggregation points, it was decided to complement the
analysis of the three previous traffic aspects with additional comments on that statistical property.
The main goal of this analysis is to provide potential practitioners with the idea of the amount of de-
pendence that needs to be simulated when modeling source traffic, rather than to provide the exact
expression of the ACF for each type of traffic. Constrained by the length of some of the traces and
for the sake of coherence, the calculation of the autocorrelation is made only for lags k smaller than
40s (k = 1, 2, 4, . . . , 40). The ACF is denoted herein by r(k), and its assessment is made recurring to
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Table VI. Description and Characterization of the Collected Traces

Traffic trace
Duration

Scenario
Size Number

Date
(in minutes) (in bytes) of packets

Web
OUT

15 3
366999 1964

30-10-2006IN 2335860 2483
MIX 2702859 4447

Skype VoIP
OUT

11 1
1820367 12582

12-11-2006IN 1818953 12637
MIX 3674422 25309

Streaming download
OUT

27 3
3297385 1964

30-10-2006IN 170588472 115525
MIX 174002976 177966

Streaming broadcast
OUT

41 3
269343 3251

30-10-2006IN 12767549 23190
MIX 13211419 29015

eMule (file upload)
OUT

3 1
1316487 2120

12-11-2006IN 120456 1743
MIX 1455207 3910

eMule (file download)
OUT

13 1
1473419 17873

12-11-2006IN 11198338 18722
MIX 12734669 36757

File download from web
OUT

11 3
1077621 19334

30-10-2006IN 35993801 24065
MIX 37084869 42590

MSN VoIP
OUT

8 1
2968328 38144

12-11-2006IN 1464972 13320
MIX 4481692 37188

Mail, MSN and file sharing
traffic

OUT
41 2

10120097 35388
19-02-2007IN 54569377 48835

MIX 64689834 84229

File Sharing, download from
web and MSN traffic

OUT
54 2

23140782 113454
19-02-2007IN 182210157 156944

MIX 205351179 270402

File Sharing, streaming
download and MSN traffic

OUT
39 2

18517605 52263
19-02-2007IN 45412410 56533

MIX 63931435 108812

Skype, streaming download
and MSN traffic

OUT
67 2

36133420 128737
19-02-2007IN 22580277 94461

MIX 58714647 223210

Web, mail and instant
messaging traffic

OUT
1261(∼21h) 4

78862681 253076
14-06-2007IN 263395433 313684

MIX 388818159 1039717

r(k) = Xt × Xt+k, where X denotes the average of the series represented by X. Prior to the calculation,
all the empirical sequences concerning the bit count per time unit were dully normalised and further
processed to reduce possible trends and lacks of stationarity, and allow direct application of the afore-
mentioned formula. The results of this particular analysis were summarized in the form of a 2-tuple in
the charts of Figures 2, 3 and 4, and in the last column of Table VII. The pair consists of the maximum
and of the minimum values of r(k) for k = 1, 2, 4, . . . , 40.

In the following sections, we describe the study performed on each type of traffic in more detail and
discuss some of the results. During the analysis, a set of at least 3 charts was made for every available
trace. However, to avoid extending the paper excessively, we refrained from presenting all of them. To
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Fig. 2. Cumulative probability functions for the byte count per time unit process, for (a) outgoing traffic, (b) incoming traffic,
and (c) incoming plus outgoing traffic. The empirical data under analysis concerns the traces of Web Traffic Without Streaming.
(d) Variation interval of the first 40 values of the ACFs of the byte count per time unit process, calculated for the OUT datasets.

Fig. 3. Probability and cumulative functions of the packet size distributions for (a) outgoing traffic, (b) incoming traffic and
(c) incoming and outgoing traffic. The empirical data under analysis concerns the traces of Skype VoIP Traffic. (d) Variation
interval of the first 40 values of the ACFs of the byte count per time unit process, calculated for the OUT data sets.
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Fig. 4. Cumulative probability functions of the interarrival time process for (a) outgoing traffic, (b) incoming traffic and (c)
incoming plus outgoing traffic of streaming download relative traffic. The empirical data under analysis concerns the traces of
Streaming Broadcast Traffic. (d) Variation interval of the first 40 values of the ACFs of the byte count per time unit process,
calculated for the MIX data sets.

explain and exemplify the statistical analysis and the fitting process, we chose to exhibit only one set
of charts for each of the first three traffic classes and keep the remaining descriptions textual. We then
summarise all the results, in a more informal way, in Section 4. Prior to the analysis itself, we are going
to briefly introduce mathematical models used in this work and explain methods used to estimate the
parameters for each distribution.

3.3.1 Models and Parameter Estimation. In order to find the most suitable theoretical models for
the previously mentioned processes, we tried to shape several well-known distributions by estimating
their specific parameters. Inspired by the literature and by some of the preliminary observations, we
opted for the following ones.

—The Pareto distribution, which is defined by the typically termed location (xmin) and shape ( ) pa-
rameters, and that will be referred to as P(xmin, ) during the remaining part of this document. Its
probability function is given by (5), and its parameters can be assessed using the formulas in (6),
where denotes the set with N incidences of the empirical process:

(5)

(6)

—The Normal distribution, commonly defined by the well known probability function (7), which will
be denoted herein as N( , 2) , with the and the 2 denoting the expected value and the variance
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Table VII. Summary of the Results Obtained for the Several Traffic Aspects
Traffic Trace Byte Count Packet Size Interarrivals ACF variation

Data Set (in bytes per second) (in bytes - max. value 1516) (in seconds) interval

Web without Streaming

OUT W(2.42E-1, 27.23) W(3.73E-1, 50.95) W(3.80E-1,5.25E-2) [-0.032, 0.271]

IN W(1.68E-1, 11.36) 60(26%), ≥1484(52%) W(3.81E-1, 2.65E-2) [-0.024, 0.623]

MIX W(1.93E-1, 40.95) 54-62(48%), ≥1484(30%) W(2.50E-1, 5.33E-3) [-0.028, 0.614]

Skype VoIP

OUT W(10.16, 5099.29) N(144.68, 626.1) W(5.88E-1, 5.89E-2) [-0.109, 0.234]

IN W(11.82, 5063.86) N(143.94, 554.09) W(2.99, 3.40E-2) [-0.151, 0.174]

MIX W(21.38, 10047.74) N(145.18, 802.07) W(1.29, 1.66E-2) [-0.086, 0.086]

Streaming Download

OUT N(2025.45, 399485.72) 54(99%) W(3.44E-1, 6.23E-3) [0.306, 0.626]

IN N(104784.07, 1006.94E+6) 1514(95%) W(2.20E-1, 3.62E-4) [0.313, 0.643]

MIX N(106554.18, 1115.16E+6) 54(34%), 1514(62%) W(1.73E-1, 4.90E-5) [0.294, 0.627]

Streaming Broadcast

OUT W(1.04, 108.39) 45-84(93%) See Section 3.3.4 [-0.048, 0.042]

IN N(5084.77, 19485069.77) 517-526(88%) P(8.00E-6, 2.75E-1) [-0.215, 0.801]

MIX N(5257.23, 19611722.80) 45-84(23%), 517-526(71%) W(6.62E-1, 5.76E-2) [-0.217, 0.800]

eMule (File Upload)

OUT W(3.04, 6422.23) W(4.82E-1, 703.99) W(4.63E-1, 9.34E-2) [0.029, 0.624]

IN W(2.48, 577.73) W(1.27, 47.45) W(8.49E-1, 1.33E-1) [-0.109, 0.095]

MIX W(3.32, 7002.00) W(4.15E-1, 208.44) W(4.27E-1, 3.20E-2) [0.017, 0.627]

eMule (File Download)

OUT W(1.18, 1968.07) W(6.77E-1, 43.11) W(6.82E-1, 3.57E-2) [0.399, 0.682]

IN N(14033.01, 97066134.82) 60-72 (40%), ≥1494 (23%) W(8.90E-1, 3.74E-2) [0.447, 0.778]

MIX N(15958.23, 110.16E+6) W(2.60E-1, 92.68) W(5.09E-1, 1.18E-2) [0.438, 0.768]

File Download from Web

OUT N(1550.54, 160774.45) 54-74(99%) W(3.51E-1, 1.53E-2) [-0.045, 0.067]

IN N(51789.56, 190653714.80) 1514(99%) W(3.27E-1, 8.53E-3) [-0.068, 0.057]

MIX N(53370.46, 199739532.26) 54-74(44%), 1514(56%) W(1.86E-1, 4.12E-4) [-0.066, 0.057]

MSN VoIP

OUT N(5456.51, 2940917.82) W(8.77, 128.26) W(1.67, 2.75E-2) [-0.129, 0.236]

IN N(2693.21, 6356671.55) W(4.99, 133.54) W(1.19, 2.81E-2) [-0.219, 0.287]

MIX N(8238.40, 4854388.43) W(5.04, 141.32) W(1.22, 1.74E-2) [-0.177, 0.160]

Mail, MSN, and File Sharing

Traffic

OUT W(3.76E-1, 2546.25) 54-77(77%), ≥1402(14%) W(4.68E-1, 2.53E-2) [0.641, 0.851]

IN W(3.11E-1, 5230.75) 60-62(10%), 1099(15%), ≥1484(61%) W(5.02E-1, 1.96E-2) [0.493, 0.922]

MIX W(3.99E-1, 10338.75) 54-77(40%), 1099(9%), ≥1402(41%) W(3.23E-1, 4.07E-3) [0.471, 0.917]

File Sharing, Download from

Web, and MSN Traffic

OUT N(7050.82, 30199712.90) 54-74(88%), ≥1414(10%) W(6.31E-1, 2.17E-2) [0.605, 0.702]

IN W(8.69E-1, 44999.36) 60-66(6%), 1514(69%) W(7.08E-1, 1.82E-2) [0.787, 0.907]

MIX W(9.34E-1, 57074.99) 54-74(41%), ≥1414(45%) W(5.13E-1, 6.47E-3) [0.792, 0.906]

File Sharing, Streaming

Download, and MSN Traffic

OUT N(7728.56, 30210101.80) 54-77(73%), ≥1506(17%) W(5.68E-1, 3.02E-2) [0.396, 0.560]

IN W(1.19, 19625.19) 60-66(19%), ≥1506(43%) W(7.29E-1, 3.26E-2) [0.426, 0.824]

MIX W(1.26, 29481.66) 54-77(47%), ≥1506(30%) W(4.96E-1, 1.06E-2) [0.451, 0.818]

Skype, Streaming Download,

and File Sharing Traffic

OUT N(8873.73, 36352160.02) P(42, 8.93E-1) W(7.70E-1, 2.69E-2) [0.855, 0.889]

IN N(5546.58, 40574100.44) P(60, 1.13) W(9.99E-1, 4.05E-2) [0.322, 0.539]

MIX N(14419.21, 88421057.85) P(42, 8.82E-1) W(6.81E-1, 1.21E-2) [0.585, 0.729]

Web, Mail, and Instant

Messaging Traffic

OUT W(2.65E-1, 30.01) 54-62(61%), ≥1482(12%) W(2.40E-1, 2.02E-2) [0.003, 0.330]

IN W(1.73E-1, 2.28) 60-93(28%), ≥1506(49%) W(2.19E-1, 1.17E-2) [-0.002, 0.024]

MIX W(3.27E-1, 285.35) 54-93(62%), ≥1482(18%) W(4.00E-1, 3.96E-2) [0.003, 0.149]

of the analysed process, respectively. The parameters of the Normal distribution can be estimated
using the formulas in (8), with pi being the relative frequency of event xi:

P(X = x) =
1

√
2πσ 2

e
− (x−μ)2

2σ2 , with xǫR, μǫR and σ > 0; (7)

μ =
N

∑

i=0

pi × xi and σ 2 =
N

∑

i=0

pi × x2
i − μ2, with N = |	| and xiǫ	. (8)

—The Lognormal distribution, defined by a simple transformation of (7) resulting in Expression (9) and
by the same parameters as Normal distribution. The values of μ and of σ 2 may be obtained using the
formulas in (10), where X̄ and V ar(X) denote the average and the variance of the
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experimental trace:

P(X = x) =
1

x
√

2πσ 2
e
− (ln(x)−μ)2

2σ2 , with xǫR+, μǫR and σ > 0; (9)

σ 2 = ln

(

1 +
V ar(X)

X
2

)

and μ = ln(X) −
1

2
σ 2. (10)

—The Weibull distribution, represented by the probability function (11) and denoted herein by W(β, α).
The maximum likelihood estimator of α (the scale) and β (the shape) relies on solving the equation
in (12) for β (e.g., using an iterative method like the Newton-Raphson method), and by then setting
α = N−1

∑N
i=1 ln(xβ

i ):

P(X = x) =
β

α

( x

α

)β−1
e(−x/α)β , with xǫR+ and α, β > 0; (11)

N
∑

i=1

x
β

i ln(xi)

N
∑

i=1

x
β

i

−
1

β
−

1

N

N
∑

i=1

ln(xi) = 0 , where N = |	| and xiǫ	. (12)

—The Rayleigh distribution, which is described by its probability function (13) and its only parameter
ω. The maximum likelihood estimator for ω is given by (14):

P(X = x) = x
e
− x2

2ω2

ω2
, with xǫR+ and ω > 0; (13)

ω =

√

√

√

√

1

2N

N
∑

i=1

x2
i , where N = |	|. (14)

—The Gamma distribution, whose probability function follows (15) (where Ŵ(k) is the Gamma func-
tion), is uniquely characterised by two parameters, k and δ. Both parameters have well documented
maximum likelihood estimators that can be summarized by Expressions (16) and (17):

P(X = x) = xk−1 e−x/δ

Ŵ(k)δk
, with x > 0 and δ, k > 0; (15)

k =
3 − s +

√

(s − 3)2 + 24s

12s
, with s = ln

(

1

N

N
∑

i=1

xi

)

−
1

N

N
∑

i=1

ln(xi), (16)

δ =
1

k × N

N
∑

i=1

xi, where N = |	|. (17)

3.3.2 Web Traffic without Streaming. The traffic class one cannot forget when talking about source
traffic analysis is Hypertext Transfer Protocol (HTTP)-related traffic, herein baptized as Web Brows-
ing. This class contains all the packets generated by browsing activities from a given network user.
Although this type of communications should also include file downloads, webcast and streaming (e.g.,
radio streaming)-related traffic, we decided to analyze that types of traffic separately (in a subsequent
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section), as they result in slightly different transmission profiles that deserve to be addressed indepen-
dently.

The set of charts chosen to represent Web-related traffic concerns the analysis conducted for the
byte count per time unit of this particular collection of traces. Figures 2(a), 2(b), and 2(c) contain
the plots of the byte count per time unit cumulative distribution function. These figures show that
Weibull is the model that best fits the bit rate of Web-related traffic. From the three datasets, the
cumulative distribution of the outgoing portion of the traffic is the one presenting the most irregular
shape (and bigger discrepancy values), which is mainly motivated by the well-known asymmetry of this
type of traffic. In the referred direction, communications are dominated by silence periods interleaved
with sporadic HTTP requests, SYN or ACKs packets, resulting in relatively small and less varying
transmission rates (average of 394.62(±76.85) bytes-per-second, with an estimated standard deviation
of 1195.68(±581.96)).

The chart in Figure 2(d) plots the minimum and the maximum values of the first 40 ACF incidences
(i.e., mink=1,2,...,40(r(k)) and maxk=1,2,...,40(r(k)), respectively), against the designation of the traffic under
analysis. Notice that the aforementioned chart concerns the study of the OUT data sets only, and that
similar graphical representations for the IN and MIX traces are included in the following two subsec-
tions, to save space. Note also that the order by which the several classes appear in the chart is decided
upon the minimum values, which are sorted in an increasing manner, and that the designations Traffic

Mixture 1, 2, 3, 4 and 5 are used to refer the traces containing more than one traffic type, being those
discussed afterwards. The ACF is defined for the interval [−1.0, 1.0], and it is typically said that, for
values bigger than 0, the process is positively correlated, while it the contrary case, it is negatively
correlated or anticorrelated.

The variation intervals of the ACF are never positioned in the lower part of the charts, in any of
the communication directions. Thus, none of the traces exhibits significant anti-correlation. The label
Web browsing appears in the 5th position of Figure 2(d) and Figure 4(d), and in the 7th position of Fig-
ure 3(d). According to the results, the outgoing communications are weakly correlated, as a reflection of
the unpredictable manner by which a human interacts with the WWW, while the IN dataset presents
higher autocorrelation values, influenced by the network functioning and length of the connections.

As for the packet size process, we came to the conclusion that it would be possible to roughly model
the outgoing traffic of a source using Weibull also, shaped with the parameters 3.75E-1(±7.96E-3)
and 50.95(±2.81). Unfortunately, the same does not apply to the other two trace files (IN and MIX).
Actually, none of the distributions used was able to fit the empirical distributions of the packet size
process. The reason behind this fact lies in their specificity in terms of probability peaks, which will be
mentioned in almost all subcases that follow.

The results prove that Weibull constitutes the best choice for modeling the interarrival times process
as well (please observe the table in Section 4.1 for details on the parameters of the distribution). It is
important to mention that similar analysis of HTTP traffic obtained from a WAN link was already
made in Casilari et al. [2004]. They tried to fit several distributions to the empirical packet size and
interarrival distributions, but singled Pareto distribution out as the best fit for the interarrival times.

3.3.3 Skype VoIP Traffic. The second set of traces analyzed concerns VoIP related traffic, namely
Skype traffic. Skype generates variable bit rate data, which is primarily reflected on the packet size
process and ultimately, in the byte count per time unit. The first conclusion we are going to point out
is that the process describing the byte count per time unit is well modeled by Weibull, but that it
can also be (fairly) modeled by the Gamma, Normal, and Lognormal distributions. As for the packet
size distribution, please observe Figures 3(a), 3(b), and 3(c), comprising the set of charts chosen to
represent this particular study case. The theoretical model that best describes the aforementioned
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process is the Normal distribution, even though Weibull distribution provides a good fit as well. The
Normal distribution is centered around the size of 144 bytes for the three analyzed cases, presenting
a standard deviation of approximately 28 bytes for the incoming traffic and of approximately 23 bytes
for the outgoing traffic. This Gaussian variation results from the combination of several factors (the
way humans dialogue, the codification of the voice, and the means by which Skype sends packets into
the network) and is actually a curious fact to notice, as the packet sizes are often difficult to model
recurring to theoretical distributions. In most of the studied cases, the best way of modeling such
aspect would be to use a previously recorded (empirical) distribution.

In terms of interarrival times, there is not much to say as the conclusions drawn before for the recip-
rocal process of Web-related traffic applies to this study case also. Weibull fits the empirical distribution
for all the three cases. On the other hand, the same cannot be said in terms of autocorrelation struc-
ture of the traces. According to the investigation, only the outgoing portion of the traffic is lightly cor-
related for a few number of lags, presenting the variation interval [−0.109, 0.234]. The autocorrelation
analysis for the files containing the Skype IN and MIX communications produced balanced variation
intervals of [−0.151, 0.174] and of [−0.086, 0.086], respectively, uncovering the unpredictable nature
of this kind of traffic (when silence detection is used, VoIP depends significantly of human behavior).
The set of results concerning the analysis of the autocorrelation for the IN data sets is concatenated
in Figure 3(d), following an analogous procedure to the one mentioned in the previous section for the
same subject. Notice that the predominance of positive correlations is once more flagrant in this chart,
and that the Skype label is the 3rd from the left, associated with one of the smallest variation intervals
in the chart.

3.3.4 Streaming Traffic. As previously mentioned, two different embodiments of streaming related
traffic were studied in the context of this work: the streaming download of a file and the reception
of a live streaming broadcast. For the former case study, the results lead to the conclusion that the
processes describing the byte count per time unit and the interarrival times could be either mod-
eled by the Normal or by the Weibull distribution, respectively, with parameters 2025.45(±30.71) and
399485.72(±51292.78) for the first, and 3.44E-1(±4.71E-3) and 6.23E-3(±3.15E-4) for the second (val-
ues concern the outgoing traffic only). As for the packet size series, the results confirm our expectations.
None of the considered models suits such process, because its discrete probability function is dominated
by the peaks around 1500 bytes, for the incoming trace, and around 50 bytes, for the outgoing trace.
These values correspond to the maximum IP packet size over Ethernet and to the size of common TCP
acknowledgements.

Figures 4(a), 4(b), and 4(c) depict the fitting process conducted for the interarrival times of streaming
download traffic and Figure 4(d) contains the plot that summarises the study of the autocorrelation
structure of the trace, constructed in the same way as previously indicated (but for the MIX data sets).
According to the plot, all communications exhibit positive autocorrelation till the aggregation scale
of 40s, with values close to 0.425 for the three data sets (streaming download is the 8th label in all
the ACF charts), inspired probably by the constancy introduced by the streaming protocol and by the
packet size morphology.

In the (not included) charts concerning live streaming broadcast, we observed a probability peak
around 8000 bytes-per-second, for the incoming communications. The reason behind this fact is, obvi-
ously, the streaming protocol itself, which secures its reliability with the constant bit rate specification.
Because of that, the byte count per time unit process for both the incoming communications is difficult
to model. As the incoming packets tend to dominate the overall communications for this type of ap-
plication, the trace containing the complete trace suffers from the same problem. Most packets of the
outgoing communications have between 50 and 100 bytes (ACKs), while all incoming ones fall within
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the range 517 and 526 bytes, irregularly concentrating the probabilities in the said intervals. Another
curiosity we noticed about this type of traffic was that the time interval of 1 second is rather common
in the outgoing traffic. This is again due to a regular protocol feedback mechanism (e.g., acknowledge-
ment), which ultimately impacts the distribution of the packet sizes in such a way that none of the
considered models can satisfactorily fit the interarrival times in the said traffic direction. The other
two subsets can be reproduced using Pareto and Weibull, Pareto being the most suitable for the down-
stream direction and Weibull the best for the traffic MIX. This type of streaming traffic may thus be
reproduced by randomly selecting 88% of the packet sizes between 517 and 526 bytes and by creating
interarrivals according to P(8E − 6, 2.75E − 1), for the incoming traffic, and by simulating a packet
smaller than 84 bytes every 1 second, for the outgoing traffic. The ACF of streaming broadcast de-
creases rapidly, as the time lag increases, but presents the biggest variation interval of all IN and MIX
data sets. According to the analysis, the outgoing connections are random.

3.3.5 eMule File Sharing Traffic. The second P2P related traffic examined in the scope of this work
was eMule traffic, generated during common file sharing. We collected traces for the scenario where
several files are being downloaded simultaneously and for the one where at least one file is being sent
to a group of P2P users. Both situations were disjoint, that is, no files were being upload during the
collecting stage of file downloads, and vice versa.

According to the analysis, the communications related to file upload using eMule can be modeled by
the Weibull distribution, even though it performs badly for incoming traffic. It has to be said that the
data scarcity (compared to the outgoing data flow), in the said direction, affects the statistical analysis
severely. The observation of the (not included) ACF lets us know that the dependence embedded in the
bit rate per time unit of outgoing traffic is of short range (i.e., autocorrelation values tend to 0, as the
time lag increases).

On the other hand, downloads from multiple sources result inevitably in highly dynamic incoming
transmissions with a variable bit rate. The autocorrelation values are definitely higher than their
counterparts for all datasets, and Weibull is the best choice for modeling the interarrival times and the
packet size distributions, except for incoming traffic (in which case, it was again not possible to model
the packet sizes). The distributions that better describe the byte count per time unit are the Weibull
for the outgoing communications, and the Normal for the other two (though Rayleigh embodies a fine
choice also). Again, notice that the values estimated for the aforementioned distributions can be found
in Table VII.

3.3.6 File Download from Web. The process assigned to packet sizes of the traffic created by Web
download could not be satisfactorily modeled by any of the considered distributions, while the inter-
arrival and byte count processes follow the mathematical laws of Weibull and Normal distributions,
respectively. Almost all the packets in downstream have 1500 bytes, whereas those in upstream are 50
bytes long (TCP acknowledgements). That is understandable, since the biggest part of a downloaded
file is transferred using the biggest available data units, corresponding to 1500 byte long IP over Eth-
ernet frames.

The byte count process of the type of traffic under observation behaves randomly, as proven by the
autocorrelation values, which do not deviate from 0 more than 0.07 units. Since the packet sizes are
almost constant during a download, the explanation for this fact lies in the interarrival times, impacted
by the effects in the network nodes between the server and the client. Network influence renders the
byte count per time unit unstable and mostly unpredictable, contrary to what was happening with the
streaming traffic, which has to comply with stricter QoS requirements.
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3.3.7 Messenger VoIP Traffic. MSN VoIP traffic constitutes a second example of VoIP traffic in-
cluded in our analysis. Surprisingly, the aspect that was most difficult to model was the byte count
process, which could only be approximated poorly using Weibull, Normal, Lognormal, and Gamma
distributions. Among them, we emphasize the Normal distribution for being the one that models the
incoming traffic trace best. The autocorrelation values show that none of the data sets exhibit signifi-
cant positive or negative dependencies (please observe Table VII). The processes concerning the packet
size and the interarrival times were easily modelled using Weibull for all the considered data sets.

3.3.8 Traffic Mixture 1: Mail, Messenger, and File Sharing. After investigating some traffic classes
separately, it was decided to move to the scenarios that can reflect the behavior of a contemporary
Internet user, by constructing a trace containing a mixture of traffic classes, generated by Mail, mes-
senger, and file sharing applications. According to our findings, the Weibull distribution is once more
the one that approximates the probabilistic laws of the byte count per-time-unit process best. The au-
tocorrelation of the referred process is the highest of all the analyzed traces, with values ranging in
the interval [0.641, 0.851] for the outgoing and [0.493, 0.922] for the incoming communications. The
packet size continued to respond badly to fitting procedure and Weibull proved itself once again the
best option for modeling interarrival times.

3.3.9 Traffic Mixture 2: File Sharing, Web Download and Instant Messaging. This section describes
the case where a user downloading several files via a P2P network is using the instant messenger to
(text) chat with someone. Additionally, this person is using the browser to download a file from a Web
server. While, in this case, the Normal distribution can be safely used to model the byte count per time
unit of the OUT dataset, none of the considered distributions were suitable for modeling the other
aspects of traffic. If forced to choose one of them, it would have to be Weibull, since it is the one that
gives the best approximation of the empirical data. The autocorrelation embedded in the byte count per
time unit is again extremely high and positive (values ranging in the interval [0.605, 0.907]), primarily
due to the presence of file sharing traffic (as mentioned earlier) and secondly due to the interaction of
the Web download with the remaining types of traffic. Alone, the, Web download does not exhibit
significant autocorrelation, but when mixed with other types of traffic, it represents an additional
constant component to the amount of information received or transmitted in the given network node.

The packet size process presents the characteristics of a bimodal process, mainly influenced by the
file download related traffic, and it is not modeled by any of the considered distributions. Instant mes-
saging related traffic introduces a certain smoothing factor in the curves but, as they are dominated
by the other types of traffic, it is not really noticeable. Weibull gets distinguished as being the best
candidate for modeling the distribution of the interarrival times.

3.3.10 Traffic Mixture 3: File Sharing, Streaming Download, and Instant Messaging. The previous
scenario was modified in order to accommodate a streaming download instead of a Web download. This
simple change altered significantly the byte count distributions, which can now be modeled by Weibull
and Normal distributions fairly (Normal for outgoing traffic and Weibull for the remaining data sets).
All the remaining results described in the previous section remain the same.

3.3.11 Traffic Mixture 4: VoIP (Skype), Streaming and File Sharing. The traffic mixture containing
Skype traffic was the one that surprised us the most. All the studied aspects of this traffic mixture can
be modeled using the theoretical distributions considered herein. And this is valid for the packet size
distribution as well. Skype encapsulates voice into variable length packets, with sizes varying between
100 and 500 bytes, resulting in highly dynamic traffic characteristics. The shape of the curve of the
packet size distribution, however, is severely affected by the other types of traffic, being best approx-
imated by the Pareto distribution. The Normal distribution prevails when it comes to approximate
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the byte count distribution. The analysis of the autocorrelation returned values within the interval
[0.322, 0.539], for the incoming traffic, [0.855, 0.889] for the outgoing traffic and [0.585, 0.729] for the
complete communications trace. As previously, the Weibull distribution is the one that best describes
the interarrival times process.

3.3.12 Traffic Mixture 5: Web, Mail and Instant Messaging. The trace containing the communica-
tions of a day in the life of a working station can be modeled by using Weibull distributions. Outgoing
communications are positively correlated (values varying between 0.003 and 0.330), while the bit count
per time unit of the incoming connections behaves randomly. We considered the case where a given
person was using the computer to work, frequently browsing the web, receiving and sending mail and,
here and there, using an instant messaging to chat with friends. The results obtained proved that
Weibull is suitable for the characterisation of the interarrival times and of the byte count.

The irregularity of the packet size distribution led us once again to reject any of the theoretical mod-
els. Most of the incidences concerning this traffic aspect are concentrated around the typical maximum
and minimum packet sizes for IP over Ethernet networks (in which the traces were collected). The
asymmetry inherent to the client server paradigm is superbly emphasised in this P2P free scenario:
small packets (corresponding mostly to HTTP requests and ACKs) occupy approximately 80% of the
transmitted units, while 50% of the received packets is bigger than 1500 bytes.

4. SUMMARY AND DISCUSSION OF THE RESULTS

4.1 Summary

In Table VII, we summarize the results described in Section 3, presenting the best distribution for each
case. The purpose is to provide a fast and easy way to read (and possibly use) the results of this work.
As, for some cases, several distributions could fit the experimental distribution with similar accuracy,
we chose to include only the distribution that has proven itself to be the best fit for the biggest number
of other cases. In the Packet Size column, one will often find values and empirical frequencies that
are not embraced by any of the notations introduced previously. They constitute the most probable
values for the packet size found for the specific scenario, not the parameters of any of the considered
models. For a more detailed discussion about the experimental distributions and the results of the
fitting procedure, we refer the reader to Section 3.3.1.

4.2 Discussion

Table VII only puts emphasis on what was elaborated throughout the preceding sections. For the
traffic aspects considered, Weibull and Normal distributions fit the majority of cases best. For this
particular evaluation, the process describing the packet sizes is the one that behaves worst, being
only possible to model using Weibull, Pareto, and Normal distributions when P2P traffic was present.
In most of the cases, the packet size distribution is bimodal, presenting a probability concentration
around two different values or small collections of values, the first around the maximum packet size
and the other one around a smaller packet size, related to packets like acknowledgements or TCP
SYN packets. The Weibull modeled the interarrival time distribution in almost all the cases. Even in
the case (streaming broadcast-downstream) where Pareto was the most adequate distribution, Weibull
fitted the experimental distribution well. It was not possible to fit a distribution for one case only,
probably due to specific characteristics of the protocol.

The autocorrelation of almost all traces shows evidences of positive dependencies among the values
of the bit count per second, at least until the time lag of 40s. It shows that the persistent properties of
self-similar traffic are still embedded in the data when it is received at its destination, and that some
of the traffic streams already exhibit positive correlations when first sent to the network. Persistence
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Fig. 5. The Weibull parameters plotted against the designation of each considered scenario: (a) the shape parameter values
estimated for the interarrival times; (b) the scale parameter values estimated for the interarrival times; (c) the shape parameter
values estimated for the bit count per time unit; (d) the scale parameter values estimated for the bit count per time unit. The
several traffic classes are sorted in increasing order of the value of the scale parameter of the MIX data set.

is partially fomented by the type and increasing number of telematic applications and connections a
single terminal machine handles nowadays. The correlation is then enhanced in network aggregation
points, where the range of previously mentioned dependencies is further extended by the interaction
between several traffic streams. In some cases, the terminal machine behaves like an aggregation point
also, where several applications originate different subconnections that hustle to obtain the network
resources.

4.3 The Distribution Parameters

To better depict how the specific characteristics of the several types of traffic are reflected in the dis-
tribution parameters, the estimated values of the Weibull distribution were plotted against the type of
traffic and included in Figure 5. All the values are delimitated by Confidence Intervals (CIs) with 0.05
of significance, provided by the respective maximum likelihood estimator. Notice that some of CIs are
too small to be observable in the charts, and that the order by which the applications appear in each
chart was determined by the shape parameter of the MIX data set. The first two charts (Figure 5(a)
and 5(b)) concern the analysis conducted for the Interarrival times process, while the two at the bottom
(Figure 5(c) and 5(d)) are related to the analogous analysis of the byte count per time unit process.
In terms of interarrival times, the shape parameter of the Weibull distribution varies between 1.73E-

1(± 2.11E-3) and 2.99(± 2.28E-2), as one moves from the streaming download to the Skype VoIP sce-
nario (see Figure 5(a)). It is interesting to notice that the explicit difference between VoIP traffic and
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Fig. 6. The (a) average and the (b) variance of the byte count per time unit, plotted against the designation of each considered
scenario. The several categories are sorted in increasing order of the average value of the MIX data set. (The y-axis of chart (b)
is in logarithmic scale.)

the remaining types of traffic moves that kind of communications to the tail of the charts. As ex-
pected, the largest CIs occur when the respective data set is better described by a model different
from Weibull. As may be seen in the chart Figure 5(b), the scale parameter of the referred distribu-
tion was low for most of the analysed traces, except for the streaming broadcast, whose largest value
was of 1.15(± 3.62E-2), and for which no fit was found. Other examples of such behavior are found in
Figures 5(c) and 5(d), where the estimates of the scale parameter for the byte count per second of the
streaming download and of the download from web resent the fact that the referred process is better
approximated by a Gaussian variable. For the IN datasets, the values of the scale parameter (and CIs)
are 146843.49(± 11881.05) and 108510.43(± 72145.69), respectively.
Overall, the values of Figures 5(c) and 5(d) are higher than their counterparts in Figures 5(a) and

5(b), with the shape parameter varying between 2.42E-1(± 2.14E-2) (OUT dataset of Web Traffic with-
out Streaming) and 21.38(± 5.55E-1) (MIX dataset of Skype VoIP). As opposed to the values obtained
for the interarrival process, the scale parameter oscillates between a couple of hundreds to several
hundred thousands, as a consequence of the magnitude of the metrics involved. Again, VoIP traffic
is the one presenting the highest shape values, inspired by the small variance of the associated byte
count per second and packet size distributions. The perfect symmetry of this P2P application is fla-
grant in the 4th and 5th lines of Table VII, being the network influences reflected in the empirical
curves concerning the interarrival times.
Figures 6(a) and 6(b) contain the estimated values for the average and variance of the bit count

per time unit, sorted in increasing order of the average value, and plotted against the designation of
the scenario they refer to (note that, for reading commodity, the y-axis of the chart in Figure 6(b) was
represented in logarithmic scale). By observing the plots, one may notice that streaming download was
the one with the highest average (106554.18(± 1620.16)), reflection of a higher and steadier transmis-
sion debit (approximately 856Kbps). As a result of the asymmetry of the network communications at a
terminal node, the outgoing traffic is, most of the times, characterized by a smaller transmission rate
than the one of the incoming connections. The variance suffers inevitably from the same effect (the
higher the debit, the more variable the bit rate is).

5. CONCLUSIONS AND FUTURE WORK

This article brings the focus of traffic analysis to the study of the behavior of network traffic sources.
It provides a compressed version of the models that can be used to simulate the main traffic classes a
source can produce, along with a compilation of the parameters that define them. After summarizing

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 6, No. 3, Article 21, Publication date: August 2010.

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

79



21:22 • J. V. P. Gomes et al.

the literature, we presented the results obtained from the analysis conducted over real traffic traces,
collected in different scenarios and containing traffic from several classes, that characterize the traffic
generated by an individual source (in the sense of end user or terminal traffic source). By fitting some
well-known distributions to the experimental data, we tried to indicate the models that best describe
the processes representing each traffic class. We have concluded that the Weibull distribution was ca-
pable of adapting itself to the majority of the empirical sequences of interarrival times and of bits per
time unit. On the other hand, the distribution of the packet sizes is, most of the times, dominated
by probability peaks around well defined values. It is thus suggested that the computational synthe-
sis of such aspect should be made recurring either to previously collected data, or to the bi/trimodal
distributions specified in this article (see Table VII).

It was also concluded that, for most of the analyzed traces the values of the bit count per time
unit were positively correlated, at least upto the aggregation scale of 40s. This observation not only
corroborates previous studies about the presence of self-similarity in network aggregation points, as it
also suggests that one might want to simulate some dependence when modeling the aforementioned
aspect of source traffic. The referred property achieves higher expression in scenarios where several
streams are concurring for the same resource or large files are being exchanged, as is the case of file
sharing traffic.

In the future, we plan to describe the impact of this work in simulations concerning prediction
and trends of network traffic volume. It is also our intention to formalise the simulation procedure
of the several traffic classes, and of their aggregation, in a separate publication. We found that the
ACF of some of the traces could be satisfactorily approximated by a power law like the one in (3),
which simplifies the simulation of that particular aspect, since it enables the usage of self-similar or
multifractal series generators followed by their suitable transformation into the observed marginal
distribution. That will be the subject of a more detailed research work, and of a future publication.
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The inclusion of encryption or evasive techniques in popular applications increased
the importance of characterizing network traffic based on behavior. This
study aims to characterize peer-to-peer (P2P) traffic from the perspective of
host computers by focusing on the packet lengths. The article explores the
dissimilarities between the lengths of Internet Protocol (IP) packets generated by
P2P and non-P2P applications. The heterogeneity of those lengths was assessed
using entropy and compared for different classes of applications, through the
implementation of a sliding analysis window. Initial observations show that the
lengths of the packets generated by P2P applications are more varied than the
ones of non-P2P applications. These patterns were used to implement a method to
identify hosts running P2P applications. Unlike previous studies on this area, we
used the heterogeneity of the packet lengths instead of the length value per se and
a sliding window calculation procedure was adopted to allow real-time processing.
The results of this study can be used for the characterization of traffic generated
by P2P applications, as well as for traffic classification and management purposes.
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1. INTRODUCTION

The statistical analysis of different traffic parameters
has always played an important role in the management
of computer networks, since it enables the mathematical
description of traffic behavior. The information
retrieved is vital to achieve a better understanding
of how the network resources are being used and
how the traffic load impacts network capacity. In
terms of network management, a good example of the
importance of mathematically characterizing traffic is
the well known study by Leland et al. [1]. With their
work, the authors showed that a property known as self-
similarity was embedded in the traffic, breaking a few
old assumptions regarding the best probabilistic model
to simulate or design the network.

The capability to mathematically characterize the
traffic behavior, besides being used in the simulation
of network traffic, has been employed mainly on the
definition of strategies to effectively distribute the

network workload and on the establishment of fair
policies for bandwidth allocation, as well as on the
design of more efficient networks. Network Intrusion
Detection Systems (NIDSs), particularly the ones that
elaborate on anomaly-based approaches, have also
taken advantage of statistical analysis to describe the
behavior of legitimate or illegitimate traffic, depending
on whether they intend to identify the traffic that
departs from a model of normal behavior or the traffic
that matches a model of abnormal behavior [2].

More recently, new network paradigms, like peer-to-
peer (P2P) computing, started to give users the power
to act as content providers. This shift in the user
role has modified properties of the traffic making it
difficult to determine its nature [3]. From the network
management perspective, P2P applications may raise
a few challenges for network administrators, since the
dual role (client and server) played by P2P hosts
increase the traffic load in the edges. Furthermore, the
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improvement of network throughput and the adoption
of obfuscation techniques by popular applications have
increased the computation power required to deeply
analyze the data within the packets at high speeds
and have reduced the effectiveness of the approaches
that are based on the payload inspection [4]. Due to
these reasons, statistical tools are also being used to
profile the traffic, characterize its nature, or provide a
classification based on the application protocol.

The study described in this article comprises the
analysis of the traffic of several popular multimedia
applications and protocols from a host-level perspective.
Focusing the observation on the data transmitted by
an end user helps to characterize the generic behavior
that is inherent to the traffic generated by a specific
application or class of applications. Additionally, it
enables the understanding of the properties of the traffic
generated by a single host. The importance of the host
level characterization and the applicability of focusing
on the role of each mode has already been shown in
other studies [5, 6].

In a previous work [7], we collected network traffic
at its source, i.e., near the terminal device generating
the traffic (which embraces all the packets transmitted
by a single user), analyzed different traffic properties,
and described their behavior. Following that effort, the
study presented herein aims to characterize the lengths
of the Internet Protocol (IP) packets generated by P2P
applications and compare them with the ones generated
by client-server applications. Instead of relying only
on the lengths of the packets, or on a range of lengths,
this work uses their level of heterogeneity, which we
measure by resorting the concept of entropy. Moreover,
we propose a method that enables entropy evaluation in
real-time. Most published studies on statistical traffic
analysis used offline methods to process the data from
complete flows [9]. In some cases, only the first packets
or bytes in each flow were analyzed so that the traffic
could be monitored in real-time [10]. In this work, we
resorted to a method based on a sliding window with a
constant size of N packets to assess the entropy of the
traffic, from the beginning to the end of the capturing
period in real-time. At each iteration of the sliding
window, instead of recalculating the probabilities of all
packet lengths within the window, we update the packet
length probability for the packet that leaves the window
and for the one that is added. After that, we calculate
the entropy by updating the entropy obtained in the
previous iteration of the sliding window.

The results of our analysis show that the lengths of
the IP packets generated by P2P applications are more
heterogeneous than the ones generated by the remaining
applications. This behavior is clearly observable in the
level of entropy obtained for each application, which
is higher for P2P traffic. Using the entropy level, it
is possible to distinguish the P2P Voice over Internet
Protocol (VoIP) traffic, the P2P file-sharing and P2P
video streaming traffic, and the non-P2P traffic for

a host running a single application. In addition,
we also studied the effect on entropy of running
multiple simultaneous non-P2P applications in the same
machine. Although, in these cases, the entropy level is
still lower than its value for P2P traffic, it can can be
similar in extreme situations. Nevertheless, the results
obtained by studying only the outgoing portion of the
traffic using a similar method show that it is possible
to distinguish these cases. The ability to discriminate
between P2P and non-P2P applications has motivated
several studies [6, 8]. By recognizing the behavior of
the traffic from generic P2P protocols, it is possible to
identify P2P traffic even from new or unknown specific
P2P applications.

The remainder of the article is structured as follows.
Background concepts and related work are introduced
before the analysis of the heterogeneity of the packet
lengths. Afterwards, the evaluation of entropy and
the obtained results are presented, followed by the
description of a host-based classification scheme. The
article finishes with a section devoted to conclusion.

2. EXPLORING TRAFFIC FEATURES

Several authors have been using features (or properties)
extracted from packet fields or flow information
(e.g., packet length, flow duration, addresses, ...),
to mathematically describe the traffic from computer
networks. Taken alone, or transformed using statistical
functions, these features are employed as discriminators
to characterize and isolate the behavior of specific
network data [11], like traffic anomalies or application
classes. Erman et al. [12], e.g., resorted to a set of
11 flow features (such as the total number of packets,
the mean of the packet lengths, the total bytes, among
others) and to a cluster algorithm to implement a
traffic classifier. Freire et al. [13] analyzed the web
page request length, the web response length, the inter-
arrival time between requests, the number of requests
per page, and the page retrieval time, and used the
results to build a model for web traffic. Palmieri and
Fiore [14] used the minimum, the mean, the maximum
and the variance of the inter-arrival times and of
the packet lengths to implement a traffic classification
method. Tutsch et al. [9] used the self-similarity
property to describe the traffic generated by a P2P
file-sharing system. The technical report by Moore et
al. [15] provides an extended list of discriminators to be
applied on traffic characterization.

Some studies have already used the lengths of the
IP packets as a feature for traffic characterization or
classification [16, 17, 18]. Generally, the authors use the
mean of the lengths, the total bytes per flow, the lengths
of the first n packets, etc. Most of the times, they also
combine them with other features, such as the inter-
arrival times [19, 20]. In this article, instead of looking
at the lengths individually, we focus on the relation
between the different lengths. We analyze how varied
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or homogeneous the packets lengths are for different
classes of traffic. The traffic was processed using a
sliding window with a constant size, which allow us to
calculate entropy in real-time and assess the variations
of the heterogeneity level iteratively across time. The
real-time analysis of packet length heterogeneity and its
quantification using entropy was used for the first time
in an early version of the work presented herein [21].
Recently, Li et al. [22] used a similar approach to
identify VoIP traffic. They calculated the entropy value
offline for each complete flow, preventing its application
to real-time traffic analyses.

Although several authors have already applied
entropy in traffic studies, they used it to analyze
other traffic features and for distinct purposes. The
data generated by applications that encrypt the traffic
is highly random. Therefore, entropy is sometimes
used to reveal the randomness of the bytes within
the payload of packets from encrypted traffic [23, 24].
Additionally, entropy has been widely use in the field
of traffic anomaly detection. In most cases, authors
rely on entropy to measure the randomness that some
anomalies induce in the ports and IP addresses of the
traffic from a host [25, 26, 27, 28].

Besides different traffic features, statistical analysis
studies also use distinct observation levels. Most
works analyze network traffic from the packet [29],
flow [10], or session [30] perspectives. Generally, a
flow is considered to include the packets transmitted
between the same source and destination address-port
pairs, in each or both directions (depending on whether
one considers unidirectional or bidirectional flows),
with a limited inter-arrival time and using the same
transport protocol. On the other hand, a user session
usually includes the packets of all flows concerning the
communications of a certain application of a single
user, until a predefined inactivity period is reached [30].
However, researchers are looking at the network data
from different perspectives as a way to achieve an
extended knowledge, improved by contrasting levels
of views, about the traffic behavior. For instance,
Khakpour and Liu [10] proposed the classification of
the flows into text, binary, or encrypted, based on the
nature of their contents. In this article, we focus on the
host level. Such perspective enables the observation of
the behavior of a single user and the characterization
of his or her traffic. Moreover, it makes it possible to
explore the role of a node in the network and the data
as a combination of the impact of different applications
from the same host.

3. METHOD FOR EVALUATING THE
HETEROGENEITY OF THE PACKET
LENGTHS

In order to analyze the heterogeneity of the packet
lengths, we collected traffic from several multimedia
applications, analyzed their level of heterogeneity, and

compared it between P2P and non-P2P traffic. This
section describes the research method used in this work
and its implementation.

3.1. Experimental Network Data

The traffic traces used in this work were collected by
tapping the connection of individual end users so as to
obtain the traffic from a source level perspective. To
be sure of what application has generated the analyzed
traffic and avoid any case of misclassification, each user
was running only one a application at a time. Hence,
each trace corresponds to a single session of a certain
application from one single user. Later on, we also
captured traffic from individual users running several
simultaneous non-P2P applications. These aggregated
traces were used to evaluate the effect of multiple
applications in a host traffic and how they impact the
entropy results obtained for individual applications.

In this study, we chose services or applications that
are widely used, are heavy bandwidth consumers, or
raise more challenges from the perspective of traffic
and network management, ending up with a set of
applications with varied characteristics. Moreover, we
tried to use applications with distinct behaviors to make
it more challenging to identify common patterns.

The users were running distinct operating systems
and each of them was connected in one of three different
contexts: directly to the Internet, in a small Local Area
Network (LAN), in a branch of a complex LAN. The
following list describes the applications, protocols, or
services whose traffic was analyzed:

• Web browsing – the activity of browsing web
pages (excluding the streaming of multimedia
contents, which is included in other categories);

• Mail – Post Office Protocol (POP), Simple Mail
Transfer Protocol (SMTP), and Internet Message
Access Protocol (IMAP);

• Remote shell – Telnet and Secure Shell (SSH);
• File transfer – File Transfer Protocol (FTP) and

Secure File Transfer Protocol (SFTP);
• Hypertext Transfer Protocol (HTTP) down-

load – the download of a non Hypertext Markup
Language (HTML) file, e.g., an executable or a disc
image;

• Live audio streaming – Microsoft Media Server
(MMS), Real Time Streaming Protocol (RTSP),
and Flash-based streaming;

• On-demand audio streaming – RTSP, HTTP,
and Flash-based streaming;

• Live video streaming – MMS, RTSP, and Flash-
based streaming;

• On-demand video streaming – RTSP, HTTP,
and Flash-based streaming;

• P2P video streaming – SopCast, PPStream, and
TVU Player ;

• P2P file-sharing – BitTorrent, eDonkey, and
Gnutella;

The Computer Journal, Vol. X, No. X, 2011

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

87



4 J. V. Gomes, P. R. M. Inácio, M. Pereira, M. M. Freire, and P. P. Monteiro

• P2P VoIP – Skype, Google Talk, and MSN
Messenger.

The use of long traces is usually a requirement to
conduct sound studies on network traffic. However,
given the particular nature, purpose, and approach
of this work, it would be unrealistic to collect very
long datasets of some kinds of traffic, e.g., VoIP or
mail. Instead, we decided to analyze several traces
of each class, with realistic durations, and verify the
consistency of the results for all of them. The traces
include 11.7 GB of data. The sum of the duration of all
the datasets is approximately 61 hours. The datasets
were collected in different periods, from October 2006
to September 2011. The traces containing aggregated
data from multiple applications sum up to 13.3 GB and
correspond to a 24 hours period.

In order to keep the article short, the figures
included in the following sections contain examples for
specific classes of traffic that are demonstrative of the
conclusions obtained for all the datasets used in this
study. Each chart depicts a single and entire trace
as an example of the corresponding application. We
intentionally tried to vary the examples shown in each
of the figures.

3.2. Lengths of the Packets from P2P and Non-
P2P Traffic

The traffic from non-P2P applications is generally
formed by well behaved flows with a predictable and
stable nature, most of the times based on a single or a
few traditional client-server connections. On the other
hand, P2P applications present a more chaotic nature,
in terms of connections, that derives partially from the
dual role played by a P2P user (which acts both as client
and server). Moreover, especially in the case of file-
sharing and video services, the P2P applications receive
and provide data from and to more than one peer,
generating multiple concurrent connections, possibly
with distinct properties.

When observing the traffic from a P2P node,
this chaotic nature is revealed in different aspects:
the number of destination ports to which a single
source port communicates, the multiple concurrent
connections, the use of both Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP)
between the same peers, etc [8]. These properties
produce a measurable influence in the characteristics
of the packet lengths.

From the datasets captured, we selected only the
IP packets and excluded the packets of Internet
Control Message Protocol (ICMP), Domain Name
System (DNS), and local communications (packets
exchanged with routers, gateways, and other local
devices). Figure 1 depicts the distribution of the lengths
over time, for six examples of traffic. The lengths
of the packets transmitted by the P2P applications
are extremely heterogeneous when compared to the

ones from non-P2P applications. Figure 2 includes
the cumulative probability distributions of the packet
lengths so as to make it easier to understand the
diversity and the probability weight of the values in
the examples depicted in Figure 1. The discrepancy in
the number of connections, between the different classes
of applications, is then illustrated by Figure 3. The
diameter of the circles, which is proportional to the
number of packets transmitted, gives an idea of how the
packets are distributed by multiple connections between
different hosts.

The traffic from the HTTP download is composed,
almost exclusively, by large packets, limited by the
Ethernet Maximum Transmission Unit (MTU) (1500
bytes of payload plus the size of the header), and
by small packets used to send TCP acknowledgement
messages. The intermediate values that are visible in
the streaming examples result from the aggregation of
the application protocol units and its distribution into
a few transport datagrams. The small and large values,
as well as the intermediate value for live streaming, are
clearly observable in the cumulative functions, where
the completely horizontal lines between the probability
jumps show their predominance.

In the case of P2P file-sharing and P2P video stream-
ing, a host establishes several parallel connections with
other peers. These connections may follow different
paths with distinct MTUs, imposing different maximum
limits for the packet lengths. This behavior is observ-
able in Figure 1, in the charts related to these types of
traffic, where it is possible to see a few horizontal lines
formed by the packet lengths of connections with dis-
tinct MTUs. The biggest difference to non-P2P traffic,
though, is the diversity of packets with distinct lengths
used to establish and control the connections between
the peers, and, mostly, to search for peers with the re-
quired contents and answer to requests from other users.
Although the corresponding cumulative probability dis-
tributions, in Figure 2, still present a few probability
jumps, they are smaller and less expressive when com-
pared to non-P2P traffic. Moreover, the probabilities
between the peaks increase smoothly. This effect is
caused by the larger diversity of packet lengths which
reduces the highest probabilities and increases the low-
est ones.

Like the other P2P applications, P2P VoIP also
generates traffic formed by heterogeneous packet
lengths. Nevertheless, VoIP applications do not
establish a large number of connections. The
packet length heterogeneity is caused by the real-time
requirements inherent to any phone call. Instead of
transmitting the data in large packets limited by the
MTU, the voice is codified in small blocks with different
lengths that are sent immediately. This results in
packets with extremely varied lengths concentrated in
a very short range. This behavior is observable in
Figure 2, where the cumulative probability increases
almost uniformly from 0 to 1 as the packet lengths
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FIGURE 1. Distribution of the packet lengths versus time for different examples of traffic from (a) non-P2P and (b) P2P
applications.
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FIGURE 2. Cumulative probability distributions of the packet lengths.

vary between 100 and 200 bytes. Although some
non-P2P services, like live streaming, also have real-
time requirements, they resort to a buffer to aggregate
data into larger blocks and still provide the contents
smoothly.

3.3. Evaluation of the Heterogeneity of the
Packet Lengths

In order to quantify the level of heterogeneity of the
packet lengths described above, we employed entropy.
This subsection explains the concept used in this work
and presents how the entropy calculation method was
implemented in our experiments.

3.3.1. Evaluation of the Heterogeneity Using Entropy
In this article, we use entropy as a measure to express
the level of heterogeneity of the lengths of IP packets.
The concept of entropy used herein coincides with
the one introduced by Shannon in the information
theory [31], where entropy is presented as a measure
of the uncertainty of a random variate.

Entropy is frequently denoted by H(x) and defined
by an expression equivalent to (1), where n represents
the number of values of x for which the statistic is
calculated, and p(xi) is the probability of the particular
value of xi:

H(x) = −
n∑

i=1

p(xi) ln p(xi). (1)

For any finite number n ∈ N, the maximum value that

The Computer Journal, Vol. X, No. X, 2011

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

89



6 J. V. Gomes, P. R. M. Inácio, M. Pereira, M. M. Freire, and P. P. Monteiro
D

es
ti

n
a
ti

o
n
 h

o
st

s

Source hosts

Non P2P traffic

FTP download

RTSP on-demand audio streaming

MMS live video streaming

D
es

ti
n
a
ti

o
n
 h

o
st

s

Source hosts

P2P traffic

eDonkey P2P file-sharing

PPStream P2P video streaming

MSN P2P VoIP

FIGURE 3. Schematic representation of the number of packets transmitted between the same source and destination
addresses, in a single user session, for non-P2P and P2P traffic.

H(x) may reach is given by

H(x) = ln n. (2)

The value of entropy is always a positive number. If an
estimate of H(x) is close to 0, the number of different
values in the pool of samples is small. H(x) increases
with the number of different occurrences under analysis.

3.3.2. Applying Entropy to the Lengths of the Packets
Using the level of heterogeneity of the packet lengths as
a factor for traffic characterization requires the ability
to quantify and describe it mathematically. In order
to do so, we resort to the definition of entropy given
by Shannon. The only thing we had to take into
consideration was the fact that, as any other statistic
and due to the Law of Large Numbers, the entropy
value converges to a fixed value for an increasing pool
of values. Therefore, we calculated entropy for a sliding
window of N packets. In each step, the oldest value (i.e.,
the packet length) leaves the window and a new one is
added, producing one entropy value for each iteration.
The use of a sliding window provides the ability to
analyze the traffic in real-time.

In order to implement the calculation method in an
efficient way, we avoid recalculating the entropy for all
packets within the sliding window in every iteration.
Instead, we calculate the entropy using (1) when the
window is filled for the first time. After that, in each
iteration i of the sliding window, we:

1. subtract, to the entropy in the previous iteration,
the weight of the oldest packet length (lo) in the
sliding window:
−(−pi−1(lo) ln pi−1(lo));

2. subtract, to the result of step 1, the weight of the
latest arrived packet length (ll), in case at least

one occurrence of ll already exists in the sliding
window:
−(−pi−1(ll) ln pi−1(ll));

3. update the probabilities of lo and ll in iteration i
after lo leaves the window and ll is added;

4. add, to the result of step 2, the weight of lo in
iteration i of the sliding window:
+(−pi(lo) ln pi(lo));

5. add, to the result of step 4, the weight of ll in
iteration i of the sliding window:
+(−pi(ll) ln pi(ll)).

We aggregate these operations in (3) and we update the
entropy in each iteration i of the sliding window using

U(l) = pi−1(l) ln pi−1(l)− pi(l) ln pi(l), (3)

Hi(x) = Hi−1(x) + U(lo) + U(ll). (4)

4. RESULTS AND ENTROPY ANALYSIS

The approach described in the previous section was used
to analyze the entropy for all the captured datasets.
In this section, we present the results obtained for
the different classes of applications. Furthermore, we
describe a scheme to distinguish between P2P and non-
P2P traffic.

4.1. Analysis of Traffic Entropy at the Host
Level

The results obtained in the entropy analysis were
consistent with what was observed in the previous
subsection. The chaotic behavior described above
is reflected in the entropy level, which is clearly
distinct for P2P and non-P2P traffic. The non-P2P
datasets originate lower entropy values when compared
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FIGURE 4. Evolution of the entropy value for sliding windows with constant sizes.

to what happens with the P2P traffic. In fact,
the differences are also visible between VoIP and the
remaining P2P applications. The entropy values for
P2P video streaming and P2P file-sharing traffic fall
into an intermediate level, between the ones for non-
P2P applications and for VoIP data, whose entropy
is close to the maximum value. Figure 4 shows three
examples of this analysis and provides a graphical
perspective of this behavior. It is possible to see that
the entropy values for the Gnutella dataset is always
between the values obtained for SFTP and Skype traffic.

In order to provide a more general and integrated
perspective of the results obtained for all the datasets
analyzed, we organized the entropy values in Table 1,
sorted in descending order. For each trace we captured,
we obtained the mean of the entropy in all the steps of
the sliding window, ending up with one representative
value per trace. After that, we calculated the mean for
all the datasets from the same application. The rows
in the table refer to the global mean of the entropy of
all the traces of the related application or service. As it
is possible to observe, almost all the P2P applications
(which correspond to the highlighted rows) were ranked
in the top of the table, with the VoIP examples taking
the first places and having clearly higher entropy values
than all the other applications.

In a TCP connection, some packets serve the
sole purposes of starting, finishing, or managing
the connection and, therefore, do not contain any
application data. This fact is naturally inherent to
the protocol and will be the same no matter what
kind of traffic (P2P or non-P2P) will be transported

by the TCP connection. Since we are focusing our
attention in the dissimilarities of the traffic from
different applications, we tried to minimize any common
points that do not result from the application itself.
Hence, we repeated the same trace analysis but, this
time, we excluded all the TCP packets that are only
used to send TCP flags and do not contain any
transport payload. The results included in the right
side of Table 1 show only a slight increase of the entropy
of the most entropic datasets. However, the entropy
of the traces whose packets have more homogeneous
lengths decreased considerably to values near zero,
emphasizing the entropy differences to the datasets
containing packets with more heterogeneous lengths.

The window size impacts the entropy value.
Therefore, we conducted this analysis for several
distinct window sizes from 10 to 2000 packets. In
Figure 4, we included examples for windows with 50,
100, 200, 500, 1000, and 1500 packets. In all the
charts depicted in the figure, an horizontal line indicates
the maximum value entropy can reach for the size of
the window. For the same data, entropy increases
slightly when the size of the window is bigger, as
it can be seen not only in the figure, but also in
Table 1. Nonetheless, this behavior is hardly noticeable
for windows larger than 500 packets. In fact, the
most relevant consequence of increasing the size of
the window is the decrease of the entropy peaks and
the magnification of the lower values, which ends up
creating a smoothing effect that makes the entropy
value more stable. The choice of an optimal window
size will depend on the level of granularity required for
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TABLE 1. Mean of the entropy of all the datasets of each application for sliding windows with sizes of 100 and 500 packets.
All the packets Excluding packets with no TCP payload

100 Packets Window 500 Packets Window 100 Packets Window 500 Packets Window
Service or application Entropy Service or application Entropy Service or application Entropy Service or application Entropy

Skype VoIP 3.689092 Skype VoIP 4.253871 Skype VoIP 3.692575 Skype VoIP 4.253475
Google Talk VoIP 3.673437 Google Talk VoIP 4.223415 Google Talk VoIP 3.672914 Google Talk VoIP 4.222280

MSN VoIP 3.304374 MSN VoIP 3.767171 MSN VoIP 3.306609 MSN VoIP 3.765748
eDonkey file-sharing 2.326302 BitTorrent file-sharing 2.600922 BitTorrent file-sharing 2.372140 BitTorrent file-sharing 2.597633

BitTorrent file-sharing 2.225038 eDonkey file-sharing 2.563792 eDonkey file-sharing 2.315821 eDonkey file-sharing 2.590145
Gnutella file-sharing 1.735907 Gnutella file-sharing 1.814077 eMail IMAP 1.704473 eMail IMAP 1.886539

eMail IMAP 1.636527 SopCast video 1.788471 TVU video 1.557982 SopCast video 1.712150
SopCast video 1.615137 eMail IMAP 1.765541 SopCast video 1.548545 TVU video 1.711503

TVU video 1.568804 TVU video 1.724189 Gnutella file-sharing 1.508016 Gnutella file-sharing 1.627393
Telnet session 1.547972 Telnet session 1.665598 Telnet session 1.344495 Web browsing 1.538494
Web browsing 1.35992 Web browsing 1.616038 PPStream video 1.317305 Telnet session 1.488726

RTSP live audio 1.40257 PPStream video 1.481672 RTSP live audio 1.276242 PPStream video 1.477753
PPStream video 1.320381 RTSP live audio 1.430851 Web browsing 1.183305 RTSP live audio 1.302925

HTTP on-demand audio 1.293733 Flash live audio 1.422119 RTSP on-demand audio 1.152338 HTTP on-demand audio 1.241080
Flash live audio 1.273091 HTTP on-demand audio 1.409538 HTTP on-demand audio 1.103575 RTSP on-demand audio 1.188753

RTSP on-demand audio 1.259748 RTSP on-demand video 1.305689 eMail SMTP 0.984063 Flash live audio 1.125196
RTSP on-demand video 1.150866 RTSP on-demand audio 1.289097 Flash live audio 0.938838 RTSP on-demand video 1.038351

MMS live audio 1.142598 Flash live video 1.268098 RTSP on-demand video 0.813354 eMail SMTP 0.964299
Flash live video 1.124564 SFTP download 1.190365 Flash live video 0.709199 Flash live video 0.904862

SSH session 1.10337 SSH session 1.159284 SSH session 0.671425 SSH session 0.744112
SFTP download 1.017874 MMS live audio 1.156805 MMS live audio 0.660225 MMS live audio 0.670584

eMail SMTP 0.989311 RTSP live video 1.015639 RTSP live video 0.481099 RTSP live video 0.620572
RTSP live video 0.889848 eMail SMTP 0.967104 SFTP download 0.331281 SFTP download 0.358668
HTTP download 0.865411 Flash on-demand video 0.831476 Flash on-demand audio 0.176783 MMS live video 0.180871

Flash on-demand video 0.795265 HTTP on-demand video 0.782923 MMS live video 0.167241 Flash on-demand audio 0.179289
Flash on-demand audio 0.770837 Flash on-demand audio 0.775613 HTTP download 0.147586 Flash on-demand video 0.150160
HTTP on-demand video 0.754165 HTTP download 0.701071 Flash on-demand video 0.125844 HTTP download 0.118539

eMail POP 0.71003 eMail POP 0.695409 eMail POP 0.071632 eMail POP 0.070216
FTP download 0.672094 FTP download 0.672138 HTTP on-demand video 0.054755 HTTP on-demand video 0.065906
MMS live video 0.63307 MMS live video 0.667665 FTP download 0.000054 FTP download 0.000069

a specific purpose. In the additional analyses described
in the following subsections, we used sliding windows
with size of 100 packets, as a compromise between the
stability of the entropy level and the level of detail
needed for the analysis.

4.2. Entropy of Simultaneous Applications

The analysis of the traffic from a host level perspective
is straightforward when there is only a single application
transmitting data. However, a regular user is
running, most of the times and simultaneously, several
applications. Therefore, following the same controlled
approach used to collect the traces studied in the
previous subsection, we captured a few datasets from an
end-user running several P2P and non-P2P applications
at the same time.

4.2.1. Aggregated Traffic from P2P and Non-P2P
Applications

Firstly, we wanted to analyze the effect of non-P2P
traffic in the entropy level when mixed with traffic
from P2P applications. In the results we obtained,
the presence of P2P traffic is still noticeable when the
dataset contains traffic from more than one application.
The weight of each application in the overall entropy
value depends also on the amount of data transmitted
by each of them. Because of their greedy nature in
terms of bandwidth consumption, P2P applications
tend to have a strong influence on the entropy of the

trace.
Figure 5 presents two examples of this analysis. In

order to maximize the possible variations of the entropy
value, we chose to exclude all the TCP packets without
payload from the analysis of these composed traces.
In the first one, it is possible to observe that entropy
increases as we add more P2P applications, especially
when the VoIP call starts. In the end of the trace, when
there is only the HTTP download running, entropy falls
to values close to zero. After a human verification of
the traffic in this period, we found that the small peaks
in the entropy values are caused by Distributed Hash
Table (DHT) systems implemented by most BitTorrent
clients. These distributed systems are used to improve
the search for contents and reduce the dependency on
centralized trackers. They enable the content sharing
when the tracker is not available or between peers
that are not connected to the same tracker. In the
datasets, it was possible to observe that, even after
the application is stopped, the host was still receiving
requests through the DHT system.

In the second example (bottom chart of Figure 5), a
similar behavior is observable. Although Google Talk
traffic raises entropy to high values, the larger share
of SopCast data in the overall traffic pulls the entropy
value down to a level more alike to what is common for
P2P file-sharing and P2P video applications. It is only
when the SopCast is stopped that the entropy values
increase to a level similar to what we would expect for
VoIP traffic.
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FIGURE 5. Entropy for two examples of datasets containing aggregated traffic from several simultaneous applications.

4.2.2. Aggregated Traffic from Several Non-P2P Ap-
plications

The heterogeneity of the packet lengths resulting from
P2P applications is still noticeable if the same host is
also running non-P2P applications. A distinct problem,
though, is the possible effect in the entropy level
of running several non-P2P applications in the same
machine. In the case of P2P VoIP applications, the
entropy is high for the single flow used to transmit
the session data. However, as described above, for
P2P file-sharing and P2P video streaming, the entropy
is high due to the aggregation of multiple flows with
different properties. Therefore, we wanted to analyze
if the aggregation of traffic from multiple non-P2P
applications could also result in an entropy level similar
to the one obtained for P2P traffic, making it difficult
to distinguish between both classes of traffic.

In order to perform such analysis, we collected traffic
from single hosts running several non-P2P applications.
We first captured a set of traces from hosts listening a
few audio streaming sessions using different protocols,

browsing the web, downloading a large file using HTTP,
and checking the email. The traces of non-P2P traffic
included in this set will be named as type 1 in this
article. In a second stage, we wanted to exaggerate
the analysis, even if it could be unrealistic. Hence, we
captured a different set of traces from hosts running
many audio and video streaming sessions, besides of
the applications used in the traces from type 1. These
traces will be named, herein, as type 2.

Figure 6 compares the results obtained for a trace
example containing P2P traffic, a type 1 trace, and a
type 2 trace. In order to make a stricter comparison,
we chose a P2P trace with an entropy level closer to the
entropy values obtained for the non-P2P applications.
The dark line depicts the mean so as to make it easier to
compare the results. The entropy for the type 1 trace
is very close to 1, being difficult to be distinguished
from the P2P traffic. Nevertheless, as it was seen
in Table 1, if the TCP packets with no payload are
excluded from the analysis, the difference between the
type 1 trace and P2P traffic is clear. However, the
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FIGURE 6. Packet lengths and the corresponding entropy for examples of P2P traffic and type 1 and type 2 traces of
aggregated traffic from several simultaneous non-P2P applications.

type 2 trace presents an entropy level similar to the
patterns evidenced by P2P traffic, even if the packets
with no TCP payload are excluded from the analysis.
Thus, in some cases, considering extreme examples,
further analysis is required so as to make it possible
to distinguish P2P traffic.

Since P2P hosts also act as servers, it is reasonable
to think that the outgoing traffic may have different
properties when compared with non-P2P applications.
Hence, we focused the analysis in the outgoing traffic.
Figure 7 presents a comparison of the entropy level
of the outgoing traffic for the same three examples.
One may observe a small difference between P2P traffic
and the type 1 trace. However, the type 2 trace
continues to present a behavior very similar to P2P
traffic. As the lengths of the packets from non-P2P
traffic are usually within a shorter range of values,
we performed a different analysis by considering slots
of lengths instead of each length individually. This
analysis was implemented in a simple way by calculating

the integer division of each length by the size of the slot
we wanted to consider and then calculating entropy for
the resultant values. For example, for slots of 200 bytes,
every length from 0 to 199 bytes would be transformed
into 0. We performed this analysis using slots with
different sizes and we achieved better results with slots
of 200 bytes. The results for the three examples are
depicted in the third row of charts in Figure 7. In
this case, the entropy values will be lower as there are
less distinct possible lengths. For this reason, in these
examples, the y axes range from 0 to 1. The entropy
level for the aggregated non-P2P traffic is lower than
for the P2P trace. These patterns are not so visible in
the beginning of the traces, as that is the period where
the requests are being made and no contents are being
transmitted yet.

Similarly to the first table, Table 2 summarizes the
results of this analysis. Each value represents the
entropy mean for all the traces of the same application
or class. The table presents the results obtained for
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FIGURE 7. Packet lengths and the corresponding entropy of the outgoing traffic for examples of P2P traffic and type 1
and type 2 traces of aggregated traffic from several simultaneous non-P2P applications.

TABLE 2. Mean of the entropy for all the datasets of each class of application for sliding windows with size of 100 packets.
All packets Excluding packets Outgoing traffic Outgoing traffic

with no TCP payload considering slots of 200 Bytes
Service or application Entropy Service or application Entropy Service or application Entropy Service or application Entropy

eDonkey file-sharing 2.326302 BitTorrent file-sharing 2.372140 eDonkey file-sharing 1.803879 eDonkey file-sharing 0.697760
BitTorrent file-sharing 2.225038 eDonkey file-sharing 2.315821 BitTorrent file-sharing 1.564682 BitTorrent file-sharing 0.479357
Non-P2P traces type 2 1.881326 Non-P2P traces type 2 1.859609 TVU video 1.519015 SopCast video 0.434564

Gnutella file-sharing 1.735907 eMail IMAP 1.704473 SopCast video 1.408216 Web browsing 0.406709
eMail IMAP 1.636527 TVU video 1.557982 eMail IMAP 1.368927 TVU video 0.347328

SopCast video 1.615137 SopCast video 1.548545 Gnutella file-sharing 0.982682 PPStream video 0.200514
TVU video 1.568804 Gnutella file-sharing 1.508016 Telnet session 0.910888 Gnutella file-sharing 0.124701

Telnet session 1.547972 Telnet session 1.344495 Web browsing 0.910178 Non-P2P traces type 1 0.035944
RTSP live audio 1.40257 PPStream video 1.317305 PPStream video 0.675948 Non-P2P traces type 2 0.030780
Web browsing 1.35992 RTSP live audio 1.276242 Non-P2P traces type 2 0.522932 eMail IMAP 0.019976

PPStream video 1.320381 Web browsing 1.183305 Non-P2P traces type 1 0.413866 RTSP on-demand audio 0.005974
HTTP on-demand audio 1.293733 RTSP on-demand audio 1.152338 HTTP on-demand audio 0.177408 HTTP on-demand audio 0.000920
RTSP on-demand audio 1.259748 HTTP on-demand audio 1.103575 RTSP live audio 0.111319 RTSP live audio 0.000168
Non-P2P traces type 1 0.972249 Non-P2P traces type 1 0.280714 RTSP on-demand audio 0.021059 Telnet session 0.000000

the type 1 and type 2 traces and for the applications
considered in Table 1. For the sake of simplicity, it only
includes the applications for which the entropy, using
a sliding window with size of 100 bytes and excluding

the packets without TCP payload, was between 1 and
3. We considered the traffic with entropy greater than
3 (in the same conditions) to be P2P and the traffic
with entropy lower than 1 to be non-P2P. Hence, in
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this phase, the attention is focused in the gray area in
the middle.

The results show that P2P and non-P2P traffic is
almost distinguishable when the entropy is analyzed for
the outgoing traffic. After the analysis of the entropy
considering slots of 200 bytes, the two classes of traffic
are separated almost perfectly with the exception of the
web browsing traffic. The entropy level for non-P2P
traffic is much lower than 0.1, whereas for P2P data
entropy is always above that value.

4.3. Discussion

Looking at the traffic from a host level perspective does
not have the purpose of extracting knowledge about
individual flows or packets. Instead, it gives information
about the behavior of individual users or nodes, which
is useful for the characterization of the traffic. The
study of the packet length heterogeneity may be used
as a means to identify users running P2P applications
and acting as both client and server. Such information
would help to improve the accuracy and reduce the
computation cost of flow-based classification methods.
The results obtained by resorting to entropy revealed
that aggregated traffic from a single host is composed
by packets whose lengths are more heterogeneous
when P2P applications are being used. Figure 4 and
especially Table 1 show a clear distinction between
P2P and non-P2P traffic. Moreover, the lengths of
the packets generated by P2P VoIP applications are
even more heterogeneous than the ones from P2P video
streaming and P2P file-sharing.

The causes for the higher heterogeneity are distinct
for P2P video streaming and P2P file-sharing and for
P2P VoIP. In the cases of P2P video streaming and
P2P file-sharing, each host establishes many concurrent
connections with different hosts, while in P2P VoIP,
the packet lengths are more varied due to the real-time
nature of this kind of traffic. The results obtained for
P2P VoIP traffic may depend on the speech codec used
by the applications, being this issue left to be explored
in a further study. Nevertheless, VoIP applications were
used in this work with no concerns about the speech
codec, exactly as a common user would do, so that
we could emulate the normal use of these applications.
According to our observations, they seem to mainly
use variable bit rate codecs, resulting in the behavior
explored by this study.

Based on the results obtained for sliding windows
with size of 100 packets and filtering out the TCP
packets without payload, it is possible to classify as P2P
the cases where entropy is higher than 3, and as non-
P2P the cases with entropy lower than 1. For the cases
for which entropy is in-between those values, analyzing
the entropy of the outgoing traffic makes it possible to
differentiate the P2P traffic, as shown by the results in
Table 2.

Nevertheless, there are also a few particular cases,

like the traffic from web browsing, Telnet sessions, and
IMAP email, that deserve special attention. The human
behavior has a strong effect on these applications. The
traffic from Telnet sessions is composed by packets
with multiple lengths that result from each character
written in the command line, as well as from the output
of the commands. Usually, the larger packets are
consequence of the commands output data that is sent
to the host. A similar situation happens with IMAP
as the traffic does not result only from email transfers.
Synchronization between the local and remote accounts
of operations like removing or marking messages as
read, or moving messages between folders generate
packets with different lengths. On the other hand,
outgoing traffic is formed mostly by packets that fall
into the same slot when we consider slots of 200 bytes.
Hence, it is easily distinguishable from P2P traffic when
we analyze the entropy of the outgoing traffic separated
into slots.

In the case of web browsing, the traffic is formed
by extremely brief sessions with multiple short flows.
Each simple page view may be considered a session
as it originates several flows that may be independent
from other page views and may even be separated by
several minutes. Since the flows used to download the
contents of a web page have a very short duration, each
of them contains only a few large packets and a last one
carrying the remaining data. Although, individually,
these flows have a stable and homogeneous behavior in
terms of the packet lengths, their aggregation presents a
high entropy due to the low percentage of large packets
and the different lengths of the last packet of each flow.
Therefore, in all the phases of our analysis, web traffic
presented a level of entropy similar to the one obtained
for P2P traffic. However, one should notice that the
traces we used, contain only traffic from simple page
views. Traffic from audio and video streaming, e.g,
using Flash, was considered in other classes. Thus, the
traffic volume from simple page views is very small and
should not raise any concerns for traffic management.
Moreover, when aggregated with the traffic from other
applications, its effect in the entropy is diluted and its
weight in the results decreases. Indeed, it is possible
to see that, although the type 1 and type 2 traces
contain traffic from web browsing, the entropy level is
still differentiable from P2P traffic.

5. HOST-BASED CLASSIFICATION

In order to evaluate if the patterns described above
are noticeable in real traffic, we implemented a simple
host-based classifier, relying on the entropy value for
sliding windows with size of 100 packets. The following
heuristics were defined and implemented as illustrated
by Figure 8:

1. if the entropy value, excluding the TCP packets
with no payload, is greater than 3, the host is
running P2P applications (E noTCPPayload > 3);
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FIGURE 8. Flowchart of the proposed classification
scheme.

2. if the entropy value, excluding the TCP packets
with no payload, is smaller than 1, the host is not
running any P2P applications (E noTCPPayload
< 1);

3. if the entropy value for outgoing traffic is smaller
than 0.5, the host is not running any P2P
applications (E outgoing < 0.5);

4. if the entropy value for outgoing traffic, using slots
of 200 bytes, is smaller than 0.1, the host is not
running any P2P applications (E outgoingSlots200
< 0.1);

5. in any other case, the host is running P2P
applications.

The classifier processes these heuristics sequentially,
meaning that each of them is used only if the previous
ones were not valid.

The existence of available traces with payload is
scarce. Moreover, even if we could have access to
such traces, obfuscation techniques used by many
applications would make it very difficult to determine
which applications generated each flow. Therefore, we
set up a testbed using several host computers, running
different operating systems, and we captured the traffic
generated by all the machines in an aggregation point.
Each computer was monitored so as to be sure of the
applications used in every moment and by each host.
Different applications and protocols were ran in the
hosts, some times simultaneously. Four datasets, with
1.8, 1.6, 3.1, and 15.5 GB, were captured and used to

evaluate the effectiveness of the classification scheme
proposed. All of them contain P2P and non-P2P traffic.
Nevertheless, the fourth dataset contains a larger share
of traffic from P2P applications. The results obtained
for the classification are listed in Table 3.

The classifier based on the patterns identified in this
study performed very well, with a false positives rate of
almost 3% and a false negatives rate of less than 10%.
Even though the analysis used in this work is completely
in the dark, using only the information of the length of
the packets, it was possible to accurately identify the
hosts running P2P applications. The method used is
very lightweight, it does not require the calculation of
probability distributions, nor does it need to correlate
the information of the packet lengths with other
properties like, for example, the inter-arrival times.
Moreover, since it relies only on the characteristics of
the lengths of the packets generated by generic P2P
applications, it can identify encrypted traffic and traffic
from previously unknown P2P protocols. In fact, during
the experimental tests, the classifier identified traffic
from a flash-based streaming service of a TV channel
(CNN) as being P2P traffic. After a human verification,
we realized that what first seemed to be a false positive
case was, indeed, a true positive. The CNN streaming
service, which we thought to be a common client-server
service, was using a plugin to implement a P2P system
to reduce the costs of the video distribution.

6. CONCLUSION

The search for new methods that could provide a deeper
knowledge about the behavior of the network traffic
led the researchers to look at the traffic from different
perspectives. Many approaches rely on statistical tools
to describe the traffic properties mathematically and
derive conclusions that can be used in practice due to
their computational efficiency.

In this article, we used source traffic from individual
users and based our study on a host level perspective.
We analyzed the characteristics of the lengths of the
IP packets from several popular applications, giving
special attention to the dissimilarities between P2P
and non-P2P traffic. The analysis of the datasets
showed different patterns regarding the heterogeneity of
the lengths, which was measured using entropy. Non-
P2P traffic presented a very low entropy level when
compared to the P2P datasets. In order to distinguish
ambiguous cases, we also analyzed the entropy for the
outgoing traffic and, to improve the results, the lengths
were separated into slots. Our approach relied on a
sliding window with a constant size that enables the
analysis of entropy in real-time and makes it sensitive
to variations in the characteristics of the traffic during
the lifetime of the flows.

The heterogeneity of the packet lengths, applied at a
host level, can be used for the characterization of the
behavior of a user or node. The information it retrieves
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TABLE 3. Results of the host-based classification.
Datasets Traffic Volume (GB) False Positives Rate (%) False Negatives Rate (%)

Dataset 1 1.8 04.17 12.50
Dataset 2 1.6 00.00 09.09
Dataset 3 3.1 10.42 07.69
Dataset 4 15.5 00.00 09.88

Total 22.0 03.11 09.73

may be helpful to understand the traffic generated by
a single host and its interactions with the remaining
nodes. Based on the observations of the packet
length heterogeneity, we defined a set of heuristics and
implemented a simple classifier to identify users running
P2P applications, which performed accurately. Since
the classifier relies on traffic characteristics identified for
generic P2P traffic rather than for a specific protocol,
it can be used to identify traffic from previously
unknown P2P protocols. Moreover, it can be applied to
encrypted traffic as it resorts only to the lengths of the
packets and does not need any encrypted data carried
within the packet payload.

The analysis we describe may be extended for other
perspectives. We plan to study the feasibility and gain
of using the same analysis at other levels (e.g., host-port
pairs, flows, separate the incoming and outgoing traffic,
etc.) and combining the results with the ones obtained
at the host level. Moreover, we intend to further develop
the approach we exposed and apply it directly to the
classification of individual traffic flows.
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Chapter 5

Identification of Peer-to-Peer VoIP Sessions Using

Entropy and Codec Properties

This chapter consists of the following article:

Identification of Peer-to-Peer VoIP Sessions Using Entropy and Codec Properties

João V. Gomes, Pedro. R. M. Inácio, Manuela Pereira, Mário M. Freire, and Paulo P. Monteiro

Revised version of the article submitted for publication in an international journal.
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Identification of Peer-to-Peer VoIP Sessions
Using Entropy and Codec Properties

João V. Gomes, Pedro R. M. Inácio, Manuela Pereira, Mário M. Freire, and Paulo P. Monteiro

Abstract—Voice over Internet Protocol (VoIP) applications based on peer-to-peer (P2P) communications have been experiencing
considerable growth in terms of number of users. To overcome filtering policies or protect the privacy of their users, most of these
applications implement mechanisms as protocol obfuscation or payload encryption that avoid the inspection of their traffic, making it
difficult to identify its nature. The incapacity to determine the application that is responsible for a certain flow raises challenges for the
effective management of the network. In this article, a new method for the identification of VoIP sessions is presented. The proposed
mechanism classifies the flows, in real-time, based on the speech codec used in the session. In order to make the classification
lightweight, the behavioral signatures for each analyzed codec were created using only the lengths of the packets. Unlike most previous
approaches, the classifier does not use the lengths of the packets individually. Instead, it explores their level of heterogeneity in real-
time, using entropy to emphasize such feature. The results of the performance evaluation show that the proposed method is able to
identify VoIP sessions accurately and simultaneously recognize the used speech codec.

Index Terms—Data communications, distributed applications, network communications, network management, network monitoring,
packet-switching networks.

F

1 I

T popularity of Voice over Internet Protocol
(VoIP) applications relying on the peer-to-peer (P2P)

paradigm has been growing in the last few years. The
simplicity of these solutions, as well as their economic
benefits over the traditional telephony, make them an
increasingly common choice for long distance calls and
voice conferences. Furthermore, the possibility to in-
tegrate them in mobile devices, like smartphones and
tablet computers, make them more flexible and easy
to use. When implemented over P2P systems, VoIP
applications take advantage of the scalable and reliable
properties of the distributed nature of the P2P model,
which puts the intelligence at the network edges.

Over the years, many of these applications have
started to adopt measures to disguise their traffic and
avoid the inspection of their contents. Protocol obfusca-
tion, payload encryption, and the use of random port
numbers are now common features in the majority of
the popular VoIP software clients. Skype is the most
demonstrative example of this trend: it is based on a
closed code and proprietary P2P protocol, its communi-
cations are encrypted, and it has a large number of users.
Nevertheless, there are also other VoIP solutions based
on P2P communications that use different protocols. The
Session Initiation Protocol (SIP) used by several VoIP
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applications or an extension of the Extensible Messaging
and Presence Protocol (XMPP) used by Google Talk are
good examples of such VoIP systems.

In most of these applications, the implementation of
techniques to avoid the inspection of traffic has primarily
the intention of protecting the privacy of the data of the
VoIP sessions. However, it also renders difficulties for
the correct and effective management of the computer
networks. Understanding what kind of data is being
transmitted in each flow is of critical importance to orga-
nize the network and its traffic, distribute the available
bandwidth fairly, or guarantee the Quality of Service
(QoS) needed by distinct classes of traffic [1], [2], [3].
Besides of the impact that VoIP applications may have
in the network performance, they also raise a few secu-
rity concerns. Several authors [4], [5], [6] and security
institutes or companies [7], [8], [9] have exposed the
potential vulnerabilities associated with VoIP systems
and suggested a few guidelines to avoid security flaws.

For these reasons, traffic classification based on the
application protocol has been a very active research
field. The identification of VoIP, especially Skype related
traffic, has attracted the attention of many researchers
who have addressed this topic in several articles [1],
[2], [3], [10], [11]. In the majority of the cases, whether
the classification is made by resorting to payload inspec-
tion, flow-level heuristics, statistical analysis, or machine
learning algorithms, the goal is to identify the whole
data generated by the VoIP application. These flows are
generated by a signaling protocol that initiates, controls,
and terminates the session and by a transport protocol
responsible for delivering the data from one peer to the
other. The signaling data, as well as the flows used for
authentication and other operations, have little impact
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on the network performance when compared with the
data from the VoIP session. Hence, a distinct approach
is followed in this work. Instead of the whole traffic from
a certain VoIP application, the intention of this work is
to identify the traffic from the actual VoIP session. The
data transported within each packet of the session flow
depends more on the speech codec used to codify the
voice than on the signaling protocol or client application.
In fact, the data from VoIP sessions, made using distinct
applications and even distinct signaling protocols, has
similar characteristics when the same codec is used.
From the traffic management perspective, it may be
more useful to identify the VoIP traffic with similar
characteristics regardless of the application or protocol
that was used, than to base the classification on the
specific application that has generated it, which may
include flows with different properties and purposes.

This article presents a VoIP classifier that is suitable
for real-time analysis and does not rely on the payload
data, being therefore applicable for encrypted traffic.
Unlike most previous works, the goal of the classifier
described herein is to identify the traffic flows that are
related with a VoIP session in which a specific codec was
used. Moreover, it our intention to minimize the number
of packet-level or flow-level characteristics required to
identify VoIP sessions so as to make the whole classi-
fication process lightweight. The lengths of the packets
were the only traffic feature used in the identification of
VoIP flows. Instead of looking at the lengths individually
or calculating their mean, we focused on the relation
between the different lengths and explored their level
of heterogeneity using entropy. The characteristics of
the packets from a VoIP session using different codecs
were carefully analyzed. Several distinct applications
and speech codecs were considered in the study. Based
on this analysis, a set of behavioral signatures for each
codec is proposed. Each of them is formed by an interval
for the entropy and another one for the lengths of the
packets. Additionally, a sliding window with a constant
size of N packets was implemented to assess the hetero-
geneity in real-time and to avoid losing the sensitivity
to the local changes in the values. To the best of our
knowledge, the level of heterogeneity was used for the
purpose of traffic classification only in our previous
works [12], [13], with the exception of a recent study
that has followed a similar approach [14]. Nonetheless,
the heterogeneity of the lengths of the packets was only
analyzed offline for complete flows.

The performance of the classification mechanism was
evaluated using datasets containing traffic from VoIP
sessions as well as from multiple P2P and non-P2P ap-
plications or services. The results show that the method
identified the flows from VoIP sessions with very good
accuracy and it was also able to recognize the speech
codec with a good sensitivity rate. Moreover, the analysis
of the resources used by the proposed classifier showed
that its consumption grows linearly with the size of the
input data.

The remainder of the paper is structured as follows.
Section 2 describes the previously published related
work. The analysis of speech codecs considered in the
scope of this work is included in section 3. Section 4
presents the classifier and the evaluations of its per-
formance is discussed in section 5. The last section
summarizes the most important conclusions.

2 RW
The classification of traffic from VoIP applications has
already been studied by several authors. A few studies
relied on the data carried within the payload to cre-
ate signatures to identify Skype packets [15]. In some
cases, the inspection of characters in the payload is
combined with statistical data, behavioral patterns, or
heuristics [11], [16], [17], [18], [19]. A different approach
followed by a few authors is based on the fact that the
payload data from packets generated by applications
that encrypt the traffic is more random. Bonfiglio et
al. [10] explored the randomness of the payload data by
using the Chi Square test and applied the method to Skype
traffic. Additionally, they proposed a statistical classifier
based on inter-arrival times and packets lengths. In [20],
[21], the authors resorted to entropy to analyze the
randomness level of the data from encrypted traffic.

Methods based on heuristics are also proposed in
some articles [1], [22], [23], [24]. Generally, the heuristics
use several flow-level or packet-level features or try to
model behavioral patterns (e.g., transport protocol used
in both directions, number of connections, etc). The flow
or packet-level features are also analyzed statistically by
some studies and used to identify VoIP traffic [2], [25].

The use of machine learning algorithms has also been
applied to the traffic classification, and specifically, to
the VoIP traffic identification. Jun et al. [26] proposed a
method to identify Skype traffic based on the Random
Forest classifier, while Branch et al. [27] relied on the
C4.5 decision tree algorithm. In [28], symbiotic bid-based
genetic programming was used to identify Skype en-
crypted traffic and the performance was compared with
C4.5 and AdaBoost algorithms. Wu et al. [29] explored
characteristics of the human behavior, as the speech
period, and used a Naı̈ve Bayes classifier to identify VoIP
traffic. Zhang et al. [30] proposed a method based on
Support Vector Machines (SVMs), that uses a set of traffic
features to identify Skype communications.

The approach followed in this article resorts to the
characteristics of the lengths of the packets. Several
previous works have already used the lengths of the
packets as one of the features employed in the traffic
classification. Nonetheless, they analyzed them mostly
through statistics as the mean [19] or the standard de-
viation [20], intervals [31], or probabilistic models [10].
On the contrary, instead of focusing on the lengths of
the packets individually, the method described herein
explores the relation between the different lengths by
analyzing how heterogeneous these values are. Many of

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

104



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 2011 3

the previous works that explore flow level properties,
through statistical measures [24] or machine learning
algorithms [30], separate the traffic into flows offline
and then apply the classification approach, making these
methods difficult to adapt (or even unsuitable) for the
real-time analysis of the traffic. The approach followed
herein implements a sliding window with size of N
packets that produces information about the traffic char-
acteristics in every step, during all the duration of the
flow since its beginning.

Furthermore, besides of identifying the VoIP related
data, the proposed classifier also tries to give a strong
prediction on the speech codec used in a VoIP session
instead of identifying the VoIP application, which is the
goal of most studies. In fact, although packet or flow
properties like the length of the packet or the inter-
arrival time differ when distinct codecs are used, most
studies seem to use them without considering the speech
codec. Besides, some of the properties identified as being
specific for a certain VoIP application may also apply
to other applications that use similar codecs. Nonethe-
less, a few authors have considered the influence of
distinct codecs when proposing a classification method.
Branch et al. [27] analyzed the traffic from the Sinusoidal
Voice Over Packet Coder (SVOPC) codec, while Molnár
and Perényi [24] focused on the Internet Speech Audio
Codec (iSAC). Chen et al. [25] considered iSAC and
the Internet Low Bit Rate Codec (iLBC) and Yildirim et
al. [31] analyzed three Constant Bit Rate (CBR) codecs,
G.711, G.723, and G.729. Xu et al. [32] proposed a traffic
classification method, based on a finite state machine,
and applied it to identification of Skype traffic generated
using SVOPC, Adaptive Multi-Rate Wideband (AMR-
WB), G.729, and Pulse-Code Modulation (PCM). In the
statistical analysis of Skype VoIP flows described in [33],
the authors considered iSAC. A more comprehensive set
of codecs, which includes iSAC, iLBC, G.729, Internet
Pulse Code Modulation wideband (iPCMwb), Enhanced
G.711 (EG711) A/U, PCM A/U, and SVOPC, was ana-
lyzed by Bonfiglio et al. in a study of Skype traffic [3]
and used in the classifier described in [10]. Nevertheless,
none of these works presented a method to identify the
codec used in a VoIP session, nor proposed signatures
for each codec. Moreover, the analyzed codecs are mostly
codecs used by older versions of the Skype software.

We proposed the analysis of the level of heterogeneity
of the lengths of the packets from P2P applications and
its quantification through entropy for the first time on a
previous article [12]. The work described herein elabo-
rates on that method, and evolves to the identification
of VoIP traffic from different speech codecs. The most
comparable work was published recently by Li et al. [14]
who used a similar approach, in conjunction with an
analysis of the inter-arrival times, to identify CBR and
Variable Bit Rate (VBR) codecs. Their method is based on
the idea that CBR codecs produce packets with constant
lengths and VBR codecs produces packets with different
lengths. They did not analyze the behavior of different

TABLE 1
Applications and codecs considered in the study.

Application Codecs
Blink PCM A/U, G.722, iLBC, GSM, Speex
Ekiga PCM A/U, G.722, iLBC, GSM, Speex

Linphone PCM A/U, GSM, Speex
QuteCom PCM A/U, G.722, GSM, Speex

SIP Communicator PCM A/U, G.722, GSM, Speex
Skype iPCMwb, iSAC, EG711 A/U, PCM A/U,

iLBC, G.729, AMR-WB, SVOPC, NWC, SILK
X-Lite PCM A/U, iLBC, GSM, Speex

codecs, nor try to identify the specific codec used in a
session. Moreover, even the different VBR codecs may
produce packets whose lengths can be more or less
heterogeneous depending on the specific codec. The al-
gorithm proposed by Li et al. is also based on the offline
analysis of the traffic. The heterogeneity of the traffic
is analyzed for complete flows. Besides preventing the
method from being applied to real-time monitoring, their
approach also raises a few problems. If the characteristics
of the traffic change or occasional occurrences of different
lengths appear in the middle of the flow, the results of
the analysis of the heterogeneity for the whole flow may
be compromised.

The work from Li et al. appears to be based on [34],
in which Okabe et al. analyzed traffic from a Skype
codec and from G.711 and G.723. Instead of studying
the heterogeneity of the lengths of the packets, they
separated the traffic into flows, counted the number of
distinct observed lengths, and used the result as a feature
to identify VoIP flows offline. Liu et al. [35] explored the
ratio between small packets and large packets and used
that value, together with a few heuristics, to identify
P2P traffic offline. Wright et al. [36] used the packet
lengths for a different purpose. Instead of identifying
the application or codec that generated the data, they
analyzed the lengths of the packets generated by VBR
codecs to try to recognize spoken phrases in encrypted
VoIP sessions.

3 A  S C
The proposed method is based on the properties of the
lengths of the packets for different codecs, regardless
of the VoIP application. To understand and study the
behavior of the traffic from each codec, it was necessary
to collect traffic from VoIP sessions using different speech
codecs. A set of applications was used to perform the
calls so as to consider any possible influence of the
application in the characteristics of the traffic. With the
exception of Skype, the used applications resort to SIP
for signaling. Table 1 presents a summary of the appli-
cations and codecs considered in this article. To allow the
capturing of experimental data from specific codecs, we
included only VoIP applications that offer the possibility
of choosing the codec in a preferences menu. Moreover,
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since it was our intention to use Microsoft Windows and
Linux platforms in the experiences, only applications that
have versions for both operating systems were selected.

3.1 Speech Codecs
The analysis presented herein and the proposed classifier
are based on the speech codecs used in VoIP sessions.
We studied the lengths of the packets generated by VoIP
sessions using several codecs by observing several traffic
samples of each of the codecs included in Table 1 and we
tried to identify patterns for each of them. The speech
codecs analyzed in this work are further described in
section A of the supplemental material.

Speech codecs use audio processing techniques and
compression algorithms to encode analog audio into
digital signal. In order to turn a continuous signal into a
discrete signal, codecs take samples of the analog signal.
Additionally, codecs process the analog signal in frames
with a limited size which contain a segment of the
signal. Most codecs use different sampling frequencies
(the number of samples per second) and frame sizes,
which influences the amount of data transmitted in a
VoIP call. For instance, G.729 has a sampling frequency
of 8 kHz with samples of 16 bits and uses a frame size
of 10 ms, while PCM has a sampling frequency of 8 kHz
with samples of 8 bits and the G.711 standard does not
fix a frame size. Moreover, speech codecs use different
compression algorithms and some of them prioritize au-
dio quality, while others try to minimize the bandwidth
used in a VoIP session. Besides of these aspects, CBR
codecs generate packets with constant lengths, while the
data generated by VBR codecs depends also on the signal
they are encoding. Consequently, the packets used to
transmit the data created with distinct codecs through
the network present different lengths.

3.2 Experimental VoIP Traffic
In order to study the properties of the packets generated
by each codec, it was necessary to collect experimental
traffic from each codec. By using VoIP applications that
offer the possibility of choosing the codec in a prefer-
ences menu, we were able to force the use of a specific
codec in each session and capture the traffic it generates.
In the case of Skype, there are no menu options to choose
the speech codec. However, Skype creates a config.xml
file for each user, in which it is possible to force the use
of a specific codec or to disable codecs. By using this
file, we were able to obtain traffic samples of each of the
codecs used by Skype in its different versions.

The experimental traffic used to study the properties
of the data from each codec was collected from more
than 160 VoIP sessions, using the selected applications.
Although it was observed that one or two minutes were
enough to stabilize the properties of the traffic from each
codec (as mentioned in [1]), the duration of the sessions
analyzed varies from 4 to 30 minutes. The collected data
totals 654 MB, 274 MB from the Transmission Control

Protocol (TCP) and 380 MB from the User Datagram
Protocol (UDP).

The two peers were not running any application else
so as to make sure that only the traffic generated by the
VoIP application was captured. As most applications im-
plement SIP, it was also possible to analyze VoIP sessions
between peers using distinct applications. Usually, VoIP
applications use the Real-time Transport Protocol (RTP)
over UDP. Skype can also resort to TCP to transport the
VoIP data. Hence, in some of the analyzed sessions, the
UDP traffic was blocked to force the use of TCP.

The analyzed VoIP sessions were made in small and
large Local Area Networks (LANs) and through com-
mercial home links as well. The peers were running
Microsoft Windows and Linux operating systems and, in a
few sessions, Skype and Linphone over Android operating
system were also used.

3.3 Expressing Heterogeneity Through Entropy

The heterogeneity of the lengths of the packets will be
explored in this article. The concept of entropy intro-
duced by Shannon in the information theory [37] will
be used to assess the level of heterogeneity. Shannon
presented entropy as a measure of the uncertainty of a
random variate. Entropy, denoted by H(x), is defined by

H(x) = −
n∑

i=1

p(xi) ln p(xi), (1)

where n is the number of occurrences of x, and p(xi)
is the probability of the particular occurrence of xi. For
any finite number n ∈N, the maximum value H(x) may
attain is given by

H(x) = ln n. (2)

The value of the entropy is always a positive number. If
the number of different values in the pool of samples is
small, H(x) is close to 0. It increases with the number
of distinct occurrences under analysis. In this article,
entropy is used to measure and apply the heterogeneity
of the lengths of the packets from the analyzed traffic.
Hereinafter, any mention of entropy refers to the entropy
of the lengths of the packets.

Since, by definition, entropy is calculated for a set
of values, based on the probability of each value, it is
necessary to define to which set of lengths the entropy
should be calculated when analyzing aggregated traffic
from one or more hosts. Given the goal of identifying
VoIP flows, one option would be to calculate entropy
for all the packets of each complete flow. However,
such approach would produce a classification only at
the end of the flow, preventing its application to real-
time analyses. Moreover, any characteristics resulting
from occasional behaviors in the middle of a flow might
compromise the results of the analysis for the complete
flow. Alternatively, if the value of entropy was obtained
for intervals of time, the conclusions would also depend
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Fig. 1. An independent sliding window with size of N
packets contains the lengths for each identified flow, and
one entropy value is calculated in each iteration.

on the packet rate in each flow and a classification result
would only be produced at the end of each interval.

Therefore, instead of calculating the entropy for each
complete flow or for time intervals, it was implemented
a method based on a sliding window with a constant
size of N packets, as depicted in Fig. 1. For each flow,
an independent window is used. Every time a new
packet arrives, the flow to which the packet belongs is
identified and the length of the packet is added to the
corresponding window. When a new length is added,
the oldest length in the window is dropped, creating the
virtual movement of the sliding window.

The entropy is calculated for the lengths within the
sliding window in each iteration, as exemplified in Fig. 1.
One entropy value is obtained for each packet through-
out the flow, with the exception of the first N−1 packets
before the window is filled. By using this procedure, it
is possible to assess the evolution of the entropy value
immediately every time a new packet arrives.

In order to make the process sufficiently efficient to
be used in real-time, entropy is calculated using (1)
only when the window is filled for the first time. After
that, instead of being calculated repetitively, its value
is updated in each new iteration of the window, when
the oldest length in the window (xo) is dropped and
the latest length (xl) is added. The influence of both
lengths in the entropy is updated using (3), where pi−1(x)
and pi(x) are the probability of x in the (i − 1)th and
ith iterations of the window, respectively. The entropy
value in the ith iteration of the window is calculated by
updating the influence of xo and xl in the entropy of the
previous iteration:

U(x) = pi−1(x) ln pi−1(x) − pi(x) ln pi(x), (3)

Hi(x) = Hi−1(x) + U(xo) + U(xl). (4)

3.4 Properties of the Codecs
The goal of this work is to identify the traffic from
VoIP sessions and, thus, it is reasonable to focus the

observation on the packets of each flow separately. The
concept of flow used herein coincides with the TCP
notion of connection. In the case of UDP traffic, a flow
includes all the packets traveling between two (host, port)
pairs, in both directions, with inter-arrival times inferior
to 64 seconds, as suggested in [38].

However, Skype sometimes uses hosts, called relay
nodes, that act as middle nodes mainly to overcome
connection problems from users that are behind Net-
work Address Translation (NAT) systems. We observed
that, in some of these cases, it is possible to have a host
receiving the incoming VoIP data from a relay node,
and sending the outgoing data to a different node. The
only common properties in this situation are the Internet
Protocol (IP) address of the monitored host and the port
used for the Skype session. Hence, in order to identify
these VoIP connections, besides of the flow perspective,
the traffic was also analyzed from the point of view of
the (host, port) pair. This approach enables an observation
level that includes all the traffic sent and received by
the application process responsible for the VoIP session,
even if relay nodes are used. Likewise, the analysis
examples presented in this subsection concern all the
traffic generated by a VoIP session, whether relay nodes
are used or not.

In order to identify properties of the packet lengths
from each codec, we analyzed the traffic of the VoIP
sessions included in the data described in section 3.2.
We observed that distinct codecs produce packets whose
lengths present different levels of heterogeneity, which
we measured by resorting to the entropy. As explained
before, the experimental data contained sessions gener-
ated with different VoIP applications, transport proto-
cols, and operating systems. Nevertheless, the obtained
results were similar for each codec, regardless of those
factors. Hence, the entropy values calculated for the
different codecs were used to identify patterns.

The value of the entropy depends also on the consid-
ered window size. In [12] and, more deeply, in [13], we
used sliding windows with distinct sizes from 10 to 2000
packets to analyze several datasets and we observed
how the entropy varied for different sizes. The entropy
may raise very slightly when the size of the window
increases. Nevertheless, the most noticeable consequence
of increasing the size is the stabilization of the entropy
value throughout the steps of the window, which creates
a smoothing effect.

This behavior is exemplified in Fig. 2. The lengths
from the first three minutes of two VoIP sessions using a
CBR codec and a VBR codec are represented along with
the evolution of the entropy for windows with sizes of
100 and 500 packets. The y-axis ranges from 0 to the
maximum value of entropy for a window of 500 packets
and a dashed line is also depicted to mark the maximum
value for a window with size of 100 packets. One may
observe that, although for a window of 100 packets
entropy is closer to its maximum, its absolute value is
very similar to the entropy when using a window of 500
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Fig. 2. Representation of the lengths of the payloads
and of the entropy of the first three minutes of two VoIP
sessions using NWC and SILK WB codecs.

packets. Hence, the size of the window will not impact
decisively the value of the entropy in the analyses made.
Nonetheless, the stability of the entropy given by larger
windows is important to identify patterns for the codecs
based on the different levels of entropy. The drawback
is that a larger window is likely to take more time to
be filled and, consequently, it will need a few seconds
more to identify a VoIP flow. Based on our previous
studies [12], [13], we choose the size of 500 packets as
a compromise between the stability of the entropy and
the time to obtain the first result. In the appendix B of
the supplemental material, we included examples of the
entropy analysis using different sliding window sizes
from 10 to 2000 packets.

Since the analysis performed in this work is based
on the properties that result from the codec used in the
VoIP session, it is useful to focus the observation only on
the data carried within the transport payload. By doing
so, it is possible to discard any effects of the transport
protocol. Furthermore, it enables the identification of
patterns that are common in the traffic from the same
codec, whether UDP or TCP is used to transport the data.

Nevertheless, in some of the examples analyzed of
Skype traffic that used TCP for VoIP sessions based on
a CBR codec, it was noticed that, besides of the packets
with a constant length, there were occurrences in which
the length of the TCP payload was very small, being
almost 0 bytes. This behavior was observable in only
a few cases, and as the Skype protocol is closed, it is
difficult to understand what is its cause. Moreover, in
every case where TCP is used, there are packets whose
payload has length of 0 bytes as their purpose is only
to send TCP tags. These occurrences of packets with
different lengths modify the heterogeneity level observed
for each codec. Fig. 3 shows an example of two Skype
sessions using G.729, over UDP and TCP. The lengths of
the payloads from the session that resorted to TCP, are
similar to the ones obtained when UDP was used. How-
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Fig. 3. Comparison of the entropy for the first three
minutes of two VoIP sessions using G.729 over UDP
and TCP and the effect of filtering the packets whose
transport-level payload is smaller than 5 bytes.

ever, it is possible to observe that, when the VoIP session
is made over TCP, there also several packets whose
payload has length very close to 0 bytes, increasing the
entropy significantly. In order to overcome this problem,
the analysis mechanism implemented discharges every
packet whose payload has length less or equal to 5 bytes.
Using this filter makes it possible to focus on the packets
that carry the voice data, obtaining a similar level of
entropy to when UDP is used, as show in Fig.3.

The following subsections describe the properties
identified for CBR and VBR codecs. AMR-WB is a multi-
rate codec, formed by nine source codecs with distinct
constant bit rates. The bit rate it uses may change every
20 milliseconds. Therefore, in spite of being a CBR codec,
AMR-WB will be analyzed along with the VBR codecs.
Speex supports CBR and VBR and, thus, examples of
VoIP sessions using both modes will be analyzed with
the remaining CBR and VBR codecs. The presented
examples refer to analyses of the lengths of the transport-
level payload, filtering out the packets whose payload is
less or equal to 5 bytes and using sliding windows with
size of 500 packets.

3.4.1 Constant Bit Rate Codecs
The traffic from VoIP sessions that use CBR codecs is
formed mostly by packets with the same length. Hence,
the entropy level is extremely low. In the case of the
applications that use SIP, the entropy is almost always
equal to 0 as most packets have a payload with the same
length. Nevertheless, when using Skype, there are always
a few occurrences with different lengths even if the traffic
is still very homogeneous. As Skype uses its own closed
protocol, it is difficult to understand why this happens.

In Fig. 4, one can observe a comparison between the
first three minutes of VoIP sessions that used PCMA,
PCMU, and iLBC, through Skype and SIP clients. Al-
though in both sessions the payloads have the same
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Fig. 4. Comparison of the lengths of the payloads and of
the entropy between VoIP sessions using Skype and SIP
applications with CBR codecs.

length, in the case of Skype there are also a few packets
whose payload has a different length. This behavior was
observed in all the analyzed VoIP sessions in which CBR
codecs were used.

Due to the limitations of space in the main article and
to the large number of charts that would be needed to
represent every session example that we analyzed, we
included Table 1 in the supplemental material to give
a general view of the obtained values for the datasets
described in section 3.2. It contains the mean of the en-
tropy for all the VoIP sessions that used each CBR codec,
as well as the most frequent lengths of the transport-
level payload that were observed. For each VoIP session,
the mean of the entropy in all the steps of the window
was calculated, which results in one entropy value for
session. Afterwards, the mean of the values obtained for
all the sessions in which the same codec was used was
calculated and included in the table.

Entropy was analyzed separately for the incoming
and the outgoing data. VoIP flows usually have similar
properties in both directions, which is also important
to distinguish it from the traffic of other applications.
The summary included in Table 1 of the supplemental
material show this similarity between the traffic in both
directions. The difference between the values for Skype
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Fig. 5. Representation of the lengths of the payloads and
of the entropy of the first three minutes of VoIP sessions
using different VBR codecs.

and SIP applications, described in the previous section,
is also visible in the table.

The payloads of the packets from codecs based on
PCM have similar lengths. Although it was not possible
to find any information regarding NWC, the packets
from VoIP sessions based on it also have lengths similar
to the ones based on PCM.

3.4.2 Variable Bit Rate Codecs
Unlike the CBR codecs, the traffic from each VoIP session
in which a VBR codec is used is formed by packets
whose payloads have very heterogeneous lengths. Fig. 5
depicts the lengths of the transport-level payloads and
the corresponding entropy of the first three minutes of
several VoIP sessions, each of them using a different VBR
codec. In all the cases, the variety of distinct lengths form
a strip of values. The different levels of heterogeneity
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of the payload lengths are demonstrated by the distinct
levels of entropy depicted in the charts.

There also other details that are visible in the charts. In
the beginning of the VoIP sessions in which the Global
IP Solutions (GIPS) VBR codecs (EG711 A/U, iSAC, and
iPCMwb) were used, the lengths of the payloads appear
on a strip of higher values. Before the 30 seconds,
they stabilize on lower values. This behavior was also
observed in other VoIP sessions in which Skype was used,
even with CBR codecs as shown in Fig. 4. In the case of
Speex, the lengths vary within a small range of values,
resulting in a lower level of entropy. This is even more
evident in the case of AMR-WB, in which the entropy is
even lower and less stable.

A summary of the results obtained for all the VoIP
sessions from the datasets described in section 3.2 in
which VBR codecs were used is presented in Table 2
of the supplemental material. The values were obtained
in the same way as it was done for the CBR codecs. In
the case of the VBR codecs, the table includes ranges
of frequent length instead of individual values as the
lengths are heterogeneous. The GIPS VBR codecs gener-
ate lengths with higher entropy. SILK and SILK WB seem
to have similar properties, as well as SILK mediumband
(MB) and SILK narrowband (NB), and Speex 32 kHz and
16 kHz. AMR-WB presents a very low entropy when
compared with the VBR codecs, which was expectable
since it is not a truly VBR codec.

4 T VIP C
The classifier proposed herein is based on the properties
described in the previous section. The following sub-
sections provide a list of the proposed signatures and
describe the classification mechanism and its operation.

4.1 Behavioral Signatures for the Codecs
A set of behavioral signatures was defined to model the
properties described in section 3.4, which result from
the observation of the datasets described in section 3.2.
The signatures are formed by the codec description, an
interval in which the entropy should be contained, an in-
terval in which the payload length should be contained,
and a minimum number of occurrences matching these
conditions so that a tuple can be classified as a VoIP
session.

Table 2 lists the signatures proposed in this work
and used by the classifier to identify VoIP sessions. The
values defined for the intervals and for the minimum
matches constant were optimized for sliding windows
with size of 500 packets. Three different levels of signa-
tures were defined. Most of them are signatures created
to identify specific speech codecs. Nevertheless, signa-
tures to simply identify VoIP sessions based on CBR,
VBR codecs, and VBR codecs with low variation, or
other groups of codecs, were also created. Separating
the classification into a smaller number of categories
improves its accuracy and makes the process faster.

TABLE 2
List of the behavioral signatures, for sliding windows with
size of 500 packets, used to identify the VoIP sessions.

Signature Intervals Minimum
Description Lengths Entropy Matches

Bit rate level
CBR 15 400 0.00 1.00 400

VBR (low variation) 10 400 1.25 3.25 450
VBR 15 800 2.80 6.00 450

Group level
GIPS VBR 75 700 3.50 5.50 400

PCM based 160 190 0.00 1.00 400
Skype CBR 25 190 0.10 1.00 400

Skype proprietary VBR 20 120 1.50 4.50 400
Codec level

G.722 171 175 0.00 0.10 450
G.729 25 30 0.10 0.95 400
GSM 44 45 0.00 0.10 450
iLBC 49 51 0.00 0.10 450
iLBC 87 90 0.00 0.10 450

iLBC Skype 46 50 0.05 1.00 400
iLBC Skype 86 90 0.05 1.00 400

NWC 160 171 0.10 1.00 450
PCM 165 185 0.00 0.10 450

PCMA Skype 160 171 0.10 1.00 450
PCMU Skype 170 185 0.10 1.00 450
Speex 32 kHz 85 87 0.00 0.10 450
Speex 32 kHz 45 50 0.00 0.10 450
Speex 16 kHz 80 85 0.00 0.10 450
Speex 16 kHz 40 45 0.00 0.10 450
Speex 8 kHz 50 52 0.00 0.10 450
Speex 8 kHz 30 35 0.00 0.10 450

AMR-WB 45 80 0.15 1.75 250
EG711 200 550 3.00 5.50 400
EG711 75 250 3.50 5.50 400

iPCMwb 250 700 3.00 5.50 400
iPCMwb 150 300 3.50 5.50 400

iSAC 100 300 3.00 5.50 400
iSAC 60 200 3.50 5.50 400
SILK 40 120 2.75 4.50 250

SILK MB/NB 20 60 2.00 3.50 400
SVOPC 80 120 1.50 3.00 400

Speex 20 100 2.00 2.50 400
Speex 20 100 1.50 2.00 400

4.2 Architecture of the Classifier

The implementation of the classifier includes two alter-
native levels of observation, as explained in section 3.4:
flow or (host, port). In order to individually identify each
flow or (host, port) pair, the classifier uses an identifica-
tion tuple. When the flow perspective is used, the tuple
is formed by the source IP address and port number, by
the destination IP address and port number, and by the
transport protocol (UDP or TCP), whereas, for the (host,
port) pair perspective, the tuple is formed by the host IP
address and the port number. In this section, we will use
the term tuple to designate a generic flow or (host, port)

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

110



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 2011 9

pair, depending on which perspective is used.
In the analysis of VoIP sessions described in section 3,

we observed that the heterogeneity of the packet lengths
is similar in both directions. On the contrary, for other
types of application that may use speech codecs, like
audio streaming, the packet lengths may present the
heterogeneity associated with a speech codec only in one
direction, while the traffic in the opposite direction is
mainly formed by acknowledgement messages. Hence,
to avoid these cases, the classifier separately analyzes
the VoIP session traffic in each direction and only if the
packet lengths in both directions have similar properties,
the session is classified.

Furthermore, as described in section 3.4, the traffic
analysis showed more than one frequent length for
some codecs, which results in more than one signature
for the same codec in Table 2 (e.g., iLBC codec). We
observed that the traffic from some VoIP sessions that
use one of those codecs has distinct packet lengths in
both directions. For example, in some sessions using
the iLBC codec, the packets in one direction had 46
bytes, while in the opposite direction, the packets had 86
bytes. Hence, one of the two iLBC signatures included
in Table 2 matches one direction of the VoIP session
traffic, while the other signature matches the traffic in the
opposite direction. Therefore, when separately analyzing
the traffic in each direction, the classifier tries to classify
the traffic in both directions with signatures for the same
codec, even if the signatures are distinct signatures for
the same codec.

The proposed classifier is formed by three modules:
one responsible for processing the packets, other for cal-
culating the entropy level, and a third one for identifying
the VoIP data. The architecture and operation of the
mechanism and the process of identification of a VoIP
session are explained in the following subsections.

4.2.1 The Modular Operation
The modular architecture of the mechanism is illustrated
by Fig. 6. The packets are received, from a live or an
offline source, by the packet processor module, which
extracts the transport-level payload length and the tuple
identifier based on the perspective used in each anal-
ysis of the classifier. Additionally, the packet processor
filters out every packet whose transport layer payload
is smaller than or equal to 5 bytes, as explained in
section 3.4.

A statistical analysis module was implemented to
calculate several statistics based on the sliding window
method depicted in Fig. 1 and it was used to perform
the VoIP sessions analysis described in section 3. The
same module was also used as one of the components of
the classifier. It receives the tuple identification and the
length of the payload from the packet processor module,
includes it in the corresponding sliding window, updates
the statistics, and returns the value of the entropy, in the
latest step of the window for the considered tuple, to
the packet processor. This module receives the data from

Statistical Analysis

entropy value

tuple ID
payload length

Packet
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packet source

identified
VoIP tuples

Behavioral
Signatures

signature

tuple ID
payload length
entropy value
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Fig. 6. Architecture of the proposed classifier formed by
three modules.
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Fig. 7. Signature matching process used by the classifi-
cation decision module.

the statistical analysis module and, if the sliding window
of the corresponding tuple is already filled, it sends the
identification of the tuple, the length of the payload, and
the entropy value to the classification decision module.

4.2.2 The Classification Decision Module

The classification decision module receives, from the packet
processor, the payload length and the entropy value along
with the identification of the corresponding tuple and
produces a classification result. The classification process
is formed by two main tasks, the signature matching and
the classification based on the matched signatures, and
is repeated for every processed packet.

During the signature matching process, the module
tries to match all the behavioral signatures in the repos-
itory. As explained in section 4.1, each signature S,
associated with a codec Cod, is formed by two intervals E
and L to which the entropy and the packet length should
belong, respectively, and by the required minimum num-
ber of matches minM in the latest W (size of the sliding
window) packets so that the tuple can be classified as
traffic generated by Cod. For each pair formed by S and
the analyzed tuple T, there is an individually counter C
of the number of matches in the last W, whose value is
always between 0 and W. The classifier tries to match
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Fig. 8. Classification process based on the results of the
signature matching.

each signature S in the repository, as depicted in Fig. 7.
Depending on the result of the signature matching, the
C counter associated with S and T is decremented or
incremented, unless it is already 0 or W, respectively.

After all the signatures are checked, each counter C
associated with each signature S contains the number
of matches of S for tuple T, allowing the classifier to
make a decision using the method represented in Fig. 8.
The classifier goes through the signatures repository and
checks if, for each codec Cod, there is a signature S1 with
required minimum number of matches minM1 so that
the corresponding counter C1 is greater than minM1. If
it does, the classifier has to check if the signature for
the same codec also matches the traffic in the opposite
direction, identified by the inverse tuple invT. Since there
are different signatures for the same codec, as explained
in the beginning of section 4.2, the classifier has to check
if there is a signature S2 (which can be the same as S1) for
the same codec Cod with a minimum number of matches
minM2 so that the corresponding counter C2 for invT is
greater than minM2. In case both conditions are true,
T and invT are classified as traffic from codec Cod, if
they have not been before. Otherwise, T and invT are
unclassified as traffic from Cod if they have been classified
before, meaning that they do not present characteristics
of Cod anymore, probably because the VoIP session has
finished.

5 P E
The evaluation of the classifier was made by resorting
to offline data so that the procedure could be repeated
and compared against other classifiers. The following
subsections describe the datasets used in the evaluation
of the classifier and the obtained results.

5.1 Datasets
Evaluating the performance of a traffic classifier is not an
easy task as it is necessary to previously know which ap-
plication has generated each flow in the used traffic sam-
ples. Since there are not many available datasets labeled
with the ground-truth information, some of the stud-
ies proposing new traffic classifiers use a Deep Packet
Inspection (DPI) mechanism as a reference classifier.
Such approach sometimes goes against the motivation of
the studies that claim that new classifiers are necessary
since DPI is becoming ineffective due to encryption and
other evasive techniques. Besides, available datasets do
not usually contain payload data which renders DPI
useless as a reference classifier.

Moreover, the approach followed herein is focused
on the codecs used in each VoIP session. In order to
evaluate the accuracy of the codec prediction, it would
be necessary to have datasets containing VoIP sessions
and labeled with the information of the codec used in
each of the sessions. To the best of our knowledge, the
only datasets of VoIP sessions separated by the speech
codec were made available by the Telecommunication
Networks Group of the Politecnico di Torino, in the
website of Tstat [39]. Although these traces are a good
resource, they only contain a small number of VoIP
sessions of a subset of the codecs used by Skype, which is
insufficient to evaluate the performance of the classifier.
To overcome this problem, a testbed was setup to collect
traffic from VoIP sessions and keep a record of the codecs
and applications that were used. Using this approach,
we collected four datasets containing 1.7, 1.6, 3.1, and
15.5 GB of data, as described in Table 3 of the supple-
mental material. In order to maximize the possibility
of having false positive cases, other common classes
of applications were used at the same time during the
datasets capturing. More details regarding the testbed
and the datasets are provided in appendix D.1 of the
supplemental material. The traces from Politecnico di
Torino (Polito) contain only the flows used by the VoIP
sessions and were also used in the analysis.

5.2 Accuracy of the Classification
The collected datasets were processed by the proposed
classifier. In order to evaluate its accuracy, the re-
sults were compared with the ground-truth informa-
tion gathered at the moment of the capture. For each
dataset, the true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) cases (flows)
were counted. Based on these values, two metrics were
used to measure the accuracy of the classifier, sensitivity
and specificity, defined by (5) and (6), respectively, as de-
scribed in [40] and [41]. Sensitivity evaluates the ability
of the method to identify the existent VoIP flows, while
specificity measures its capacity to avoid false positive
classifications.

Sensitivity =
TP

TP + FN
, (5)
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Speci f icity =
TN

TN + FP
. (6)

The accuracy of the classifier was evaluated separately
for the behavioral signatures of the bit rate, group, and
codec levels, and the results are listed in Table 3. The pro-
posed method continually analyzes every packet since
the beginning of the flow and it makes a classification as
soon as the properties of the packet lengths are matched
by one of the signatures. Nevertheless, especially in the
case of Skype traffic, those properties are not always
very stable in the beginning of the connection. Hence,
although the traffic is initially matched by a signature,
seconds later the properties of the packet lengths are
more stable and slightly different and are thus matched
by a different signature. Since the classifier continues
to analyze every packet, it modifies the classification
when the traffic is matched by a different signature.
This usually happens for similar signatures, such as SILK
and SILK MB/NB or VBR and VBR (low variation), and
it is observable, e.g., in dataset 2. For this reason, the
evaluation of the sensitivity for the second classification
was also included in Table 3. Nonetheless, if for a certain
flow, the classifier cannot establish a stable classification,
we considered it a false negative case. The average time
used by the classifier to reach the first classification
result, and in some cases the second, is presented in
Table 6 of the supplemental material.

Generally, the sensitivity decreases from the bit rate
level to the codec level as the signatures are less broad on
the latter. For the same motive, the specificity decreases
in the opposite direction. Nevertheless, there are a few
exceptions. In the case of the bit rate level signatures,
the traffic from low variation VBR codecs was, for a
few sessions, classified initially as VBR and only a few
seconds later as VBR (low variation). Also, the traffic
from VBR Speex, which is not covered by any group level
signature, was sometimes classified by the signature for
Skype proprietary VBR, especially in dataset 3, which
pulled down the sensitivity rate. Since, the dataset of
the Politecnico di Torino contains only the flows that
result from the VoIP sessions, it does not have any
negative case. Hence, it does not make sense to calculate
the specificity for this dataset. The percentage of the
traffic in datasets 1, 2, 3, and 4, from each class of
applications, that caused false positive cases is presented
in Table 7 of the supplemental material, showing that
they were caused by streaming, P2P file-sharing, and P2P
streaming traffic.

The results show that the method is capable of classi-
fying the traffic from VoIP sessions and identifying the
used speech codec with interesting accuracy. Moreover,
we obtained similar results for the same speech codec
despite the fact that the datasets used for the perfor-
mance evaluation contained traffic from VoIP sessions
generated with different applications, transport proto-
cols, and operating systems, showing the independence
of the classifier from these factors. The performance
of the classifier proposed herein was also compared

with the results obtained with other available classifiers.
Although there are a few studies proposing methods
for the identification of VoIP traffic, there are not many
implementations available. A platform to compare the
performance of traffic classifiers, named NeTraMark, has
been recently released [42]. NeTraMark incorporates a few
classifiers, based on different methods, that classify the
traffic into several classes. However, none of them is
prepared to identify VoIP traffic. Furthermore, there is
no classifier capable of identifying, or at least making a
strong prediction, of the codec used in a VoIP session.
Hence, it is not possible to make a direct comparison
with the method described in this article.

Even so, three different available tools were chosen
for distinct reasons and tested with the same datasets.
l7-filter [43] was used as an example of a DPI classifier
based on payload string signatures. l7-netpdlclassifier [44],
another DPI tool, classifies the traffic based on the struc-
ture of the packets. It resorts to a list of protocol descrip-
tors defined using NetPDL [45], a language developed
for packet header description and extended for traffic
classification purposes. Tstat [39] is mainly a tool for the
statistical analysis of traffic. Nonetheless, it incorporates
the behavioral method proposed in [10], which is based
on Naı̈ve Bayesian classifiers and does not resort to the
data carried in the payloads. Tstat was tested with the
traffic models that come with the source code.

Table 4 contains the sensitivity and specificity results
obtained for the three classifiers. The results were ob-
tained in a similar way to the ones of the proposed
classifier. We counted the true and false positive and
negative cases by identifying the VoIP and the non-
VoIP flows that were corrected classified and the ones
that were misclassified. Unlike the approach followed
by this article, these classifiers are not always focused
on the specific flow generated by each VoIP session. In
many cases, the classifiers were not able to classify the
session flow, but they correctly identified signaling flows
generated by Skype or SIP protocols. Hence, the results
included in Table 4 were calculated by considering as
true positives two distinct cases: only the VoIP session
flows identified; or also the signaling flows correctly
classified as VoIP. Moreover, Tstat distinguishes the Skype
traffic between two computers, the traffic between Skype
and traditional telephony, and the Skype signaling data.
Sometimes during the evaluation, although Tstat was
able to identify the specific flow that carries the conver-
sion, it classified it as signaling. These cases were also
considered separately in Table 4.

The results demonstrate that most classifiers have dif-
ficulties to identify the specific flows related with conver-
sations, even when they are able to identify other flows
of the VoIP application like signaling data. The three
mechanisms seem to have more problems to identify the
traffic from VoIP sessions over TCP, as shown by the low
sensitivity rates for the dataset 4. The specificity rates
for the same dataset are also lower, mostly due to the
larger share of traffic from other P2P applications. Tstat
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TABLE 3
Results of the performance evaluation of the VoIP classifier for the different levels of signatures.

Dataset Bit rate level Group level Codec level
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

first second first second first second
Dataset 1 92.31% 100.00% 99.97% 100.00% 100.00% 100.00% 84.62% 92.31% 100.00%
Dataset 2 92.86% 100.00% 99.99% 100.00% 100.00% 100.00% 78.57% 100.00% 100.00%
Dataset 3 100.00% 100.00% 99.98% 80.00% 80.00% 100.00% 93.34% 93.34% 100.00%
Dataset 4 96.97% 96.97% 99.51% 96.97% 96.97% 99.56% 84.85% 84.85% 99.99%

Polito 100.00% 100.00% not applicable 100.00% 100.00% not applicable 70.00% 100.00% not applicable

TABLE 4
Results of the performance evaluation of other available classifiers.

Dataset l7-filter l7-netpdlclassifier Tstat
Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

session signaling session signaling session signaling
Dataset 1 30.77% 30.77% 96.50% 69.23% 76.92% 98.04% 00.00% 76.92% 99.89%
Dataset 2 00.00% 100.00% 93.98% 100.00% 100.00% 98.11% 07.14% 57.14% 99.91%
Dataset 3 00.00% 100.00% 95.39% 100.00% 100.00% 97.37% 00.00% 100.00% 99.88%
Dataset 4 03.03% 54.55% 78.11% 09.09% 45.45% 97.73% 00.00% 12.12% 98.82%

Polito 00.00% 00.00% not applicable 90.00% 90.00% not applicable 00.00% 70.00% not applicable

seems to be more conservative in the identification of
VoIP traffic, which also helps it to perform better in terms
of false positive cases. The Polito dataset contains only 10
VoIP sessions, and therefore any misclassified flow has
an immediate negative impact in the sensitivity. Since
the packets in this dataset do not contain the payload
data, l7-filter was unable to identify any VoIP flow.

Generally, the classifier proposed herein presents a
better accuracy when it distinguish between CBR, VBR,
and VBR with low variation, and it is also able to make a
prediction with good accuracy of the codec used in each
session. Furthermore, the accuracy of the identification
of the flow of the real conversation is much higher than
for the other classifiers.

5.3 Computational Resources

The computational requirements of the other classifiers
analyzed in the scope of this work have, by construction,
a linear dependence on the number of signatures and on
the number of packets. For the sake of completeness, a
simple exercise regarding the processing and memory
requirements of the method described herein was made
and discussed in this section. The included empirical
results concern worst case scenarios. For example, the
memory requirements were taken for the maximum
memory the application needed during the execution.

The proposed classifier analyzes every packet that
arrives to the capture point, with the exception of the
packets whose transport layer payload is smaller than
or equal to 5 bytes, and tries to produce a classification
for each flow. The incoming traffic is separated by flows,
and only a fixed number of packets is stored for each
flow (fixed sized analysis window). The assignment of
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Fig. 9. Representation of the CPU time and memory
consumption growing and the number of packets and
flows for 13 trace files, considering packets with payload
larger than 5 bytes.

a packet to a flow is a negligible operation in terms of
processing, and the calculation of the entropy comprises
a fixed number of instructions. When a packet arrives,
it is inserted in the computational representation of
the respective flow, and the program tries to find the
signature to which the packet belongs. In other words,
each time a packet arrives, the execution goes through
all the signatures. As such, the processing requirements
of the classifier are linearly proportional to ns and to np,
where ns is the number of signatures in the list and np
is the number of processed packets with transport layer
payload larger than 5 bytes.

The classifier only needs to save information that is
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related with the flows that are active at each instant.
Besides of the window of values that is stored for
each flow, it also keeps a counter of the number of
positives matches for each flow, signature pair. Hence, the
memory requirements of the classifier depends only on
the number of active flows in a given time instant (n f ),
on the number of signatures (ns), and on the size of the
sliding windows (w). Since the packet processor filters out
every packet whose transport layer payload is smaller
than or equal to 5 bytes, n f includes only the number of
flows than contain packets with payload larger than 5
bytes. The dependence between the amount of memory
and n f , ns, and w is linear.

The implementation of the described mechanism is
far from being optimized. Nonetheless, simple measure-
ments were made so as to have a perception of how the
use of the resources by the proposed classifier grows for
input data with different sizes. We performed a few ex-
periments using /usr/bin/time (a tool that summarizes
the system resources used by a program) for 13 distinct
trace files, extracted from the four datasets used in the
performance evaluation, containing a different number
of flows and packets. The results of the CPU time and
of the maximum memory used during the execution
of the classifier for each of the trace files, using the
three levels of signatures, are described in Table 8 of the
supplemental material. The linear dependency between
the CPU time and np and ns is visible in Fig. 9.

In order to improve its memory efficiency, the
classifier removes the data related to a flow when a
connection ends or reaches a timeout limit. For this
reason, and since the number of active flows varies
throughout the trace as the connections start and finish,
it would be difficult to make any useful observation
regarding the used memory. Therefore, for the purpose
of this exercise, we deactivated the option to remove
the data from inactive flows. Using this approach, we
are considering the worst case scenario in which all
flows in the trace files are active flows. The maximum
memory used by the proposed classifier depends only
on n f , ns, and w. Nevertheless, it is possible to observe
in Fig. 9 that the traces with less flows are using
slightly less memory, which results from the fact that,
as explained in section 4.2.1, the classification decision
module only processes flows after the sliding window
is filled, avoiding the need to save information for short
flows with less packets than the size of the window.
Since the CPU time and the memory consumption grow
linearly, the mechanism may be applied for the real-time
analysis of the traffic in computer networks.

6 C
In this article, a new method for the identification of
P2P VoIP traffic was described. Unlike most approaches,
the proposed mechanism is focused on the properties
of the speech codec used in the VoIP session instead

of the application and it aims to identify the flow used
for the conversation rather than the signaling data. The
traffic from several VoIP sessions, using many codecs
and made using different applications was collected and
analyzed to identify properties that could be used in
the classification process. The lengths of the payloads
presented different levels of heterogeneity for distinct
codecs. Although the lengths of the packets have already
been used in different ways, its level of heterogeneity
has never been used for the classification of traffic in
real-time. To the best of our knowledge, this is the first
behavioral method capable of identifying the codecs
used on a VoIP session.

In order to quantify the level of heterogeneity and use
it to identify traffic, an approach based on entropy was
used. Its value was calculated by resorting to sliding
windows with size of a constant number of packets.
By doing so, it is possible to monitor the value of the
entropy, in real-time, from the beginning of the flow
to its end. The identification of VoIP sessions is made
by using a set of behavioral signatures that are formed
by an interval for the entropy and an interval for the
length of the payload. For each packet arriving to the
classifier, a signature is matched if both the length of
the payload and the entropy value are contained in the
corresponding intervals. Moreover, each signature also
contains a minimum number of matches that should be
reached for a tuple to be classified by the signature. The
list of signatures may also be extended or adapted to
cover more codecs.

The performance of the classifier was evaluated,
based on the proposed signatures, by resorting to
aggregated traffic from multiple VoIP sessions, using
different codecs and applications, and several P2P and
non-P2P applications. The results showed that the
classifier was capable of identifying the VoIP sessions
with very good accuracy, performing better that the
remaining analyzed tools. Furthermore, the mechanism
was able to recognize the specific speech codec that
was used with a sensitivity rate between 70.00% and
93.34%. A simple evaluation of computational resources
used by the classifications showed that the consumption
of resources grows linearly with the analyzed data,
making the mechanism suitable for real-time analysis.
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A Supplement to “Identification of
Peer-to-Peer VoIP Sessions Using

Entropy and Codec Properties”
João V. Gomes, Pedro R. M. Inácio, Manuela Pereira, Mário M. Freire, and Paulo P. Monteiro

Abstract—This supplement is organized as follows. Appendix A presents the speech codecs analyzed in this work and describes
how we studied the codecs used in the different versions of Skype. In appendix B, we explain the effect of the sliding window size in
the entropy and present examples of the entropy analysis for different window sizes. Appendix C presents the summary of the packet
length properties observed during the analysis of traffic from several VoIP sessions using different codecs. Appendix D characterizes
the testbed used to collect datasets for the performance evaluation of the proposed method, describes the composition of the datasets,
and presents additional details regarding the performance evaluation included in the main article. Furthermore, the results of the CPU
time and memory used by the proposed classifier to process 13 distinct trace files are also included in appendix D.

Index Terms—Data communications, distributed applications, network communications, network management, network monitoring,
packet-switching networks.

F

A A
S C
All the codecs used by more than one of the selected
applications were studied in this work. In the case of
Skype, all the codecs it supports were analyzed as they
are mostly proprietary codecs that are not used by other
applications.

A common codec used in Voice over Internet Protocol
(VoIP) sessions is Pulse-Code Modulation (PCM), stan-
dardized in the G.711 recommendation of the Interna-
tional Telecommunication Union (ITU). G.711 defines
two main compression algorithms, the µ-law algorithm
(used primarily in North America and Japan) and the
A-law algorithm (used in Europe and the rest of the
world). The two versions of PCM are usually referred by
the applications as PCMU and PCMA, respectively. For
the sake of coherence, the same designations are used in
the main article. G.722 is based on Sub-Band Adaptive
Differential Pulse Code Modulation (SB-ADPCM), which
uses the baseline of PCM. Speex codec was also analyzed.
It has three modes, ultra-wideband (sampling rate of
32 kHz), wideband (16 kHz), and narrowband (8 kHz)
and supports Constant Bit Rate (CBR) and Variable Bit
Rate (VBR).

Although the Global System for Mobile
communications (GSM) is a standard for mobile
telephone systems, it is commonly used to identify
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Fig. 1. Mean of the entropy of three examples of traffic
for different sizes of the sliding window ranging from 10 to
2000 packets.

a speech codec. The original GSM speech codec is
named Regular Pulse Excitation Long-Term Prediction
(RPE-LTP). Nonetheless, as VoIP applications use the
term GSM to refer to the codec, the same designation is
used in this article.

The Global IP Solutions (GIPS) company delivers em-
bedded solutions used for communications. It offers a set
of proprietary codecs that includes Internet Speech Au-
dio Codec (iSAC), Internet Low Bit Rate Codec (iLBC),
Internet Pulse Code Modulation wideband (iPCMwb),
and Enhanced G.711 (EG711) U/A. From these, only iLBC
is royalty-free. In May 2010, GIPS was bought by Google
and its codecs are now used by Google Talk.

All versions of the Skype software from 2.0 were tested
to identify the different codecs supported throughout its
evolution. The versions prior to 2.0 were not used as
they seem to not be able anymore to connect to the
authentication server of Skype. In order to know the
codecs used by Skype in each version of the software,
we started by identifying the codec used in a VoIP
session by activating the display technical call info option
in the Skype client. Afterwards, we used the DisableCodecs
tag in the config.xml file to iteratively disable every
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Fig. 2. Entropy analysis for three examples of traffic, using different sliding windows with sizes ranging from 10 to
2000 packets.

codec until no codec is left. We repeated this process
for every Skype version and we concluded that, before
version 3.0, Skype used G.729, PCM U/A, and the GIPS
codecs. In version 3.0, it stopped using iPCMwb and the
support for Adaptive Multi-Rate Wideband (AMR-WB)
was added. From version 3.2 to 4.0, Skype used G.729,
PCM U/A, AMR-WB and Sinusoidal Voice Over Packet
Coder (SVOPC), a proprietary codec from Skype. In
version 4.0, it stopped using AMR-WB and SILK, another
Skype proprietary codec, was introduced. SILK has super-
wideband (24 kHz) and wideband (WB) (16 kHz) modes
and, since version 4.1 of Skype, it also has mediumband
(MB) (12 kHz) and narrowband (NB) (8 kHz) modes.
Another codec, identified by NWC in the config.xml
file, is used since version 4.1 of Skype. Although in our
analysis this codec presented properties similar to the
ones from PCM, it was not possible to find any further
information regarding this codec.

A B
SW
The analysis of the entropy of the packet lengths de-
scribed in the main article was performed for a sliding
window with a constant size of N packets. Using a
sliding window enables the real-time analysis during the
duration of the flow, instead of analyzing the complete
flow only when it has finished. We repeated the analysis
for different window sizes, from 10 to 2000 packets, to
understand the effect of the window size in the entropy
value. Fig. 1 depicts the mean of the entropy using
different window sizes, for three examples of traffic with
distinct levels of entropy, low, medium, and high. In the
figure, it is possible to observe that the entropy starts
growing slower for a window size of 100 packets, and
from the size of 500 packets, the entropy increases very
slightly.

However, the effect of the sliding window size in the
entropy value is of relative importance for the purpose

of this work. Provided that the entropy is distinguishable
for the different codecs, the absolute value of the entropy
is not very relevant. More important is the stability of
the entropy, because if the entropy varies significantly,
passing the limits defined in several signatures, it would
be difficult to make a classification decision. Fig. 2
presents the variation of the entropy using different
window sizes. As the size increases, the entropy becomes
more stable. However, it also takes more seconds to fill
the window, depending on the number of packets per
second generated by the codec. Hence, as a compromise
between the stability of the entropy and the time it takes
for the window to be filled, we chose to use sliding
windows with size of 500 packets.

A C
P   P L
In order to identify common characteristics in the packet
lengths of the different codecs, we analyzed the traffic
from several VoIP sessions made using different speech
codecs. In this appendix, we present a summary of the
results obtained in the analysis described in the main
article.

Table 1 shows the frequent lengths observed for spe-
cific CBR codecs, as well as the interval in which the
observed values of the entropy of the packet lengths
are contained. The entropy the entropy of the packet
lengths when using a CBR codec is almost always zero.
However, for the Skype traffic, the entropy is always
slightly higher.

In the case of VoIP sessions using VBR codecs, the
packets lengths vary within a range of values. For this
reason, the entropy is also higher when compared with
the one obtained for the CBR codecs. The common
values observed for VBR are presented in Table 2 for
traffic of sessions from Skype or from Session Initiation
Protocol (SIP) applications.
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TABLE 1
Summary of the analysis of entropy and payload lengths

of VoIP sessions using CBR codecs.

Codec Entropy mean Frequent lengths
Incoming Outgoing (Byte)

Skype
PCMA 0.237 0.198 166, 168, 169, 170
PCMU 0.217 0.201 176, 178, 179, 180
G.729 0.215 0.202 26, 28, 29
iLBC 0.224 0.190 46, 47, 86
NWC 0.246 0.222 166, 169

SIP applications
PCMA 0.003 0.004 172
PCMU 0.002 0.004 172
G.722 0.000 0.001 172
GSM 0.003 0.005 45
iLBC 0.005 0.005 50, 88

Speex 32 kHz 0.001 0.000 49, 86
Speex 16 kHz 0.001 0.000 44, 82
Speex 8 kHz 0.001 0.000 32, 50

TABLE 2
Summary of the analysis of entropy and payload lengths

of VoIP sessions using VBR codecs.

Codec Entropy mean Frequent lengths
Incoming Outgoing (Byte)

Skype
EG711A 4.432 4.484 90–250, 200–400
EG711U 4.311 4.305 90–250, 200–400
iPCMwb 4.224 4.572 150–300, 300–600

iSAC 4.329 4.248 70–150, 170–300
SVOPC 2.468 2.413 15–120

SILK 3.676 3.651 40–120
SILK WB 3.704 3.607 40–120
SILK MB 3.020 2.9.24 30–60
SILK NB 2.868 2.828 20–50
AMR-WB 0.868 0.753 10–80

SIP applications
Speex 32 kHz 2.124 2.164 20–100
Speex 16 kHz 2.077 2.059 20–100
Speex 8 kHz 1.684 1.754 10–60

A D
P E
In this appendix, we describe a few additional details
regarding the performance evaluation of the proposed
classifier.

D.1 Classification Evaluation

In order to avoid relying on the accuracy of a third-party
classifier, we setup a testbed to capture the datasets used
for the performance evaluation of the classifier, which
is depicted in Fig. 3. This approach allowed us to be
sure of which application generated each traffic flow.
The testbed was formed by six groups of computers,

University
network

gateway

Internet

capturing machine

mirror
port

Fig. 3. Laboratory testbed in which the datasets used in
the performance evaluation were captured.

TABLE 3
Datasets used to evaluate the performance of the

classifier.

Dataset Volume (GB) Flows
TCP UDP TCP UDP

Dataset 1 1.3 0.4 7454 1007
Dataset 2 1.0 0.6 9053 1185
Dataset 3 2.3 0.8 10307 1910
Dataset 4 5.5 10.0 31933 42114

each of the groups was connected to a switch, and
the six switches were connected to a different switch,
which connects the Local Area Network (LAN) to the
gateway. This enables the connection to the Internet
through the university network. Three groups were run-
ning the Microsoft Windows operating system, while the
other three groups were running Linux. The application
running in the computers vary in each dataset, and the
VoIP sessions were made from different computers in
the testbed to Windows and Linux computers or Android
smartphones outside or in another LAN in the university
network. The traffic was captured from a mirror port in
the main switch.

Using the testbed, we collected traffic from VoIP ses-
sions and kept a record of the applications running in
each machine. The captured traffic is divided into four
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TABLE 4
Composition of the datasets used in the performance evaluation.

Traffic Dataset 1 Dataset 2 Dataset 3 Dataset 4
Bytes (%) Flows (%) Bytes (%) Flows (%) Bytes (%) Flows (%) Bytes (%) Flows (%)

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP
HTTP download 04.09 00.12 09.71 01.44 05.78 00.65 03.29 00.37 00.39 00.03 04.33 00.82 06.77 00.00 00.08 00.09
Web browsing 01.05 00.00 04.12 00.58 00.57 00.03 04.69 00.37 00.26 00.02 02.89 00.55 00.07 00.01 00.82 00.11
Streaming 53.78 18.19 40.87 03.47 49.16 30.36 51.28 05.82 61.57 20.12 50.30 05.58 01.74 12.03 03.07 03.18
Telnet / SSH 00.44 00.01 01.04 00.15 00.21 00.01 01.76 00.14 00.00 00.00 00.00 00.00 00.04 00.01 00.20 00.11
FTP / SFTP 00.93 00.03 02.20 00.33 00.64 00.04 05.27 00.42 00.00 00.00 00.00 00.00 04.51 00.00 00.11 00.05
P2P streaming 03.16 01.07 09.43 00.80 01.74 00.98 07.89 00.90 04.35 01.42 06.71 01.00 16.58 35.39 12.34 23.90
P2P file-sharing 06.33 02.14 12.58 01.07 01.16 00.65 03.29 00.37 06.52 02.13 10.06 01.40 04.73 16.92 14.55 37.71
VoIP 05.41 03.24 08.12 04.08 03.25 04.77 10.59 03.56 01.35 01.86 10.01 06.36 01.08 00.12 02.54 01.14

TABLE 5
Codecs used for the VoIP sessions included in the performance evaluation datasets.

Traffic Dataset 1 Dataset 2 Dataset 3 Dataset 4
Bytes (%) Flows (%) Bytes (%) Flows (%) Bytes (%) Flows (%) Bytes (%) Flows (%)

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP
Skype AMR-WB 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 03.68 03.63 01.75 07.62
Skype G.729 02.51 01.48 01.34 00.22 02.09 03.56 07.91 04.85 00.00 00.00 00.00 00.00 04.51 00.29 01.94 03.22
Skype PCMA 06.03 04.26 01.55 00.31 06.07 09.92 02.84 06.72 00.00 00.00 00.00 00.00 08.20 00.30 01.61 02.65
Skype PCMU 06.89 04.59 01.65 00.10 04.97 09.75 03.36 06.04 00.00 00.00 00.00 00.00 07.88 00.28 01.47 02.46
Skype NWC 04.19 04.38 02.07 01.24 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 03.29 00.12 00.90 01.84
Skype iSAC 00.00 00.00 00.00 00.00 01.61 03.02 01.34 02.46 00.00 00.00 00.00 00.00 02.88 00.34 00.28 02.22
Skype iPCMwb 00.00 00.00 00.00 00.00 07.22 09.06 01.79 03.06 00.00 00.00 00.00 00.00 09.12 05.80 00.90 05.30
Skype EG711A 00.00 00.00 00.00 00.00 05.84 06.85 02.09 03.43 00.00 00.00 00.00 00.00 05.47 00.34 00.38 02.41
Skype EG711U 00.00 00.00 00.00 00.00 07.11 08.25 01.64 03.06 00.00 00.00 00.00 00.00 06.11 00.34 00.38 02.51
Skype iLBC 00.00 00.00 00.00 00.00 02.59 02.71 02.01 03.58 00.00 05.13 00.09 02.05 02.07 00.35 01.51 03.17
Skype SILK 07.79 05.18 03.51 00.31 00.00 00.00 00.00 00.00 00.00 06.25 00.11 02.49 09.64 00.57 06.24 07.14
Skype SILK WB 07.75 04.71 03.20 00.37 00.02 01.86 01.04 01.42 00.00 00.00 00.00 00.00 08.27 00.41 01.84 03.41
Skype SILK MB 04.39 02.01 01.45 00.21 00.04 01.61 01.79 01.79 00.00 00.00 00.00 00.00 02.08 00.12 00.19 00.80
Skype SILK NB 04.59 01.61 01.65 00.10 00.04 00.72 02.39 01.64 00.00 00.00 00.00 00.00 02.02 00.11 01.70 01.47
Skype SVOPC 07.37 08.36 03.41 01.96 00.00 00.00 00.00 00.00 00.00 04.01 00.00 00.00 05.47 00.24 00.80 02.70
SIP PCMA 01.25 00.16 00.27 00.08 00.00 00.30 00.04 00.23 00.01 09.33 00.16 03.72 00.00 00.00 00.00 00.00
SIP PCMU 00.00 00.00 00.00 00.00 00.00 00.37 00.05 00.28 00.14 09.21 00.93 06.20 00.00 00.00 00.00 00.00
SIP G.722 01.56 00.10 00.34 00.04 00.00 00.00 00.00 00.00 00.01 11.66 00.21 04.65 00.00 00.00 00.00 00.00
SIP GSM 00.00 00.00 00.00 00.00 00.00 00.34 00.03 00.26 00.00 07.27 00.07 05.64 00.00 00.00 00.00 00.00
SIP iLBC 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.01 13.99 00.25 05.58 00.05 00.57 00.03 02.86
SIP Speex 32 kHz 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.22 07.46 01.40 05.11 00.07 00.71 00.04 03.07
SIP Speex 16 kHz 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.01 09.21 00.14 09.00 00.00 00.00 00.00 00.00
SIP Speex 8 kHz 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.01 07.18 00.28 09.13 00.00 00.00 00.00 00.00

datasets with distinct sizes as presented in Table 3, cor-
responding to different capturing periods, from January
to March 2011. Besides of the VoIP sessions, each dataset
also contains traffic from other classes of applications,
such as web browsing (excluding streaming contents,
which are included in the streaming class), Hypertext
Transfer Protocol (HTTP) downloads (download of a
large file, e.g., a disc image or an executable), file transfer
(File Transfer Protocol (FTP) and Secure File Transfer
Protocol (SFTP)), remote sessions (Telnet and Secure Shell
(SSH)), live or on-demand audio and video streaming
(Real-Time Streaming Protocol (RTSP), HTTP, Microsoft
Media Server (MMS), and Flash), Peer-to-peer (P2P)
video streaming (PPStream, TVU Player, and SopCast)
and P2P file-sharing (eDonkey, BitTorrent, and Gnutella),
so as to maximize the possibility of having false positive

TABLE 6
Average time (s) needed by the classifier to correctly

classify VoIP sessions in the first and second
classifications, using the signatures of the bit rate, group,

and codec levels.

Traffic Bit rate level Group level Codec level
First Second First Second First Second

UDP 9 33 12 – 11 39
TCP 14 – 14 – 12 –
All 11 33 13 – 12 39

cases. Table 4 presents the share of the different classes
of applications in each dataset.

The VoIP sessions included in the datasets were made
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TABLE 7
Percentage of false positives in the traffic from each class of non-VoIP applications, using the signatures of the bit

rate, group, and codec levels.

Traffic Dataset 1 Dataset 2 Dataset 3 Dataset 4
Bit rate Group Codec Bit rate Group Codec Bit rate Group Codec Bit rate Group Codec

HTTP download 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00
Web browsing 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00
Streaming 00.05% 00.00% 00.00% 00.01% 00.00% 00.00% 00.03% 00.00% 00.00% 00.11% 00.06% 00.03
Telnet / SSH 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00
FTP / SFTP 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00
P2P streaming 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 01.64% 01.51% 00.01
P2P file-sharing 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.04% 00.00% 00.00
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Fig. 4. Performance results of the proposed classifier for
the different levels of signatures.

using all the applications and speech codecs described
in the main article. Table 5 presents the share of VoIP
traffic in each dataset for the analyzed speech codecs,
with the exception of the data used by the applications
to authentication and contact status synchronization.
Datasets 1 and 2 contain a greater percentage of Skype
traffic, while dataset 3 includes more sessions from SIP
applications. Dataset 4 includes primarily Skype sessions
over the Transmission Control Protocol (TCP).

The performance of the proposed classifier and of
three other available classifiers was evaluated using
datasets 1, 2, 3, and 4, as described in the main article.
The classifier continually analyzes every packet since the
beginning of the flow until its end. In every moment,
if the traffic is matched by one of the signatures, the
flow is classified as being generated by a VoIP session
using the corresponding codec. In some cases, the first
classification produced by the classifier is not correct.
Nevertheless, since the classifier continues to analyze
every packet, if in any moment the signature does not
match the traffic anymore but a different signature does,
the classifier corrects the classification. For this reason,
the performance evaluation presented in the main article
includes the results for the first and second (if there
is a second one) classifications. Figs. 4 and 5 present
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Fig. 5. Performance results of the other tested classifiers.

a graphical representation of the results included in
Tables 3 and 4 of the main article. Additionally, the
average time that the classifier took to correctly classify
the VoIP sessions is included in Table 6. During the
performance evaluation, the false positive cases were
caused by the traffic from streaming, P2P file-sharing,
and P2P streaming applications. Table 7 presents the
percentage of flows in the traffic from each class of
applications that were misclassified, for all the signature
levels.

D.2 Computational Resources Analysis

In order to understand how the computational resources
consumption grows as the traffic increases, we measured
the CPU time and memory used by the classifier to
process trace files with different amounts of packets and
flows. As described in the main article, the CPU time
used by the classifier depends on the number of pro-
cessed packets whose transport layer payload is larger
than 5 bytes, whereas the used memory depends on
the number of processed flows containing packets with
payload larger than 5 bytes. The measurement results are
listed in Table 8 and show the linear dependence on the
number of flows and packets with payload larger than
5 bytes.
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TABLE 8
Measurements of CPU time and maximum memory used by the classifier to analyze 13 distinct trace files and their
dependence on the number of packets whose payload is larger than 5 bytes and on the number of flows containing

packets whose payload is larger than 5 bytes, for the signatures of bit rate, group, and codec levels.

Trace files Total Larger 5 bytes Bit rate level Group level Codec level
Packets Flows Packets Flows CPU time (s) Memory (KB) CPU time (s) Memory (KB) CPU time (s) Memory (KB)

Trace file 1 269322 411 226497 219 17.32 11504 19.25 11472 93.80 11584
Trace file 2 773036 2152 598842 869 47.43 20368 51.79 20320 251.27 20416
Trace file 3 855554 995 680915 452 55.09 14528 61.57 14512 295.31 14592
Trace file 4 1039562 3481 736894 802 58.70 18896 65.24 18848 309.95 18944
Trace file 5 1337017 2365 1256111 1499 102.49 26432 107.79 26336 482.77 26336
Trace file 6 1736251 2997 1635476 1813 131.39 29968 142.78 29856 642.20 30192
Trace file 7 2333035 3815 2203802 2251 181.42 34768 197.03 34656 892.06 35056
Trace file 8 3031885 4765 2869311 2782 240.97 40432 260.71 40320 1180.06 40736
Trace file 9 3833565 9773 3184102 6350 271.95 72288 293.56 72112 1318.57 72720
Trace file 10 4033409 10123 3342619 6555 287.22 74208 309.92 74032 1394.13 74640
Trace file 11 3537662 5533 3349693 3189 286.42 44960 306.77 44816 1383.81 45280
Trace file 12 4229292 10666 3510875 6910 295.13 77680 324.11 77504 1465.09 78160
Trace file 13 4408424 10967 3658008 7074 305.55 79168 338.80 78992 1517.03 79632
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Chapter 6

Classification of One-to-Many Peer-to-Peer Traffic

Using Packet Length and Entropy

This chapter consists of the following article:

Classification of One-to-Many Peer-to-Peer Traffic Using Packet Length and Entropy

João V. Gomes, Pedro. R. M. Inácio, Manuela Pereira, Mário M. Freire, and Paulo P. Monteiro

Article submitted for publication in an international journal.
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Classification of One-to-Many Peer-to-Peer
Traffic Using Packet Length and Entropy

João V. Gomes, Pedro R. M. Inácio, Manuela Pereira, Mário M. Freire, and Paulo P. Monteiro

Abstract—The identification of network traffic generated by a given application constitutes an important asset for the management
of computer networks. Nonetheless, the popularity of the peer-to-peer (P2P) paradigm, the growth of the throughput of computer
networks, and the use of payload encryption increased the complexity of traffic classification and reduced the effectiveness of Deep
Packet Inspection (DPI) approaches. In this article, we propose a novel classification mechanism based mostly on the packet lengths,
which can be applied to encrypted traffic since it does not use payload data. The heterogeneity of the packet lengths from several
applications is analyzed considering different perspectives, namely subsets of the traffic containing the packets of both directions or
from different ranges of packet lengths. Additionally, the heterogeneity of inter-arrival times and remote host/port pairs is used to
improve the results in specific cases. We resort to the mean of entropy to define classification rules for P2P streaming and file-sharing
flows. In order to make the method suitable for real-time operation, the entropy values are computed for a sliding window with a constant
size of N packets. It is shown that the performance of the proposed method achieves an accuracy greater than 95%.

Index Terms—Data communications, distributed applications, network communications, network management, network monitoring,
packet-switching networks.

F

1 I

T effective management of computer networks
comprises several responsibilities, including the or-

ganization and design of the network, the balance of the
traffic load, the capacity to assure the Quality of Service
(QoS) required by applications with distinct priority lev-
els, or the implementation of security measures for dif-
ferent applications. In such context, traffic classification
arises as a crucial network management tool to retrieve
the nature of the traffic, by enabling the identification
of the application or service responsible for each traffic
flow [1], [2], [3].

The classification of Internet traffic started as a simple
operation based on the port numbers used by the Trans-
mission Control Protocol (TCP) and the User Datagram
Protocol (UDP) [4], [5], [6]. Since most applications or
services used well-known port numbers for their con-
nections, e.g., port 80 for Hypertext Transfer Protocol
(HTTP) or port 21 for File Transfer Protocol (FTP), it was
straightforward to identify the application associated
with a certain flow by simply looking at the port number
used in the connection. However, some applications
were subject to rigorous traffic shaping schemes or even
completely blocked by Internet Service Providers (ISPs)
and network administrators, mostly because they were
heavy bandwidth consumers. Therefore, many of them,
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especially peer-to-peer (P2P) software clients, started to
use random port numbers or well-known ports used by
other protocols, e.g., port 80, rendering port numbers
useless as a classification solution [7], [8].

In order to overcome the inaccuracy of the port-based
methods, different Deep Packet Inspection (DPI) mech-
anisms were proposed for traffic classification [7], [9],
[10], [11]. Generally, DPI methods rely on a database of
signatures associated with specific applications. The sig-
natures are formed by byte strings present in the payload
of packets from the target application. The classifier tries
to match each signature with the contents in the data
field of the packets. DPI methods are typically very ac-
curate as they inspect the data carried within the packet.
Nonetheless, besides requiring previous knowledge of
the target application, the deep inspection of every
packet may be a computationally demanding operation
in high-speed networks. This fact is exacerbated by the
proliferation of new Internet applications, which implies
a larger number of signatures in the database that must
be checked with each packet. In addition, since they are
based on the contents of the packets, DPI mechanisms
may also raise privacy issues [12]. Furthermore, many
applications are adopting evasive measures, as protocol
obfuscation and payload encryption, that may render
DPI methods ineffective as they prevent them from using
the payload data [13], [14].

The constraints of the DPI approach motivated the de-
velopment of alternative methods. Several authors have
been proposing in the dark classification mechanisms [15],
[16], which do not resort to the payload data. Generally,
these methods are based on the behavior of the protocol
or application and are implemented following a few
distinct approaches. In some studies, the classification
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relies on a set of heuristics that are usually focused on
behavioral characteristics of the protocol, e.g., the con-
current use of TCP and UDP, or the existence of multiple
connections between the same hosts [17], [18]. In other
cases, the authors have explored different packet-level
or flow-level traffic properties, like inter-arrival times,
packet lengths, or flow durations, by means of statistical
analysis [14], [19] or machine learning algorithms [20],
[21]. Although in the dark classification has typically
lower accuracy than DPI, it offers a good compromise
between effectiveness and computational cost. Further-
more, its accuracy is not affected by the encryption of
the traffic. Nevertheless, the search for improving the
effectiveness of in the dark classification is leading to
the increase of the complexity of this kind of methods.
Cascarano et al. [22] compared the performance of a
DPI classifier and a Support Vector Machine (SVM)-
based method and concluded that both have similar
computational cost.

Due to the limitations of the different approaches and
in face of its importance for network management, traffic
classification represents a very active research topic.
Additionally, the rise of new Internet paradigms that
shift the focus to the user, like P2P, reinforced its signif-
icance. The traffic of this kind of applications presents
properties distinct from the applications relying on the
traditional client-server paradigm. Moreover, their greedy
nature, in conjunction with the increase of the network
throughput, raised the workload in computer networks.
Additionally, the growing popularity of P2P systems has
also motivated discussions regarding the security issues
that may be inherent to these applications. A few authors
have analyzed the vulnerabilities of P2P networks [23],
[24] and concluded that they represent a real security risk
for individual users and organizations. These reasons,
along with the the increasing use of evasive techniques
in P2P applications, make these systems particularly
challenging for traffic classification. The large number of
articles on the classification of P2P traffic (specifically) is
an evidence of the attention given by the researchers to
the identification of this particular class of traffic [25],
[26], [27], [28], [29], [30], [31].

This study aims to propose a classifier that does not
rely on payload data, is capable of identifying flows
from P2P applications, and is suitable to operate in real-
time. In a previous work [32], we made a preliminary
study on the lengths of the packets from P2P and non-
P2P applications. The obtained results showed that the
packets generated by P2P applications presented more
varied lengths. This heterogeneity is either caused by the
aggregation of multiples flows with distinct properties
used to communicate with several peers, or by the
speech codec used by P2P Voice over Internet Protocol
(VoIP) applications. On the other hand, the traffic from
non-P2P applications was mostly formed my a single
or a few flows, resulting in packets with homogeneous
lengths. In two previous works, we studied a large set
of speech codecs used by P2P VoIP applications and

proposed a classifier for VoIP flows [33], and we also
proposed a classifier to identify aggregated traffic from
hosts running P2P applications [34]. In both cases, the
level of heterogeneity of the lengths of the packets was
measured using entropy. Nevertheless, P2P file-sharing
and P2P video streaming applications use one-to-many
connections, as they share a file or a multimedia stream
with many peers. In order to identify individual flows
from one-to-may P2P applications, it is necessary to
separate the traffic into flows. This separation destroys
the main cause of the heterogeneity of the lengths of the
packets explored in these previous works. Therefore, in
order to tackle the classification of these specific classes,
we had to follow a distinct approach described herein.

In this article, a method to identify, in real-time, the
flows generated by one-to-many P2P applications is
proposed. The mechanism does not resort to the payload
data, making it applicable to encrypted traffic. In order to
decrease the complexity, the classifier is mostly based on
only one traffic feature, the packet length. Additionally,
to improve the accuracy in some cases, the inter-arrival
times and the variety of remote host/port pairs were
also used. The method is based on the analysis of the
heterogeneity of the lengths of the packets from different
dimensions of the traffic, being that heterogeneity mea-
sured through entropy. The entropy value is computed
using a sliding window with size of N packets so that the
analysis could be performed in real-time. To the best of
our knowledge, this is the first flow classification method
exploring the heterogeneity of the lengths (instead of
the individual values or their distribution) and using en-
tropy to measure it. The performance of the classifier was
evaluated using datasets with ground truth information
carefully obtained in a testbed. The results show that the
proposed method is accurate.

The remainder of the article is organized as follows.
Section 2 contains a description of the previously pub-
lished related work. Section 3 analyzes the properties
of the packets from different types of applications and
explains how entropy may be used to measure their het-
erogeneity. Section 4 presents the entropy-based classi-
fier, followed by its performance evaluation in section 5.
The article finishes with a section summarizing the most
important conclusions.

2 RW
The early classification scheme based on port numbers
was used by a few preliminary studies on the measure-
ment of the P2P data in computer networks [4], [5],
[6]. More recently, the port numbers were used mostly
in cooperation with other classification approaches, as
DPI [35] or statistics [36].

Due to the low accuracy of the port-based methods,
many researchers relied on DPI to implement classifica-
tion mechanisms. Generally, DPI techniques are based
on byte strings found in the packet payload. Methods
following this approach use those strings as signatures

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

126



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 2011 3

associated with specific applications [7], [37]. Although
payload encryption usually renders DPI useless, in [11]
the authors were able to successfully classify traffic
flows from a P2P application that uses encryption, by
matching payload signatures in the first packets. In
other studies [29], [38], [39], [40], the authors proposed
mechanisms to automatically extract signatures from the
packet payload.

DPI-based classifiers are generally the most accurate
ones. Nevertheless, they also require, in most cases, more
computation resources. Hence, several studies proposed
lightweight DPI implementations. Risso et al. [9] ana-
lyzed a few efficient DPI classifiers. Kumar et al. [41]
and Smith et al. [10] used a deterministic finite automata
(DFA) to optimize the process of signature matching,
while Liu et al. [42] resorted to chip multiprocessors
(CMPs) to implement a high-speed and memory-efficient
method. Cascarano et al. [43] proposed two optimiza-
tions for a DPI classifier that significantly increases the
efficiency of the mechanism at the cost of a small de-
crease of its accuracy.

Some authors are also using payload data for traffic
classification in alternative ways. Park et al. [44] pro-
posed a classification method, based on payload data,
that does not resort to byte strings. Instead of defining
signatures for each target application, they explored
common behavior patterns of different tasks of each
application. Using an algebraic model, they converted a
number of bytes in the payload to a vector and employed
Jaccard similarity as a distance metric to compare the
models. Dorfinger et al. [45] resorted to entropy to
measure the heterogeneity of the payload at the byte
level, whereas Bonfiglio et al. [46] used the Chi-squared
test. Xu et al. [28] compared the contents of the received
and sent data to identify P2P traffic.

In order to avoid the drawbacks of DPI, many authors
have proposed statistical methods based on packet or
flow features [47], [48], [49], [50]. Dusi et al. [14] used
statistical analysis to identify traffic in encrypted tunnels,
while in [51], the authors proposed a statistical method
to distinguish between VoIP and Web traffic. Palmieri
and Fiori [52] presented a mechanism for traffic classi-
fication based on recurrence quantification analysis. A
few studies [53], [54], [55] have also proposed methods
relying on the calculus of packet length distributions,
using different distance metrics to choose the best match.
Alternatively, some authors used heuristics [17], [18], [30]
to model the behavior of applications, while in [15] and
[56], the authors explored the social relationship between
hosts in different ways and identified patterns to be used
in traffic classification.

More recently, numerous studies have proposed clas-
sification methods based on different machine learning
algorithms. A few authors have based their approaches
on clustering algorithms, such as k-means [20], [57],
[58], [59], expectation-maximization algorithm [60], [61],
gaussian mixture model and spectral clustering [62],
or minimum spanning tree clustering [63]. Some stud-

ies proposed classification methods resorting to de-
cision trees, as C4.5 [64], Very Fast Decision Tree
(VFDT) [65], [66], [67], Classification And Regression
Tree (CART) [19], or random forest [68]. Other works have
used hidden Markov models [69], [70], Naı̈ve Bayes and
neural networks [27], [71], [72], [73], or k-nearest neigh-
bor [74], [75]. In the last few years, many authors [21],
[31], [76], [77], [78], [79], [80] have been presenting meth-
ods based on SVMs, using a variety of traffic features.

Several studies [81], [82], [83], [84], [85], [86], [87],
[88], [89] have also combined a set of different machine
learning algorithms from Naı̈ve Bayes and neural net-
works, SVMs, C4.5, k-means, random forest, expectation-
maximization, k-nearest neighbor, and AdaBoost. More
complex classifiers have been proposed [25], [36], [90],
[91], [92], [93], associating distinct approaches from port
numbers, DPI, statistics, heuristics, and different ma-
chine learning algorithms.

In order to avoid the increasing complexity of recent
payload-agnostic methods, the classification mechanism
described herein has the intention of minimizing the
number of traffic features used in the process. Hence,
the proposed mechanism uses mostly the packet lengths
to classify the traffic. Although several studies on traffic
classification have already employed the lengths of the
packets, they used them in association with other traffic
features, by calculating statistics like the mean or the
variance, or by estimating the probability distributions.
On the contrary, this method explores the variety of
values in a set of packet lengths and it resorts to entropy
to measure the level of heterogeneity of those values.
We used this approach, for the first time, in a prelimi-
nary study [32] that compared the characteristics of the
lengths of the packets for P2P and non-P2P traffic. In
the case of P2P file-sharing, these evidences result from
the aggregation of multiple and distinct flows, while, for
VoIP flows, it is consequence of the Variable Bit Rate
(VBR) speech codecs used by many popular VoIP appli-
cations. Based on this behavior, in [33], we implemented
a classifier for VoIP flows which relies on the codec
used in the session. In addition, in [34], we proposed
a different classifier that identifies hosts running P2P
applications, by exploring the heterogeneity caused by
the aggregation of flows. In the sequence of these two
works, we now address the classification of individual
flows from P2P video streaming and P2P file sharing,
which is especially challenging due to the separation of
flows and consequent reduction of the heterogeneity of
the packet lengths.

The most similar work to our study herein described
is the one recently published by Li et al. [94]. They
followed a similar approach to distinguish Constant
Bit Rate (CBR) and VBR VoIP traffic. Nonetheless, the
method they proposed operates offline, only for the en-
tire flows, and was not applied to other classes of traffic.
Furthermore, instead of classifying entire flows offline,
in time intervals, or only for the first packets as most
studies do, the mechanism described herein implements
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a sliding window with size of N packets. The use of the
window enables the real-time and efficient operation and
makes it possible to analyze every variation in the traffic
during the lifetime of the flow. Unlike most previous
works, we analyzed the traffic of several applications
from different types of protocols, and we compared the
results obtained for P2P traffic with the ones obtained
for several distinct non-P2P applications.

3 P   P L  F
The study presented herein, as well as the proposed
classifier, are primarily based on the analysis of the
packet lengths, though other traffic features were also
considered. This section describes the datasets analyzed
in this work, explains how entropy was used to measure
the heterogeneity of the traffic features, and describes the
observed behavior.

3.1 Applications and Datasets
In order to study the characteristics of the packets from
different applications, we collected network data directly
on end user machines running a single application. This
approach allows us to be sure of the ground truth infor-
mation of the datasets without relying on the accuracy
of a third-party classifier.

Given the purpose of this work, we captured the data
generated by several sessions of different kinds of P2P
systems, namely file-sharing, video streaming, and VoIP.
Since the properties of VoIP packets depend on the used
speech codec, this type of traffic requires a detailed
study so as to consider the influence of different codecs.
Hence, on a previous work, we addressed this particular
case analyzing several codecs and VoIP applications and
proposed a P2P VoIP traffic classifier. Nonetheless, to
provide a more complete analysis here, we also collected
traffic from popular P2P VoIP applications with the
default speech codec configurations. Additionally, we
captured data generated by several non-P2P applications
that enables a comparison with the properties of P2P
traffic and the identification of dissimilarities and classi-
fication patterns.

The datasets were captured between October 2006
and July 2011 on different end hosts running Linux and
Microsoft Windows operating systems, in different con-
nection scenarios (small and large Local Area Networks
(LANs) and commercial home links). We selected several
types of applications and a few protocols for each of
them. In the case of P2P file-sharing, to address the possi-
bility of some applications having slightly distinct imple-
mentations of the protocol, we used different popular ap-
plications for each protocol, e.g., BitTorrent, Transmission,
and Vuze (BitTorrent network), Gnutella, Frostwire, and
Limewire (Gnutella network), eMule and aMule (eDonkey
network). The collected data totals 10.76 GB, shared
between different types of traffic. In the supplemental
material, we included a table (Table 1) which presents
the percentage of each type of traffic in the experimental
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N packets

entropy on iteration ientropy on iteration i1 entropy on iteration i+1

0 1444

Fig. 1. Representation of the use of a sliding window with
constant size of N packets to calculate the entropy for the
packet lengths.

data. The following protocols or applications were used
in the datasets:
• P2P file-sharing – BitTorrent, eDonkey, and Gnutella;
• P2P streaming – SopCast, PPStream, and TVU Player;
• P2P VoIP – Skype and Google Talk;
• Mail – Post Office Protocol (POP), Simple Mail

Transfer Protocol (SMTP), and Internet Message Ac-
cess Protocol (IMAP);

• HTTP download – the download of a non Hypertext
Markup Language (HTML) file, e.g., an executable
or a disc image;

• Web browsing – web page browsing (excluding the
streaming of multimedia contents, which is consid-
ered in the next class);

• Streaming – on-demand and live, audio and video,
Microsoft Media Server (MMS), Real-Time Stream-
ing Protocol (RTSP), HTTP, and Flash-based stream-
ing;

• Remote shell – Telnet and Secure Shell (SSH);
• File transfer – FTP and Secure File Transfer Protocol

(SFTP);
• Online gaming – RuneScape and War of Legends.

3.2 Evaluation of Entropy Using a Sliding Window
The work presented herein is based on the analysis of
the heterogeneity of a reduced set of traffic features. In
order to assess the level of heterogeneity for each of
them, we resorted to the concept of entropy described
in the information theory by Shannon [95]. Shannon
introduced entropy as measure of the uncertainty of a
random variate, defined by

H(x) = −
n∑

i=1

p(xi) ln p(xi), (1)

where n and p(xi) represent the number of possible
occurrences of x and the probability of the particular
occurrence of xi, respectively. For a finite number n ∈N,
the maximum value H(x) may attain is given by

Hmax(x) = ln n. (2)

Entropy is always a positive number. H(x) is close to
0 when the pool of samples is extremely homogeneous
and increases with the number of distinct occurrences
under analysis.

Instead of computing the entropy of each feature for
an entire flow or a large amount of traffic, we defined a
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window containing a fixed number of packets. We then
slid the window through the traffic and computed the
entropy of one of the features for all the packets within
the window. For each distinct traffic feature, we used a
different window. Fig. 1 depicts the entropy evaluation
using a sliding window for the packet length feature. In
each iteration of the window, the oldest packet leaves
the window, a new one is added, and a new entropy
value is obtained. This process enables a continuously
updated evaluation of the entropy, through the entire
lifetime of a flow, starting immediately after the first N
packets (needed to fill the window). The ability to obtain
a new entropy value every time a new packet arrives
enables the real-time analysis of the traffic.

Nevertheless, obtaining the entropy of N values every
time a new packet arrives requires the calculation of the
probabilities of the values for all the packets within the
window in each iteration. This may be a demanding pro-
cess, especially when the values are more varied. There-
fore, we optimized the entropy evaluation by defining
it recursively in relation to the entropy obtained in the
previous iteration. When a packet leaves the window
and another one is added, only a maximum of two
probabilities change. Hence, we use (1) to calculate the
entropy only the first time the sliding window is filled.
After that, instead of calculating the probabilities of the
analyzed feature of all the packets in the sliding window,
we compute only the ones that concern the packet that
leaves and the packet that is added to the window. We
update their influence in the entropy using

U(x) = pi−1(x) ln pi−1(x) − pi(x) ln pi(x), (3)

Hi(x) = Hi−1(x) + U(xo) + U(xl), (4)

where pi−1(x) and pi(x) are the probability of feature x in
iterations i and i− 1 of the sliding window, respectively,
and xo and xl are the value of feature x in the oldest
packet in window and in the packet that will be added,
respectively.

3.3 Level of Analysis

Since our main purpose is to identify P2P traffic, we
looked for characteristics in the packets that could be
distinguishable from the ones generated by non-P2P
traffic. In a previous work [34], we compared the packet
lengths from aggregated traffic generated by individual
hosts running P2P or non-P2P applications. The analysis
showed that the packet lengths from P2P traffic are
more heterogeneous. This pattern allowed us to identify
hosts running P2P applications. However, the level of
heterogeneity of P2P streaming and file-sharing traffic
is mostly caused by the aggregation of multiple flows
between different peers. Hence, the same approach is
not enough to classify the individual flows of each host
that result from a P2P application.

Therefore, we used the traffic described in section 3.1
to study the characteristics of the packet lengths from

the flows of different types of Internet applications.
Although our main goal was to identify the individ-
ual flows generated by P2P applications, we decided
to separate the traffic based only on the host Internet
Protocol (IP) address and TCP or UDP port number.
This approach allows us to explore the fact that some
applications establish several connections in the same
port number. Many P2P applications receive requests in
the same port number, which results in several flows
using the same port. Thus, it is possible to analyze all
the traffic from one port number, without separating it
by the flows that use that port, and classify them as being
generated by the same application. Furthermore, from
the packet lengths we excluded the bytes concerning
the Ethernet, IP, TCP, and UDP headers. Hence, we used
only the lengths of the TCP or UDP payloads.

In [34], we analyzed the entropy using different win-
dow sizes from 10 to 2000 packets and we observed that,
for larger sliding windows, the entropy is more stable
through the iterations. However, a larger window needs
more packets to produce the first entropy value. Hence,
as a compromise between the two factors, we chose to
use here sliding windows with size of 100 packets.

3.4 Heterogeneity of the Packet Lengths

In order to study the heterogeneity of the packet lengths,
we analyzed the entropy separately for each host address
and TCP or UDP port number belonging to the network
being monitored. The examples included in the figures
of this section are not meant to be a representation of the
traffic from all the host/port pairs of each of the depicted
applications. Our purpose was to illustrate distinct traffic
patterns that we observed in the analyzed datasets.

Figs. 2, 3, and 4 depict the cumulative probability
distributions of the lengths of the first 10000 packets
of a few examples of flows from non-P2P, P2P file-
sharing, and P2P video streaming applications. We chose
to represent the cumulative probability distribution so
that it could be easier to observe the density of packets
with a certain length. In the same figures, we included
the corresponding entropy, which was calculated using
the method described in section 3.2 for a window with a
size of 100 packets. Since this analysis is applied to traffic
classification, the stability of the entropy is important
to assure that the results are not affected by occasional
entropy variations. Therefore, we used, in each iteration,
the mean of the entropy in all the steps of the window
since the beginning of the flow to the present iteration.
The calculation of the mean was implemented in real-
time using

µi =
Hi(x) + (i − 1)µi−1

i
, (5)

where µi denotes the mean of the entropy for all the
iterations until i. Nevertheless, in appendix B of the
supplemental material, we included plots similar to the
ones in Figs. 2, 3, and 4 that depict the lengths of the
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Fig. 2. Cumulative probability distribution of the packet
lengths for examples of non-P2P flows and the corre-
sponding mean of the entropy for a sliding window with
size of 100 packets.

first 10000 packets and the mean of the entropy in each
window iteration.

Typical client-server services, like the HTTP download
of a large file, generate only a single or a few flows with
very homogeneous packet lengths. However, other ser-
vices like multimedia streaming also generated packets
with different lengths besides of the two most frequent
ones, as depicted in the second and third rows of Fig. 2.
In other types of non-P2P applications, e.g., SSH, Telnet,
or online games, there is a strong human behavior influ-
ence. The user commands or game instructions and the
corresponding answers from the server generate several
small packets with distinct lengths. Furthermore, mail
traffic presents a typical client-server behavior when it
results from the download of messages using POP or
IMAP or from the upload of messages to be sent using
SMTP. Each time a client checks for new messages in
a POP server, a new flow is created. If there are no
new messages (or only a very small number of small
messages) in the server, the created flow will be too short
to fill the sliding window. However, the synchronization
between a client and an IMAP server keeps an active
flow during the period the client application is running.
In this case, the flow is formed by small packets with
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Fig. 3. Cumulative probability distribution of the packet
lengths for examples of P2P file-sharing flows and the
corresponding mean of the entropy for a sliding window
with size of 100 packets.
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Fig. 4. Cumulative probability distribution of the packet
lengths for examples of P2P video streaming and the
corresponding mean of the entropy for a sliding window
with size of 100 packets.

different lengths used, for example, to check the inbox,
to delete messages, or to mark them as read.

Although the aggregation of P2P flows results in very
heterogeneous traffic in terms of packet lengths, indi-
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Fig. 5. Mean of the entropy for incoming and outgoing
traffic for three application examples, using a sliding win-
dow with size of 100 packets.

vidually they have, in most cases, an entropy level very
similar to the ones from non-P2P flows. Therefore, in
order to identify differences between the P2P and non-
P2P traffic, we studied the packet lengths in different
dimensions of the traffic. We started by analyzing the
entropy of the packet lengths separately (using separate
sliding windows) for incoming and outgoing traffic. This
approach allows us to explore the properties of the traffic
in both ways, which may be distinct for both traffic
classes as P2P applications are also used to provide
contents. Additionally, it helps to characterize the packet
lengths from non-P2P applications with strong human
influence. Fig. 5 depicts the mean of the entropy for
incoming and outgoing traffic for examples of non-P2P,
P2P file-sharing, and P2P video streaming traffic in the
first, second and third columns, respectively. Additional
examples are included in Fig. 6 of the supplemental
material. In typical client-server traffic, like the one gen-
erated by an HTTP download, almost all packet lengths
in each direction are equal, which results in a low
entropy in both directions, as depicted in Fig. 6 of the
supplemental material. However, the randomness of the
human actions of a game player increases the entropy
of the outgoing traffic from online gaming. The P2P file-
sharing and P2P video streaming present high entropy in
both directions, being higher for incoming data though,
mostly due to the contents requests and other small
messages. The x axes in Fig. 5 represent the total of
the steps of the two windows (incoming and outgoing
traffic), which corresponds to the first 10000 packets. For
each packet length, we update the sliding window of
the corresponding direction (incoming or outgoing) and
the resulting entropy, while the entropy for the opposite
direction is kept intact.

The traffic flows from most applications, even the ones
based on the P2P paradigm, contain a few more frequent
packet lengths, which, in most cases, correspond to
small, large, or medium-sized packets. Therefore, we also
analyzed the entropy of the lengths of the packets in
both directions separately for three different ranges of
lengths: range 1 goes from 0 to 100 bytes, range 2 goes
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Fig. 6. Mean of the entropy, for all traffic, in three ranges
of packet lengths for three examples, using a sliding
window with size of 100 packets.
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Fig. 7. Mean of the entropy, for outgoing traffic, in three
ranges of packet lengths for three examples, using a
sliding window with size of 100 packets.

from 101 to 900 bytes, and range 3 goes from 901 to 1500
bytes. These ranges are marked with a gray dashed line
in Figs. 2, 3, and 4, and, in the supplement material,
in Figs. 1, 2, and 3. Furthermore, we also analyzed the
entropy of the three ranges of packet lengths for only
outgoing traffic. Figs. 6 and 7 present three examples
of these analyses. Additional examples are depicted in
Figs. 4 and 5 of the supplemental material. This approach
enables the evaluation of the heterogeneity of the packet
lengths in specific ranges, which give us more features
to identify patterns to distinguish P2P traffic.

Using the analysis described in this section, we were
able to create a set of rules to identify P2P traffic based
on the entropy of the different dimensions of the packet
lengths. For example, one of the rules is defined as:

if the mean of entropy for outgoing traffic is greater
than 0.5 and the mean of entropy for the packets in
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Fig. 8. Example of a rule for the identification of P2P
traffic which uses the mean of the entropy of the packet
lengths of outgoing and range 3 traffic.
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Fig. 9. Mean of the entropy of the inter-arrival times with
a precision of 0.1 seconds.

range 3 is greater than 0, then the flow is P2P.
Fig. 8 illustrates this rule. The non-P2P flows represented
in gray in the plots for the range 3 traffic correspond to
the ones whose mean of entropy for outgoing traffic is
below 0.5. The flows, with mean of entropy for outgoing
traffic greater than 0.5, have the mean of entropy for
range 3 packet lengths equal to zero. This rule alone was
able to correctly identify between 47% and 50% of the
P2P traffic in the datasets we described in section 3.1. The
rules we defined are further described and discussed in
section 4.

3.5 Entropy Analysis for Additional Features

The analysis of the packet lengths described in the
previous subsection allowed us to define a set of rules
based only on the entropy of the packet lengths. Using
these rules we successfully identified between 95% and
98% of the P2P traffic included in the datasets described
in section 3.1. However, the number of false positives
was high, which dropped the total accuracy to values
between 65% and 70%. Therefore, in order to improve
the accuracy of the rules, we extended the analysis of the
heterogeneity to additional traffic features. One of those
features is the inter-arrival times that we analyzed with a
precision of 0.1 seconds and computed the correspond-
ing mean of the entropy. As a result of that analysis,
Fig. 9 depicts the mean of the entropy for examples of
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Fig. 10. Mean of the entropy of remote host/port pairs.

P2P and non-P2P traffic. The use of the mean of the
entropy of the inter-arrival times to improve the rule
performance led to a decrease of the P2P traffic identified
in the test datasets but increased the total accuracy to
more than 90%.

Additionally, since we analyzed the traffic separately
for host/port pairs, we also computed the mean of the
entropy of the remote host/port pairs that each pair com-
municates with. For each packet sent or received by a
host/port, we identify the remote host/port and we evaluate
how varied the remote host/port pairs are, by computing
the entropy. This approach allows us to identify P2P
host/port pairs that are providing contents to several peers
at the same time. Fig. 10 represents the mean of the
entropy for some examples of traffic. In the examples of
BitTorrent and SopCast host/port pairs represented in this
figure, the applications are exchanging data with several
peers, whereas in the other examples, the applications
are communicating with only a single remote host, pair
and thus the entropy is zero. Using a rule based on this
feature improved the accuracy of the identification of
P2P traffic in the datasets.

4 P2P T C
The entropy analysis described in the previous section
was used to implement a P2P traffic classifier. This sec-
tion explains the operation of the classifier and describes
the rules used by the classifier to distinguish between
P2P and non-P2P traffic.

4.1 Classification Rules

The rules we have defined for the classifier use the
following features:
• mean of the entropy of the packet lengths for in-

coming and outgoing traffic (ALL);
• mean of the entropy of the packet lengths for in-

coming and outgoing traffic in range 1 (ALLR1) and
range 3 (ALLR3);

• mean of the entropy of the packet lengths for out-
going traffic (OUT);

• mean of the entropy of the packet lengths for out-
going traffic in range 1 (OUTR1);
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TABLE 1
List of rules used by the classifier.

Number Description Class
1 IN > 1.5 and OUT > 0.5 and Non-P2P

(OUT – OUTR1) < 0.01
2 OUT > 2.5 and IN > 2.5 P2P
3 OUT > 0.5 and ALLR3 > 0 P2P
4 HP > 0.5 P2P
5 OUT = OUTR1 and ALLR3 > 0 and IAT < 0.5 Non-P2P
6 ALLR3 > 1 P2P
7 OUT > 1 and ALLR3 > 0 P2P
8 IAT > 1 and ALL < 1.5 P2P
9 ALL > 1 and ALLR1 = 0 and IAT > 0 P2P
10 ALLR1 < 0.5 and ALLR3 > 0.5 and P2P

IN < 2 and IAT > 0.1
11 ALL > 1 and OUT < 0.5 and IN < 1
11a if ALLR1 < 0.1 and ALLR3 < 1 and Non-P2P

( (OUTR1 * 2) >= OUT or OUTR1 = 0
else P2P

12 OUT > 0.001 and ALL < 1.5 and IAT > 0.1 P2P

• mean of the entropy of the packet lengths for in-
coming traffic (IN);

• mean of the entropy of the inter-arrival times with
a precision of 0.1 seconds (IAT);

• mean of the entropy of remote host/port pairs (HP).
Table 1 contains a list of the rules used by the classifier.

The classifier checks the rules sequentially from 1 to
12. If the traffic features match one of the rules, the
traffic is identified as belonging to the corresponding
class. Otherwise, the next rule is checked. If no rule is
matched, the traffic is classified as non-P2P. To illustrate
this process, we included the flowchart of the rules
verification in appendix C of the supplemental material.

Most rules are simple and use only two or three
features. In rule 1, we used the expression (OUT –
OUTR1) < 0.01 to consider only the cases where OUT
and OUTR1 are very close. This rule is useful for flows
in which almost all outgoing packets belong to range 1.
However, occasional packets from other ranges can make
OUT slightly distinct from OUTR1. Hence, we used this
expression to consider those cases.

Rule 2 was included to identify the traffic from P2P
VoIP sessions. In [33], we defined a more complex
strategy to deal with the traffic that results from the
different speech codecs. Nonetheless, herein we defined
only one rule to identify the traffic from common P2P
VoIP applications, like Skype or Google Talk, since we are
not focused on the identification of traffic from VoIP
sessions with different speech codecs.

Rule 11 is more complex and can be better understood
in the flowchart of the rules verification from Fig. 7 of
the supplemental material. The first part is formed by the
expression ALL > 1 and OUT < 0.5 and IN < 1. If this
expression is matched, rule 11a is checked. The traffic is
classified as non-P2P if rule 11a is matched. Otherwise,
it is classified as P2P. If the first part is not matched, the
next rule is checked.
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Fig. 11. Traffic analysis for each host/port pair, using
independent sliding windows for the traffic features for
which the entropy is evaluated.

During the definition of the rules, we gave priority
to the traffic from some services or applications. For
example, SSH sessions generate a small amount of data
when compared to P2P file-sharing or video streaming.
Some draft rules we tested were capable of accurately
identifying a significant amount of P2P. However, they
also classified SSH traffic as P2P. Depending on the
classification purpose, it may be advantageous, in terms
of the percentage of P2P traffic identified, to use rules
that classify a large amount of P2P traffic, even if non-
P2P flows with small packets are misclassified. Nonethe-
less, we consider important to give priority to non-P2P
services like SSH, Telnet, or FTP.

Rule 4 is mostly used to identify P2P host/port pairs
acting as servers. For this reason, every host/port running
a server of a non-P2P service (e.g., HTTP, FTP, etc.) will
also match this rule. Nonetheless, hosts running servers
are usually well known nodes in monitored networks.

4.2 Structure and Operation of the Classifier

The operation of the proposed classifier is simple. It
resorts to the entropy analysis explained in section 3 and
it uses the rules described in the previous subsection.
The traffic is processed, separated, and analyzed based
on the host/port pair belonging to the monitored network.
For each distinct host/port, the classifier keeps eight indi-
vidual sliding windows, which are updated every time
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a new packet sent or received by the host/port pairs is
processed, as illustrated in Fig 11. The eight windows
correspond to the features used by the rules in Table 1.

Therefore, the classifier maintains an updated record
of the eight values of the mean of the entropy, for
every processed host/port. The entropy is updated in real-
time using the efficient method explained in section 3.2.
For each analyzed packet, after updating the sliding
windows and the corresponding entropies, the classifier
tries to match a rule with the entropy levels and updates
the classification of the host/port accordingly.

This approach makes possible to generate an updated
classification result for every processed packet. In our
study, we were primarily focused on the effectiveness of
the classification and on the analysis of the traffic. Hence,
we run the classifier with no constraints, outputting a
log with the continuously updated classification results
for every packet of all host/port pairs. However, the
classifier can be set up to produce classifications for
every packet only for the first n packets, or to output
a classification only every n packets. It is expected
that such strategy would improve the efficiency of the
classification. Furthermore, the implementation includes
two parameters that enable the periodical removing of
the sliding windows from inactive host/port pairs, which
decreases the consumption of the computing resources.

5 P E
In order to evaluate the performance of the classifier,
we collected datasets containing traffic from several ap-
plications. We processed the datasets with the classifier
and we compared the accuracy of the results against the
ones obtained with other available tools. The following
subsections describe the datasets used to evaluate the
performance and analyze the accuracy of the classifier
and its computational efficiency.

5.1 Datasets Used for Performance Evaluation
The evaluation of the accuracy of a traffic classifier
raises a few problems. In order to verify if the obtained
results are accurate, it is necessary to have previous
knowledge of the applications that generated each flow.
In most works, the ground truth information is obtained
using a different classifier, usually a DPI-based one. This
approach was not useful in our case, since the lack of
effectiveness of the payload-based mechanisms when
dealing with encrypted data is well known. Moreover,
to effectively use a DPI method to obtain the datasets
ground truth, it is necessary that the datasets contain
the payload data. However, the availability of datasets
with payload is scarce and capturing payload data in
large networks is usually constrained by legal issues.

Therefore, we set up a testbed with several hosts
and an aggregation point where the traffic generated
by all of them was captured. The hosts were running
Microsoft Windows or Linux operating systems and were
connected in a LAN environment. We kept a record

TABLE 2
Evaluation datasets.

Datasets Volume (GB) TCP (%) UDP (%)
Dataset 1 8.80 78.35 21.59
Dataset 2 8.60 82.77 17.18
Dataset 3 9.97 77.13 22.84

of the applications run by each host in each moment,
so that we could use this information to evaluate the
performance of the classifier. This approach allowed
us to know exactly which applications generated each
flow and avoid resorting to the accuracy of an external
classifier. Moreover, we were also able to capture the
payload information with no legal constraints, which
is useful to compare the performance of the proposed
classifier with the one achieved with a DPI method.

Using the testbed, we captured 27.37 GB of traffic
in different periods in August 2011, divided in three
datasets as described in Table 2. The datasets contain
traffic from all the applications listed in section 3.1,
using, when available, protocol obfuscation or similar
techniques. The composition of the datasets is further
described in Table 2 of the supplemental material.

5.2 Performance of the Classifier
In order to evaluate the performance of the classifier, we
analyzed the accuracy of the classification of the flows.
Since the proposed classifier was designed to produce a
classification for each window step, it was necessary to
obtain a classification per flow. Hence, we considered as
P2P the flows that were classified as P2P in at least 60%
of the window steps. If the flow was classified as P2P
in less than 40% of the window steps, we consider the
flow to be non-P2P traffic. We considered the percentage
between 40% and 60% as a gray area. Every flow classi-
fied as P2P in the range from 40% to 60% of the window
steps was considered misclassified, independently of the
true nature of the flow.

The performance of the classifier was evaluated using
three metrics defined in [96], [97] and in the supple-
mental material: precision, recall, and accuracy. Precision
evaluates how many of the cases classified as P2P were
in fact P2P, recall evaluates how many of the true P2P
cases were correctly identified by the classifier, and accu-
racy measures the overall performance of the classifier.

Many P2P applications generate a large number of
very short flows with a small number of packets. For this
reason, evaluating the performance simply by counting
the number of correctly identified flows may not be
representative of the capacity of a classifier. Correctly
classifying a long flow with large packets is, in most
cases, more interesting than classifying a few short flows
with small packets. Additionally, some applications only
generate flows with small packets (e.g., online gaming),
while others also generate many large packets (e.g.,
HTTP download). Therefore, we identified the correctly

Classification of Peer-to-Peer Traffic by Exploring the Heterogeneity of Traffic Features Through Entropy

134



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH 2011 11

classified flows, counted the number of packets and
the total amount of bytes transported in the flow, and
evaluated the performance in terms of packets and bytes.

Table 3 summarizes the results of the performance
evaluation. The classifier performs very well, with the
precision and the accuracy above 95% in terms of bytes
and almost 92% in terms of packets. Since the proposed
mechanism resorts to sliding windows, it can only clas-
sify flows that have at least 100 packets (the size of the
sliding window). For the sake of a rigorous analysis,
we also included in Table 3 the results obtained if we
exclude the flows with less than 100 packets.

The values of the recall for the different types of P2P
applications were included in Table 4. As it is possible
to see, almost all P2P video streaming was correctly
classified. Most P2P VoIP traffic was also correctly classi-
fied, regardless of Skype being known for encrypting the
traffic. Although the recall for P2P file-sharing is lower, it
is still around 90%. Additionally, as explained before, we
consider every case that falls in the gray area and every
host/port pair with less than 100 packets as misclassified,
regardless if it is P2P or non-P2P traffic. However, the
results included in Table 4 were obtained only for the
P2P traffic in datasets and, therefore, they are slightly
different from the ones in Table 3.

After evaluating the performance of the proposed
classifier, we compared it with other available classi-
fiers. Besides of payload based classifiers, there are not
many available and ready to use classifiers relying on
behavioral methods. Recently, Lee et al. released NeTra-
Mark [98], a framework that integrates several traffic
classifiers. We used a few classifiers included in NeTra-
Mark to classify the datasets. Table 5 summarizes the
results obtained with Blinc, C4.5 decision tree, SVMs, and
Naı̈ve Bayes. In Table 3 of the supplemental material,
we included the results obtained with additional clas-
sifiers included in NeTraMark: port and payload-based,
bayesian networks, and neural networks. The accuracy
of most classifiers is around 50%. Some of them, like the
port-based classifier, have a high precision, meaning that
every flow classified as P2P was in fact P2P. However,
the low recall shows that only a small percentage of the
P2P traffic was correctly classified. In terms of recall,
Blinc and Naı̈ve Bayes achieved the best performance
among the eight classifiers we tested.

5.3 Computational Efficiency

In order to evaluate how the consumption of compu-
tational resources scales as the traffic grows and indi-
cate the processing and memory requirements of the
proposed classifier, we followed the reasoning described
below. The classification mechanism described herein
separates the traffic based on host IP and port and
to each host/port pair associates eight sliding windows.
After the sliding windows are filled, no more informa-
tion is saved in the memory. The oldest values leave
the windows and new ones are added. Therefore, the
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Fig. 12. Representation of the CPU time and maximum
memory consumption growing regarding the number of
packets and distinct host/port pairs.

memory requirements are directly proportional to the
number of host/port pairs. Since the sliding windows
from inactive host/port pairs are periodically removed, the
memory used is directly proportional to the number of
host/port pairs only in the worst case scenario in which
all host/port pairs are active.

Every time a new packet arrives, it is processed by
the classifier, the sliding windows are updated, and new
entropy values are generated. This process is repeated
for every packet, regardless of the host/port pairs. Hence,
the processing power required by the tool is directly
proportional to the number of packets analyzed.

Although the implementation of the proposed classi-
fier is not optimized, we made several measurements
of the CPU and memory consumption during execution
of the classifier when processing trace files containing
different amounts of packets and host/port pairs, using
/usr/bin/time tool. This analysis gives us information
about how the consumption of resources grows when
the traffic increases.

We extracted five trace files with different sizes from
the datasets previously used to evaluate the classi-
fier performance. Table 4 of the supplemental material
presents the number of packets and distinct host/port
pairs of each of the traces files and the CPU time and
memory measurements used by the classifier. In order
to evaluate the worst case scenario, we modified the
classifier to not remove the sliding windows of the
inactive host/port pairs. The linear dependency of the
CPU time and the number of packets, and of the memory
used and number of distinct host/port pairs is observable
in Fig. 12.

6 C
In this article, we proposed a new mechanism for P2P
traffic classification that is mostly based on the hetero-
geneity of the packet lengths. Unlike our previous works,
this classifier is able to identify P2P flows instead of only
hosts running P2P applications. The method analyzes
the packet lengths in three different ranges and for
both flow directions. The entropy is used as a measure
of the heterogeneity of the analyzed features and it is
computed using a sliding window with a constant size of
100 packets. This approach allows the classifier to obtain
a result for each packet, making it suitable for real-time
traffic classification. Since it does not use any payload
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TABLE 3
Results of the performance evaluation of the proposed classifier.

Datasets All host/port pairs Excluding host/port pairs with less than 100 packets
Bytes Packets Bytes Packets

Accur. Precision Recall Accur. Precision Recall Accur. Precision Recall Accur. Precision Recall
Dataset 1 95.68% 95.87% 92.53% 92.54% 91.96% 89.46% 96.72% 97.91% 94.43% 96.63% 98.27% 95.41%
Dataset 2 96.44% 95.27% 93.22% 93.40% 91.99% 90.07% 97.62% 97.93% 95.77% 97.00% 98.08% 95.91%
Dataset 3 96.49% 96.21% 93.88% 93.88% 93.02% 91.08% 97.30% 97.86% 95.46% 97.07% 98.18% 96.02%

TABLE 4
Recall results for P2P traffic, in terms of bytes.

Datasets P2P P2P File-Sharing P2P Streaming P2P VoIP
Dataset 1 92.90% 88.03% 99.87% 94.68%
Dataset 2 94.50% 91.53% 99.81% 98.27%
Dataset 3 94.34% 89.99% 99.90% 98.60%

data, the mechanism is effective with encrypted traffic.
Based on the entropy analysis, we defined a set of rules
used by the classifier to identify P2P traffic. In order to
improve the accuracy in specific cases, the mechanism
also measures the entropy for inter-arrival times and
remote host/port pairs.

The performance of the classifier was evaluated using
a few datasets collected in a testbed. The ground truth
information was saved so that it could be possible to
know exactly which application generated each flow.
The results show that the classifier was able to identify
the P2P traffic with very high precision. The recall rate
demonstrates that almost all P2P data in the datasets
was correctly classified. Additionally, we included an
evaluation of the classifier efficiency that helps to un-
derstand how the resources consumption grows when
the traffic increases. The CPU time and used memory
increase linearly with the amount analyzed data.
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A Supplement to “Classification of
One-to-Many Peer-to-Peer Traffic
Using Packet Length and Entropy”

João V. Gomes, Pedro R. M. Inácio, Manuela Pereira, Mário M. Freire, and Paulo P. Monteiro

Abstract—This supplement is organized as follows. Appendix A presents a more complete description of the composition of the
datasets used to study the traffic properties. Appendix B includes additional examples of the traffic analysis described in the main
article. Appendix C presents a flowchart of the process of rules matching used by the classifier. Appendix D describes the composition
of the datasets and the metrics used in the performance evaluation of the proposed mechanism, presents the results obtained with four
additional classifiers, and summarizes the evaluation of the consumption of computational resources.

Index Terms—Data communications, distributed applications, network communications, network management, network monitoring,
packet-switching networks.

F

A A
E D
The experimental datasets, collected in individual hosts
and used to study the traffic properties, contain traffic
from several distinct Internet applications or services,
as explained in the main article. Table 1 describes the
amount of traffic from each type of application. Peer-to-
peer (P2P) traffic accounts for nearly 60% of the traffic in
bytes and almost 70% in packets. The web browsing class
includes only the traffic that results from browsing web
pages. Other web contents, like video streaming using
Flash technology, are included in the streaming class.
The download of larges files using Hypertext Transfer
Protocol (HTTP), like an executable or an disc image file,
is also included in a separate class.

A B
H  P L
The main article explains the properties of the packet
lengths for different types of traffic and presents a few
examples of the mean of the corresponding entropy. In
this appendix, we include additional examples. Figs. 1,
2, and 3 depict the lengths of the packets and the
corresponding entropy (instead of the mean) through
all the window steps. The dashed lines in the figures
mark the limits of three ranges of packet lengths: from
0 to 100 bytes, 101 to 900 bytes, and 901 to 1500 bytes.

• J. Gomes, P. Inácio, M. Pereira, and M. Freire are with Instituto de
Telecomunicações, Department of Computer Science, University of Beira
Interior, Portugal.
E-mail: jgomes@penhas.di.ubi.pt, {inacio, mpereira, mario}@di.ubi.pt

• P. Monteiro is with Nokia Siemens Networks Portugal, S. A., with
University of Aveiro, and with Instituto de Telecomunicações.
E-mail: paulo.1.monteiro@nsn.com

TABLE 1
Share of each type of traffic in the experimental data.

Traffic Packets (%) Bytes (%)
TCP UDP TCP UDP

P2P file-sharing 28.30 26.28 01.94 28.53 27.41 01.11
P2P streaming 40.81 00.46 40.24 30.02 00.49 29.51

P2P VoIP 00.51 00.03 00.49 00.12 00.00 00.11
Mail 04.51 04.50 00.00 06.07 06.07 00.00

HTTP download 00.96 00.96 00.00 01.46 01.46 00.00
Web browsing 00.73 00.73 00.00 00.82 00.82 00.00

Streaming 21.62 21.41 00.20 30.47 30.36 00.10
Telnet / SSH 00.19 00.19 00.00 00.09 00.09 00.00
FTP / SFTP 01.50 01.50 00.00 02.21 02.21 00.00

Online gaming 00.87 00.87 00.00 00.21 00.21 00.00

The representation makes it possible to see how entropy
varies for different patterns of packets lengths. When
the packet lengths are more heterogeneous, the entropy
increases, as it is observable, for example, in the plot of
the Secure Shell (SSH) session.

Figs. 4 and 5 present the mean of the entropy for
different ranges of packet lengths for all traffic and
outgoing traffic, respectively. Unless the flow is being
used to provide contents, there are usually no packets
from range 3 in outgoing direction. Since in an HTTP
download there are only acknowledgments with the
same length in outgoing direction, the mean of the
entropy is zero also in range 1. Fig. 6 depicts the mean
of the entropy for incoming and outgoing traffic. Since
HTTP traffic is formed by packets with the same length
in each direction, the mean of the entropy for the traffic
in both directions is zero.
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Fig. 1. Representation of the packet lengths for examples
of non-P2P flows and the corresponding entropy for a
sliding window with size of 100 packets.

A C
C R
The classifier described in the article uses a set of
rules for P2P traffic identification. The rules are checked
sequentially in ascending order, as represented in the
flowchart of the rules matching process from Fig. 7. Each
rule decision either results in a classification or proceeds
to the next rule. The only exceptions are rule 11, which
proceeds to rule 11a or rule 12, and rule 11a that results
in a classification as P2P or non-P2P.

A D
P E
In this appendix, we present additional details regarding
the performance evaluation of the proposed classifier,
namely, the composition of the datasets and the metrics
used for the evaluation. Additionally, we also include the
summary of the analysis of the computational resources
consumption.

The datasets used for the performance evaluation were
collected in a testbed, which made it possible to save
information about the application that generated each
flow. The applications and services used during the cap-
ture of the datasets were running in Microsoft Windows
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Fig. 2. Representation of the packet lengths for examples
of P2P file-sharing flows and the corresponding entropy
for a sliding window with size of 100 packets.
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Fig. 3. Representation of the packet lengths for examples
of P2P video streaming and the corresponding entropy for
a sliding window with size of 100 packets.

or Linux operating systems and belong to different types
of applications.

Table 2 describes the percentage of each type of traffic.
The share of traffic from P2P applications in the three
datasets spans from 55% to 65% in packets and from 40%
to 50% in bytes. Since we addressed the classification
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TABLE 2
Composition of the datasets used in the performance evaluation.

Traffic Dataset 1 Dataset 2 Dataset 3
Packets (%) Bytes (%) Packets (%) Bytes (%) Packets (%) Bytes (%)

TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP TCP UDP
P2P file-sharing 31.475 29.383 02.002 28.817 27.420 01.357 32.143 29.944 02.112 28.449 27.238 01.175 28.752 26.338 02.329 26.751 25.308 01.417
P2P streaming 30.994 00.070 30.819 20.118 00.027 20.076 24.885 00.081 24.729 15.634 00.047 15.577 30.130 00.053 30.010 20.979 00.020 20.950

P2P VoIP 00.684 00.025 00.659 00.117 00.007 00.110 02.710 00.033 02.676 00.440 00.009 00.431 02.953 00.028 02.925 00.474 00.008 00.466
Mail 06.186 06.186 00.000 08.182 08.182 00.000 01.078 01.078 00.000 01.394 01.394 00.000 02.795 02.795 00.000 03.610 03.610 00.000

HTTP download 03.901 03.901 00.000 06.273 06.273 00.000 04.438 04.438 00.000 06.999 06.999 00.000 04.204 04.204 00.000 06.612 06.612 00.000
Web browsing 00.431 00.431 00.000 00.503 00.503 00.000 01.444 01.444 00.000 01.740 01.740 00.000 00.502 00.502 00.000 00.562 00.562 00.000

Streaming 13.505 13.504 00.000 17.832 17.832 00.000 20.065 20.063 00.000 26.920 26.919 00.000 15.066 15.064 00.000 19.550 19.549 00.000
Telnet / SSH 00.013 00.013 00.000 00.003 00.003 00.000 00.010 00.010 00.000 00.003 00.003 00.000 00.003 00.003 00.000 00.001 00.001 00.000
FTP / SFTP 12.810 12.518 00.292 18.154 18.105 00.049 12.733 12.733 00.000 18.239 18.239 00.000 15.159 15.159 00.000 21.345 21.345 00.000

Online gaming 00.000 00.000 00.000 00.000 00.000 00.000 00.493 00.490 00.000 00.183 00.182 00.000 00.435 00.412 00.019 00.116 00.111 00.005
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Fig. 4. Mean of the entropy, for all traffic, in three ranges
of packet lengths for three additional examples, using a
sliding window with size of 100 packets.
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Fig. 5. Mean of the entropy, for outgoing traffic, in three
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using a sliding window with size of 100 packets.

of P2P Voice over Internet Protocol (VoIP) traffic in a
previous work, herein we focus mainly on P2P streaming
and P2P file-sharing. Therefore, the percentage of P2P
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Fig. 6. Mean of the entropy for incoming and outgoing
traffic for three additional examples, using a sliding win-
dow with size of 100 packets.

VoIP was much lower. The first dataset does not include
traffic from on-line gaming. However, it contains more
data from mail protocols than the other datasets.

The performance of the classifier was evaluated us-
ing three metrics: precision, recall, and accuracy. These
metrics are defined in terms of true positives (TP), true
negatives (TN), false positives (FP), and false negatives
(FN) cases, as formalized by the following expres-
sions [1], [2]:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

In the main article, we presented the performance
results of four traffic classifiers: Blinc, C4.5 decision
tree, Support Vector Machines (SVMs), and Naı̈ve Bayes.
Table 3 contains the results for four additional classi-
fiers integrated in the NeTraMark platform: port-based,
payload-based, bayesian networks, and neural networks.
The port-based classifier presents a very high precision,
which means that all the traffic classified as P2P is, in
fact, P2P traffic. However, the recall shows that only a
small percentage of all P2P traffic was correctly classi-
fied.
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TABLE 3
Results of the performance evaluation for four additional classifiers.

Datasets Port-based Payload-based Bayesian Networks Neural Networks
Accur. Precision Recall Accur. Precision Recall Accur. Precision Recall Accur. Precision Recall

Dataset 1 48.94% 100.00% 03.93% 48.84% 100.00% 03.74% 44.67% 47.20% 34.56% 45.62% 44.44% 09.27%
Dataset 2 57.80% 100.00% 05.81% 59.68% 79.16% 13.58% 53.93% 48.35% 41.45% 53.98% 43.08% 08.43%
Dataset 3 55.93% 100.00% 11.39% 51.24% 56.26% 08.84% 48.99% 48.50% 41.41% 52.68% 75.00% 07.30%
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Fig. 7. Flowchart of the rules matching process of the
proposed classifier.

TABLE 4
CPU time and maximum memory used by the classifier

to process five distinct trace files.

Trace Packets host/port CPU time (s) Memory (KB)
files pairs

File 1 500000 2324 41.60 38616
File 2 700000 3003 61.00 49152
File 3 1500000 5915 136.73 94340
File 4 1750000 6799 159.50 108348
File 5 2500000 9532 231.41 150688

In order to understand how the consumption of com-
putational resources grows as the traffic increases, we
made several measurements of the CPU and memory
used by the classifier. We repeated the evaluation for
trace files with a distinct number of packets and host/port
pairs. As a complement of Fig. 12 in the main article, the
results in Table 4 show that the CPU and memory con-
sumption increases linearly with the volume of analyzed
data.

R
[1] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Per-

formance measures for information extraction,” in Proc. DARPA
Broadcast News Workshop, Feb. 1999, pp. 249–252.

[2] D. L. Olson and D. Delen, Advanced Data Mining Techniques, 1st ed.
Springer, Mar. 2008.
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Chapter 7

Conclusions and Future Work

This chapter presents the main conclusions that result from the research work described in this

thesis. Furthermore, it discusses a few research topics related with the work developed in the

doctoral programme that may be addressed in the future.

1 Final Conclusions

This thesis is focused on the classification of traffic generated by peer-to-peer (P2P) applications

and describes the research work developed with the purpose of presenting a new classification

solution capable of identifying the traffic generated by P2P applications, in real-time, without

using payload data. The research work was divided in four steps: the study of the problems

raised by P2P traffic and the analysis of the existing approaches for traffic classification, the

study of traffic immediately after its generation to analyze the traffic properties that result

directly from P2P applications, the identification of unique characteristics of the traffic from

hosts running P2P applications, and the classification of individual flows from P2P Voice over In-

ternet Protocol (VoIP) sessions and from P2P media streaming and P2P file-sharing applications.

Each of these four research steps resulted in contributions of this thesis, which ultimately con-

tributes to the accomplishment of the main objective of developing a P2P traffic classifier that

is able to operate in real-time and does not resort to payload data.

The emergence of the P2P paradigm increased the traffic load in the network edges and re-

duced the asymmetry between the incoming and outgoing traffic. Such fact raises concerns

and challenges for Internet Service Providers (ISPs) and network administrators who required

effective classification methods to manage the traffic load based on the nature of the traffic.

However, classification approaches based on port numbers are now obsolete, while Deep Packet

Inspection (DPI) generally requires great computational resources when used to process large

amounts of traffic in real-time and is affected by the increasingly common payload encryption.

Hence, several approaches based on traffic behavior have been proposed by researchers. Nev-

ertheless, many of them are limited to offline use or to specific P2P protocols, or resort to

complex algorithms, using several traffic features.

Therefore, the main goal of this thesis was to propose an alternative method that does not
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suffer from the same limitations. The intermediate objectives were established so as to divide

the research work needed to accomplish the main objective. The first part of the research

work consisted in the study of the challenges raised by P2P applications and the analysis of

the existing classification approaches. The adoption of evasive measures by P2P applications

motivated the development of alternative classification methods. The literature review showed

a clear trend towards the development of more effective behavioral methods. Nevertheless,

since this kind of methods still cannot achieve the same accuracy of DPI-based classifiers, some

authors are also proposing new and more efficient DPI methods that use less computational

resources, so as to avoid the limitations of this approach. Moreover, some studies also used

DPI in specific parts of the flows where the payload is not yet encrypted to identify traffic

from applications that use encryption. Besides of this, it is not yet easy to evaluate which are

the most promising approaches and the context where each of them are more effective as the

studies in the literature lack consistency in the performance assessment of the methods they

are proposing. The metrics used in the evaluations made by the authors are not always the

same and in many cases are insufficient, but more important is the fact that each proposed

method is evaluated using different traffic traces. The major reason for this problem is the

scarce solutions to assess the ground-truth information and the privacy issues that make the

datasets sharing troublesome.

The second part of the research work was described in chapter 3 and encompassed the study of

traffic at its source. The study of the traffic generated by hosts running a single P2P or non-P2P

application revealed characteristics that differentiate both types of traffic. The chaotic na-

ture of P2P traffic, resulting from several parallel connections, influenced the analyzed traffic

features. This influence was more easily observed in the packet lengths of P2P and non-P2P

traffic. The packet lengths of the aggregated traffic of a host running a single non-P2P applica-

tion, generally, presented a bimodal distribution with two more common lengths, whereas the

packet lengths from P2P were very heterogeneous, with many distinct lengths being observed

in the aggregated traffic from a host running a single P2P application. This observation strongly

influenced the course of the research work, which explored mostly this property to classify P2P

traffic.

The heterogeneity of the packet lengths was further studied and explored in the third part of

the research work and more and larger traffic traces from an extended set of P2P and non-P2P

applications were analyzed. The heterogeneity of the packet lengths in the traffic generated by

a host running a P2P media streaming or P2P file-sharing application results from the aggregation

of several parallel flows used to share contents with other peers, and by the search mechanisms

used to find contents. In the case of VoIP applications, the packet lengths are more varied as a

consequence of the Variable Bit Rate (VBR) speech codecs that are used, in most sessions, by

applications like Skype or Google Talk. The heterogeneity of the packet lengths was measured
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by resorting to entropy and to a sliding window with a constant size of N packets. The analysis

was repeated for different values of N, showing that entropy is more stable when the size of

the window is larger, though it takes more time to fill the window for the first time. As a

compromise between stability and the time need to fill the window, a value between 100 and

500 packets was used, depending on the purpose of the method. The entropy results obtained

for the traffic from different applications were compared, showing that the packet lengths from

VoIP traffic generate a very high entropy, while the entropy for P2P media streaming and P2P

file-sharing is lower but still higher than the one obtained for non-P2P applications, which is

very low.

The behavior mentioned in the previous paragraph was observed in the traffic generated by a

single application running in a host. Since most hosts run more than one application at the

same time, in order to use the entropy of the packet lengths to identify hosts running P2P ap-

plications, it was necessary to analyze the effect in the entropy of running several applications

in a host. The results showed that the presence of P2P traffic is still noticeable in the entropy

when a P2P application is running together with other non-P2P applications. Moreover, it was

also necessary to verify if the aggregated traffic from several non-P2P applications running in

the same host does not raise the entropy to values that may be erroneously interpreted as an

indicator of P2P traffic. In fact, in some extreme cases, the concurrent use of several non-P2P

applications generates a high entropy of the packet lengths. To avoid this problem, the entropy

was also computed separately for outgoing packets, and using intervals of 200 bytes so that all

packet lengths belonging to the same interval are used in the entropy computation as being

equal lengths. These two additional analyses enabled the differentiation of P2P and non-P2P

traffic using only the packet lengths. A host-based classifier was proposed using only four rules

that verify the entropy in the three distinct analyses. During the evaluation performance, the

proposed classifier was able to identify the traffic from hosts running P2P applications with a

false positive rate ranging from 0.00% to 10.42% and a false negative rate between 07.69% and

12.50%.

The fourth part of the research work, which was described in chapters 5 and 6, included the

classification of individual flows from P2P VoIP, P2P media streaming, and P2P file-sharing appli-

cations. As observed previously in the research work, the three types of P2P applications gen-

erate packets whose lengths are very heterogeneous when compared to the ones from non-P2P

applications. Nonetheless, the heterogeneity has different causes for P2P VoIP and for P2P

media streaming and P2P file-sharing applications. In the case of the traffic from VoIP sessions,

the heterogeneity is observed in each individual flow that is used in each session, which would

make it easily identifiable by using the same entropy-based approach that was previously pro-

posed. However, this happens because applications like Skype or Google Talk preferably use

VBR codecs, even if they also support Constant Bit Rate (CBR) codecs. If a CBR speech codec is
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used in a VoIP session, the effect in the heterogeneity and in the corresponding entropy will be

the opposite, as the packet lengths will be extremely homogeneous.

Since the analysis of individual flows was focused initially in VoIP session flows, the traffic from

many VoIP sessions using different VBR and CBR speech codecs and VoIP applications was ana-

lyzed to understand the properties of the packet lengths. The set of speech codecs considered

in the study is supported by several available VoIP applications. Moreover, all versions of Skype,

available at the time the research work was performed, were tested and used in experimental

activities to understand which codecs were used during the different stages of development

of the client application and which of their differences are reflected in the packet lengths.

The analysis showed that the packet lengths in VoIP sessions depend mainly on the speech

codec used by the application and that most speech codecs generate packets whose lengths are

contained in different intervals and originate distinct levels of entropy.

The intervals of packet lengths and entropy observed for each speech codec enabled the def-

inition of a set of behavioral signatures formed by both intervals and associated to a speech

codec. The behavioral signatures were used in a classification method to classify VoIP traffic

and identify the speech codec used in each session. The proposed method processes only one

traffic feature, the packet length, and uses it together with the entropy to obtain the classifi-

cation results. Additionally, the same approach based on a sliding window that was previously

used in this thesis was also included in this method to make it suitable for real-time operation.

In the performance evaluation, the proposed VoIP classifier was able to correctly classify the

VoIP traffic with a sensitivity between 92.31% and 100.00% and a specificity between 99.51% and

99.99%. Moreover, the speech codec used in the VoIP sessions was identified with a sensitivity

between 70.00% and 93.34% and a specificity between 99.99% and 100.00%.

Unlike what happens with the VoIP traffic, the heterogeneity of the packet lengths in the aggre-

gated traffic of a host running P2P media streaming or P2P file-sharing applications results from

the aggregation of several parallel flows used to share contents with multiple peers. In these

cases, the heterogeneity of the packet lengths from individual flows is not easily distinguish-

able from the heterogeneity observed in non-P2P flows. Hence, the entropy was separately

computed and analyzed for the packet lengths that fall into three distinct ranges of lengths:

from 0 to 100 bytes, from 101 to 900 bytes, and from 901 to 1500 bytes. This separate analysis

made it possible to explore the differences between the packet lengths from P2P and non-P2P

traffic observed in these specific ranges. The packets in the first range are used by P2P appli-

cations to search for contents and answer to requests from other peers, whereas the packets

from non-P2P applications that belong to the same range are mostly used to send acknowledge

messages. Also in the third range, the packets from P2P applications have generally more het-

erogeneous lengths than the ones from non-P2P applications. Additionally, this analysis was

also separately performed for incoming and outgoing traffic. The computation of the entropy of
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the packet lengths for the different ranges was sufficient to correctly characterize the majority

of the experimental traffic. Nevertheless, to improve the accuracy of the classification, the

heterogeneity of two additional traffic features was also analyzed: the inter-arrival times with

a precision of 0.1 seconds, and the remote host/port pairs.

Similarly to the method used for VoIP traffic classification, the entropy was computed by re-

sorting to a sliding window for each flow processed by the classifier, so that it could be used

in real-time operation. In each iteration of the sliding window, the mean of the entropy since

the first iteration is computed and analyzed. The entropy mean results obtained in the analysis

of the heterogeneity of the packet lengths, inter-arrival times, and remote host/port pairs by

resorting to entropy were used to define a set of rules to classify P2P traffic. The majority of

those rules uses only the entropy of the packet length feature, while all the other rules use

the entropy of the packet lengths and inter-arrival times, with the exception of one rule that

uses the entropy of the remote host/port pairs. In the performance evaluation, the proposed

classification method was able to correctly identify between 92.90% and 94.50% of the total

amount of P2P traffic, between 88.03% and 91.53% of the P2P file-sharing traffic, and between

99.81% and 99.90% of the P2P media streaming traffic. The precision of the method ranged

from 97.52% to 98.94%.

The different analyses of the traffic generated by P2P applications performed during the re-

search work described in this thesis showed that the distributed nature of the P2P paradigm

influences the traffic, whose behavior is less predictable and more difficult to characterize.

The multiple parallel connections to other peers, used to share several types of contents, fol-

lowing different physical links, possibly with distinct Maximum Transmission Units (MTUs), and

passing through networks with different traffic management policies affect the properties of the

traffic from P2P applications, which presents a chaotic behavior in terms of packet lengths. The

contribution of this thesis for exploring this chaotic behavior by using the entropy to measure

the heterogeneity of traffic features is the basis of the other contributions presented herein.

The entropy results obtained in P2P and non-P2P traffic, especially for the packet lengths, but

also for the inter-arrival times and remote host/port pairs, enable the discrimination between

both types of traffic. Together with a sliding window containing a constant number of packets,

the computation of the entropy can be made in real-time and, therefore, the results can be

used in traffic classifiers that operate in real-time.

The main objective of this thesis was accomplished by the presentation of the three classifiers.

Together, the proposed classifiers enable the classification of the traffic from hosts running P2P

applications, the flows used by P2P VoIP sessions, and the flows used by P2P media streaming

and P2P file-sharing applications. By using only the heterogeneity of traffic features from

the packet headers, the classifiers can be used to classify traffic whose packet payloads are

encrypted, while the computation of the entropy in an iterative manner allows the method
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to be used in real-time. Furthermore, the classification of the traffic as generic P2P traffic,

instead of focusing on specific P2P protocols or applications, makes the method capable of

identifying the traffic from emergent or unknown protocols. In fact, during the research work,

it was possible to classify as P2P the traffic generated by the video streaming in a web-site.

Although this was initially considered a false positive case, after verification it was possible to

confirm that the website was, indeed, using a plugin that allows it to use the P2P paradigm to

reduce the costs of video distribution.

2 Future Work

The analysis of the heterogeneity of traffic features may be further developed and also used

in cooperation with other approaches. Although the complexity of the classifiers is generally

undesirable as it may increase the required computational resources, the integration of differ-

ent classification approaches in the same classifier, working in cooperation towards the most

accurate and useful results, may offer interesting possibilities by taking advantage of the best

of each approach.

A cooperation scheme that would be easily implemented could include a first module perform-

ing the deep inspection of the packets, benefiting from the better accuracy of DPI methods.

Using a second module performing the analysis of the entropy of traffic features would enable

the classification of traffic containing encrypted payloads or generated by emerging or unknown

protocols, for which the DPI module does not contain payload signatures. The entropy-based

module could also be used to perform the analysis of the traffic from predefined port numbers

that are sometimes used to disguise traffic from P2P applications or to verify some of the re-

sults obtained with the DPI module. For example, applications like Gnutella use the Hypertext

Transfer Protocol (HTTP) to search for users and contents and, thus, the traffic they generate is

sometimes simply classified as HTTP or even Web traffic. In such cases, the use of an entropy-

-based module would help to reveal the true nature of the traffic that was classified with the

DPI module.

In order to implement an effective classifier based on this cooperation scheme, it would be

necessary to perform a detailed study of the types of traffic that are more often erroneously

classified and of what would be the gain, in terms of efficiency, of using an entropy-based

module only for specific ranges of port numbers, so as to identify applications that are trying to

hide their traffic using ports associated with other protocols, like HTTP or Secure Shell (SSH).

Nevertheless, although this cooperation scheme may offer advantages for the classification

accuracy, it would not solve the problem of the computational resources used by DPI methods.
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Using the DPI and entropy-based modules in the opposite order, would allow the classifier to

obtain gains in terms of resources efficiency. One of the reasons why DPI methods are generally

computationally demanding is the fact that they have to check a large number of signatures and

try to match them with each packet payload. Therefore, the list of signatures used by the DPI

method could be divided in different groups, each of them associated with different entropy

values for several traffic features. By doing so, it would be possible to first analyze the traffic

with the entropy-based module to identify the group of payload signatures that would then be

used by the DPI module. Such cooperation approach would, possibly, reduce the resources used

by the DPI module, increasing the efficiency of the classifier.

Nonetheless, a cooperation scheme that uses the DPI module after the entropy-based module

raises a few important challenges. The real-time entropy analysis, as proposed in this thesis,

requires the use of a sliding window with a size of N packets. Only after the first N packets, it

is possible to obtain the first entropy value. If the entropy analysis is performed for each flow,

the classifier would have to keep the entire first N packets in the memory, so that, in case the

DPI method is used, the payloads of the previous packets are still available.

The above problem can be minimized by limiting the packets kept in memory to a small number

of the first packets or to specific packets in the flow. To do so, it would be necessary to study

the flows from different types of applications and verify which are the most valuable packets

for DPI. The conclusions obtained in such study could possibly show that the most valuable

packets differ for each group of payload signatures, in which case the classifier would keep

in memory different packets of the flow depending on the results previously obtained by the

entropy-based module. The study of the different possibilities of cooperation between the

different classification approaches would also result in the presentation of a classifier that

could be made available for other researchers.

The entropy-based classification can also be used to perform a higher level classification of the

traffic. Instead of being classified as generated by P2P or non-P2P applications (or even any

finer granularity classification), the traffic can be classified simply based on the heterogeneity

of specific traffic features, without associating it with any applications. Such method would be

used for establishing different traffic management and routing policies. The management of

the traffic in the network or even its routing would be based, or at least consider the behav-

ioral properties of the traffic given by the analysis of the entropy of different traffic features.

Although the benefits obtained with such approach are not clear, it would be interesting to

study the information that can be extracted from the traffic by resorting to this analysis. This

study would have to included the evaluation of the information required to defined traffic man-

agement policies in computer networks and also of which information revealed by the entropy

analysis of the traffic features might be applied in the improvement of network and traffic

management tasks.
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In the same line of research work, it would also be possible to consider the analysis of the

heterogeneity of several traffic features for the characterization of network traffic. This type

of analysis could be used in cooperation with other methods and metrics typically used to char-

acterize the traffic in computer networks. In this context, it may be interesting to perform a

study on the feasibility of such analysis and of the information obtained using the heterogeneity

analysis that could be valuable to characterize traffic in computer networks.
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