
An AutoML-based Approach to
Multimodal Image Sentiment Analysis

Vasco Lopes∗, António Gaspar∗, Luı́s A. Alexandre∗, João Cordeiro†
∗NOVA LINCS, Universidade da Beira Interior

†LIAAD, INESC TEC – Institute for Systems and Computer Engineering, Technology and Science
‡HULTIG – Centre of Human Language Technology and Bioinformatics
{vasco.lopes, antonio.pedro.gaspar, luis.alexandre, jpcc}@ubi.pt

Abstract—Sentiment analysis is a research topic focused on
analysing data to extract information related to the sentiment
that it causes. Applications of sentiment analysis are wide, rang-
ing from recommendation systems, and marketing to customer
satisfaction. Recent approaches evaluate textual content using
Machine Learning techniques that are trained over large corpora.
However, as social media grown, other data types emerged in
large quantities, such as images. Sentiment analysis in images
has shown to be a valuable complement to textual data since
it enables the inference of the underlying message polarity by
creating context and connections. Multimodal sentiment analysis
approaches intend to leverage information of both textual and
image content to perform an evaluation. Despite recent advances,
current solutions still flounder in combining both image and
textual information to classify social media data, mainly due to
subjectivity, inter-class homogeneity and fusion data differences.
In this paper, we propose a method that combines both textual
and image individual sentiment analysis into a final fused
classification based on AutoML, that performs a random search
to find the best model. Our method achieved state-of-the-art
performance in the B-T4SA dataset, with 95.19% accuracy.

I. INTRODUCTION

Sentiment analysis is an ever-growing research topic, where
the focus is to analyze the underlying sentiment of a given
source of data, based on its subjectivity and context. Sentiment
analysis is mostly performed using textual data, where the goal
is to, based on a sentence or a text, determine the author’s
message polarity. The classification is generally binary - either
negative or positive, or n-class classification, wherein, the most
used one is a 3-class classification - negative, neutral and
positive, using either machine-learning approaches, where a
classifier is trained using a labelled corpus, or using lexicon-
based approaches, where the textual information is classified
based on its semantics or by using statistical approaches
[1], [2]. Applications of sentiment analysis can be seen in
many contexts, such as brand awareness [3], political voting
intentions [1], customer satisfaction [4], [5] and in disaster
relief [6].

The proliferation of social media opened doors for mas-
sive collection of data for sentiment analysis [7]. These are
important channels of human communication, allowing for
instantaneous spread of information. Twitter emerged as one
focal point to capture and analyze data, in which users express
their opinions, feelings and thoughts regarding entities or
events. Detecting sentiments in Twitter differs from detecting

sentiments in conventional text such as blogs and forums,
due to the reduced size of the textual data, and because
of the information context, addition of symbols in the form
of emojis and irony and subjectivity. However, social media
networks, such as Twitter, also provide the opportunity to
congregate textual data with more information, usually in the
form of images, videos or audio. The coupling of multiple data
sources, allows the development of multimodal classification,
in which a method leverages more than one type of data to
perform classification [8]. This is significantly harder in the
context of sentiment analysis, as extracting sentiments solely
from textual information is easier than combining information
from text and, for example, images. Even though a multimodal
approach can improve the performance when compared to a
sole text-approach [9], this is a challenging task, especially
when using data acquired from social media, as the different
data types are sparse and can have different contexts, present
irony, different intentions and their combined evaluation is not
trivial.

In this paper, we propose a novel multimodal sentiment
analysis method, that uses both textual data and images
from social media to perform 3-class classification regarding
polarity. The proposed method consists of initial individual
classification of the textual and image components, and then,
based on Automated Machine Learning (AutoML), fuse both
classifications into a final one. To perform the individual
classifications, we leverage the power of deep neural networks.
For this, we evaluated the performance of multiple networks
and then selected the best for both the text and the image
part. Then, to build the fusing method, we used AutoML
to perform a random search to determine the best model to
perform the final classification. We evaluated the proposed
method in the task of multimodal sentiment analysis using
a dataset containing over 470 thousand tweets, where each
tweet is composed of both textual and image content.

The contributions of this paper, can be summarized as
follows: 1) we conduct a comparison regarding the perfor-
mance of sentiment analysis in textual data from Twitter; 2)
we compare different state-of-the-art deep learning models in
image sentiment analysis, and 3), we propose a novel fusion
method that combines the individual classifications into a final
one, by levering an optimal model generated with AutoML,
which resulted in state-of-the-art accuracy on the B-T4SA



Positive

Neutral

Negative

Pre-processing Classification

Thank you Phuket Sunset
Weddings for using Wedding
Flowers Phuket. Waiting the

happy couple.

AutoML Fusion

Fig. 1. Proposed multimodal architecture. The first container represents the pre-processing component, that receives an image and associated text, and pre-
processes it to remove noise and non-important data. The second container shows both classification components, where the image and the text are classified
individually using CNNs. The third container receives the concatenation of the individual classifications, and performs a final classification using the optimal
model searched - represented by a Gradient Boosting Machine (GBM) in the image.

dataset.
The remainder of this work is organized as follows. Sec-

tion II, contextualizes the related work in multimodal senti-
ment analysis, and the use and application of AutoML meth-
ods. Section III, details the proposed method. Presenting the
architecture of our proposal, including a detailed description of
the text and image analysis methods, as well as the AutoML
component. In Section IV, we introduce the datasets used,
a description of the conducted experiments, and discuss the
results. Finally, Section V presents a conclusion.

II. RELATED WORK

A. Multimodal Sentiment Analysis

Even though the vast majority of the sentiment analysis
proposals focus on single model sentiment analysis, mainly
using textual information [1], [10], there are interesting pro-
posals that try to fuse more than one source of information to
perform multimodal sentiment analysis. The method proposed
in [11], combines features from audio and video, and fuses
them with text features to estimate the sentiment of youtube
movie reviews. In [12], the authors propose Tensor Fusion
Network, which is a network capable of fusing features
extracted from different sources of data, into a single tensor,
allowing sentiment analysis both in separate and conjoined.
Taking a different approach [9], performs multimodal senti-
ment analysis by conducting hierarchical fusion of the different
features by first fusing them into pairs, and then combining
them into one. In [13], the authors proposed Visual Aspect
Attention Network, in which the goal is to use images as
attention mechanisms to aid in detecting important sentences
in documents. To perform such operation, images are analyzed
using a CNN, and the output is used as weights in a word
encoder. In [14], the authors propose a multimodal method
that performs individual analysis of both the image and the
text, and then performs a weighted average over the individual
predictions to perform a final classification. However, while
producing the individual predictions, the authors also introduce
Image Content Analysis, a second method to classify the
images, which is based on detecting the most predominant

object on the image and classifying the image based on the
probability of that object appearing in a given class in the
training set.

The proposed method is more closely related with the one
proposed in [14] in the sense of using two processing branches:
one for text and one for image, and a fusion method to perform
the final classification. However, instead of using heuristics
based on probabilities to classify the text and perform the
fusion, we use deep neural networks to perform the individ-
ual classifications, and AutoML to create an efficient fusion
method.

B. AutoML

AutoML [15], focuses on developing approaches that pro-
vide efficient methods to design machine learning workflows
without extensive need for human intervention or optimization
processes [16]. There have been proposals for solving the
optimization problem of designing machine learning work-
flows using random search [17], evolutionary strategies [18],
bayesian optimization [19] and reinforcement learning [20]. In
[21], the authors extended Auto-Weka in order to use AutoML
to design methods to detect railway track defects. In [22],
AutoML is leveraged to improve the classification component
of CNNs. This method was built by training CNNs until
convergence and then partially removing their classification
component and replacing it by a searched model, resulting
in performance improvements both in accuracy and inference
time. Finally, in [23], AutoML is used to forecasting bank
failures by performing automated feature extraction.

Our work has similarities with Neural Architecture Search
(NAS) [24], in the sense that the focus is in building the
classifier and not the entire process of a machine learning
workflow, but the main difference is that we do not limit
our search to neural networks, rather, we allow more machine
learning models to be searched.

Some of the differentiating points of our proposal are the
fact that it performs a simple and efficient fusion, based on the
individual analysis of the text and image components, and that
it takes advantage of AutoML for finding the final classifier
that works on top of the fused features.



III. PROPOSED METHOD

A. Architecture
The proposed method is composed of three stages: pre-

processing, individual classifications, and the fusion stage. The
entire architecture of the method can be seen in Fig. 1. For both
individual classification components, we implemented several
state-of-the-art methods to perform a comparison and select
the most performant one on the validation set, to be integrated
into the proposed architecture.

In the following sections, we present the implementation
details of both the image (III-B) and text classification (III-C),
as well as the implementation details for the fusion mechanism
(III-D). Moreover, in each section, we further explain the pre-
processing components of the image and the text.

B. Image Sentiment Analysis
To classify the post’s polarity using image data, we explored

the use of state-of-the-art CNNs that perform feature extraction
and classification over the inner representations created. For
this, we focused on using two architectures that are known
to do well in different image analysis tasks: ResNet and
DenseNet. The remainder of this section details the CNNs
used, as well as the pre-processing steps for cleaning the input
images.

1) Preprocessing:
We first apply a resize operation, changing the image size

to 224 ∗ 224, to uniformize the dataset, as images from the
Twitter dataset have different dimensions. Then, each image
is normalized using the mean and standard deviation of each
channel in the whole dataset. This is applied by subtracting the
mean and dividing by the standard deviation in each channel
of each image: imgi = (oi − µi)/σi, i = 1, .., c, where i
represents the channel, o the original image, µ is the mean of
the dataset and σ is the standard deviation of the dataset.

2) Models:
ResNet: Residual Neural Networks (ResNet) [25], intro-

duced the idea of skip connections on CNNs. The “identity
shortcut connection” present in ResNets, usually skipping two
or three layers in the model, allowing for efficient training of
deep CNNs, which are known to suffer from the vanishing gra-
dient problem. This problem is present in the back-propagation
of the calculated gradients to earlier layers. As the gradient is
propagated backwards, repeated multiplications might produce
very small gradients, resulting in performance degradation.
By having residual connections, residual nets learn residual
functions concerning the layer inputs. Furthermore, instead
of learning a direct mapping using stacked-layers, residual
connections let these layers learn residual mappings. This
means that instead of having a layer learning a desired
mapping H(x), regarding to the input x, residual connections
allow to reframe this mapping as F (x) := H(x) − x, which
can then be reframed to H(x) := F (x) + x. More, if the
identity mapping is optimal, residuals can be pushed to zero,
meaning that residual networks will, at least, have the same
performance of networks using stacked-layers without residual
connections.

The ResNet architectures, with different depths, imple-
mented were: ResNet18, ResNet34, ResNet50, ResNet101 and
ResNet152, using the parameters defined in the original paper
[25].

DenseNet: Densely Connected Convolutional Networks
(DenseNet) [26] improved upon ResNet by proposing a type
of CNN that utilizes dense connections between layers, using
Dense Blocks. In this networks, every layer obtains additional
inputs from all preceding layers, instead of traditional layers,
in which their input is the output of the last layer or the output
of the last layer plus a short connection. By allowing multiple
parallel connections, DenseNets preserve the feed-forward
network scheme, by having all layers obtaining concatenated
outputs of all preceding layers, and passing its own feature-
maps to subsequent layers. This allows every layer to receive
a “collective knowledge” from all past layers, mitigating the
vanishing-gradient problem, encouraging feature reuse and
allowing for a reduced number of parameters in each layer,
since the feature maps continuously expand by concatenation
with previous feature maps.

DenseNet models achieved state-of-the-art results in many
image tasks while requiring less computation and fewer model
parameters than previous state-of-the-art CNNs. In this work,
we have implemented DenseNet161 using the parameters
detailed in the original paper [26].

For both ResNet and DenseNet models implemented, we
have also applied transfer learning and conducted an experi-
ment, in which the initial layer of each model was modified
to have 4 input channels, instead of the original 3. A detailed
explanation of these experiments is presented in Section IV-C.

C. Text Sentiment Analysis

This section presents the operations performed over textual
data and the models used to do so. For every deep learning
model with an Embedding Layer, a GloVe 200 dimension pre-
trained on Twitter Embedding was used [27].

1) Pre-processing:
To effectively classify text, before inputting the text into

a classifier, a pre-processing step takes place. This is done
because: 1) the type of text obtained from social-media varies
substantially and contains noise: syntactic, semantic and gram-
mar errors, mainly due to size constraints, typing speed and
slang; 2) standardize data, so that classifiers can more easily
learn patterns; 3) be in concordance with the input constraints
of Word Embeddings layers and different classifiers.

So, the steps to clean the textual data were: 1) transform
HTML codes into words and symbols; 2) remove stop words
using NLTK functionalities; 3) transform every word to lower
case; 4) remove occurrences of more than three equal sequen-
tial characters into a maximum of two (e.g., “sooo happppyy”
becomes “so happy”); 5) remove links and specific social
media user-mentions (both the mention and the “RT” word
from Twitter); and finally, 6) punctuation was removed.

2) Models:
VADER: Valence Aware Dictionary for Sentiment Rea-

soning (VADER) [28], is a lexicon and rule-based method



designed to classify the polarity of text from social media. It
uses a list of lexical features, such as words, which are labelled
accordingly to their polarity. The output of VADER is based on
the probability of the sentence belonging to either the positive,
negative or neutral class. This method was created having as
basis a set of human-curated lexicon sentiment analysis.

TextBlob: TextBlob is a library that implements methods
for processing textual data [29]. Like VADER, TexBlob sen-
timent analysis is based on a set of lexicons that are labelled
accordingly to their polarity. This method performs an average
over all the lexicons that represent the words in the input
sentence and outputs a polarity between −1 and 1. Using this
polarity, we defined that values under −0.1 are classified as
having a negative meaning, over 0.1 are classified as positive,
and the remainder is classified as neutral.

FastText: FastText is a shallow network architecture that
can be trained in a reduced time, when compared to deeper
architectures, whilst achieving competitive results in multiple
text processing tasks [30]. The idea behind FastText is to
have an architecture, based on the Continuous Bag of Words
(CBOW) model [31] to represent words, being then followed
by linear classifiers that classify the input.

The FastText architecture designed in this work consists on
an Embedding layer followed by two Linear layers, the first
having input size equal to the embedding size and output equal
to 256, whilst the second one has input size of 256 and outputs
the classification vector.

LSTM: The Long-Short Term Memory architecture
(LSTM) [32], is a variation of the traditional Recurrent Neural
Networks (RNNs), and was created to mitigate the exploding
and vanishing gradient problems found in simple RNNs. An
LSTM layer consists of a predefined set of recurrent blocks,
each one of them containing cells. These cells have three types:
the input, output and forget gates and serve the purpose of up-
dating, or not, the cell state, erasing its memory and deciding
if the cell output should be available. With this architecture,
an LSTM layer can store information for later use, preventing
gradients from vanishing during the learning process, and can
also determine what information to ignore, therefore, allowing
the network to remember important information for a longer
period of time.

Formally, an LSTM layer computes for each element in the
input sequence:

it = σ(Wiixt + bii +Whih(t−1) + bhi) (1)
gt = tanh(Wigxt + big +Whgh(t−1) + bhg) (2)
ot = σ(Wioxt + bio +Whoh(t−1) + bho) (3)
ct = ft ◦ c(t−1) + it ◦ gt (4)
ht = ot ◦ tanh(ct) (5)

where ht is the hidden state at time t; ct is the cell state at
time t; xt is the input at time t; h(t−1) is the hidden state of
the layer at time t − 1 or the initial hidden state at time 0,
and it, ft, gt, ot are the input, forget, cell, and output gates,
respectively. σ is the sigmoid function, and ◦ is the element-
wise product.

The architecture implemented consist of an Embedding
layer, followed by an LSTM layer with an input size equal
to the dimension of the Embedding and with the number
of features in the hidden state equal to 256. This is then
followed by a Linear layer with input size equal to the number
of features in the LSTM (256) and output size equal to the
number of classes.

LSTM-Attn: The second LSTM architecture we imple-
mented, LSTM-Attn, to perform sentiment analysis in the text
is based on the aforementioned LSTM architecture, but with
the addition of an Attention layer [33] between the LSTM
layer and the Linear layer. The idea behind the Attention
mechanism is to increase the importance of specific parts
of the input sentence [34]. There are two types of attention
mechanisms, the global and the local ones. The difference
is that in the global mechanisms, all the hidden states of
the previous layer are considered for deriving the context
vector, whilst on the local attention mechanisms, only some
hidden states are considered [35]. In this implementation, the
Attention layer is a global attention mechanism that computes
the soft alignment score between the output of the LSTM and
its final hidden state.

The final architecture for LSTM-Attn is: an Embedding
layer, followed by an LSTM layer with input size equal to
the embedding dimension and 256 as the number of hidden
features. Following this, comes the Attention layer that re-
ceives the output from the LSTM and the last hidden LSTM
state, and outputs a new hidden state with the same size as the
output of the LSTM. This then serves as input to the Linear
layer, which outputs the classification vector.

Bi-LSTM: Bi-directional LSTMs (Bi-LSTM) were created
as an improvement over the vanilla LSTMs in tasks where
full sequences are present, and context is important [36]. The
idea behind Bi-LSTM is to present the information forward
and backwards to two separate LSTM networks that are both
connected to the same output layer. Having such bi-directional
processing on the input information means that the network
has, for each input (embedding or word), sequential and
context information about it.

The architecture implemented starts with an Embedding
layer, followed by a bi-directional LSTM layer with input size
equal to the embedding dimension and 256 as hidden features.
Then, we use the output from the Bi-LSTM layer and perform
both an average pool and a max pool, which are concatenated
together and fed into a Linear layer of input size 256 ∗ 4 and
output of 64. Then, a ReLU operation is performed, followed
by a dropout, with p = 0.1. The result of this goes to a Linear
layer that outputs the classification vector.

RNN: Recurrent Neural Networks were designed to allow
neural networks to have temporal information, which simple
neural networks cannot have [37]. Basically, RNNs form a
chain structure in which each node receives as input the output
from the predecessor node and one part of the input sequence
(e.g., a word or a vector). Each node outputs a value, both to
the successor node and to the next layer.



So, what an RNN layer does is, for each input element, it
computes:

ht = tanh(Wihxt + bih +Whhh(t−1) + bhh) (6)

where ht is the hidden state at time t; xt is the input at
time t, and h(t−1) is the hidden state of the previous layer at
time t− 1 or the initial hidden state at time 0.

The architecture implemented is an Embedding Layer fol-
lowed by a multi-layer Elman RNN with 2 layers, input size
equal to the dimension of the embedding and with a hidden
size of 256. The output of this layer is then inserted into a
Linear layer that outputs the classification vector.

RCNN: The idea behind Recurrent Convolutional Neural
Network (RCNN) [38], is to apply a recurrent network struc-
ture to text classification that requires no human-designed fea-
tures. The recurrent structure captures contextual information
as far as possible when learning word representations whilst
having less noise when compared to methods that use neural
networks that rely on window-based processing. To store the
context, the RCNN uses a bi-directional recurrent structure and
employs a max-pooling layer to capture key features present
in the text automatically.

The architecture implemented consists of an Embedding
Layer, a bi-directional LSTM Layer with input size equal to
the dimension of the embedding, hidden size of 256 and a
dropout of 0.8. The final embedding vector is the concatena-
tion of its embedding and left and right contextual embeddings,
which in this case is the hidden vector of the LSTM. This
concatenated vector is then passed to a Linear Layer which
maps the input vector back to a vector with a size equal to the
hidden size of the LSTM, 256. This is passed through a 1D
Max Pooling Layer, and finally, the output from this layer is
sent to a Linear Layer that maps the input to a classification
vector.

TextCNN: The Convolutional Neural Networks for Sen-
tence Classification (TextCNN), performs convolutions, of
different kernel sizes, on textual data [39]. This is done
by performing convolutions over the embedding matrix that
represents the input sentences. The convolutions performed
are parallel and independent of one another. The architecture
of TextCNN implemented is an Embedding Layer followed
by 5 convolutional blocks. Each one of those blocks consists
of a 2D Convolutional Layer followed by a ReLU activation
function and a 1D Max Pooling Layer. The output of all blocks
is concatenated into a single vector that goes through a dropout
phase with p = 0.8, and the result then goes to a Linear Layer
that returns the classification vector.

Based on TextCNN, we defined a second CNN-based net-
work to perform text classification, which we named sCNN.
The architecture is similar, but instead of having 5 blocks of
Convolutions-ReLU-Max Pooling, it has only 3 with kernel
sizes of 1, 3 and 5 respectively.

VDCNN: Inspired by the results that deep convolutional
networks have on image classification tasks [40], the authors
of Very Deep Convolutional Networks for Text Classification
(VDCNN) [41] designed a similar deep neural network for the

problem of classifying text. In VDCNN, many convolutions
with small kernel sizes (size 3) are stacked to form a deep
network, where shortcuts are present for keeping contextual
information and solving the vanishing gradient problem. VD-
CNN employs convolutional blocks that consist of a sequence
of two convolutional layers, each one followed by batch
normalization and a ReLU activation.

We implemented 4 VDCNN architectures with different
depths: 9, 17, 29 and 49. Every architecture starts with an
Embedding layer, followed by a 1D Conv layer with input
size equal to embedding size and output size of 64. Then, they
have a set of Convolution Blocks. The number of Convolution
Blocks depends on the depth of the architecture, but can be
seen in [41]-Table 2. After the Convolution Blocks, comes a
K-Max Pooling layer, a Linear layer with input of 512 ∗ k,
where k is the number selected for the pooling layer, (2), and
output of 2048. Following it, a Linear Layer with 2048 as
input and output is inserted and finally, a Linear Layer with
an input size of 2048, outputs the classification vector.

D. Fusion Method

The focus of the fusion method is to use the individual
classifications of the text and image components to perform
a final classification. The goal with the fusion approach is
to leverage context knowledge of both sources, to outperform
individual classifications.

To create the classifier, we based our approach on AutoML
[15], where the goal is to create an optimal model to classify
a given dataset, without requiring extensive human modelling.
First, we can define a machine learning model L, as a mapping
from the space of datasets, D, and architectures, A, to the
space of models M,L : D × A → M . For any given dataset
d ∈ D, and architecture a ∈ A, the mapping returns the
solution to the problem, which consists of minimizing a loss
function, L, with regularization mechanisms, R, with respect
to the model, m, with parameters θ, architecture a, and using
the training data, d(train) [42]:

L(a, d(train)) = argmin
m(a,θ)∈M(a)

L(m(a,θ), d(train)) +R(θ) (7)

So, we can define our problem as a nested optimization
problem, where the goal is to find an optimal model to classify
the sentiment based on the individual classifications, d, and a
search space A: a∗ ∈ A, that maximizes the objective function
O, on the validation set:

a∗ = argmax
a∈A

O(L(a, d(train)), d(valid)) (8)

Since our problem relies on fusing individual classifications
of both text and image into a final one, the first step is to get d
based on Yimg and Ytext, where Y represents the classification
vector, and img and text represent the classifiers, in order to
fuse them into a unique feature map: X = Yimg

⊕
Ytext,

where X will be the input for the optimization problem (final
classifier). Note that in our problem, O is defined as accuracy
in the task of 3-class sentiment classification.



To search for the optimal machine learning model, we based
our solution on [43], by performing an automatic random
search [17] over a set of several machine learning algorithms
and their inner parameters. So, in this work, to search the op-
timal model and its inner parameters, we performed a random
search over the space that includes the following models: a
random forest, an extremely-randomized forest, a random grid
of generalized linear models, a random grid of XGboost, a
random grid of gradient boosting machines (GBM), a random
grid of deep neural networks. After searching these models, 2
stacked ensembles were created, the first one comprised of all
models evaluated, and the other one, containing the best model
of each type. In the end, the model with the best performance
on the validation set is the one selected to be in the architecture
of the proposed method.

IV. EXPERIMENTS

A. Datasets

As aforementioned, our approach tackles the problem of
multimodal sentiment analysis, using both textual and image
information. For this, we focused on using the B-T4SA dataset,
which is a dataset comprised of Twitter information, in which
every sample has both text and image. Furthermore, to conduct
experiments using transfer-learning [44], we incorporated two
more datasets: Stanford Sentiment Treebank (SST-5), for the
text classification, and Flickr and Instagram Dataset, for the
image classification component.

Following is a detailed explanation of all the datasets used.
1) B-T4SA: B-T4SA is a subset of T4SA, consisting of

470 thousand samples, each one containing both text and
image information. All classes are balanced, and the splits are
stratified. The train set consists of approximately 80% of the
dataset, while both the validation and test sets have 10% each.
B-T4SA was created to solve the problems of T4SA, such as
duplicated entries, small sentences, malformed images, and
unbalanced classes [45]. In Figure 2, we show an example of
an image and the corresponding text, for each class (negative,
neutral, positive).

2) Stanford Sentiment Treebank: The Stanford Sentiment
Treebank (SST) consists of sentiment labels for 215,154
phrases in the parse trees of 11855 sentences [46]. The dataset
can be presented in the form of binary classification, either
negative or positive, or in a fine-grained way, using a 5-class
classification: very negative, negative, neutral, positive, and
very positive. The latter is denominated SST-5, and is widely
used to evaluate text sentiment classifiers. SST-5 was used in
this work as a way to initially train a model, before training it
on a final dataset. This allows performing fine-tuning on the
model, by transferring the knowledge from the first dataset
to the second one, avoiding initializing the model weights
randomly [47]. Denote that, as this dataset has 5 classes, when
the models were transferred to B-T4SA, the last layer was
removed and substituted by a new one with only 3 output
classes.

3) Flickr and Instagram: To perform transfer-learning on
the image classifier, we have also used the Flickr and In-
stagram dataset [48], which is composed of 23308 labelled
images of 8 different classes of emotions - amusement, anger,
awe, contentment, disgust, excitement, fear and sadness. The
goal with this dataset was to pre-train the image classifiers,
which upon convergence, are transferred to B-T4SA, by re-
placing the last classification layer to an identical one with
only 3 output classes.

B. Text Analysis

To select the best text sentiment analysis model to use in the
multimodal architecture, we conducted a set of experiments
with all the models implemented. We evaluated each model
three times in the task of classifying sentiments in the B-T4SA
dataset, using the Adam optimizer [49], and the Cross-Entropy
loss.

The mean accuracy and standard deviation in each one of
the sets are shown in Table I, where the first block represents
the results for two models that can be used as a library in
python (VADER and TextBlob), the second block represents
the deep learning models, and the third block represents the
best model of the previous block with fine-tuning. In the first
block, we show two results for both methods, including with
and without the pre-processing step. The “-PP” represents the
results with clean data, which achieved better results than
without any data cleaning, showing that cleaning textual data
to remove noise will allow methods to yield better results. In
the second and third blocks, all experiments were conducted
using pre-processed data. Here, it is possible to see that,
except for FastText that achieved approximately 42% and
LSTM that was incapable of learning to solve the task (even
with different learning rates, hidden features and optimizers),
all models achieved a mean accuracy of over 90%. This
is well above the plug-and-play methods, and the previous
state-of-the-art [14], which used TextBlob methods to achieve
64.27% accuracy. The best result from these methods was
obtained with the RCNN, which achieved a mean accuracy
of 94.61%, outperforming all other methods. This can be
justified due to the strong capability of RCNNs to evaluate a
word, based on its embeddings, coupled by the right and left
contexts, which are extracted using recurrent structures. This
combination allows features to be extracted more accurately
when working in problems that require context, of which
sentiment analysis is heavily dependent on. On the third block
of the table, the results of fine-tuning the RCNN model are
presented. In this case, the fine-tuning was performed by
initially training the model on the SST-5 dataset, and then
replacing its final classification layer to output three values
instead of five. More, “RCNN-sst ft B-T4SA FC” represents
training initially on SST-5 and then train only on the Linear
Layers of the model using B-T4SA, whereas “RCNN-sst ft
B-T4SA” represents fine-tuning the entire model on B-T4SA,
after training it on SST-5. By conducting such experiments, it
is possible to see that fine-tuning the entire model yields better
results when compared to only transfer learning and fine-



(a) Negative: “His eyes speak of the horror of
war that no one should go through. War doesn’t
help, it only kills. Pls Stop.”

(b) Neutral: “And they say it’s grim up north...” (c) Positive: “Thank you Phuket Sunset Wed-
dings for using Wedding Flowers Phuket. Waiting
the happy couple.”

Fig. 2. Examples of images and the correspondent texts of the three different classes presented in the dataset. (a), presents a negative example; (b), a neutral
one, and (c), a positive sample.

TABLE I
MEAN ACCURACY AND STANDARD DEVIATION ON THE TRAIN AND

VALIDATION SET OF THE B-T4SA DATASET WITH DIFFERENT METHODS
FOR LANGUAGE PROCESSING. THE FIRST BLOCK SHOWS THE RESULTS
USING METHODS THAT ARE AVAILABLE AS PYTHON LIBRARIES. THE
SECOND BLOCK SHOWS THE RESULT OF OUR IMPLEMENTATIONS OF

DIFFERENT DEEP LEARNING METHODS. IN THE THIRD BLOCK, WE SHOW
THE RESULTS OF THE BEST METHOD FROM THE SECOND BLOCK (RCNN),
PRE-TRAINING ON SST AND FINE-TUNED ON B-T4SA. EACH MODEL WAS

EVALUATED THREE TIMES, UNDER THE SAME CONDITIONS.

Mean Accuracy (%)
Method Train Validation

VADER 41.04 ± 0 41.02 ± 0
VADER-PP 56.84 ± 0 56.82 ± 0
Textblob 64.22 ± 0 64.27 ± 0
Textblob-PP 64.88 ± 0 64.78 ± 0
FastText 42.86 ± 0.03 42.76 ± 0.05
LSTM 33.33 ± 0.04 33.13 ± 0.00
LSTM-Attn 97.36 ± 0.03 93.48 ± 0.57
BI-LSTM 96.56 ± 0.97 94.35 ± 0.07
RNN 90.72 ± 0.78 91.24 ± 0.48
RCNN 98.12 ± 1.10 94.61 ± 0.03
TextCNN 95.47 ± 0.86 93.73 ± 0.00
sCNN 90.69 ± 0.10 92.69 ± 0.02
VDCNN9 94.18 ± 0.81 93.33 ± 0.23
VDCNN17 88.29 ± 2.28 92.05 ± 0.52
VDCNN29 93.90 ± 0.65 93.19 ± 0.18
VDCNN49 92.61 ± 0.33 92.81 ± 0.11
RCNN-sst ft B-T4SA FC 86.73 ± 0.69 86.51 ± 0.67
RCNN-sst ft B-T4SA 98.60 ± 1.29 94.60 ± 0.03

tune the last classification layers. However, these results do
not improve upon the normal model, with weights initialized
randomly.

From this experiment, we selected RCNN as the text classi-
fier to be used in the proposed method, since it presented the
best results in the validation set. Even though the validation
set cannot be seen as a surrogate of the test set, it is the best
way to evaluate how a model will perform in unseen data,
without introducing biases by using the test set, which is only
used at the end of the entire training process (when all the
methods for the proposed method are selected).

C. Image Analysis

Regarding the selection of the model to perform the image
classification, we have evaluated the performance of multiple
resnet architectures and densenet161 in the task of image
sentiment analysis. In Table II, the results for our experiments
are shown. Note that every network was evaluated using the
same learning rate (1e−3), Adam optimizer and cross-entropy
loss. The first row of the table represents if the experiment
was done using transfer-learning, meaning that the models
were initially trained on the Flicker and Instagram dataset.
We have also evaluated how the different models behave with
RBG images (1st and 4th experiment in the table, while the
4th uses pre-trained weights), and RBG and Local Binary
Patterns (LBP) [50]. In the latter, we changed the models to
receive 4 inputs and placed the LBP on the fourth channel
(3rd experiment in the table). The goal of using LBP is to
evidence hidden patterns that assist in detecting the image
polarity. All the results show that classifying the sentiment
of an image is difficult, mainly due to the subjectivity of
the image and due to inter-class similarities, where images
that have different classes can be visually similar. Neither the
addition of the LBP nor pre-training the models on the Flicker
and Instagram dataset improved the results when compared to
using only RGB with randomly initialized weights. Further-
more, all models performed similarly, but ResNet34 was the
best one, achieving 49.8% accuracy using RGB images, with
or without pre-training. Even though ResNet18 had almost
the same performance using pre-trained settings, we selected
ResNet34 for the proposed method, as it consistently out-
performed ResNet18.

D. Fusion Analysis

Based on the text classifier, RCNN, and the image clas-
sifier, ResNet34, we then evaluated the performance of the
proposed method as a whole. For this, we initially searched
for the optimal model, using the method described in III-D,
allowing the search for a maximum of two hours. By doing
this, the most performant model in the validation set was a
GBM. By evaluating the entire proposed method on the test



TABLE II
ACCURACY (%) OF SEVERAL DEEP LEARNING NETWORKS IN THE TASK

OF CLASSIFYING SENTIMENTS, BOTH IN THE TRAIN AND VALIDATION SET.
THE FIRST ROW, PRE-TRAIN, INDICATES IF THE EXPERIMENT USES

TRANSFER LEARNING. EACH EXPERIMENT COLUMN ALSO CONTAINS THE
INFORMATION ABOUT THE DATA TYPE USED, EITHER RGB OR RGB PLUS

LBP.

Pre-trained × × X

Network RGB RGB+LBP RGB
Train Val Train Val Train Val

ResNet18 47.4% 47.7% 47.4% 47.9% 46.6% 49.7%
ResNet34 47.2% 49.8% 47.3% 48.0% 45.6% 49.8%
ResNet50 46.3% 46.4% 47.2% 47.4% 48.5% 48.7%

ResNet101 44.9% 45.1% 47.1% 47.1% 47.6% 47.7%
ResNet152 44.5% 44.5% 45.9% 45.9% 47.1% 47.5%

DenseNet161 46.9% 47.1% 47.5% 47.5% 47.2% 47.3%

TABLE III
ACCURACY (%) IN THE TEST SET FOR THE PROPOSED METHOD AND A

BASELINE USING SVM.

Method Test Accuracy (%)
SVM 95.16%

AutoML-based Fusion (ours) 95.19%

set, it achieved an accuracy of 95.19%, which the result is
synthesized in Table III. To evaluate the performance of the
proposed method, but with a different fusion classifier, we
have also evaluated the use of a Support Vector Machine
(SVM), which achieved a performance of 95.16% using all
the settings of the proposed method. The difference between
the GBM and the SVM classifier is small, 0.03%, but the
AutoML searched method has several advantages. The first
one is the time required to train, while the AutoML method of
searching for methods only required two hours, SVM required
several hours to train. More, SVMs tend not to scale well,
as there are more features (in the order on thousands), they
tend to become extremely slow to fit the data, whilst our
proposed methodology to search for a classifier is extremely
robust by comprising methods that can handle a large number
of features without becoming untenable. However, the SVM
baseline consolidates the proposed method, by showing that
the proposed architecture works, even in the presence of
different fusion classifiers.

To further validate our proposal, we compare our results
with state-of-the-art methods, in which the results are present
in Table IV. In this, it is possible to see that our proposal
outperforms others. More, to further evaluate the effectiveness
of our proposal, we have further tested the proposed method
in [14], by replacing its text classifier by our RCNN, resulting
in a 15.9% accuracy improvement, (represented in the table by
Information Fusion [14] (TM)), but is still 18.8% below our
proposed method. This consolidates that our proposed method
of fusing the individual classifications and then performing
a random search to find the optimal fusion classifier, is an
efficient method.

TABLE IV
COMPARISON WITH THE RESULTS OF EXISTING METHODS WITH OUR

EXPERIMENTS. THE TM, STANDS FOR SUBSTITUTING THE TEXT
CLASSIFIER FROM [14] FOR THE ONE SELECTED IN OUR EXPERIMENTS.

Method B-T4SA
Test Set Accuracy (%)

Random Classifier 33.33%
Hybrid-T4SA FT-F [45] 49.90%
Hybrid-T4SA FT-A [45] 49.10%
VGG-T4SA FT-F [45] 50.60%
VGG-T4SA FT-A [45] 51.30%
Information Fusion [14] 60.42%
Information Fusion [14] (TM) 76.35%
SVM-fusion (ours) 95.16%
AutoML-based Fusion (ours) 95.19%

V. CONCLUSIONS

This paper proposes a novel method to perform multimodal
sentiment classification of social media content. The proposed
method consists of performing individual text and image
classifications, which are then fused by an AutoML-generated
model to perform a final classification. We explored several
state-of-the-art classifiers for both text and image. More, with
the proposed AutoML approach, our method was capable of
finding an optimal model that outperformed the state-of-the-
art in the B-T4SA dataset, which, due to its natural content, is
very challenging and contains intra and inter-class subjectivity.

ACKNOWLEDGMENTS

This work was supported by ‘FCT - Fundação para
a Ciência e Tecnologia’ throught the research grant
‘2020.04588.BD’, partially supported by NOVA LINCS
(UIDB/04516/2020) with the financial support of FCT-
Fundação para a Ciência e a Tecnologia, through national
funds, partially supported the project MOVES-Monitoring
Virtual Crowds in Smart Cities (PTDC/EEI-AUT/28918/2017)
financed by FCT-Fundação para a Ciência e a Tecnologia,
and partially supported by project 026653 (POCI-01-0247-
FEDER-026653) INDTECH 4.0 – New technologies for smart
manufacturing, cofinanced by the Portugal 2020 Program
(PT 2020), Compete 2020 Program and the European Union
through the European Regional Development Fund (ERDF).

REFERENCES

[1] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms
and applications: A survey,” Ain Shams engineering journal, vol. 5,
no. 4, pp. 1093–1113, 2014.

[2] C. C. Aggarwal and C. Zhai, “A survey of text classification algorithms,”
in Mining text data. Springer, 2012, pp. 163–222.

[3] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury, “Twitter power:
Tweets as electronic word of mouth,” Journal of the American society
for information science and technology, vol. 60, no. 11, pp. 2169–2188,
2009.

[4] D. Gräbner, M. Zanker, G. Fliedl, M. Fuchs et al., “Classification of
customer reviews based on sentiment analysis,” in ENTER. Citeseer,
2012, pp. 460–470.

[5] S. Shayaa, N. I. Jaafar, S. Bahri, A. Sulaiman, P. S. Wai, Y. W. Chung,
A. Z. Piprani, and M. A. Al-Garadi, “Sentiment analysis of big data:
Methods, applications, and open challenges,” IEEE Access, vol. 6, pp.
37 807–37 827, 2018.



[6] G. Beigi, X. Hu, R. Maciejewski, and H. Liu, “An overview of sentiment
analysis in social media and its applications in disaster relief,” in
Sentiment analysis and ontology engineering. Springer, 2016, pp. 313–
340.

[7] A. Giachanou and F. Crestani, “Like it or not: A survey of twitter
sentiment analysis methods,” ACM Comput. Surv., vol. 49, no. 2, Jun.
2016.

[8] M. Soleymani, D. Garcia, B. Jou, B. Schuller, S.-F. Chang, and M. Pan-
tic, “A survey of multimodal sentiment analysis,” Image and Vision
Computing, vol. 65, pp. 3–14, 2017.

[9] N. Majumder, D. Hazarika, A. Gelbukh, E. Cambria, and S. Poria,
“Multimodal sentiment analysis using hierarchical fusion with context
modeling,” Knowledge-based systems, vol. 161, pp. 124–133, 2018.

[10] L. Zhang, S. Wang, and B. Liu, “Deep learning for sentiment analysis: A
survey,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 8, no. 4, p. e1253, 2018.

[11] M. Wöllmer, F. Weninger, T. Knaup, B. Schuller, C. Sun, K. Sagae,
and L.-P. Morency, “Youtube movie reviews: Sentiment analysis in an
audio-visual context,” IEEE Intelligent Systems, vol. 28, no. 3, pp. 46–
53, 2013.

[12] A. Zadeh, M. Chen, S. Poria, E. Cambria, and L.-P. Morency, “Tensor
fusion network for multimodal sentiment analysis,” arXiv preprint
arXiv:1707.07250, 2017.

[13] Q. Truong and H. W. Lauw, “Vistanet: Visual aspect attention network
for multimodal sentiment analysis,” in The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019. AAAI Press, 2019, pp.
305–312.

[14] A. Gaspar and L. A. Alexandre, “A multimodal approach to image
sentiment analysis,” in Intelligent Data Engineering and Automated
Learning – IDEAL 2019. Cham: Springer International Publishing,
2019, pp. 302–309.

[15] F. Hutter, L. Kotthoff, and J. Vanschoren, Eds., Automatic Machine
Learning: Methods, Systems, Challenges. Springer, 2019.

[16] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-of-the-art,”
Knowledge-Based Systems, p. 106622, 2020.

[17] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 281–305, 2012.

[18] J. Liang, E. Meyerson, B. Hodjat, D. Fink, K. Mutch, and R. Miikku-
lainen, “Evolutionary neural automl for deep learning,” in Proceedings
of the Genetic and Evolutionary Computation Conference, 2019, pp.
401–409.

[19] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and K. Leyton-
Brown, “Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka,” The Journal of Machine Learning Research,
vol. 18, no. 1, pp. 826–830, 2017.

[20] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
784–800.

[21] S. Kocbek and B. Gabrys, “Automated machine learning techniques in
prognostics of railway track defects,” in ICDMW. IEEE, 2019.

[22] V. Lopes and L. A. Alexandre, “Auto-classifier: A robust defect detector
based on an automl head,” in International Conference on Neural
Information Processing. Springer, Cham, 2020, pp. 137–149.

[23] A. Agrapetidou, P. Charonyktakis, P. Gogas, T. Papadimitriou, and
I. Tsamardinos, “An automl application to forecasting bank failures,”
Applied Economics Letters, pp. 1–5, 2020.

[24] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, vol. 20, pp. 1–21, 2019.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[27] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

[28] C. J. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” in Eighth international AAAI
conference on weblogs and social media, 2014.

[29] S. Loria, “textblob documentation,” Technical report, Tech. Rep., 2018.

[30] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” in Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. Valencia, Spain: Association for Computational
Linguistics, Apr. 2017, pp. 427–431.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, 2013.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[33] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[34] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou,
and Y. Bengio, “A structured self-attentive sentence embedding,” in
5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

[35] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015,
pp. 1412–1421.

[36] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional lstm and other neural network architectures,” Neural
Networks, vol. 18, no. 5, pp. 602 – 610, 2005, iJCNN 2005.

[37] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[38] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” in Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, ser. AAAI’15. AAAI Press,
2015, pp. 2267–2273.

[39] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association
for Computational Linguistics, Oct. 2014, pp. 1746–1751.

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[41] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep
convolutional networks for text classification,” in Proceedings of the 15th
Conference of the European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 1107–1116.

[42] M. Wistuba, “Transfer neural architecture search,” 1st Workshop on
Neural Architecture Search at ICLR 2020, 2020.

[43] H2O.ai, H2O AutoML, June 2017, h2O version 3.30.0.1. [Online].
Available: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

[44] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2009.

[45] L. Vadicamo, F. Carrara, A. Cimino, S. Cresci, F. Dell’Orletta, F. Falchi,
and M. Tesconi, “Cross-media learning for image sentiment analysis in
the wild,” in 2017 IEEE International Conference on Computer Vision
Workshops (ICCVW), Oct 2017, pp. 308–317.

[46] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[47] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big data, vol. 3, no. 1, p. 9, 2016.

[48] Q. You, J. Luo, H. Jin, and J. Yang, “Building a large scale dataset
for image emotion recognition: The fine print and the benchmark,” in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
ser. AAAI’16. AAAI Press, 2016, p. 308–314.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, Y. Bengio and Y. LeCun, Eds., 2015.

[50] K. Meena and A. Suruliandi, “Local binary patterns and its variants for
face recognition,” in 2011 International Conference on Recent Trends
in Information Technology (ICRTIT), 2011, pp. 782–786.


