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Abstract

To navigate efficiently, a robot needs to have effective strategies regard-
ing its navigation stages: perception, mapping, localization and path plan-
ning. In the localization aspect, a robot estimates its current location in
an environment. The more precise this estimation is, the more accurate
will be the map of the environment and the robot’s ability to create a
more precise trajectory of the path. In this paper we study different ap-
proaches to obtain an estimate of an autonomous guided vehicle localiza-
tion, built from non-visual sensor data. We compare results from different
regressions methods, namely ridge, lasso, elastic net and support vector
regression, with data from individual sensors and two standard fusion ap-
proaches, Adaptive Monte Carlo Localization and the Extended Kalman
Filter. We concluded that the elastic net regression is a viable method for
fusion information from multiple sources (sensors and prediction algo-
rithms) to improve the localization accuracy.

1 Introduction

Localization is a task which involves the robot to use its sensors to retrieve
data from the environment and estimate its position. The measurements
of its sensors are fundamental to help robots to perceive its surroundings
and thus, perform the localization task.

Besides the level of sensor technology, the noise in these sensors must
be taken into account to understand the difference between their mea-
surement and the real world. Sensors such as inertial measurement units
(IMU) and odometry can accumulate drift errors over time [2], and global
positioning system (GPS) can suffer from signal propagation errors, di-
lution of precision and delays provided by earth layers [4]. Hence, the
literature shows that the accuracy of the robot’s position in an environ-
ment can be improved by integrating different sensor information.

This strategy has been adopted by several works throughout the years.
Recently, Sarker et. al. [3] introduced a Bayesian filtering based data
reconstruction scheme to increase the reliability of autonomous naviga-
tion of mobile robots. The authors transform the prediction step and pro-
pose an Imputation step of Extended and Cubature Kalman Filter models
to work toward missing data estimation. In their evaluation, they com-
pare the performance of the two Kalman-based methods using a baseline
model data stream that uses only the unfiltered sensor data. They used
localization coordinates calculated using data from a LIDAR, GPS mod-
ule and orientation information provided by a gyroscope. Their method
worked well for estimating unfiltered and corrupted data. In the work of
[1], the authors propose a lightweight algorithm which creates a virtual-
IMU to store data from multiple IMU sensors. Their method fuses these
information with exteroceptive sensors, achieving better localization ac-
curacy compared to methods that fuses sensors with a single IMU and can
be integrated with filter-based algorithms, as well as optimization-based
filter algorithms. The simulated tests are performed using nine IMUs
and a monocular camera, using poses and sensor measurement based on
real-world data and the results show that the localization error can be im-
proved. For the real-world tests, the authors recorded poses from a GPS-
RTK module and used them as ground truth data creating three indoor
and three outdoor datasets. Their tests regarding localization precision
and improvement of the inertial odometry algorithm were successful.

Adaptive Monte Carlo Localization (AMCL) and Extended Kalman
filter (EKF) are considered standard approaches in fusing sensors to achieve
robot’s localization. Although sensor-fusing techniques are popular for
robot localization, distinct scenarios require the use of distinct approaches.
In this paper we analyze different regression approaches, namely ridge,
lasso, elastic net and support vector regression (SVR) to understand if
these methods can be used to improve the robot’s localization accuracy
by fusing data from sensors compared with AMCL and EKF.

Figure 1: Simulated environment of a part of the Stellantis Factory in
Mangualde, Portugal. This section represents the trajectory of where the
AGV will navigate.

2 Our proposal

2.1 Simulated Environment

The evaluation was executed inside a simulated environment of the Stel-
lantis factory in Mangualde, Portugal. The environment was created using
Gazebo sim and ROS. Accordingly to the factory management, one way
length of the trajectory is roughly 370m. With a speed around 0.2 m/s, it
means that the AGV will take around 60 minutes do complete the path.
The simulation was build in a scale of 10 times smaller.

An autonomous guided vehicle (AGV) inside a factory is used to
transport loads without an onboard driver and its navigation aspects are
software-sensor defined. For this work, the simulated autonomous capa-
bilities of the AGV were configured using ROS packages such as the nav-
igation package, which includes parameters to configure the move_base
node and the Dynamic Window Approach algorithm to allow the robot to
navigate autonomously. Since the data from the sensors and algorithms
are in Cartesian format, the GPS latitude and longitude values were con-
verted using ROS navsat_transform package.

The ground truth values were established by adopting the almost per-
fect odometry data from the Gazebo plugin. We compare values from
localization-related sensors and fusion algorithms to the ground truth value
and analyze the precision of each component. There are different sensors
that can be used to measure data related to the robot position, the ones
used for this work were divided in two parts: individual measurements
and fusion-based measurements. For the individual measures, an odom-
etry sensor and a GPS sensor were used. For the fusion-based measures,
the AMCL algorithm was configured with odometry and laser sensors,
and the EKF was configured with an IMU, odometry, and GPS sensors.

2.2 Data Extraction

The extraction of data from the sensors was done by creating a method
to retrieve 30 Cartesian points per second from ROS topics. The Gazebo
odometry, which has perfect location information, was used as our ground
truth, an odometry configured with noise to simulate the output of real
odometry sensors, a GPS sensor, the AMCL and EKF algorithms.

2.3 Fusing data with Regression Methods

After extracting data from the odometry with noise, GPS, AMCL and
EKF we fused it using several regression methods: ridge, lasso, elastic net
and support vector regression. The main goal is to investigate if these re-
gression approaches could achieve more accurate results than the sensors
and algorithms individually, therefore improving the robot localization.

First, we calculate the euclidean distance between the locations given
by the ground truth and all the sensors and algorithms, and then we cal-
culate the mean and the standard deviation of these results, which appear
in the second columns of Table 1.
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Figure 2: We propose to fuse localization information from two sen-
sors (noisy odometry and GPS) and two prediction methods (AMCL and
EKF). Rectangles represent sensors and ovals represent prediction meth-
ods. ’Ours’ represents the regression approaches evaluated in this work.

Figure 3: Comparison between the data from sensors/algorithms and
ground truth values throughout the path navigated by the AGV.

With the extracted data, we created a data set containing 4989 lo-
calization points from the odometry (noisy and noise-free that is used as
ground truth), GPS, AMCL and EKF. Figure 3 contains a visual compar-
ison between the localization provided by the sensors, the algorithms and
the ground truth values throughout the path in the simulated environment.

With these points, we performed tests with the regression models us-
ing the first 60% of the data for the training set, the following 10% for
validation and remaining 30% for test. We did not shuffle the data such
that no nearby points from one set appear in any of the others. As the
regression models require a penalty term (C for SVR and λ for the oth-
ers) to reduce bias and overcome overfitting, we needed to find the best
value for these terms. We created a function where we tested a range of
values for C and λ from the following set, {0.01, ...,1}, to see which one
would give us the best score for each regression model. This parameter
optimization was performed using only the training and validation data.
After that, we tested the the models using the test data set containing the
last 30% of the data extracted, with the following configurations: ridge,
λ=0.2, max_iter=None, tol=0.001; lasso, λ=0.01, max_iter=1000000,
tol=0.001; elastic net, λ=0.01, max_iter=10000, tol=0.001; and support
vector regression, C=0.7, max_iter=1000.

The values for C and λ indicate the regularization penalty to improve
the model estimate capacity by reducing its variance. The max_iter values
are the number of iterations of the solver in the algorithm. Finally, the
tol value is the precision of the solution, where a tolerance criteria for
stoppage is established. The results of the optimization process are shown
in Fig. 4. We can see that SVR is only affected by the C term for values
below 0.07 and ridge regression is not affected by the particular value
of λ on the tested range, while for the other two approaches, the λ that
maximized the score was chosen. The values of max_iter were obtained in
a similar manner starting from 1 and increasing tenfold until convergence
was obtained. Finally, we used the default value for tol.

In Table 1, one can visualize the Root Mean Squared Error of the x
(RMSE_x) and y (RMSE_y) coordinates and the Mean Absolute Error of
x (MAE_x) and y (MAE_y) coordinates produced by the two sensors, the
two estimation algorithms and the regression methods, on the test data.

The results show that fusing data from GPS, Odometry, EKF and
AMCL using regression methods, can generate a more precise localiza-
tion than when only using the original four localization sources separately.
We also tested fusing only sensor data and only algorithm data to deter-
mine if the accuracy of fusing raw and transformed sets of data separately
could surpass the proposed model. Despite the fusion between AMCL

Table 1: Values for the mean and standard deviation of the euclidean distance be-
tween ground truth points and the sensors and algorithms points, root mean square
error of x and y points, mean absolute error of x and y coordinates of the extracted
data from the AGV’s sensors and algorithms evaluated on the test data set.

Mean (Stddev) RMSE_x RMSE_y MAE_x MAE_y
AMCL 0.235 (0.007) 0.094 0.216 0.092 0.216

Odometry 0.058 (0.006) 0.046 0.036 0.046 0.035
GPS 0.294 (0.051) 0.213 0.210 0.203 0.202
EKF 0.423 (0.290) 0.320 0.401 0.233 0.346

Ridge (all sources) 0.045 (0.008) 0.028 0.037 0.027 0.034
Ridge (GPS+Odom) 0.051 (0.008) 0.037 0.036 0.037 0.034
Ridge (AMCL+EKF) 0.076 (0.052) 0.022 0.089 0.018 0.071

Lasso (all sources) 0.052 (0.027) 0.021 0.054 0.018 0.045
Lasso (GPS+Odom) 0.066 (0.025) 0.061 0.035 0.055 0.033
Lasso (AMCL+EKF) 0.079 (0.051) 0.021 0.092 0.018 0.074

ElasticNet (all sources) 0.043 (0.017) 0.021 0.041 0.018 0.037
ElasticNet (GPS+Odom) 0.065 (0.025) 0.062 0.032 0.055 0.029
ElasticNet (AMCL+EKF) 0.079 (0.051) 0.021 0.092 0.018 0.074

SVR (all sources) 0.047 (0.023) 0.045 0.026 0.040 0.020
SVR (GPS+Odom) 0.067 (0.023) 0.036 0.061 0.029 0.056
SVR (AMCL+EKF) 0.135 (0.024) 0.117 0.073 0.116 0.061

Figure 4: Scores while optimizing λ and C on validation data.

and EKF data presenting quite accurate localization values, when fusing
all the sources, elastic net presented the best overall results, beating all
other methods with smaller mean distance error and obtaining good re-
sults on the corresponding RMSE and MAE metrics w.r.t the X axis.

3 Conclusions
In this paper we explored the use of regression approaches to improve the
localization accuracy of a simulated AGV. Our experiments showed that
the elastic net regression method can be used as fusion method that can
improve the localization quality of an AGV. This is somewhat expected as
elastic net is useful for problems with multiple correlated features, which
is the case here. Future work will explore the use of neural-based ap-
proaches to this problem.

Acknowledgments
This work was supported by NOVA LINCS (UIDB/04516/2020) with
the financial support of FCT- Fundação para a Ciência e a Tecnologia,
through national funds, and partially supported by project 026653 (POCI-
01- 0247-FEDER-026653) INDTECH 4.0 – New technologies for smart
manufacturing, cofinanced by the Portugal 2020 Program (PT 2020), Com-
pete 2020 Program and the European Union through the European Re-
gional Development Fund (ERDF).

References
[1] Mingyang Li, Ming Zhang, Yiming Chen, and Xiangyu Xu. A

lightweight and accurate localization algorithm using multiple iner-
tial measurement units. IEEE Robotics and Automation Letters, 2020.

[2] Prabin Kumar Panigrahi and Sukant Kishoro Bisoy. Localization
strategies for autonomous mobile robots: A review. Journal of King
Saud University - Computer and Information Sciences, 2021.

[3] Victor Kathan Sarker, Prateeti Mukherjee, and Tomi Westerlund. En-
hanced reliability of mobile robots with sensor data estimation at
edge. IEEE Global Conference on Artificial Intelligence and Internet
of Things (GCAIoT), 2020.

[4] Junjie Shen, Jun Won, Zeyuan Chen, and Qi Alfred Chen. Drift with
devil: Security of multi-sensor fusion based localization in high-level
autonomous driving under gps spoofing. USENIX Symposium, 2020.

2


