On the evaluation of energy-efficient deep learning using stacked autoencoders on mobile GPUs

G. Falcao*, L. A. Alexandre†, J. Marques*, X. Frazao†, J. Maria*

*Instituto de Telecomunicações, Department of Electrical and Computer Engineering, University of Coimbra, Portugal
†Instituto de Telecomunicações, Department of Informatics, University of Beira Interior, Portugal

Abstract—Over the last years, deep learning architectures have gained attention by winning important international detection and classification challenges. However, due to high levels of energy consumption, the need to use low-power devices at acceptable throughput performance is higher than ever. This paper tries to solve this problem by introducing energy efficient deep learning based on local training and using low-power mobile GPU parallel architectures, all conveniently supported by the same high-level description of the deep network. Also, it proposes to discover the maximum dimensions that a particular type of deep learning architecture—the stacked autoencoder—can support by finding the hardware limitations of a representative group of mobile GPUs and platforms.

Index Terms—Parallel processing, Mobile GPU, Low-power, Energy savings, Deep Learning, Stacked Autoencoders

I. INTRODUCTION

To address both the increasing size of training datasets and corresponding high computational cost, modern deep learning approaches of neural networks have been turning towards the cooperative use of GPU clusters [1]. However, training can still take hours, days or even weeks to complete.

While the current trend in machine learning is using convolutional neural networks (CNNs), such current state-of-the-art implementations tend to consume high levels of energy in order to produce the expected results, which directly impacts the processing costs of big data and creates constraints in their utilization in low-power-driven autonomous vehicles/robots, that consume at least one order of magnitude less energy while guaranteeing equally competitive throughput and classification error performance, when compared to desktop GPUs or CPUs.

In this paper we propose a scalable parallel solution for stacked autoencoder (SAE) architectures in mobile GPUs, that allow providing to small autonomous robots/vehicles deep learning capabilities. The paper builds upon [2] as a first step towards the implementation of more complex approaches to deep learning, such as CNNs, so as to understand the possible gains in terms of energy savings, as well as comprehend the limitations at hardware and software levels.

The goal is to conciliate the performance of deep learning applications, such as object detection and classification, with real-time execution capabilities at low-energy consumption budgets and discover the associated hardware constraints.

Currently, several frameworks allow the training and evaluation of deep learning models, (e.g. Theano [3]). However, these do not allow to change all aspects of the algorithm for the proposed experiments, which required the development of code to support higher control degrees over several aspects of execution and model parallelization.

II. DEEP LEARNING AND STACKED AUTOENCODERS

The use of more than two hidden layers in neural network supervised learning was seen as unnecessary until recently [4]. The exceptions were the neocognitron [5] and the convolutional neural networks (CNNs) [6], both developed mostly for visual tasks with the main issue being the difficulty in training several hidden layers using standard back-propagation: there were problems with adjusting the weights as the depth increased (vanishing gradients) [7].

After that, it has become a major trend in machine learning (deep learning is currently the state-of-the-art approach in multiple domains), when the efforts by Hinton and co-workers [8] resulted in the ability to train deep neural networks (DNNs), namely Deep Belief Networks (DBNs). At the same time, other groups proposed a way to train deep networks based on stacking autoencoders[9].

The potential advantages that come with using deep learning are the possibility of having increasingly more abstract levels of representation, reusing the intermediate level representations across different tasks and also obtaining a more compact and efficient representation for certain types of problems [10].

A. Stacked autoencoders

An autoencoder (AE) is a network that tries to produce at the output what is presented in the input [2]. The most basic AE is a multi-layered perceptron that has one hidden and one output layer, such that the weight matrix of the last layer is the transpose of the weight matrix of the hidden layer (clamped weights) and the number of output neurons is equal to the number of inputs. An AE is trained in an unsupervised manner (no class information is used).

To obtain a deep architecture using AEs they are stacked on top of each other such that the output of an AE is the input for the next one. This stacking can produce a deep network: the SAE. The SAE is obtained as follows: first pre-train several AEs such that the first learns to approximate the inputs from the dataset, the second learns to approximate the hidden representations of the first and so on. A final layer of neurons is placed on top of the AE that is the output layer and will have as many neurons as there are classes in the problem (e.g. a softmax layer). The training is then performed for all layers in a supervised manner (called fine-tuning).
Algorithm 1: Training Phase

1: Load training set from disk
2: if load_checkpoint = true then
3: Load weights from previous checkpoint
4: else
5: Generate random weights
6: end if
7: Initialize OpenCL
8: for layer = 0 to number_of_layers do
9: Allocate INPUT, OUTPUT and WEIGHTS buffers
10: Allocate ERROR and GRADIENT buffers
11: for batch = 0 to number_of_batches do
12: {Parallel Encoder’s Feed-Forward}
13: INPUT ← Host, WEIGHTS ← Host
14: Enqueue the Feed-Forward parallel kernel (HiddenNodes × BatchSize
work-items)
15: Compute the encoder’s feed-forward phase on the OpenCL device
16: Host ← OUTPUT
17: {Parallel Decoder’s Feed-Forward}
18: Decoder INPUT ← Encoder OUTPUT
19: Enqueue the Feed-Forward parallel kernel (VisibleNodes × BatchSize
work-items)
20: Compute the decoder’s feed-forward phase on the OpenCL device
21: Host ← OUTPUT
22: {Parallel Decoder’s Back-Propagation}
23: Enqueue the Back-Propagation - Output Layer parallel kernel (VisibleNodes
work-items)
24: Compute the encoder’s Back-Propagation phase on the OpenCL device
25: Host ← ERROR
26: {Parallel Encoder’s Back-Propagation}
27: Decoder GRADIENT ← Encoder GRADIENT
28: Enqueue the Back-Propagation - Hidden Layer parallel kernel
(HiddenNodes work-items)
29: Compute the decoder’s back-propagation phase on the OpenCL device
30: Host ← GRADIENT
31: Update weights for the next epoch
32: end for
33: Release all buffers
34: end for

Algorithm 2: Testing Phase

1: Load training set from disk
2: Load weights from training phase
3: Initialize OpenCL
4: for layer = 0 to number_of_layers do
5: Allocate INPUT, OUTPUT and WEIGHTS buffers
6: for batch = 0 to number_of_batches do
7: {Parallel Encoder’s Feed-Forward}
8: INPUT ← Host, WEIGHTS ← Host
9: Enqueue the Feed-Forward parallel kernel (HiddenNodes × BatchSize
work-items)
10: Compute the encoder’s feed-forward phase on the OpenCL device
11: Host ← OUTPUT
12: end for
13: end for
14: Compute final classification accuracy

III. HARDWARE PARALLELISM FOR NEURAL NETWORKS

A. Mapping parallel OpenCL kernels on the device

For the parallel development of the training phase, three
OpenCL kernels were created. The first one relates to the
feed-forward algorithm, sending the data through the network,
layer-by-layer, and computing the results. The second kernel
computes the AE reconstruction error at the output layer and
begins the gradient-based back-propagation algorithm. The
back-propagation, as the feed-forward, has data-dependencies
from the previous layer. Since the back-propagation for the
hidden layer is dependent on the gradient calculations from
the output layer, this results in a third kernel for that purpose.
The training phase is described in Algorithm 1.

After the training process, the SAE is ready to classify
the provided test samples. The decoder’s feed-forward and all
back-propagation are now downloaded from the computation,
leaving the network with only the encoder from each AE.
This phase is described in Algorithm 2.

1) Feed-forward: When the samples from the dataset and
weights for that layer are loaded to the device’s global mem-
ory, the initial phase is started by sending data through the
network. The kernel is launched on the device across two
dimensions, the first being equal to the output nodes of the
current layer and the second relative to the amount of samples
from the dataset. This means that one particular work-item
is responsible for one output node when all the input nodes
from one sample go through it. Inside the kernel, a weighted
sum is computed in a loop, over all the layer input nodes and
respective weights for that particular output node, computing
the overall sum of that product. An activation function (the
sigmoid function), is then applied to that sum plus the bias of
that output node. This kernel is valid for both the encoder
and decoder phase of the AE, the only difference being the input
varying between the original image for the encoder layer and
the encoder output for the decoder layer.

2) Back-propagation (output layer): After computing the
feed-forward across the AE (encoder, then decoder), the result-
ing decoder output is of the same size as the encoder’s input.
We then have the possibility of calculating a reconstruction
error. The kernel developed for this phase calculates that
error and then computes the gradient descent on the back-
propagation. Since we are batch training the network, this time
the kernel is launched only on one dimension, as opposed to
two dimension like the feedforward phase, so as to fit into the
device’s memory. The algorithm inside the kernel then loops
over all dataset samples, computing the reconstruction error
and gradient for each sample. The partial derivative for the
weights is then calculated via the gradient. The value for the
bias is obtained directly from the gradient, with the weights
also being dependent on the output from the previous hidden
layer. When all the samples have been processed, the mean of
the gradient is needed due to the batch training.

3) Back-propagation (hidden layer): The kernel used for
the back propagation in the hidden layer is close to that of the
output layer. We do not have a reconstruction error for this
layer but we are dependent on the gradient calculated in the
output layer. The kernel is then launched with one dimension,
the size of the hidden layer output nodes. The product of the
weights of this layer and the output gradient is summed across
the input nodes, with the resulting sum replacing the error
in the previous algorithm, finally obtaining the gradient for
this layer. The kernel then proceeds to compute the partial
derivatives as described in the output layer kernel. When the
back propagation for this hidden layer comes to an end, the
partial derivatives are then copied to the host where a simple
loop updates the weights and bias, this being a fast and low
computationally demanding operation. In order to implement
the aforementioned parallel kernels, we developed parallel
kernels for mobile GPUs with optimizations that are identified in the next subsections.

B. Mobile GPU specific high-level memory optimizations

For the mobile GPU case, the memory embedded in the system on chip (SoC), present in smartphones with ARM CPUs and mobile GPUs, differs from regular OpenCL devices. Usually, on conventional desktop GPUs, there is a host memory and a separate memory, directly on the device’s (GPU) board. These systems require memory transactions (copies, reads and writes) between the host and device, usually via the PCI-e bus linking them together, so the data is accessible on the faster device’s memory. For SoC implemented in smartphone and similar devices, a single memory is available and thus shared by host and device. The memory transactions between host and device are therefore unnecessary, as the memory space is the same across both of them.

1) Shared memory: An algorithmic limitation with impact in the utilization of mobile resources consists of the need of floating-point calculation to be performed on input data and weights product between host and device. To ensure an implementation with zero-copy buffers, allocation of said buffers must be first performed via a call to \texttt{clCreateBuffer} with the flag \texttt{CL_MEM_ALLOC_HOST_PTR}, resulting in a buffer visible by both the host CPU and GPU OpenCL device. This ensures the buffer is automatically memory aligned to the device, and that an unnecessary copy and data duplication is not performed at a later stage in the pipeline. After the allocation is complete, the buffer can be mapped to a host pointer with \texttt{clEnqueueMapBuffer} and filled with the necessary data to be processed. The buffer can then be returned to the device's control via \texttt{clEnqueueUnmapMemObject}, after which the kernel is launched.

This process is necessary, since buffers created on the host side via \texttt{malloc()} cannot be mapped to the device's memory space and, furthermore, buffers created with the \texttt{CL_MEM_USE_HOST_PTR} flag and then linked to an existing host side pointer will still result in a time expensive copy and in data duplication.

IV. EXPERIMENTAL RESULTS ON LOW-POWER ARCHITECTURES

The goal of the experiments was three-fold: 1) validate the implementations in all devices; 2) allow comparing energy consumption between the tested platforms; and 3) find their hardware limitations namely due to memory and processing capabilities. For this we have chosen a well known dataset, the MNIST [11]. The five computing platforms used in these experiments are listed in Table I.

The desktop GPU is used only for reference, since our focus is on low-power devices. The training hyper-parameters defined for the SAE consist of a training batch of 64 images and an initial learning rate of 0.45 on a network of size 784 − 500 − 250 − 10. For this particular SAE we achieved a classification error of 1.47% training during 1500 epochs.

<table>
<thead>
<tr>
<th>Platform</th>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>refGPU</td>
<td>i7 4770k, 32GB</td>
<td>GTX Titan, 6GB</td>
</tr>
<tr>
<td>mGPU1</td>
<td>ARMv7 Krait 400, 2GB</td>
<td>Adreno 330, 2GB</td>
</tr>
<tr>
<td>mGPU2</td>
<td>ARMv7-A Krait 450, 3GB</td>
<td>Adreno 420, 3GB</td>
</tr>
<tr>
<td>mGPU3</td>
<td>ARMv7 Krait 400, 3GB</td>
<td>Adreno 330, 3GB</td>
</tr>
<tr>
<td>mGPU4</td>
<td>ARMv8-A Cortex-A57</td>
<td>Adreno 430, 4GB</td>
</tr>
</tbody>
</table>

A variety of reconstruction and classification outputs were analyzed, along with a graphical output of the estimated classification as a function of the expected labels varying from digit 0 to 9, and we present a few cases with a high degree of probability (higher than 0.9) in Fig 1. It should be noted that since the algorithm remains equal and weights are initialized with the same random seed generator, the error is constant in all platforms.

![Fig. 1. Some of the images correctly classified (from MNIST).](image-url)

For the energy consumption analysis in Table II we kept the same SAE architecture using 1 epoch. These measurements scale linearly with the number of epochs. Power consumption was calculated measuring the idle requirements of the entire system (host and device) and then launching the application, measuring the power difference (load - idle) over the SAE execution time, using a power meter for the desktop refGPU and the PowerTutor [12] application for the remaining devices.

| Device | Exec. Time (min|sec) | Average Power (W) | Energy Consump. (Wh)* | Energy Consump. (vs GPU)* |
|--------|---------------|-------------------|----------------------|-------------------------|
| refGPU | 54s | 247 | 3.7050 | - |
| mGPU1 | 13m25s | 0.242 | 0.0541 | 1.46% |
| mGPU2 | 11m33s | 0.230 | 0.0436 | 1.18% |
| mGPU3 | 12m15s | 0.317 | 0.0593 | 1.61% |
| mGPU4 | 10m58s | 0.140 | 0.0256 | 0.69% |

Table II shows that regarding energy consumption, mobile devices are clearly better than the reference desktop refGPU, achieving the same results while consuming only from 0.69% to 1.61% of the energy, which can be attributed to both the
optimizations performed and the hardware, since mobile GPUs are far more energy efficient than the desktop counterpart. Considering the energy-efficiency point of view, mobile devices clearly outperform the refGPU, despite taking 15 times more time to complete the same task. It should be noted, however, that using the power meter to measure the average power for both smartphone platforms (mGPU1 and mGPU2) we achieve approximately 3.4W, which represents the power required by the entire development platform. Nonetheless, using those values as basis for energy consumption calculation would give 0.7603Wh and 0.6451Wh, respectively. Even for such worst case scenarios, mobile devices still require only 20% of the energy of the desktop GPU.

For the hardware limitations analysis we test an increasing number of neurons for the first hidden layer until a maximum is reached (i.e., device kills the process), thus achieving the maximum weights that each device can train using its GPU. Table III indicates the maximum dimensions achieved.

<table>
<thead>
<tr>
<th>Device</th>
<th>Time</th>
<th>First Hidden Layer Neurons</th>
<th>Number of Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>mGPU1</td>
<td>1h51m24s</td>
<td>3150</td>
<td>3263010</td>
</tr>
<tr>
<td>mGPU2</td>
<td>3h50m19s</td>
<td>5950</td>
<td>6161010</td>
</tr>
<tr>
<td>mGPU3</td>
<td>3h10m44s</td>
<td>5000</td>
<td>5177760</td>
</tr>
<tr>
<td>mGPU4</td>
<td>3h58m13s</td>
<td>7250</td>
<td>7506510</td>
</tr>
</tbody>
</table>

As a term of comparison, the refGPU ran the SAE for each mobile devices’ largest architecture in 5m43s, 9m13s, 7m40s and 11m40s, respectively. As is normal when using SAE, the number of weights was calculated using the following formula:

\[(784 + 1) \times N + (N + 1) \times 250 + (250 + 1) \times 10\]

where 784 is the number of inputs, \(N\) is the number of neurons from the first hidden layer, 250 the number of neurons from the second hidden layer and 10 is the number of outputs.

Although Table III shows that due to hardware limitations the devices perform significantly slower for very large neural networks, they run fast small to medium sized networks (as seen in Table II), albeit execution times are higher than they normally would in desktop GPUs. However, energy consumption savings make up for such higher execution times.

To further grasp hardware limitations results, there are several factors that need to be considered: first, mobile GPUs do not have dedicated memory, so the memory that is available is small and managed by the SoC, varying between devices; also, even using the same SoC, results can vary by simply using different OS versions that can implement different resource management policies; and finally, we have to consider that mobile devices only recently started supporting OpenCL, so these implementations have still margin to progress. With the expected advances of hardware and new OpenCL implementations, OpenCL capabilities in mobile devices will likely improve considerably in the near future.

V. CONCLUSIONS

This work presented energy-efficient training and testing of deep neural networks of the SAE type on mobile smartphones and low-power GPUs. We addressed implementation details and experimental analysis by comparing the energy consumption of 5 different and representative embedded architectures. We have found the limits in terms of the maximum deep neural network size that fits their restricted hardware resources.

Although not as fast as on a desktop GPU, the training on mobile GPUs uses less than 2% energy than it would on the desktop counterpart, opening room to the processing of compute-intensive algorithms directly on autonomous vehicles, robots and other low-power applications.

Moreover, this study paves the way for technology progression, as mobile GPUs with more hardware resources are developed. This may include state-of-the-art networks, such as CNNs, running exclusively on low-power devices, achieving top results in terms of energy savings and classification accuracy as well. Additionally, the use of approaches such as Deep compression [13] to improve speed and reduce storage needs can further contribute to this goal.

Finally, we have made the OpenCL source code available (https://montecristo.co.it.pt/pdp17) to the community that wishes to replicate these experiments.

VI. ACKNOWLEDGEMENT

This work was supported by FCT and Instituto de Telecomunicações under grant UID/EIA/50008/2013.

REFERENCES