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The emergence of new Internet paradigms has changed the common properties of the network data, increas-
ing the bandwidth consumption and balancing traffic in both directions. These facts raised important chal-
lenges, making it necessary to devise effective solutions for managing network traffic. Since the traditional
methods are rather ineffective and easily bypassed, particular attention has been paid to the development
of new approaches for traffic classification. This article surveys the studies on peer-to-peer traffic detection
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analysis of the concepts and strategies for network monitoring.
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1. INTRODUCTION
In the early years of Internet, network connections relied on the client-server
paradigm, generating an asymmetric amount of data in both upstream and down-
stream directions. Nonetheless, users became more influent, not only on the informa-
tion available on Internet, but also on its distribution. The so-called Web 2.0 offered In-
ternet hosts the opportunity to provide their own multimedia contents and to directly
interact with other peers. Furthermore, the popularity gained by peer-to-peer (P2P)
systems in the end of the last century enabled the direct distribution and sharing of
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contents between Internet users. The once passive user has gained a new and very
active role in the Internet, acting simultaneously as client and server. These impor-
tant changes in the services running over the Internet and in the behavior of the end-
hosts modified the traditional properties of network traffic, which is evolving towards a
more balanced bandwidth usage in both directions. Additionally, most of these applica-
tions present a greedy profile, consuming as much bandwidth as they can, which may
end up interfering with priority policies. Azzouna and Guillemin [2003], for example,
found that 49% of the traffic in an Asymmetric Digital Subscriber Line (ADSL) link
was caused by P2P applications, while Gerber et al. [2003] and Sen and Wang [2004]
observed the growth and prevalence of this kind of traffic. In 2007, ipoque conducted
a world wide study about the Internet traffic [Schulze and Mochalski 2007] and the
results showed that P2P file-sharing applications were producing more traffic than all
the other applications together, being responsible for 49% to 83%, on average, of all
Internet traffic, and reaching peaks of over 95%. Another study by ipoque [Schulze
and Mochalski 2009], in 2008 and 2009, concluded that, although the total amount of
traffic generated by P2P file-sharing has increased, its percentage has decreased to an
average value of between 42.51% and 69.95%. This fact may be due to an increase of
the traffic generated by video streaming and file hosting web services, like YouTube,
Tudou, or RapidShare. Yet, there have been several discussions regarding the adoption
of P2P solutions by some of the these services, namely YouTube and Tudou, in order
to accelerate their downloading rates and reduce the transmission cost. In fact, the
web-based CNN live channel service relies now on the P2P paradigm due to a plug-in
each user has to install.

In spite of the share of global traffic of each Internet application, P2P systems mo-
tivate particular attention from the perspective of network management for the dual
role their peers play. For a certain amount of data downloaded by a peer, a portion of
data is also uploaded by the same peer. Instead of being concentrated in a dedicated
server, the distribution cost of the service is thus shared by the users. While this fact
is advantageous for content providers, it implies that a host receiving a service will
produce additional traffic in its Internet Service Provider (ISP) network or Local Area
Network (LAN) as it is also providing the service to a different peer. Moreover, hosts
in P2P networks usually receive and provide contents from and to several peers at the
same time. Hence, P2P applications are likely to produce a much larger number of con-
nections than typical client-server applications. In addition, mechanisms to search con-
tents in remote peers also cause an increment of the communications between hosts.
These facts make P2P traffic management more challenging than traffic from client-
server applications, which is usually formed by a single or a few connections. Besides
of the increase of the bandwidth consumption, the amount of traffic generated by P2P
applications in both directions is more balanced, as opposed to the greater weight in
downstream of the traditional client-server traffic. This difference poses an important
issue in terms of traffic management, as most networks (or Internet connections) were
devised to offer lower bandwidth in upstream. Managing the network and implement-
ing specific policies for P2P traffic does not necessarily means it should be blocked or
heavily throttled. Nevertheless, there are techniques that can help to efficiently man-
age this traffic if one is able to classify it, as content caching [Karagiannis et al. 2005b;
Xu et al. 2008].

Although the traffic management issues are of particular concern mainly for ISPs
and network administrators [Karagiannis et al. 2005b; Freire et al. 2009], there are
other problems, mostly related to security risks and vulnerabilities [Zhou et al. 2005;
Seedorf 2006; Li et al. 2007; Johnson et al. 2008; 2009; Chopra et al. 2009], that are
magnified by the distributed nature of P2P systems and by the role of their peers,
and that may affect companies and home users. While reducing the overlay distances
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between end hosts for the exchange of contents, the P2P paradigm also amplifies the
effects of virus and other threats by facilitating their dissemination. Ensuring privacy,
anonymity or confidentiality is also more difficult in these networks and constitutes
a real concern, not only for home users, but also for companies [Lawton 2004]. These
problems do not result directly from the P2P communication paradigm, but they are a
consequence of the proximity between peers and of the simplicity of content sharing in
P2P systems. This fact, together with the multiple connections created by P2P appli-
cations and the encryption and obfuscation techniques used by most of them, make it
more difficult to identify threats in the traffic.

In this context, traffic classification based on the application protocol appears as
a crucial tool to manage the data within the networks, to fairly share the available
bandwidth, to assure the Quality of Service (QoS), to implement billing mechanisms
or to deploy security measures. However, identifying the application that generated
the traffic is nowadays a difficult task and may have several associated issues (e.g.,
random port number or payload encryption) as described by Kind et al. [2008]. The
traditional and most obvious method to classify network traffic was to associate the
transport port numbers to well-known application protocols. However, this approach
became ineffective as soon as a significant number of applications started to use ran-
dom port numbers, or port numbers used by other well-known protocols. Karagiannis
et al. [2004a] identified P2P applications running on port 80 and estimated that 30%
to 70% of the overall P2P traffic is generated by applications using random port num-
bers. Likewise, the results by Madhukar and Williamson [2006] show that the same
percentage of Internet traffic cannot be correctly identified by port based methods.
More recently, Basher et al. [2008] concluded that 90% of the P2P traffic may be using
random ports.

Therefore, in the last years, the classification of Internet Protocol (IP) traffic has
been a very active research field, with many contributions based on distinct ap-
proaches. When port-based mechanisms lost their effectiveness, the solution was to
employ Deep Packet Inspection (DPI) techniques, which were frequently used by Net-
work Intrusion Detection Systems (NIDSs) for security purposes, to identify the traffic
using signatures in the contents of the packets. However, this approach also has a few
important drawbacks, mainly related with the computational resources required to in-
spect traffic in high-speed networks, with the impossibility to accomplish their purpose
when the payload is encrypted and with privacy issues. The alternative was to design
different statistical or behavioral (based on heuristics) methods, which resort to the
packet header and flow-level data to segregate the traffic into different classes.

The main contribution of this article is to survey the existing studies, methods, tech-
niques and applications on the topic of traffic classification. Although several concepts
and techniques may also apply to other fields of traffic monitoring, herein they will be
analyzed from the perspective of traffic classification. Most of the classification meth-
ods may be applied to the classification of the traffic from different types of applica-
tions. Nonetheless, since P2P systems are on the basis of a large number of research
contributions, a special attention will be given to the studies addressing the subject of
P2P traffic classification.

In order to facilitate the understanding of the survey, it is included an introduction
to the subject of network measurement from the perspective of traffic monitoring (and,
more specifically, classification), which explains a few important concepts and tech-
niques. The existing approaches for traffic classification are also carefully described
in the survey, explaining their way of functioning, in which situations they are more
valuable and what are their limitations. Foremost, this article provides an extended
review of the literature, presenting the available methods and their performance, and
organizing them based on the type of analysis they perform.
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The remainder of the article is structured as follows. Section 2 describes the related
work. Section 3 gives an explanation of important concepts and techniques for traffic
measuring, while section 4 describes the distinct approaches for traffic classification
together with their main advantages and weaknesses. An analysis of the published
literature is presented in section 5, followed by the Conclusions section.

2. RELATED WORK
The topic of traffic classification has aroused considerable interest in recent scien-
tific contributions, with several studies addressing the challenges raised by new ap-
plication protocols and proposing novel techniques and solutions for its classification.
Nonetheless, there are still few papers surveying the existing works on the field, as
well as analyzing distinct methods and approaches.

The Internet Measurement Research Group (IMRG) of the Internet Research Task
Force (IRTF) sponsored a workshop on Application Classification and Identification.
The report of this workshop [Strayer et al. 2008] described a number of important
topics, highlighting the challenges inherent to the task of traffic classification and its
main motivations and summarized the contribution of each paper.

Madhukar and Williamson [2006] compared the efficiency of three distinct tech-
niques for the identification of P2P traffic: port numbers, payload signatures, and
transport-layer heuristics. In order to provide a longitudinal study of the performance
of each technique, they collected traffic traces during two years and used them as
sample data to evaluate each method. Kim et al. [2007; 2008] also performed a com-
parative study between three different approaches to traffic classification: port-based,
behavioral, and statistical. The evaluation was based on available applications and re-
search tools and techniques: CoralReef [Moore et al. 2001], BLINC [Karagiannis et al.
2005a], and Machine Learning (ML). The authors tested the solutions using seven
distinct traffic traces from two backbone and two edge links from United States of
America, Japan, and Korea. In [Li et al. 2009], four different classification methods
were also compared in terms of efficiency and effectiveness: well known port numbers,
DPI, Naı̈ve Bayes and the C4.5 decision tree method. In order to evaluate the perfor-
mance of the mechanisms from both temporal and spatial perspectives, the authors
used traffic traces collected over several years on two different sites.

A survey on traffic classification solutions relying on ML was provided in [Nguyen
and Armitage 2008b]. Although the study was especially focused on the identification
of application-level protocols through the use of ML techniques, the authors also in-
cluded a description of the difficulties imposed by many recent Internet applications
and the main reasons for developing new methods for the classification of the traffic
generated by those applications. Cascarano et al. [2010b] compared the performance
of three different traffic classifiers for peer-to-peer television (P2PTV) applications: a
DPI mechanism, a method based on single-class Support Vector Machines (SVMs), and
a method based on multi-class SVMs. They evaluated three P2PTV applications and
used traffic traces collected at the border gateway of a LAN of a university campus.

The most closest work to the study presented herein was the one by Callado et al.
[2009]. After introducing the subject of traffic analysis, the authors described the state-
of-the-art of flow-based traffic analysis, pointing out several flow properties of Internet
traffic. They also described many research works on the traffic classification field and
provided a theoretical comparison of the results obtained by four distinct studies.

This survey distinguishes itself from the previous works for its wide and comprehen-
sive analysis, and for giving special attention to the identification of P2P traffic and
its challenges. Moreover, as traffic classification is a very active research topic many
works described herein are subsequent to [Callado et al. 2009]. Unlike most studies,
this survey starts by introducing the subject of traffic measurement from the perspec-
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tive of traffic classification, so that basic concepts, important for the correct reading
of the remainder of the paper, can be well understood. Besides describing the exist-
ing approaches for traffic classification and identifying its main advantages and weak
points, this survey provides a broad review of the literature. Furthermore, it analyzes,
compares and gives a structured view of studies, approaches, techniques and available
applications for the classification of P2P network data.

3. MEASURING FOR NETWORK MONITORING
Solid research studies on the characteristics and behavior of computer networks, as
well as the development of effective mechanisms for the traffic management and the
design of better and more efficient networks, require strong and accurate traffic anal-
yses and collections. Over the last few decades, many authors addressed the subject of
network (and, more specifically, Internet) traffic measurements, highlighting its cru-
cial role for understanding the behavior of computer networks, e.g., [Jain and Routhier
1986; Claffy and McCreary 1999; Cáceres et al. 2000; Williamson 2001; McGregor
2002; Paxson 2004].

However, measuring network traffic is far from being a simple problem. Corrobo-
rating this idea, Paxson [2004] describes a few challenges one has to deal with when
performing such task, as well as some interesting strategies for a sound Internet mea-
surement. McGregor [2002] also discusses several technical issues, while proposing
guidelines for quality measurements.

Likewise, also in the context of traffic classification, and in spite of playing an es-
sential role in a solid work, network measurements can be a source of technical chal-
lenges [Arlitt and Williamson 2007]. In the next subsections, the topic of traffic mea-
surement is explored from the point of view of traffic classification, considering impor-
tant concepts, techniques, and approaches. Nevertheless, for a deeper discussion on the
subject of network measurement, we refer to the book by Crovella and Krishnamurthy
[2006], as well as to the references cited in this section.

3.1. Traffic Measurements
At this point, it is useful to distinguish between different approaches for network traf-
fic measurement or monitoring. Based on a few specific characteristics, Williamson
[2001] classifies the research tools for network study into the following categories:
hardware or software; protocol level; LAN or Wide Area Network (WAN); on-line (or
real-time) or off-line; and passive or active. The discussion of each of these categories
may be appropriate or not, depending on the purpose of each monitoring study or tool.
However, in most studies [Claffy and McCreary 1999; Paxson 2004; Duffield 2004;
Bartlett et al. 2007b], authors differentiate, mainly, between active and passive mea-
surements. Herein, these aspects will be briefly discussed from the perspective of traf-
fic classification.

3.1.1. Hardware and Software based Solutions. Practitioners and researchers working in
the field of traffic classification are more interested in analyzing the IP packets or
the Ethernet frames. Hence, it is not significant if the traffic measurements are made
using hardware or software based tools.

Nonetheless, dedicated hardware solutions tend to present a better processing per-
formance, which is useful for real-time analyses. A few companies, like ipoque [2011],
Endace [2011], Napatech [2011], or WildPackets [2011], provide hardware systems for
traffic monitoring or high-speed network interfaces with dedicated buffers for traffic
capturing, like the Data Acquisition and Generation (DAG) cards. In terms of traffic
classification, a few authors also resort to hardware devices, like Field Programmable
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Gate Arrays (FPGAs) or Ternary Content Addressable Memory (TCAM), to improve
the computational performance of DPI mechanisms [Yu 2006; Mu et al. 2007].

3.1.2. Protocol Level. It is possible to measure the traffic at different, and even mul-
tiple, protocol levels. However, since traffic classification is mostly used for Internet
traffic, measurements for that purpose are usually made at the Ethernet or IP levels.

3.1.3. LAN and WAN. For the purpose of traffic classification, measurements can be
conducted, with no lost of information or research knowledge, in LANs instead of
WANs, which typically are not so easy to get access to.

3.1.4. On-line and Off-line Analyses. Although, in terms of the traffic measurement, on-
line and off-line approaches do not differ significantly, the latter is more used whenever
a real-time analysis is not necessary, since such task would require higher computa-
tional power to be accomplished in high-speed links. Moreover, the usage of off-line
trace files is crucial for research and validation purposes, as it allows one to run differ-
ent analyses through the same data and compare the obtained results.

Nevertheless, on-line measurements are obviously imperative for, e.g., NIDSs, fire-
walls, or other devices responsible for traffic management, which need to take imme-
diate actions (e.g., drop or forward packets) on the network traffic. However, in these
cases, the use of on-line measurements may impact the performance of high-speed
networks.

3.1.5. Active and Passive Measurements. The active approach resorts to the injection of
actual packets into the network, in order to observe the behavior of the network, hosts
or applications. This kind of measurements is mainly used for monitoring the perfor-
mance of the network or to identify weak points in the system, being especially suitable
for the evaluation of QoS levels. ping and traceroute are simple examples of tools that
implement active measurements.

Since active methods rely on the use of artificial traffic, they allow one to easily con-
trol the simulation of the scenarios that he or she wants to analyze or to test, like the
traffic class, nature, frequency, etc. However, such traffic will not directly reflect the be-
havior nor the influence of the application and of the human behavior. Moreover, these
methods will increase the traffic load in the network, which may affect not only the
available bandwidth, but also the performance of routers, switches, or other network
equipment. In the case of large networks, administrators can face scalability problems
when using active measurement techniques.

Passive measurement techniques do not produce any additional traffic. Instead of
injecting packets into the network, a passive monitor simply looks at the traffic and
collects data that can be used to infer on the behavior of hosts, applications, network
performance or even on the user influence in the generated traffic. It does not send
additional data to the network being monitored, modify any contents, interfere in the
packets route (unless it has also other functions, as firewall, gateway, etc.), or increase
the traffic load. Furthermore, an important advantage of this kind of approach is that
the final data reflects the properties of the real traffic. Passive measurements are,
therefore, particularly useful for traffic management, retrieving important knowledge
about the behavior of the traffic.

Nevertheless, passive measurements may produce large amounts of data, which may
require ambitious computational resources not only to store and handle that data, but
also to process it and generate useful conclusions. For the same reason, its analysis
in real-time may be a demanding task. In some contexts and for some purposes, the
usage of real traffic may also raise a few legal issues [Ohm et al. 2007].
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3.2. Per Packet and Per Flow Analysis
Measurements made for the purpose of Internet traffic analysis are mainly focused
on IP packets or Ethernet frames. The traffic under analysis is usually captured and
stored on a packet-by-packet manner, as the most obvious method to accomplish the
task of capturing traffic is to simply catch each individually data unit traveling in
the network. Some of the existent tools for network management include means to
display, process, statistically analyze, or even make decisions on each packet individ-
ually. This per packet approach is especially interesting for applications like NIDSs
(e.g., Snort [2010] or Bro [2010]), which need to process and decide upon each packet.
Also, sniffers or protocol analyzers especially designed for off-line analysis, like Wire-
shark [2010] or Ettercap [2010], usually inspect each packet deeply, gathering infor-
mation from all the layers of the protocol stack.

Although packets are individual data units when traveling through the network, a
relation exists between many of them [Jain and Routhier 1986]. Usually, they are gen-
erated by the same request or application, they contain acknowledgement messages
from reliability mechanisms (like it happens with Transmission Control Protocol (TCP)
traffic), or they are simply carrying an amount of data that is too large to fit in a sin-
gle Ethernet frame. Therefore, the relation between the packets comprises a relatively
hidden knowledge about the network and the traffic behavior, which can be assessed
by analyzing the traffic in terms of data flows.

A flow is, most of the times, defined as a set of packets that share a common key:
source and destination IP addresses and transport port numbers [Claffy and McCreary
1999; Duffield 2004; Duffield et al. 2005; IETF 2008]. It is considered active while the
time interval between each packet belonging to the flow is lower than a certain thresh-
old. The timeout value may depend on the purpose of the analysis. Although a few
studies propose distinct timeouts, Claffy et al. [1995] explored different values and
identified 64 seconds as a good compromise between the size of the flow and the effort
to initialize and terminate the flows. Furthermore, a flow may also be defined as uni-
directional or bidirectional, depending on whether one wants to consider the packets
traveling between two address-port pairs in each direction as two independent flows, or
the packets in both directions as a single flow [Apisdorf et al. 1996; Claffy et al. 1995].
Because of the usual asymmetry of the traffic exchanged between two addresses in
typical client-server connections and also due to the asymmetric routes in the core In-
ternet, unidirectional flows are mostly used in studies on network performance and
bandwidth management, for which it is useful to measure the differences in the traffic
in both directions [Claffy et al. 1995]. On the other hand, bidirectional flows are a nat-
ural option to represent TCP sessions and, for the purpose of traffic classification, they
are a more logical approach to follow, as the traffic exchanged between two address-
port pairs, in both directions, belongs to the same traffic class and was generated by
the same application. Nonetheless, Smith et al. [2001] were able to successfully use
unidirectional packet headers traces to analyze TCP transactions.

In order to analyze the traffic from a flow perspective, a monitoring tool can still
capture the packets individually, but it has to organize them in a table of flows, based
on the source and destination information (address and port). Several tools, e.g., Coral-
Reef [Moore et al. 2001], were developed to perform flow-based analyses of traffic from
network adapters or from off-line packet traces. However, it is possible to receive the
flow information directly from routers or other network elements, e.g., using a flow
export protocol, like Cisco NetFlow [2010] or the Internet Protocol Flow Information
eXport (IPFIX) [IETF 2008], a standard for exporting flow data currently under devel-
opment. NetFlow data can be read and analyzed by a few existent applications, like
Flow-tools [Romig et al. 2000] or FlowScan [Plonka 2000].
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3.3. Collecting Traffic Data
The access to the network data for traffic measuring, as mentioned in a few stud-
ies [Duffield 2004; McGregor 2002], may be performed by copying the transmission
signal (e.g., through the use of a splitter) and analyzing it on a dedicated network mon-
itor, by using a router or a switch to copy all the traffic to an output interface, or by
directly tapping a shared link. Nevertheless, there are also a few global infrastructures
for the active measuring of Internet, that collect data from world wide links [Murray
and Claffy 2001]. The datasets containing traffic from computer networks should be
carefully handled in order to protect the privacy of the users, as well as other sensitive
data. Several considerations and good practices regarding this subject are discussed in
[Allman and Paxson 2007].

As seen in previous subsections, the passive data collection can be made by polling
routers to obtain flows data, or by packet capturing. While in the former approach,
data is usually acquired through the use of protocols like IPFIX, in the latter, the
trace files are collected using commercial or public domain network traffic capturing
software, like tcpdump [2011] and its Windows version, WinDump [2011], or even other
available tools developed with basis on the libpcap [tcpdump 2011] or WinPcap [2011]
libraries.

Although the most natural means is to capture the complete packet, such technique
generates large trace files, which would require larger storage capacity and processing
power to handle the traffic in high-speed links. Moreover, the increasing integration
of measurement techniques into routers, switches and other network elements that do
not possess a high processing power [Duffield 2004; Jurga and Hulbój 2007] motivates
the development of solutions that can reduce the amount of data collected, as described
in the next subsection.

3.4. Trace Reduction
The most common approaches for trace reduction resort to packet filtering or to the
minimization of the data that is kept for future analysis [Duffield 2004; Arlitt and
Williamson 2007]. It is possible, depending on the specific goals of each study, to moni-
tor exclusively the packets from a given application. However, such selection is usually
made using the transport layer port numbers, which is consensually considered a naive
approach. Alternatively, one may select only the packets that establish or finalize a
connection or a request, or use any other selection criterion that may be more coherent
with the objective of a particular analysis and decrease the number of packets to be
captured.

The amount of data stored can be reduced by saving a summary of each application
protocol-specific request; by capturing a limited portion of the packet or even only the
headers of the first layers of the TCP/IP protocol stack; or by keeping information of a
flow instead of storing each packet that belongs to it.

A particular case of packet filtering is the use of packet sampling methods [Amer and
Cassel 1989], whose objective is to randomly (or pseudo-randomly) choose a small set
of the packets observed in the measuring point. It is intended that the set of packets
obtained be as much representative as possible of the traffic one plans to measure.
There are different packet sampling techniques which may be more useful in distinct
cases, depending on factors like the goal of the study, the network state, the traffic
characteristics or the resources constrains. Jurga and Hulbój [2007] elaborated on the
existent methods for packet sampling and their application in network measurements.
Duffield [2004] addressed the subject of Internet traffic sampling as well, providing a
long and sound structured discussion of several important topics on passive traffic
measurement.
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Table I. Side-by-side comparison of the approaches for traffic classification.

Approaches Characteristics Advantages Weaknesses

Port number
matching

— associates port numbers
with applications

— low computational
requirements

— easy to implement

— lack of classification
performance due to
random port numbers

Deep packet
inspection

— relies on payload data — high classification
performance

— may not work for
encrypted traffic

— requires high processing
resources

— can only be used for
known applications

Classification
in the dark

— uses only packet header
and flow level
information

— usually lighter than DPI
— applicable for encrypted

traffic
— can identify unknown

applications from target
classes

— usually has lower
classification
performance when
compared to DPI

Active
crawlers

— based on modified
instances of the target
applications

— identifies accurately
users of the target
applications

— identifies only the traffic
exchanged with the
crawler

— injects additional traffic
in the network

4. TRAFFIC ANALYSIS AND CLASSIFICATION APPROACHES
In the early times of the Internet, traffic classification was a straightforward task that
was easily accomplished by matching the port numbers of the transport protocols with
the application protocols. However, since many Internet applications, especially the
ones based on the P2P architecture, evolved to use random port numbers or ports as-
signed to well known protocols (e.g., Hypertext Transfer Protocol (HTTP)), identifica-
tion strategies agnostic to the port numbers became more common. The most natural
approach is to look inside the packets and see what type of data they carry and which
application protocol was used. Regardless of that, several statistical or behavior-based
methods that do not inspect the contents of the packets have been developed more re-
cently. Table I provides a simple side-by-side overview of the main characteristics of
each classification approach. For a better understanding of the remaining of the pa-
per, a discussion on the different types of techniques for traffic classification, the way
they operate, their advantages and their drawbacks is provided in the following sub-
sections. Furthermore, two additional subsections were included to address the topic
of ground truth verification and describe the most common metrics for the evaluation
of the performance of a classification mechanism.

4.1. Traffic Classification Based on Port Numbers
The classification of network traffic based on the User Datagram Protocol (UDP) or
TCP port numbers is a simple approach built upon the assumption that each appli-
cation protocol uses always the same specific transport layer port. This method was
mostly useful in the identification of well known protocols like, e.g, HTTP or Sim-
ple Mail Transfer Protocol (SMTP), which use the port numbers 80 and 25, respec-
tively. However, many Internet applications easily bypass this identification strategy
by simply using random or unknown port numbers, disguising their traffic using port
numbers generally used by other well known protocols (e.g., port 80) that are usually
allowed by firewalls. Thereby, port numbers as a classification mechanism are consid-
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alert udp $HOME_NET any -> $EXTERNAL_NET any (msg:" LocalRule:P2P eDonkey UDP
outbound - Status Request "; flow:to_server; content :"|E3 96|"; depth :2;
classtype:policy -violation; sid :1000019; rev :1;)

Fig. 1. Example of a SNORT rule to detect a payload signature for the traffic generated by eDonkey with
obfuscation, proposed in [Freire et al. 2009].

ered obsolete [Karagiannis et al. 2004b; Moore and Papagiannaki 2005; Madhukar and
Williamson 2006].

4.2. Traffic Classification Based on Deep Packet Inspection
DPI methods, usually the most accurate, are based on the inspection of the packets
payload. They rely on a database of previously known signatures that are associated
to application protocols, and search each packet for strings that match any of the sig-
natures. This approach is used not only in the classification of network traffic, but
also in the identification of threats, malicious data and other anomalies. Because of
their effectiveness, classification systems based on DPI are especially significant for
accounting solutions, charging mechanisms, or other purposes for which the accuracy
is crucial. Fig. 1 shows an example of a SNORT rule for the detection of a data signa-
ture in the traffic from eDonkey with obfuscation mechanisms enabled.

However, deeply inspecting each packet can be a demanding task in terms of compu-
tation power and may be unfeasible in high-speed networks. Therefore, some mech-
anisms search only a part of each packet or only a few packets of each flow as a
compromise between efficiency and accuracy. Besides of the performance issues, the
inspection of contents of the packet may also raise legal issues related with privacy
protection [Ohm et al. 2007].

Nevertheless, the main drawback of DPI techniques is their inability to be used
when the traffic is encrypted. Since, in these cases, the contents of the packets are in-
accessible (encrypted), DPI-based mechanisms are restricted to specific packets of the
connection (e.g., when the session is established) or to the cases when UDP and TCP
connections are used concurrently and only the TCP sessions are encrypted. Packets
with no payload, which may be malicious, cannot be classified as well. DPI methods
are also sensitive to modifications in the protocol or to evolution of the application ver-
sion: any changes in the signatures known by the classifier will most certainly prevent
it from identifying the application. Moreover, DPI methods that rely on signatures for
specific applications, can only identify traffic generated by those applications.

4.3. Traffic Classification in the Dark
The inspection of the contents of IP packets, as discussed in the previous subsection, is
not always a valid option for the identification of application-level protocols. Therefore,
new methods that do not resort to the deep inspection of the packets have been devel-
oped. The strategy of this kind of approach, sometimes called in the dark [Karagiannis
et al. 2005a; Turkett et al. 2008], is to classify the traffic using behavioral or statistical
patterns, based on flow-level data or generic properties of the packets [Moore et al.
2005], like addresses, ports, packet size, etc.

The main advantage of classification in the dark is the ability to identify a protocol
without the need to examine the contents of the packet. As a consequence, mechanisms
based on this approach cannot aspire to the same accuracy level of DPI methods. Their
results should be understood as a strong suspicion regarding the probable application
protocol. Nevertheless, recent studies have achieved high success rates in the classi-
fication of Internet traffic. Additionally, classification in the dark can more easily be
applied to unknown applications since many methods based on this approach classify
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the traffic in classes of applications (e.g., web traffic, email, video streaming, P2P, etc.)
instead of specific applications.

The existent mechanisms use distinct techniques to correlate the traffic properties
and conclude on the application protocol, such as statistical measures, sets of heuris-
tics, or machine learning algorithms. The following subsections introduce each of these
approaches.

4.3.1. Statistical Mechanisms. Statistical methods usually rely on flow and packet level
properties of the traffic, like flow duration and size, inter-arrival times, IP addresses,
TCP and UDP port numbers, TCP flags, packet size, etc. These properties are used,
individually or combined, to calculate statistical values, from simple measures as av-
erage or variance, to more complex ones like the probability density function. In some
studies [Crotti et al. 2006], statistical models of the traffic from a certain application
are created. Generally, such approach requires a learning phase to build a reference
model that can be used to classify unknown traffic.

4.3.2. Heuristics Based Methods. Many behavioral mechanisms for traffic classification
are based on a predefined set of heuristics. Although a large part of them are common
to the majority of the research works, distinct combinations or sets are proposed in
several studies. Typical heuristics include the network diameter, the presence of nodes
acting both as client and server, the number of hosts a user communicates with, the
source-destination IP pairs that use both TCP and UDP, the number of distinct ad-
dresses and ports a user is connected to, etc. Generally, the set of heuristics is checked
sequentially, and, depending on the result, the packet (or flow) is classified as belong-
ing, or not, to a certain application-level protocol.

4.3.3. Machine Learning Techniques. A large part of the studies propose classification
mechanisms based on different supervised or unsupervised ML techniques, such as
Bayesian estimators or networks [Moore and Zuev 2005; Auld et al. 2007], cluster-
ing [McGregor et al. 2004], decision trees [Branch et al. 2009], etc. They assemble a set
of traffic characteristics which they correlate using of probabilistic functions, associat-
ing each packet or flow to a certain class.

4.4. Traffic Classification Using Active Crawlers
The majority of the solutions in the literature are passive, as they do not interfere with
the data within the network neither they generate any additional traffic. Nevertheless,
some authors have also developed active mechanisms that crawl the network to collect
data used to classify the traffic [Saroiu et al. 2003]. A few of them implemented fake or
modified instances of the target applications whose main purpose is to identify hosts
running the original applications [Ohzahata et al. 2005].

This kind of approach is generally used for very specific purposes, such as the
identification of users running a certain application. Some authors resorted to active
crawlers to collect statistics on the number of hosts running the target application and
on the properties of the connections to peers (available bandwidth, latency, etc.) [Saroiu
et al. 2003].

4.5. Ground Truth Verification
The use of pre-collected traffic from computer networks is of critical importance for
the creation and testing of new methods for traffic classification in respect to the
application-level protocols. Nonetheless, without the ability to assess its ground truth
application information, the use of traffic data is of limited value [Sperotto et al. 2009].

The majority of the packet traces publicly available are limited to the headers due
to privacy concerns, making it difficult to obtain the associated ground truth regard-
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ing the application. For that reason, in most studies on traffic classification, the re-
searchers collect their own traffic traces to test the accuracy of their solutions. Such
approach makes the comparison of different methodologies inconsistent as the perfor-
mance of each of them was evaluated in different conditions [Salgarelli et al. 2007].
The use of methods to accurately verify and label the ground truth information of
packet traces before making the headers publicly available, would solve the problem
while still keeping the private data.

In many studies, the ground truth verification is obtained by using an alternative
method as reference baseline, e.g., port number matching or DPI [Karagiannis et al.
2005a]. However, such approach will depend on the accuracy of the classifiers used as
baseline. Port number matching, e.g., is now considered an ineffective option, while
DPI may be unsuitable for encrypted traffic. In fact, when a novel mechanism for traf-
fic classification is proposed, under the pretext that the existent solutions are not com-
pletely effective, it is nonsensical to test the accuracy of the new method by using an
existing one as the baseline for performance comparison.

Alternatively, hand-classification may be used to verify the ground truth information
of the traces [Moore and Zuev 2005]. However, the process can be slow and tiresome.
Moreover, it is also possible to create traffic collections from a small network of comput-
ers, running a predefined set of applications in a controlled environment. Nonetheless,
the obtained traces may not exhibit properties that reflect the human behavior.

Given the increasing concern regarding this topic, a few authors have, more recently,
addressed the subject of ground truth verification of application traffic. Canini et al.
[2009] presented GTVS, a framework to improve and simplify the process of associ-
ating traffic data with application-level protocols. It makes use of the packet payload
inspection and of multiple heuristic rules to infer the ground truth information and it
provides a graphical interface to facilitate manual verification of traffic traces. Gringoli
et al. [2009] proposed GT, a toolset to assess the ground truth of application traffic. Its
architecture differs from GTVS mainly in the fact that it includes the existence of a
daemon, which is supposed to run in each client and return the information of the
process that originated each network connection. Although this approach may signif-
icantly increase the accuracy of the verification, the deployment of the client daemon
may be difficult in most contexts, or even near impossible in large networks. A sim-
ilar approach was followed by Szabó et al. [2008], who also described a client-based
solution. In this case, the authors suggested the implementation of a client driver that
inserts a byte mark in each outgoing packet whose size is not yet the size of the Maxi-
mum Transmission Unit (MTU), so that it can avoid the IP packet fragmentation.

All these approaches have their merits and weaknesses, but none is perfect, though.
Relying on an alternative classifier to work as baseline reference enables the ground
truth identification in every trace, independently of the size of the network. However, if
the reference classifier uses DPI, the payload data in the traces must not be encrypted
nor removed. Moreover, the evaluation of the performance of the new classification
method will always depend on the accuracy of the reference classifier, which may also
loose effectiveness when applications evolve and change the properties of their com-
munications (at payload level or even behavioral level). If the results show a certain
misclassification rate (even if it is very low), it is impossible to be sure if the error was
induced by the new method or by the reference classifier. Of course, this also depends
on how challenging the target application is to be classified and on the composition of
the traces that are being analyzed. The GTVS solution proposed by Canini et al. [2009]
is also a strong tool that can significantly improve the task of ground truth identifica-
tion. Nonetheless, it is based on a combination of different methods to identify the
traffic, including DPI, and thus may have similar limitations. On the other hand, al-
though the manual verification of the traffic could allow a better accuracy, it is only

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



Detection and Classification of Peer-to-Peer Traffic: A Survey A:13

feasible for small datasets. The same happens with the approaches that save informa-
tion during traffic capturing about the process that generated the packets, as the ones
from Gringoli et al. [2009] and Szabó et al. [2008]. This information is very valuable
for traffic classification and can help to achieve high accuracy on the ground truth.
Unfortunately, the deployment of the client daemons or drivers in all the computers of
a large network is also difficult to accomplish. The use of testbeds with smaller net-
works, in which it is possible to control the applications being used, also allows high
accuracy on the ground truth identification. However, it may not be representative of
the traffic in large scale networks. The method used to assess the ground truth is ex-
tremely important to the quality of the evaluation results. Therefore, one should be
aware of the capabilities and limitations of each method when evaluating a classifier.

4.6. Performance Evaluation Metrics
The evaluation of classification methods is made by comparing the results of the clas-
sification with the ground truth information of the traces. Each individual case is
considered a True Positive (TP), True Negative (TN), False Positive (FP), or False
Negative (FN) case depending on whether it was correctly classified as belonging to,
correctly classified as not belonging to, incorrectly classified as belonging to, or incor-
rectly classified as not belonging to a certain class.

The analysis of TPs, TNs, FPs, and FNs can be made in terms of packets, flows, or
bytes. The evaluation of classification methods based on packets usually presents lower
performance as many packets are similar independently of the application that gener-
ate them. For example, a TCP SYN packet, used to initiate a connection, is similar for
any application. Moreover, many classifiers, especially the ones based on classification
in the dark, are not design to classify individual packets. The evaluation in terms of
flows and bytes may also present different performance levels. In many traces, depend-
ing also on the type of traffic they contain, a small number of flows may carry almost
all the bytes. The rest of the flows contain only a few small packets. In these cases, if
a method correctly classifies only the larger flows, the result of the performance will
be very positive in terms of bytes and very negative in terms of flows. On the contrary,
if the larger flows are misclassified and the all the small flows are correctly classified,
the performance will be positive in terms of flows and negative in terms of bytes.

The performance of the classifiers can be measured, in terms of TPs, TNs, FPs, and
FNs, using different metrics [Makhoul et al. 1999; Olson and Delen 2008]. There is a
great number of metrics for classification evaluation and, although some are equiva-
lent, most of them measure different aspects of the classification. When using metrics
to evaluate a traffic classification mechanism, it is important to understand what is
measured by each of them. In the following paragraphs, we briefly explain the most
common metrics in traffic classification studies.

The accuracy of a classifier is usually evaluated by measuring its capability to cor-
rectly identify positive and negative cases. Hence, accuracy is defined as the ratio of
correct positive and negative classifications to all the positive and negative cases in
the experimental data:

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

However, accuracy is insufficient to evaluate a classifier when using imbalanced
datasets with a greater number of positive or negative cases in the dataset, as it gives
more importance to the most popular class in the dataset. In such case, if a classifier
privileges the class with more cases in the dataset, it will always achieve a good accu-
racy. For example, in an extreme case, a completely useless classifier that classifies as
positive every case in the dataset will achieve a high accuracy in a dataset containing,
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e.g., 90% of positive cases. Therefore, it is necessary to use more than one measure,
each of them evaluating different aspects of the results.

Two of those metrics, precision and recall, are used together to evaluate classification
methods and are defined as follows [Nguyen and Armitage 2008b]:

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
. (3)

Some authors also used the term accuracy to refer to precision [Callado et al. 2010]
or to recall [Hu et al. 2008]. These metrics are used to evaluate the capability of the
classifier to correctly identify the positive cases. Precision, also referred as positive pre-
dictive value, evaluates how correct the cases identified as positive by the classifier are,
whereas recall, also referred as hit rate or true positive rate, expresses the percentage
of positive cases included in the dataset that were correctly identified by the classifier.

Nonetheless, precision and recall also have limitations in specific contexts as they
do not value rarity [Weiss 2004; Stefanowski and Wilk 2009]. Both metrics do not con-
sider the amount of negative cases correctly identified by a classifier. This means that
if a classifier C1 returns, e.g., 10 false positives out of 10 negatives and a classifier C2
returns an equal number of false negatives and of true positives and 10 false positives
out of 1000 negatives, both classifiers will have the same precision and recall. How-
ever, C2 may be considered to have better performance as it failed to correctly identify
only 1% of the negative cases, while C1 was not able to identify any negative case. Fur-
thermore, the precision obtained for a dataset containing an extremely low share of
positive cases may be affected by the high prevalence of negative cases. In fact, in such
context, a very small percentage of the negative cases misclassified as positive cases
may be sufficient to overcome the number of true positives identified by the classifier,
due to the shortage of positive cases in the dataset.

In these situations, it may be advantageous to consider metrics that separately eval-
uate the classification of positive and of negative cases. Therefore, recall can be used
together with a another metric, specificity, which is defined as follows [Wang 2008]:

Specificity =
TN

FP + TN
. (4)

When used together with specificity, recall is usually called sensitivity [Raahemi et al.
2008b]. Sensitivity measures the ratio of correctly classified positive cases to the total
of positive cases, whereas specificity evaluates the negative cases that were correctly
classified. In the context of traffic classification, sensitivity and specificity are especially
useful to evaluate classifiers that are focused on a specific class that accounts for a
minority of the traffic in a dataset, e.g., a classifier designed to identify video streaming
or Voice over Internet Protocol (VoIP) traffic.

Moreover, Karagiannis et al. [2005a] defined a different metric similar to recall,
which they called completeness, and used it together with precision, which they called
accuracy. To the best of our knowledge, the two metrics were also used by Callado et
al. [2009; 2010] and Szabó et al. [2007]. Completeness measures the ratio of classified
positive cases, correctly or incorrectly, to the total number of positive cases and is
defined as follows:

Completeness =
TP + FP

TP + FN
. (5)

The metrics used to evaluate a classifier should be chosen depending on the context
and purpose of each classifier. Although some authors have used different names for
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Table II. Well known port numbers used by several P2P protocols.

Protocols TCP Ports UDP Ports

AIM - messages 5190 5190
AIM - video 1024–5000 1024–5000

ARES Galaxy 32285 32285
BitTorrent 6881–6999
Blubster 41170–41350 41170–41350

Direct Connect 411, 412, 1025–32000 1025–32000

eDonkey 2323, 3306, 4242, 4500, 4501,
4661–4674, 4677, 4678, 4711, 4712, 7778 4665, 4672

FastTrack 1214, 1215, 1331, 1337, 1683, 4329
Gnutella 6346, 6347 6346, 6347
GoBoogy 5335 5335
HotLine 5500–5503

ICQ 5190
iMesh 80, 443, 1863, 4329
IRC 6665–6669

Kazaa 1214 1214
MP2P 10240–20480, 22321, 41170 41170
MSN 1863

MSN - file transfer 6891–6900
MSN - voice 6901 6901

Napster 5555, 6666, 6677, 6688, 6699–6701, 6257
PeerEnabler 3531 3531

Qnext 5235–5237 5235–5237
ROMnet 6574

Scour Exchange 8311
ShareShare 6399 6388, 6733, 6777

Soribada 7675–7677, 22322 7674, 22321
SoulSeek 2234, 5534 2234, 5534
WASTE 1337 1337
WinMX 6699 6257

XMPP / Jabber 5222, 5269 5222, 5269
Yahoo - messages 5050

Yahoo - video 5100
Yahoo - Voice 5000–5001 5000–5010

similar metrics, in the next section, we will use the terms accuracy, precision, recall,
sensitivity, specificity, and completeness as described above, so as to keep the article
coherent.

5. DISCUSSION OF THE STATE OF THE ART ON TRAFFIC CLASSIFICATION
In the literature on traffic classification, several mechanisms and applications are pro-
posed for the identification of application-level protocols. The following subsections
provide a theoretical study of the most relevant works in this field of study. Traf-
fic classification methods are, in many cases, suitable for the identification of traffic
from different types of applications. Nonetheless, since most of the applications whose
traffic is difficult to identify by conventional means use P2P platforms, many of the
studies discussed herein are oriented for the detection and classification of P2P traffic.
Although the approaches used by most of the studies described in this section are, in
many cases, also used for the detection of traffic anomalies, virus, and other software
threats [Lakhina et al. 2005; Ranjan et al. 2007; Soewito et al. 2009], this section will
be focused only on the studies addressing the subject of traffic classification.

5.1. Port-Based Classification
As described in section 4.1, the early strategies for traffic classification were based on
the identification of port numbers. The Internet Assigned Numbers Authority (IANA)
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keeps an updated list of the well known or registered port numbers, which is available
in the web [IANA 2011]. Nevertheless, there are also port numbers or ranges that are
traditionally used by some P2P systems. Table II presents a list of the port numbers
commonly used by well known P2P applications.

A few studies have used this approach to identify application protocols. In [Sen and
Wang 2004] and in [Krishnamurthy and Wang 2002], the authors analyzed P2P traf-
fic collected at the border routers of a large ISP. In order to distinguish the flows from
Gnutella, FastTrack and Direct Connect, they used the TCP port numbers. Saroiu et al.
[2002a] collected traffic from the University of Washington and, using port numbers,
identified and analyzed the data from four content delivery systems, HTTP web traffic,
Akamai network, KaZaA and Gnutella. Leibowitz et al. [2002] monitored traffic from
an ISP network and analyzed FastTrack based traffic, which includes KaZaA, Mor-
pheus and Grokster data, filtered through the use of port numbers. Gerber et al. [2003]
resorted to port numbers, as well, to identify traffic from several P2P systems. They
collected traffic from an ISP backbone and from a university network, and analyzed its
properties.

There are also tools for traffic analysis that provide information about the
application-level protocol based on port numbers, like the CoralReef suite [Moore et al.
2001] or the Wireshark [2010] packet analyzer. A few studies have used the application
port tables from CoralReef to identify the network traffic [Fraleigh et al. 2003].

5.2. Deep Packet Inspection Classification
The lack of effectiveness of the methods based on port numbers motivated the in-
crease of the studies that analyze the traffic using payload inspection. Sen et al. [2004]
proposed payload signatures for Gnutella, eDonkey, Direct Connect, BitTorrent, and
KaZaA, and implemented them using the Gigascope monitor. They tested the solution
using traffic collected on an access network to a major backbone and on a T3 (45 Mbps)
link connecting a Virtual Private Network (VPN) to the Internet. The authors esti-
mated that the false positives rate was approximately 0%, while the false negatives
rate was between 0.00% and 4.97% for the analyzed protocols, with the exception of
BitTorrent for which it was 9.90%. However, they considered that the flows that use
well known port numbers of P2P applications are, in fact, P2P traffic. Based on that
assumption, each flow that used one of those ports and was not classified as P2P traffic
was identified as a false negative case.

Moore and Papagiannaki [2005] presented a flow-based methodology that resorts to
the deep inspection of the payloads. It uses a set of distinct methods that search for
known signatures within the full payload of each packet. The methods are checked
sequentially until one of them matches a certain application. In the tests performed
by the authors, which relied on manual verification, the proposed set of methods was
able to accurately identify approximately 99.99% of the traffic, which corresponds to
the recall rate.

In [Karagiannis et al. 2004b], the authors used payload signatures to identify traf-
fic of several P2P applications, namely, eDonkey2000, FastTrack, BitTorrent, WinMX,
Gnutella, MP2P, Soulseek, and Direct Connect. They used their approach to analyze a
few traffic traces captured from links of two backbones, and conclude on the evolution
of the percentage of P2P traffic in the Internet.

Spognardi et al. [2005] collected and analyzed traffic from OpenNap, WPN and Fast-
Track P2P protocols in order to identify payload signatures. The signatures were codi-
fied in form rules for the Snort NIDS and used to monitor network traffic.

In [Choi and Choi 2006], the use of port numbers is proposed as a real-time method
to identify the traffic. Afterwards, the traffic is also inspected off-line using DPI tech-
niques. The authors presented a methodology to check if the packets match a data
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pattern that is based on an edit distance algorithm. Bin et al. [2007] proposed a so-
lution that uses payload signatures to identify P2P flows as well. Each successfully
identified packet is added to a table with an hash identifier, which is calculated from
the source and destination IP addresses and from the transport port numbers. This
way, the authors only examine the contents of the packets that belong to flows that
were not classified yet.

The detection of chat related traffic was studied in [Dewes et al. 2003]. The authors
analyzed several chat protocols and identified payload signatures. The tests show that
the methodology presented, which was validated using manual verification, failed to
detect less than 8.3% of all chat connections (recall of 91.7%) and, from the ones de-
tected, 93.13% were correctly classified (precision).

Generally, one the major drawbacks of DPI methods is their weight in terms of com-
putation power. Hence, a few studies have tried to develop DPI mechanisms that are
light and scalable. Risso et al. [2008] presented a taxonomy of the possible DPI ap-
proaches and performed a comparison of the performance and accuracy between a
lightweight and a completely stateful traffic classification methods. They concluded
that, although the lightweight methods are not so accurate, they are still effective
enough for the purpose of traffic classification while being able to perform much faster
than the stateful approaches. Guo and Qiu [2008] proposed a signature-based method
to identify P2P flows in high-speed networks using packet sampling and they tested
it with BitTorrent-related traffic. They evaluated the relation between its performance
and the sampling probability, achieving different false positive and negative rates, de-
pending on the value of the sampling probability, from 0.00% to 11% and from 0.33%
to 10.5%, respectively. In [Cascarano et al. 2009], the authors evaluated the computa-
tional cost of a DPI mechanism by comparing it with a statistical one. Although the
comparison has been made between only two specific methods, it shows that, depend-
ing on the composition of the traces, the DPI mechanism can be as much computation-
ally heavy as the statistical classifier; or it can go as high as five times the complexity
of the statistical approach. In her PhD thesis, Yu [2006] developed high speed packet
processing algorithms, proposing the use of hardware support to perform the deep in-
spection of packets. Smith et al. [2008] used auxiliary variables and optimizations to
implement a mechanism for deflating explosive Deterministic Finite Automata (DFA).
Using their solution, the authors were able to optimize the process of signature match-
ing, achieving promising results for File Transfer Protocol (FTP), SMTP, and HTTP
traffic. Kumar et al. [2006] introduced a new representation for regular expressions,
called the Delayed input DFA (D2FA), which significantly reduces the space require-
ments of a DFA. The results of their tests showed that they were able to reduce mem-
ory space requirements by more than 95%. In [Cascarano et al. 2010a], the authors
presented two optimizations of a DPI classifier that reduce the data checked by the
pattern matching engine. The improvements are achieved at the cost of a controlled
reduction of the accuracy, which, unlike the case of intrusion detection, is acceptable
in traffic classification.

The encryption of the payload is usually a problem for the DPI techniques. How-
ever, a few studies used the payload examination to identify P2P encrypted traffic.
In [Carvalho et al. 2009b], the authors identified, manually, several payload signa-
tures of BitTorrent encrypted traffic and provided a set of Snort rules to match the
patterns observed. They tested the rules with traffic from a university network. The
same authors have used a similar approach to identify signatures for encrypted eDon-
key traffic [Freire et al. 2009] and P2P TV traffic [Carvalho et al. 2009a].

Most DPI mechanisms are based on signature matching. Nevertheless, a few meth-
ods use the payload data in a different perspective. Dhamankar and King [2007] used
entropy to explore the randomness of the data within the encrypted payloads of Skype
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traffic, resorting to clustering methods and congregating several heuristics. More stud-
ies have also addressed the subject of Skype traffic identification. Ehlert and Petgang
[2006] described a detailed analysis of the Skype protocol and presented a signature to
detect its traffic that is based on payload and transport-level data.

Some authors have been developing studies on the automatic identification of pay-
load signatures. Most of those studies are focused on the identification of worms, virus,
and other traffic anomalies [Singh et al. 2004; Yegneswaran et al. 2005; Cavallaro et al.
2008]. However, a few authors have proposed similar approaches for traffic classifi-
cation. Haffner et al. [2005] used three ML algorithms and, with two of them, they
were able to construct signatures, with precision between 99% and 100% and recall
between 86.6% and 99.9%, by resorting to the examination of a small amount of data
at the beginning of the communication. The study was performed for traffic from FTP,
SMTP, Post Office Protocol (POP), Internet Message Access Protocol (IMAP), HTTP,
Hypertext Transfer Protocol Secure (HTTPS), and Secure Shell (SSH). Finamore et al.
[2009] presented KISS, a classifier that automatically extracts signatures from a UDP
stream by using a stochastic test that allows the identification of the application proto-
col syntax, while ignoring the synchronization and semantic rules. The signatures can
be seen as statistical fingerprints in the payload data. The authors tested the mech-
anism, verifying it manually, using traffic traces from an italian ISP. KISS correctly
identified more than 98.1% of the samples in the worst case, reaching an average re-
call of 99.6% and an average false positives rate of 0.34%. In [Mantia et al. 2010], they
extended the previous method to support also the classification of TCP traffic, with
an average recall of 97.62%. In [Park et al. 2008], it is also presented a solution for
the automated creation of signatures, the LASER algorithm. The authors tested the
approach for LimeWire, BitTorrent, and Fileguri, using data collected in a campus net-
work and manually verified. They achieved an accuracy rate of 97.39%, with a false
negatives rate of between 0.39% and 10.40% and with 0% of false positives.

5.3. Classification In The Dark
Recently, several studies have proposed classification strategies that rely on behavioral
and statistical patterns, which can be further categorized as follows.

5.3.1. Heuristics. Several studies propose heuristics as a means to identify P2P traffic.
Constantinou and Mavrommatis [2006] proposed a classifier that uses three heuristics:
the number of hosts that act both as server and client in a specific port exceeds a given
threshold; the estimated network diameter is at least as great as 2; and the number
of hosts that are present in the first and last levels of the network exceeds a given
threshold. The method was tested using data traces from NLANR [2010] and compared
with port-based classification. Depending on the threshold values, the results vary
between 8.5% and 12.7% of false negatives (detected with port-based and not detected
with heuristics) and between 7.6% and 42.4% of additional positives (not detected with
port-based and detected with heuristics). In [Perényi et al. 2006], the authors described
a method based on a set of six heuristics to identify P2P traffic: simultaneous usage
of TCP and UDP; the existence of several consecutive connections between two hosts;
well known P2P port numbers; multiple flows with the same flow identities; an IP
using the same transport port more than 5 times in the measurement period; and the
flow size larger than 1MB or its duration longer than 10 minutes. The validation of
the approach was made using a small labeled traffic trace and it achieved a recall
of 99.14% and of 97.19% for P2P and non-P2P traffic, respectively, with 0.3% of false
positives and 0.8% of false negatives. John and Tafvelin [2008] also proposed a set of
heuristics to classify Internet traffic, which are a redefined combination of the ones
suggested in [Karagiannis et al. 2004c; Perényi et al. 2006]: the concurrent use of TCP
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and UDP; the well known P2P port numbers; the port numbers that are used very
often; the relation between the number of IP addresses and the number of transport
ports; and the flows carrying more than 1 MB or lasting more than 10 minutes. Besides
the heuristics, the authors also described a set of rules to reduce the number of false
positive cases. They used the mechanism to classify traces collected at a university
link, leaving only 2% of the traffic unclassified (recall of 98%).

5.3.2. Social Behavior. Karagiannis et al. [2005a] presented BLINC, a mechanism for
flow classification that does not rely on the payload data or transport port numbers to
identify the application protocol. BLINC analyzes traffic at three levels (social, func-
tional, and application) exploiting properties of each node, like the relation with the
remaining hosts, the role in the connection (server or client), the transport layer infor-
mation, or the average packet size. The mechanism was tested using traffic collected
at numerous academic, research and residential complexes, within a university cam-
pus and it was evaluated by comparing it with a DPI based method. BLINC was able
to classify between 80% and 90% of the flows, corresponding to the completeness rate,
with a precision ranging from 90% to 95%. Iliofotou et al. [2007] introduced a different
perspective for the traffic analysis that is focused on the network-wide interactions
of hosts. They model the social behavior of hosts by organizing and correlating the
information in graphs, which they call Traffic Dispersion Graphs (TDGs), where the
edges represent different interactions. In [Iliofotou et al. 2008; Iliofotou et al. 2009],
they used TDGs to create a framework, Graption (Graph-based classification), to clas-
sify the traffic based on the application protocol. The mechanism was tested using two
traces from a Tier-1 ISP and one trace from the Abilene (Internet2) network and a DPI-
based method as baseline. The results showed that the solution was able to classify the
traffic with a recall of between 94% and 95% and a precision of between 95% and 96%.

5.3.3. Statistical or Behavioral Signatures. A mechanism for flow classification based on
the definition of statistical signatures or fingerprints for different traffic classes was
proposed by Crotti et al. [2006; 2007]. The fingerprints are created using traffic pre-
classified with any effective mechanism and then used to classify network traffic. Dusi
et al. [2008; 2009] also used statistical fingerprints to identify encrypted tunnels. The
method was evaluated, using data collected on controlled sessions and reaching a recall
of between 82.45% and 100.00%. Bartlett et al. [2007a] identified three basic behav-
ioral signatures from P2P file sharing: failed connections, the ratio of incoming and
outgoing connections, and the use of unprivileged ports. They evaluated the mecha-
nism by classifying BitTorrent and Gnutella traffic, captured from a commercial ISP
and from academic institutions. In order to access the ground truth for BitTorrent data,
the authors identified all the flows that used the default port number of BitTorrent
tracker and manually verified that the destination was a real tracker. All the traffic
identified by these means was confirmed to be P2P traffic. Additionally, they considered
all flows using non-privilege ports that are not well-known ports as likely non-P2P.
For the Gnutella data, the authors considered as P2P all the flows that contact with
Gnutella ultra-peers, which they identified by connecting repeatedly to the Gnutella
network and keeping a record of the ultra-peers list. These approaches were used to
verify the classification of P2P hosts and of likely non-P2P hosts. Besides of this strate-
gies, to verify the classification of the remaining flows, the authors identified the flows
using default BitTorrent ports (6969, 6881-6888) and the default Gnutella port (6346).
The results show that BitTorrent hosts were detected with a recall ranging from 83%
to 92%, while Gnutella hosts achieved a recall from 57% to 97%, and the false positives
rate was between 2% and 25%. In [Freire et al. 2008a; 2008b], a mechanism to identify
VoIP calls hidden in Web traffic was proposed. The authors analyzed several proper-
ties of the network data to distinguish between VoIP and legitimate Web traffic and
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selected the following parameters: Web request size; Web response size; inter-arrival
time between requests; number of requests per page; and page retrieval time. In or-
der to measure the goodness of fit, they used the Chi-square and Kolmogorov-Smirnov
tests. The evaluation was made using Skype and Google Talk VoIP data, previously
collected in both ISP and university links on a controlled way. The method achieved
similar results for both protocols, being able to identify around 90% (recall rate) of the
VoIP calls with a false positives rate of 2%, and 100% (recall rate) of VoIP calls hidden
in Web traffic with a false positives rate of 5%. In [Gomes et al. 2008], the authors an-
alyzed several edge user traces of P2P and non-P2P applications and tried to identify
a behavioral pattern of the P2P traffic. They concluded that the packet sizes of P2P
traffic presented a high heterogeneity when compared to the packet sizes of the non-
P2P traffic. They used entropy to represent the heterogeneity degree and calculated its
value for a sliding window containing a fixed number of packets. P2P traffic, especially
the one related with VoIP services, returned high entropy values, while for the reg-
ular client-server traffic the entropy value was consistently smaller. Lin et al. [2009]
proposed the use of the packet size distribution and port association as a pattern to
distinguish application protocols. They used traces collected in a controlled environ-
ment to evaluate the method, which achieved a recall of between 74% and 100% and
false positives and negatives rates ranging from 0% to 9% and from 0% to 18%, re-
spectively. Palmieri and Fiore [2009] presented a new approach for the classification of
Internet traffic that relies on Recurrence Quantification Analysis (RQA). They studied
non-linear properties of specific IP flow types so that they could determine the recur-
rence phenomena and hidden non-stationary transition patterns related to each type
of traffic. For the different traffic classes considered in the study (HTTP, eDonkey2000,
Domain Name System (DNS), SMTP, POP, and SSH), the authors obtained average
recall rates ranging from 45.8% to 89.4%, when compared to DPI. The tests were per-
formed with three distinct traces captured in a university network.

5.3.4. Machine Learning Algorithms. The supervised and unsupervised ML methods are
widely used in studies on the classification of network traffic. In the following para-
graphs, the different research works based on ML are organized depending on the
techniques employed.

Naı̈ve Bayes and Neural Networks. A Naı̈ve Bayes estimator was employed
in [Moore and Zuev 2005; Zuev and Moore 2005] to distinguish the traffic based on
the application-level protocol and they used hand-classified data to train the classi-
fier. The input discriminators for this study were formed by several properties of the
flows. The method was tested with traffic data from a research campus, previously
hand-classified and collected twelve months later than the data used for the training
process (which proves the temporal stability of this approach), and achieved a precision
of between 13.46% and 99.27% and a recall of between 93.73% and 96.29%. Schmidt
and Soysal [2006] proposed a mechanism for the detection of P2P traffic resorting to a
Bayesian network, built using the following flow characteristics: IP packet size distri-
bution; packets per flow distribution; octets per flow distribution; flow time distribu-
tion; and well-known port numbers. They evaluated the performance of the classifier
using traffic from an academic network and compared the results against a signature-
based method. The results showed false negatives and positives rates ranging from
16% to 26% and from 22% to 28%, respectively. Auld et al. [2007] also described a
classifier based on a Bayesian neural network, trained using data previously classified
using DPI. A set of traffic properties and statistics was used as input for the classi-
fication process. The method proved to have an accuracy of between 95% and 99%,
for data manually verified and collected eight months after the data used to train the
classification mechanism.
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Clustering. McGregor et al. [2004] proposed a clustering-based methodology that
extracts a range of flow properties and uses the Expectation-Maximization (EM) algo-
rithm to cluster the flow into different classes. A preliminary validation of the approach
showed promising results. A framework for traffic classification, based also on the EM
algorithm and trained using several flow characteristics, was described in [Zander
et al. 2005a; 2005b]. The method was tested using traffic traces from NLANR [2010]
and the results showed moderate effectiveness. Nguyen and Armitage [2006; 2008a]
proposed a solution based on the EM algorithm and on a Naı̈ve Bayes classifier. In
order to test and classify the method, they used traffic from a gaming server and from
a university link and obtained its ground truth using the port numbers. The results
showed an average accuracy above 98.3%. Bernaille et al. [2006a; 2006b] presented a
method for traffic classification that is based on the first five packets of a TCP con-
nection, excluding the control packets (the ones marked with the flags SYN, ACK,
etc.). They experimented three clustering techniques to explore the relations between
the initial packets and identify clusters related with distinct application protocols: k-
means, Gaussian Mixture Model (GMM), and spectral clustering. The mechanism was
trained using an one-hour trace collected at the edge of a university network and it
was tested with a similar trace captured six months later, by comparing it with a DPI-
based classifier. The results presented a recall of between 36.0% and 100.0% and a
false positives rate from 0.0% to 3.6%. In [Bernaille and Teixeira 2007], the authors
extended the same approach, using GMM to identify traffic encrypted (or tunneled)
in Secure Sockets Layer (SSL) connections. The evaluation, performed using manu-
ally generated traffic traces, showed a recall ranging from 81.20% to 100.00% and a
false positives rate of between 0.00% and 2.30%. Erman et al. [2006a] also described
a preliminary work on the effectiveness of clustering algorithms for traffic classifica-
tion. They employed the k-means and the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithms and used several properties to discriminate the
flows, like the total number of packets, the mean packet size, the mean payload size,
the number of bytes transfered, and the mean inter-arrival time. The approach was
tested using a publicly available trace without the payload data and a trace collected
by the authors at a university link, showing a recall ranging from 86.6% to 93.5%.
The ground truth verification was made using port numbers and DPI. In [Erman et al.
2006b], they proposed an unsupervised ML solution, the EM algorithm, for the traffic
classification. They analyzed the performance of the method using traffic traces col-
lected at a university link and compared the results with a supervised ML technique,
a Naı̈ve Bayes classifier. The evaluation showed that the EM algorithm achieved pre-
cision and recall rates between 80% and 100%. The same authors [Erman et al. 2007a]
proposed also a semi-supervised learning method for traffic discrimination, based on
several flow-related statistics, that allows the classifiers to be designed from training
data formed by a few labeled and many unlabeled flows. Although the mechanism is
not limited to any specific clustering algorithm, after the previous studies, they de-
cided to use the k-means. They tested the mechanism using data whose ground truth
was verified using DPI, heuristics and manual verification, and achieved a recall of
between 80% and 90%. The same approach was also used in [Erman et al. 2007b] to
distinguish between Web and P2P traffic, with an accuracy of between 80% and 95%,
precision of between 71.42% and 97.84%, and recall of between 62.10% and 97.32%.

Decision Trees. A method for traffic classification based on decision trees was pro-
posed in [Early et al. 2003]. The trees were constructed by employing the C5.0 algo-
rithm and using the information about the TCP flags used in each connection, as the
authors believe to be enough to capture the flow behavior. The authors used HTTP,
FTP, Telnet, SMTP, and SSH traffic to test and evaluate the mechanism, which proved
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to have a recall of between 82% and 100%. Cao et al. [2008] described an approach
for the identification of application protocols in real-time, at both host and flow levels,
using Classification And Regression Tree (CART). Through an off-line analysis, they
extracted metrics to characterize the traffic and used decision trees to identify the
traffic in an on-line manner. The authors focused their experiments on traffic from Bit-
Torrent, HTTP, SMTP, and FTP, collected in a home link and also in an enterprise net-
work. In order to assess the ground truth, the authors created the traces of BitTorrent
actively, in a controlled manner, at a home environment. The HTTP, SMTP, and FTP
traffic was captured in an enterprise network and filtered using the port numbers. In
the tests the authors performed, the method classified the traffic with a false positives
rate of between 0.05% and 12.7%, and a false negatives rate of between 0% and 17.9%.
Raahemi et al. [2008b] applied Concept-adapting Very Fast Decision Tree (CVFDT) to
identify P2P traffic, using a set of network level attributes of the packets. They used
labeled data sets to evaluate the performance of the mechanism, achieving an accu-
racy of between 79.50% and 98.65%, a specificity of between 82.96% and 95.89%, and a
specificity of between 67.96% and 99.72%. In [Angevine and Zincir-Heywood 2008] the
C4.5 and the AdaBoost algorithms were used to classify UDP and TCP Skype flows.
The authors used the mechanism to analyze labeled traffic traces from a university
network with a recall between 94% and 99% and a false positives rate between 1% and
26%. A decision tree based classifier, Random Forests, was used in [Wang et al. 2008]
to identify traffic from multiple P2P protocols. The method was tested with manually
labeled datasets, captured at residential and academic networks and achieved an ac-
curacy rate ranging from 89.38% to 99.98%, a precision from 32.69% to 100.00%, and a
false positives rate from 0.00% to 12.61%. Branch et al. [2009] also employed the C4.5
algorithm using different conjunctions of flow features from packet lengths, statistics
of large packets and inter-arrival times. Using traffic from a university network, the
method was able to classify the traffic with a precision of 99% and a recall of 98%.

Markov Chains and Models. Wright et al. [2006] focused specifically on the behav-
ior of encrypted traffic. Using a classifier based on hidden Markov models and also
on the k-nearest neighbor algorithm, they proved that it is possible to identify the
application-level protocol: in aggregate traffic without demultiplexing or reassembling
the TCP connections; in aggregate traffic by demultiplexing the flows and analyzing
them individually; and in aggregate traffic without demultiplexing the flows or recog-
nizing which packets in the aggregate traffic belong to which flows (as when the traffic
is encrypted at the network layer). The evaluation was performed using traffic from
SMTP, HTTP, HTTPS, FTP, SSH, Telnet, and AOL Instant Messenger (AIM) and the
ground truth information was verified using port numbers, presenting a recall ranging
from 57.70% to 96.70% and a false positives rate of between 0.62% and 8.37%. Dainotti
et al. [2008] have also proposed a classification mechanism based on hidden Markov
models, whose classification process is based on packet sizes and inter packet times.
The authors applied the model to real traffic traces, verified manually and using DPI,
of two multi-player games, HTTP, SMTP, eDonkey, PPlive P2P TV, and MSN Messen-
ger, reaching a recall of between 90.23% and 100.00%. Xusheng and Zhiming [2009]
used Markov chains to model the sequences of control packets a certain application
exchanges with a remote host and based the decision rule on the Neyman-Pearson test
and on the likelihood criterion.

Support Vector Machines. The behavioral-based classification was accomplished
in [Gonzá1ez-Castaño et al. 2006] by employing SVMs. The solution proposed was
evaluated using datasets that were labeled based on the port numbers and on a few
simple heuristics, reaching an accuracy of between 78.7% and 90.2%. In [Turkett et al.
2008], the authors extracted several flow features and used FTP, SSH, Telnet, SMTP,
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HTTP, and POP related traffic to train a SVM mechanism, which performed well in
the tests they conducted. Este et al. [2008] proposed three pattern recognition solutions
based on SVMs, GMM, and C4.5 to identify the presence of the unknown classes and
they used the size of the first packets as input feature. The tests performed with the
three methods presented an accuracy of between 92.53% and 98.83%, confirmed using
DPI and manual verification. In [Este et al. 2009], the authors described carefully the
approach based on SVMs and used it to classify three sets of traffic. The results of the
test showed a recall ranging from 69.6% to 100.0%. Valenti et al. [2009] described a
new approach to identify the traffic from P2P-TV applications resorting to the number
of packets exchanged between the peers during short time intervals and uses SVMs
to train the mechanism. The authors captured traffic in a large testbed and used it
to test the method, which was able to correctly classify between 91.3% and 99.6% the
data (recall rate), with only between 0.3% and 8.7% of false positives. An approach
relying on SVMs was also proposed in [Sena and Belzarena 2009]. The authors used
the size of the first N packets of each flow as a feature for traffic classification and they
trained the mechanism using data previously classified through DPI. They tested the
method using traffic from the network of an uruguayan ISP and achieved an accuracy
ranging from 30% to 100%.

Other Studies Relying on Machine Learning Techniques. In [Liu et al. 2007], the
authors used the ratio between the amount of download and upload traffic, in each
minute, as an identification pattern for each application and proposed a supervised
ML algorithm to identify each distinct class. They tested the method with traffic from
a few P2P applications, namely Maze, BitTorrent, PPlive, eDonkey, and thunder, which
they collected on a testbed. The results showed an accuracy rate of between 78.5% and
99.8%, depending on the protocol. Raahemi et al. [2008a] employed Fuzzy Predictive
Adaptive Resonance Theory (ART), or Fuzzy ARTMAP, to identify P2P traffic. They
used only data from the IP headers to build the Fuzzy ARTMAP neural networks. The
experimental tests, using labeled datasets, showed that the classifier is able to perform
with an accuracy ranging from 78% to 92%, a sensitivity from 68% to 90%, and a speci-
ficity from 85% to 96%. Huang et al. [2008] used a set of discriminators from which
they identified patterns by resorting to a ML technique. In this work, the authors
experimented a few techniques, concluding that Bayesian network, Partial Decision
Tree (PART), and C4.5 are the ones that performed better. The evaluation was made
using traces collected at a university link, whose ground truth was accessed using pay-
load signatures. The method showed a recall of between 90.87% and 95.11%, depend-
ing of the ML technique used. Hu et al. [2008; 2009] proposed a novel method for the
classification of P2P traffic that aims to build behavioral profiles for each application,
by using association rule mining. They choose five flow tuples, extract flow statistics,
and correlate them using the Apriori algorithm. The approach, which was tested for
BitTorrent and PPLive using on-campus traces, verified manually and through DPI,
presented a recall ranging from 90.0% to 98.0% and a false positives rate between
0.2% and 5.0%. In [Williams et al. 2006], the authors compared five ML algorithms
for traffic flow classification. They argued that it is useful to analyze the algorithms in
terms of computational efficiency rather than classification accuracy as, even though
the accuracy between distinct algorithms may be similar, the computational efficiency
can be considerably different. Based on their results, the authors concluded that C4.5
algorithm was able to classify the flows faster then the remaining algorithms. A simi-
lar conclusion was reached in [Soysal and Schmidt 2007], in which three solutions for
P2P flows detection, based on ML, were compared.

5.3.5. Service Identification. Baldi et al. [2009] described a new approach for traffic clas-
sification that relies on the identification of the service that generates the traffic. They
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defined service as a triple formed by IP address of the server, transport port at the
server, and transport protocol. The authors say that the method can be seen as a com-
plement to reduce the computation and memory requirements of the existing solutions.
Nevertheless, in the tests performed on the Internet link of a university campus, the
mechanism was able to successfully classify 81% of the packets and 93% of the data
(recall rate).

5.4. Classification Based on Active Mechanisms
Although active methods are especially suitable for network performance studies, they
can also be used on traffic detection mechanisms. The Napster and the Gnutella sys-
tems were analyzed in [Saroiu et al. 2002b; 2003] with the purpose of characterizing
the population of end-user hosts. The authors of the study created a crawler for each of
the systems that gathered information regarding different properties, like bottleneck
bandwidths, IP-level latencies, etc. As the goal of the study was to characterize both
systems, the results presented are not focused on the classification accuracy but in the
properties of the traffic.

Ohzahata et al. [2005] have also proposed an active approach to identify pure P2P
traffic and applied their methodology to the Winny P2P file-sharing system. They de-
veloped a crawler to collect information of the IP addresses and transport ports of the
hosts connected to the system and they used it to identify further peers. The study
provides results regarding the number of peers identified by the mechanism, but its
accuracy was not evaluated.

5.5. Classification Through the Combination of Approaches
A few studies propose solutions that combine different kinds of approaches for the
classification of network traffic. Karagiannis et al. [2004c] proposed a cross-validation
mechanism which uses port numbers, payload signatures, and behavioral patterns to
identify traffic from eDonkey, Fasttrack, BitTorrent, Gnutella, MP2P, Direct Connect
and Ares. Besides presenting payload signatures for the said applications, the authors
propose a non payload based method that uses two heuristics. The first heuristic iden-
tifies source-destination IP pairs that use both TCP and UDP. The second one says
that, when the number of distinct IP addresses connected to a destination IP is equal
to the number of distinct ports used for the connections, the flows are likely to be re-
lated to P2P applications. Their behavioral mechanism identified more than 90% of
the total P2P bytes and 99% of the P2P flows, which corresponds to the recall rate.
The false positives rate, which was calculated by comparing the results of the payload
mechanism with the results of the behavioral method, is of approximately 8% to 12%
of the total estimate of P2P traffic. Nevertheless, the authors argue that part of the
false positives are, in fact, true positives that were not identified by the payload based
mechanism.

Dedinski et al. [2005] presented an architecture for the detection and control of P2P
traffic. It makes use of active crawlers to collect information about the peers of a spe-
cific application and, this way, understand the topology of the correspondent overlay
network. Alongside, the network-level properties of the traffic are also analyzed, ei-
ther per-packet or inter-packet, and used as a behavioral pattern, which the authors
identify using wavelet analysis techniques. They performed a preliminary test of the
architecture using only eDonkey and FTP traffic.

In [Nogueira et al. 2007; Couto et al. 2008; Nogueira et al. 2009], a framework to
identify Internet applications using a neural networks-based method was proposed,
relying on a previous identification obtained through any alternative technique. The
authors also described a module to classify the traffic using payload signatures that
was employed in the training of the neural network. They tested the method for traffic
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from BitTorrent, eMule, Gnutella and HTTP, collected individually for each applica-
tion, achieving a recall between 90% and 99%.

Bonfiglio et al. [2007] proposed a Naı̈ve Bayes classifier based on two traffic charac-
teristics, the message size and the average inter packets gap. They also implemented a
classifier based on the packet payload that uses the Chi-Square test to identify Skype
traffic by exploiting the randomness induced by the encryption of the payload. The
authors tested their approach using traffic from an ISP and from a campus and com-
pared its accuracy against a signatures based method, reaching a false positives rate
between 0.00% and 2.40% and a false negatives rate between 2.96% and 29.98%.

A mathematical framework for unsupervised protocol inference was described in [Ma
et al. 2006]. The authors introduced three methods for identifying different aspects of
the communication of a certain protocol: product distributions of byte offsets; Markov
models of byte transitions; and common substring graphs of message strings. They
evaluated the mechanism using traces collected at different buildings of the university
campus and verified manually. Depending on each traffic class in the different traces,
the precision was between 68.81% and 100.0% for product distributions, between 0.0%
and 100.0% for Markov models, and between 76.87% and 99.99% for common substring
graphs. The recall was between 81.82% and 100.0%, 0.0% and 100.0%, and 48.76%
and 100.0%, for product distributions, Markov models, and common substring graphs,
respectively.

Szabó et al. [2007] presented an architecture that can be extended with modules for
distinct traffic classification approaches. They analyzed the performance of the solu-
tion using traffic captured in the network of five mobile operators in Europe and Asia.
The effectiveness of the classification was also evaluated using hand-classified data
and traces captured in a controlled environment.

Adami et al. [2009] proposed a new algorithm to identify, in real-time, the hosts in a
network that are using Skype clients, that relies in payload signatures and statistical
analysis. The algorithm is able to recognize the different types of Skype communica-
tion: direct calls, calls using a relay node, call to phone service, and file transfer. It was
tested on-line and off-line, using traffic from a university LAN and from a small LAN
connected to an ADSL link and its performance was compared with the performance
of five other classifiers. The traces used in [Bonfiglio et al. 2007] were also tested. The
results showed a percentage of false positives between 0% and 0.01%, and of false neg-
atives between 0.06% and 0.64%, in terms of bytes and flows and for both TCP and
UDP traffic. The exception was the false negatives rate for TCP flows, whose value
was 27.46%.

Callado et al. [2010] collected five distinct datasets, captured in different contexts.
The first one was formed by traces from individual applications captured in client
computers, which where assembled in a single dataset. By creating the traces manu-
ally, the authors could be sure of the applications that generated the traffic. The other
datasets were captured in a laboratory network, in an academic backbone, and in the
core router of a commercial link (only one direction). The fifth dataset was formed my
the traffic in only one direction of the trace from the academic backbone. The ground
truth of this four datasets was obtained using DPI. The authors then used six ML algo-
rithms implemented in Weka [Hall et al. 2009] to classify the traffic in the five datasets:
J48 (C4.5 decision trees), PART, NBTree (decision trees with Naı̈ve Bayes classifiers
on the leaves), Bayesian networks with simple estimator, Bayesian networks with ker-
nel estimator and SVMs. They concluded that none of the classifiers performed better
in all the datasets (which correspond to different contexts) and thus they presented
a method to combine different classifiers. In order to choose the result of the com-
bination, they proposed five algorithms: random selection, maximum likelihood com-
bination, Dempster-Shafer combination, and enhanced Dempster-Shafer combination.
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Although it was tested mostly with ML algorithms, the method is independent of the
classifiers one may want to combine. In fact, they have also used BLINC [Karagian-
nis et al. 2005a] and DPI in some of the combinations. The results of the evaluation
showed that the precision varies from 60% to 99% and the completeness varies from
90% to 100%, depending on the dataset used. Nevertheless, the lower accuracy values
were obtained for the datasets that contained only one direction of the flows.

5.6. Applications for Traffic Classification
Besides the research studies proposing solutions for traffic classification and the com-
mercial tools, there are also a few available and ready to use applications, which are
described in the following paragraphs.

L7-filter [2010] is a classification tool for Linux Netfilter subsystem that uses the
application layer data to identify the packets. It is widely used in many studies, be-
ing, most of the times, the comparison baseline for the performance evaluation of new
methods. Another DPI-based tool is l7-netpdlclassifier [2010], which is based on the
NetBee [2010] library and uses a signature database [NetPDL 2010] written using the
NetPDL language [Risso and Baldi 2006]. ipoque has also made available an open-
source version of their DPI tool, which they called OpenDPI [2010].

Antoniades et al. [2006] developed Appmon [2010], a tool for the application-level
classification of network traffic. It is based on two MAPI [2010] function libraries and
it relies on port numbers and data signatures to identify the protocols.

Dainotti et al. [2009] presented TIE [2010], a novel community-oriented software for
traffic classification. It uses the libpcap library and it supports distinct definitions of
sessions and classes, as well as it allows the implementation of additional classification
plugins. In its initial state, TIE is available with only two classification plugins: port
numbers (based on CoralReef ) and payload signatures (based on L7-filter).

A classification tool based on clustering mechanisms, called NetADHICT [2010],
is proposed in [Inoue et al. 2007]. It decomposes the traffic without the use of any
application-specific knowledge and it uses an AJAX-based web interface that allows
one to see the high-level structure of network traffic.

Although CoralReef, Snort, and Wireshark are not especially intended to classify the
traffic regarding the application protocol, they do provide simple mechanisms for such
purpose. The CoralReef suite gives the user the ability to identify the application-level
protocol based on the port numbers; Snort, by default, contains several rules to identify
signatures in the contents of the packets of several protocols; while Wireshark is also
able to recognize payload patterns in non-encrypted traffic.

5.7. Summary and Challenges
Tables III, IV and V summarize the textual analysis included in the previous subsec-
tions. Furthermore, the chronological ordering of the tables allows one to observe the
evolution of the approaches used for the traffic classification and of the protocols each
study addressed. In the tables, the Protocols columns are related with the protocols
considered by each study. The performance metrics included in these tables were cho-
sen as they were the most used ones in the research works described along this survey.

The studies proposing DPI-based solutions are listed in Table III, along with the in-
dication of which were used by their authors to identify encrypted or obfuscated traffic.
For the sake of simplicity, the studies that evaluated or compared the performance of
existing methods were not included in the table.

Since VoIP traffic raises special concerns for network administrators, a few recent
studies have been presenting mechanisms for its detection. Table IV provides a sum-
marized analysis of the approaches they used and their performance.
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Table III. Studies based on DPI, and their capability to be applied to encrypted traffic.
Studies Protocols Encryption

Dewes et al. [2003] Chat protocols Does not apply
Sen et al. [2004] Gnutella, eDonkey, Direct Connect, BitTorrent, KaZaA Does not apply

Karagiannis et al. [2004b] eDonkey2000, FastTrack, BitTorrent, WinMX,
Gnutella, MP2P, Soulseek, Direct Connect Does not apply

Moore and
Papagiannaki [2005] multiple protocols Does not apply

Spognardi et al. [2005] OpenNap, WPN, FastTrack Does not apply
Haffner et al. [2005] FTP, SMTP, POP, IMAP, HTTP, HTTPS, SSH Apply
Choi and Choi [2006] multiple protocols Does not apply

Ehlert and Petgang [2006] Skype Apply
Bin et al. [2007] P2P Does not apply

Dhamankar and King
[2007] multiple protocols Apply

Guo and Qiu [2008] BitTorrent Does not apply
Smith et al. [2008] FTP, SMTP, HTTP Does not apply
Park et al. [2008] LimeWire, BitTorrent, Fileguri Apply

Carvalho et al. [2009a] P2P TV Apply
Carvalho et al. [2009b] BitTorrent Apply

Freire et al. [2009] eDonkey Apply
Finamore et al. [2009] multiple protocols Apply
Mantia et al. [2010] multiple protocols Apply

Cascarano et al. [2010a] multiple protocols Does not apply

Table IV. Studies addressing the subject of VoIP traffic identification and an overview of their performance, in terms
of precision (P), recall (R), false positives (FP), or false negatives (FN).

Studies Approach Protocols Performance (%)

Bonfiglio et al. [2007] Naı̈ve Bayes and
Chi-Square test Skype FP: 0.00–2.40; FN: 2.96–29.98

Angevine and
Zincir-Heywood [2008] C4.5 and AdaBoost Skype R: 94–99; FP: 1–26

Freire et al. [2008a;
2008b]

behavioral
signatures

Skype and
Google Talk R: 90–100; FP: 2–5

Branch et al. [2009] C4.5 Skype P: 99; R: 98

Adami et al. [2009] DPI and statistical
analysis Skype FP: 0–0.01; FN: 0.06–27.46

Table V describes the characteristics and performance of most of the studies ana-
lyzed in this survey that present methods for classification in the dark. For the sake of
simplicity, only the studies that proposed a new method and evaluated its performance
were included. The Baseline column indicates how the ground truth information of the
traffic used in the evaluation was assessed, or what method was used as a reference
to calculate the accuracy value. Most of the terms used in this column are easily un-
derstandable. The expression manual refers to traces manually verified or classified,
controlled traces refers to manually or actively generated traces, and testbed refers
to traces captured in previously prepared testbeds. This table is not meant to be a
comparison between the methods, as the evaluations were made by the authors under
different conditions and using distinct metrics [Salgarelli et al. 2007]. Its only purpose
is to provide an overview of the behavioral methods presented in the literature.

Likewise, Table VI provides a side-by-side comparison of the different approaches
followed by several studies in the literature. In order to keep the table short, we added
only a maximum of four studies for each type of method and gave priority to the most
recent ones. The evaluation results were included to give an easy perception of the
performance of each method. Additionally, another column was added to describe the
ability of the method to be applied to traffic with encrypted transport-level payloads.
Although the studies based on port numbers did not addressed the encryption issue, we
considered them suitable for encrypted traffic since the TCP and UDP port numbers
are usually not encrypted.
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Table V. Summary of the studies presenting new methods for traffic classification in the dark and an overview
of their performance, in terms of accuracy (A), precision (P), recall (R), sensitivity (Sens), specificity (Spec),
completeness (C), false positives (FP), or false negatives (FN).

Studies Approach Protocols Performance (%) Baseline

Early et al. [2003] C5.0 HTTP, FTP, Telnet,
SMTP, SSH R: 82–100 ports

Karagiannis et al.
[2004c] DPI and heuristics

eDonkey, Fasttrack,
BitTorrent, Ares,
Gnutella, MP2P,
Direct Connect

R: 90–99; FP: 8–12 DPI

Karagiannis et al.
[2005a] social behavior multiple protocols P: 95–99; C: 80–90 DPI

Moore and Zuev
[2005] Naı̈ve Bayes multiple protocols P: 13.46–99.27; R: 93.73–96.29 manual

Constantinou and
Mavrommatis [2006] heuristics P2P FP: 7.6–42.4; FN: 8.5–12.7 ports

Wright et al. [2006]
hidden Markov

models and
k-nearest neighbor

SMTP, HTTP,
HTTPS, FTP, SSH,

Telnet, AIM
R: 57.70–96.70; FP: 0.62–8.37 ports

Schmidt and Soysal
[2006] Naı̈ve Bayes P2P FP: 22–28; FN: 16–26 DPI

Gonzá1ez-Castaño
et al. [2006] SVMs multiple protocols A: 78.7–90.2 ports and

heuristics

Perényi et al. [2006] heuristics P2P R: 97.19–99.14; FP: 0.3; FN: 0.8 small
labeled trace

Ma et al. [2006]

product dists,
Markov models,
and substring

graphs

multiple protocols P: 0.0–100.0; R: 0.0–100.0 manual

Bernaille et al.
[2006a; 2006b]

k-means, GMM,
and spectral
clustering

multiple protocols R: 36.0–100.0; FP: 0.0–3.6 DPI

Erman et. al [2006a;
2006b; 2007a; 2007b]

k-means and
DBSCAN multiple protocols A: 80–95; P: 71.42–100.00; R: 62.10–100.00 ports and

DPI
Nguyen and

Armitage [2006;
2008a]

EM and Naı̈ve
Bayes multiple protocols P: 98.3–99.7; R: 96.0–98.9 ports

Bernaille and
Teixeira [2007] GMM multiple protocols R: 81.20–100.00; FP: 0.00-2.30 controlled

traces

Auld et al. [2007] Bayesian neural
networks multiple protocols A: 95–99 manual

Liu et al. [2007] supervised
learning algorithm

Maze, BitTorrent,
PPlive, eDonkey,

thunder
A: 78.5–99.8 testbed

Bartlett et al. [2007a] behavioral
signatures P2P file sharing R: 57–97; FP: 2–25 ports and

manual
Nogueira et al. [2007;

2009]
DPI and neural

networks
BitTorrent, eMule,
Gnutella, HTTP R: 90–99 individual

traces

John and Tafvelin
[2008] heuristics multiple protocols R: 98

comparison
other

methods

Wang et al. [2008] Random Forests multiple protocols A: 89.38–99.98; P: 32.69–100.00; FP: 0.00–12.61 labeled
traces

Cao et al. [2008] CART BitTorrent, HTTP,
SMTP, FTP FP: 0.05–12.7; FN: 0–17.9

ports and
controlled

traces

Dainotti et al. [2008] hidden Markov
models

gaming, HTTP,
SMTP, eDonkey,

PPlive, MSN
R: 90.23–100.00 DPI and

manual

Raahemi et al.
[2008b] CVFDT P2P A: 79.50–98.65; Sens: 82.96–95.89; Spec: 67.96–99.72 labeled

traces
Raahemi et al.

[2008a]
Fuzzy ARTMAP
neural networks P2P A: 78–92; Sens: 68–90; Spec: 85–96 labeled

traces

Huang et al. [2008] Bayesian network,
PART, and C4.5 multiple protocols R: 90.87–95.11 DPI

Este et al. [2008;
2009]

SVMs, GMM, and
C4.5 multiple protocols A: 92.53–98.83; R: 69.6–100.0 DPI and

manual
Iliofotou et al. [2008;

2009] social behavior P2P P: 95–96; R: 94–95 DPI

Dusi et al. [2008;
2009]

behavioral
signatures encrypted tunnels R: 82.45–100.00 testbed

Hu et al. [2008; 2009] behavioral
signatures

BitTorrent and
PPLive R: 90.0–98.0; FP: 0.2–5.0 DPI and

manual

Lin et al. [2009] behavioral
signatures multiple protocols R: 74–100; FP: 0–9; FN: 0–18 testbed

Valenti et al. [2009] SVMs P2P-TV R: 91.3–99.6; FP: 0.3–8.7 testbed
Sena and Belzarena

[2009] SVMs multiple protocols A: 30–100 DPI

Palmieri and Fiore
[2009]

behavioral
signatures

HTTP, SMTP,
DNS, POP, SSH,

eDonkey
R: 45.8–89.4 DPI

Baldi et al. [2009] service-based multiple protocols R: 81–93 client probe

Callado et al. [2010] combination of
methods multiple protocols P: 60–99; C: 90–100

DPI and
controled

traces
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Table VI. Overview of studies for traffic classification that follow different approaches, including their ability to be
applied to encrypted traffic and their performance, in terms of accuracy (A), precision (P), recall (R), sensitivity
(Sens), specificity (Spec), completeness (C), false positives (FP), or false negatives (FN).

Appr. Methods Studies Performance (%) Encryption

Saroiu et al. [2002a] – Apply
Gerber et al. [2003] – Apply

Fraleigh et al. [2003] – ApplyPo
rt

ba
se

d port numbers
identification

Sen and Wang [2004] – Apply

Sen et al. [2004] FP: 0; FN: 0.00–9.90 Does not apply
Moore and Papagiannaki [2005] R: 99.99 Does not apply

Guo and Qiu [2008] FP: 0.00–11; FN: 0.33–0.5 Does not applypayload strings

Cascarano et al. [2010a] – Does not apply
Haffner et al. [2005] P: 99.0–100; R: 86.6–99.9 Apply

Park et al. [2008] A: 97.39; FP: 0.39–10.40; FN: 0 Apply
Finamore et al. [2009] R: 99.6; FP: 0.34 Apply

automated
signature
extraction Mantia et al. [2010] R: 97.62 Apply

heuristics based on
payload bytes Ehlert and Petgang [2006] – Apply

payload
randomness Dhamankar and King [2007] – Apply

D
P

I

string matched
using DFA Smith et al. [2008] – Does not apply

Constantinou and
Mavrommatis [2006] FP: 7.6–42.4; FN: 8.5–12.7 Apply

Perényi et al. [2006] R: 97.19–99.14; FP: 0.3; FN: 0.8 Applyheuristics

John and Tafvelin [2008] R: 98 Apply
Karagiannis et al. [2005a] P: 95–99; C: 80–90 Applysocial behavior Iliofotou et al. [2008; 2009] P: 95–96; R: 94–95 Apply
Freire et al. [2008a; 2008b] R: 90–100; FP: 2–5 Apply

Dusi et al. [2008; 2009] R: 82.45–100.00 Apply
Lin et al. [2009] R: 74–100; FP: 0–9; FN: 0–18 Apply

statistical or
behavioral
signatures Palmieri and Fiore [2009] R: 45.8–89.4 Apply

Moore and Zuev [2005] P: 13.46–99.27; R: 93.73–96.29 Apply
Schmidt and Soysal [2006] FP: 22–28; FN: 16–26 ApplyNaı̈ve Bayes and

neural networks Auld et al. [2007] A: 95–99 Apply

clustering

Bernaille et al. [2006a; 2006b] R: 36.0–100.0; FP: 0.0–3.6 Apply
Erman et. al [2006a; 2006b;

2007a; 2007b] A: 80–95; P: 71.42–100.00; R: 62.10–100.00 Apply

Nguyen and Armitage [2006;
2008a] P: 98.3–99.7; R: 96.0–98.9 Apply

Bernaille and Teixeira [2007] R: 81.20–100.00; FP: 0.00–2.30 Apply
Early et al. [2003] R: 82–100 Apply
Cao et al. [2008] FP: 0.05–12.7; FN: 0–17.9 Apply

Angevine and
Zincir-Heywood [2008] R: 94–99; FP: 1–26 Applydecision trees

Branch et al. [2009] P: 99; R: 98 Apply
Markov chains

and models
Wright et al. [2006] R: 57.70–96.70; FP: 0.62–8.37 Apply

Dainotti et al. [2008] R: 90.23–100.00 Apply
Gonzá1ez-Castaño et al. [2006] A: 78.7–90.2 Apply

Este et al. [2008; 2009] A: 92.53–98.83; R: 69.6–100.0 Apply
Valenti et al. [2009] R: 91.3–99.6; FP: 0.3–8.7 ApplySVMs

Sena and Belzarena [2009] A: 30–100 Apply
Liu et al. [2007] A: 78.5–99.8 Apply

Raahemi et al. [2008a] A: 78–92; Sens: 68–90; Spec: 85–96 Apply
Huang et al. [2008] R: 90.87–95.11 Apply

other ML-based
methods

Hu et al. [2008; 2009] R: 90.0–98.0; FP: 0.2–5.0 Apply

C
la

ss
ifi

ca
ti

on
In

T
he

D
ar

k

service
identification Baldi et al. [2009] R: 81–93 Apply

Saroiu et al. [2002b; 2003] – Apply

A
ct

iv
e

M
ec

ha
ni

sm
s

Active crawlers
Ohzahata et al. [2005] – Apply

DPI and heuristics Karagiannis et al. [2004c] R: 90–99; FP: 8–12 Apply
product dists,

Markov models,
and substring

graphs

Ma et al. [2006] P: 0.0–100.0; R: 0.0–100.0 Does not apply

DPI, heuristics,
and ports Szabó et al. [2007] – Does not apply

Naı̈ve Bayes and
payload

randomness
Bonfiglio et al. [2007] FP: 0.00–2.40; FN: 2.96–29.9 Apply

DPI and neural
networks Nogueira et al. [2007; 2009] R: 90–99 Apply

DPI and statistical
analysis Adami et al. [2009] FP: 0.00–0.01; FN: 0.06–27.46 Apply

C
om

bi
na

ti
on

of
A

pp
ro

ac
he

s

combination of
methods Callado et al. [2010] P: 60–99; R: 90–100 Apply
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The literature review presented in this section shows a clear trend towards the use
of classification in the dark methods. The majority of the articles published in the last
few years proposed alternatives to DPI that can be used for encrypted or obfuscated
traffic and can operate in real-time in high-speed networks. This tendency is driven by
the growth of the networks throughput and need to have means to identify the nature
of the traffic, and also by the increasingly common payload encryption.

The early methods for traffic classification in the dark were mostly based on be-
havior modeling, either by resorting to heuristics or by implementing more complex
mechanisms. More recently, however, most studies are proposing classifiers based on
statistical signatures or in multiple ML algorithms. Although the number of proposals
based on ML is growing significantly, they seem to have reached a point were most
of them use similar ML algorithms to process different features of the traffic and all
of them present high accuracy. Hence, it is difficult to be sure if such proposals are
evolving the state-of-the-art in traffic classification. Some of the recent articles are
still proposing methods implemented to work off-line only, as they need to have access
to the entire flows. Moreover, the methods for classification in the dark are growing
in complexity, compromising one of their main motivations. In fact, Cascarano et al.
[2009] compared the performance of a DPI classifier and an SVM-based method and
concluded that they have similar computation cost. On the other hand, some recent
studies are also proposing DPI methods that are able to classify encrypted traffic (see
table III).

Therefore, more effort should be put on strategies to evaluate the true performance
of the classifiers. This is not a simple task and it raises many challenges, as described
in section 4.5. However, it is crucial, not to compare classifiers, but to have an accurate
perception if the current proposals are really effective and how they can be improved.
To the best of our knowledge, only three articles have addressed the subject of ground
truth verification and proposed solutions [Szabó et al. 2008; Gringoli et al. 2009; Canini
et al. 2009]. Moreover, a correct performance evaluation depends also on the datasets
used for the validation. The classification challenges raised by several applications
should be carefully analyzed and perhaps datasets of the traffic from many of them
can be made available to be used in research studies.

Furthermore, there are several available tools, ready to use, for traffic classification
using DPI; however, there are almost no applications implementing traffic characteri-
zation in the dark methods and that can be easily installed and experimented, on-line
and off-line. Although this is not a clear research goal, it would be interesting to be
able to effortlessly use some of the proposed methods in real-time experimental net-
work environments and see how they could adapt to real scenarios.

6. CONCLUSIONS
The evolution of the services and applications running on the Internet has caused im-
portant changes in the properties of the traffic. Besides the increase of bandwidth con-
sumption, other challenges have been raised for network managers. In order guaran-
tee, the correct operation of networks, efficient mechanisms for traffic classification are
required. Since port-based methods have lost their utility when the protocols started to
use random port numbers, many studies proposed alternative mechanisms to classify
traffic, either by deeply inspecting the traffic or using behavioral information.

This paper presents a survey on traffic classification that describes carefully the
existing approaches. An extensive analysis of the literature was provided, pointing
out the achievements and strengths of each study and its main goals. For the sake of
understanding, it was also included an introduction to the subject of traffic measuring
for the purpose of network monitoring.
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The analysis of the literature bespeaks a clear interest of researchers, in the last
years, in the traffic classification subject, motivated by the challenges created by new
services and protocols, especially the ones based on P2P architecture. Furthermore,
the evolution of the studies on this topic shows an increasing concern about the en-
cryption of the traffic and its consequences for traffic management. The search for
more accurate behavioral methods and DPI mechanisms capable of processing traffic
in high-speed networks, together with the capability to classify encrypted traffic, seem
to be strong trends for the future.
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SZABÓ, G., ORINCSAY, D., MALOMSOKY, S., AND SZABÓ, I. 2008. On the validation of traffic classification
algorithms. In Proceedings of the Passive and Active Measurement Conf. (PAM 2008) (Cleveland, OH,
USA, Apr.). LNCS Series, vol. 4979. Springer-Verlag, Berlin Heidelberg, 72–81.
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